[5099] | 1 | |
---|
[1403] | 2 | ! $Id: ppm3d.f90 5160 2024-08-03 12:56:58Z abarral $ |
---|
[524] | 3 | |
---|
[5105] | 4 | !From lin@explorer.gsfc.nasa.gov Wed Apr 15 17:44:44 1998 |
---|
| 5 | !Date: Wed, 15 Apr 1998 11:37:03 -0400 |
---|
| 6 | !From: lin@explorer.gsfc.nasa.gov |
---|
| 7 | !To: Frederic.Hourdin@lmd.jussieu.fr |
---|
| 8 | !Subject: 3D transport module of the GSFC CTM and GEOS GCM |
---|
[524] | 9 | |
---|
| 10 | |
---|
[5105] | 11 | !This code is sent to you by S-J Lin, DAO, NASA-GSFC |
---|
[524] | 12 | |
---|
[5105] | 13 | !Note: this version is intended for machines like CRAY |
---|
| 14 | !-90. No multitasking directives implemented. |
---|
[524] | 15 | |
---|
| 16 | |
---|
[5105] | 17 | ! ******************************************************************** |
---|
[5159] | 18 | |
---|
[5105] | 19 | ! TransPort Core for Goddard Chemistry Transport Model (G-CTM), Goddard |
---|
| 20 | ! Earth Observing System General Circulation Model (GEOS-GCM), and Data |
---|
| 21 | ! Assimilation System (GEOS-DAS). |
---|
[5159] | 22 | |
---|
[5105] | 23 | ! ******************************************************************** |
---|
[5159] | 24 | |
---|
[5105] | 25 | ! Purpose: given horizontal winds on a hybrid sigma-p surfaces, |
---|
| 26 | ! one CALL to tpcore updates the 3-D mixing ratio |
---|
| 27 | ! fields one time step (NDT). [vertical mass flux is computed |
---|
| 28 | ! internally consistent with the discretized hydrostatic mass |
---|
| 29 | ! continuity equation of the C-Grid GEOS-GCM (for IGD=1)]. |
---|
[5159] | 30 | |
---|
[5105] | 31 | ! Schemes: Multi-dimensional Flux Form Semi-Lagrangian (FFSL) scheme based |
---|
| 32 | ! on the van Leer or PPM. |
---|
| 33 | ! (see Lin and Rood 1996). |
---|
| 34 | ! Version 4.5 |
---|
| 35 | ! Last modified: Dec. 5, 1996 |
---|
| 36 | ! Major changes from version 4.0: a more general vertical hybrid sigma- |
---|
| 37 | ! pressure coordinate. |
---|
| 38 | ! Subroutines modified: xtp, ytp, fzppm, qckxyz |
---|
| 39 | ! Subroutines deleted: vanz |
---|
[5159] | 40 | |
---|
[5105] | 41 | ! Author: Shian-Jiann Lin |
---|
| 42 | ! mail address: |
---|
| 43 | ! Shian-Jiann Lin* |
---|
| 44 | ! Code 910.3, NASA/GSFC, Greenbelt, MD 20771 |
---|
| 45 | ! Phone: 301-286-9540 |
---|
| 46 | ! E-mail: lin@dao.gsfc.nasa.gov |
---|
[5159] | 47 | |
---|
[5105] | 48 | ! *affiliation: |
---|
| 49 | ! Joint Center for Earth Systems Technology |
---|
| 50 | ! The University of Maryland Baltimore County |
---|
| 51 | ! NASA - Goddard Space Flight Center |
---|
| 52 | ! References: |
---|
[5159] | 53 | |
---|
[5105] | 54 | ! 1. Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux form semi- |
---|
| 55 | ! Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046-2070. |
---|
[5159] | 56 | |
---|
[5105] | 57 | ! 2. Lin, S.-J., W. C. Chao, Y. C. Sud, and G. K. Walker, 1994: A class of |
---|
| 58 | ! the van Leer-type transport schemes and its applications to the moist- |
---|
| 59 | ! ure transport in a General Circulation Model. Mon. Wea. Rev., 122, |
---|
| 60 | ! 1575-1593. |
---|
[5159] | 61 | |
---|
[5105] | 62 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5159] | 63 | |
---|
[5105] | 64 | SUBROUTINE ppm3d(IGD,Q,PS1,PS2,U,V,W,NDT,IORD,JORD,KORD,NC,IMR, & |
---|
| 65 | JNP,j1,NLAY,AP,BP,PT,AE,fill,dum,Umax) |
---|
[524] | 66 | |
---|
[5113] | 67 | IMPLICIT NONE |
---|
[524] | 68 | |
---|
[5105] | 69 | ! rajout de déclarations |
---|
| 70 | ! integer Jmax,kmax,ndt0,nstep,k,j,i,ic,l,js,jn,imh,iad,jad,krd |
---|
| 71 | ! integer iu,iiu,j2,jmr,js0,jt |
---|
| 72 | ! real dtdy,dtdy5,rcap,iml,jn0,imjm,pi,dl,dp |
---|
| 73 | ! real dt,cr1,maxdt,ztc,d5,sum1,sum2,ru |
---|
[5159] | 74 | |
---|
[5105] | 75 | ! ******************************************************************** |
---|
[5159] | 76 | |
---|
[5105] | 77 | ! ============= |
---|
| 78 | ! INPUT: |
---|
| 79 | ! ============= |
---|
[5159] | 80 | |
---|
[5105] | 81 | ! Q(IMR,JNP,NLAY,NC): mixing ratios at current time (t) |
---|
| 82 | ! NC: total # of constituents |
---|
| 83 | ! IMR: first dimension (E-W); # of Grid intervals in E-W is IMR |
---|
| 84 | ! JNP: 2nd dimension (N-S); # of Grid intervals in N-S is JNP-1 |
---|
| 85 | ! NLAY: 3rd dimension (# of layers); vertical index increases from 1 at |
---|
| 86 | ! the model top to NLAY near the surface (see fig. below). |
---|
| 87 | ! It is assumed that 6 <= NLAY <= JNP (for dynamic memory allocation) |
---|
[5159] | 88 | |
---|
[5105] | 89 | ! PS1(IMR,JNP): surface pressure at current time (t) |
---|
| 90 | ! PS2(IMR,JNP): surface pressure at mid-time-level (t+NDT/2) |
---|
| 91 | ! PS2 is replaced by the predicted PS (at t+NDT) on output. |
---|
| 92 | ! Note: surface pressure can have any unit or can be multiplied by any |
---|
| 93 | ! const. |
---|
[5159] | 94 | |
---|
[5105] | 95 | ! The pressure at layer edges are defined as follows: |
---|
[5159] | 96 | |
---|
[5105] | 97 | ! p(i,j,k) = AP(k)*PT + BP(k)*PS(i,j) (1) |
---|
[5159] | 98 | |
---|
[5105] | 99 | ! Where PT is a constant having the same unit as PS. |
---|
| 100 | ! AP and BP are unitless constants given at layer edges |
---|
| 101 | ! defining the vertical coordinate. |
---|
| 102 | ! BP(1) = 0., BP(NLAY+1) = 1. |
---|
| 103 | ! The pressure at the model top is PTOP = AP(1)*PT |
---|
[5159] | 104 | |
---|
[5105] | 105 | ! For pure sigma system set AP(k) = 1 for all k, PT = PTOP, |
---|
| 106 | ! BP(k) = sige(k) (sigma at edges), PS = Psfc - PTOP. |
---|
[5159] | 107 | |
---|
[5105] | 108 | ! Note: the sigma-P coordinate is a subset of Eq. 1, which in turn |
---|
| 109 | ! is a subset of the following even more general sigma-P-thelta coord. |
---|
| 110 | ! currently under development. |
---|
| 111 | ! p(i,j,k) = (AP(k)*PT + BP(k)*PS(i,j))/(D(k)-C(k)*TE**(-1/kapa)) |
---|
[5159] | 112 | |
---|
[5105] | 113 | ! ///////////////////////////////// |
---|
| 114 | ! / \ ------------- PTOP -------------- AP(1), BP(1) |
---|
| 115 | ! | |
---|
| 116 | ! delp(1) | ........... Q(i,j,1) ............ |
---|
| 117 | ! | |
---|
| 118 | ! W(1) \ / --------------------------------- AP(2), BP(2) |
---|
[5159] | 119 | |
---|
| 120 | |
---|
| 121 | |
---|
[5105] | 122 | ! W(k-1) / \ --------------------------------- AP(k), BP(k) |
---|
| 123 | ! | |
---|
| 124 | ! delp(K) | ........... Q(i,j,k) ............ |
---|
| 125 | ! | |
---|
| 126 | ! W(k) \ / --------------------------------- AP(k+1), BP(k+1) |
---|
[5159] | 127 | |
---|
| 128 | |
---|
| 129 | |
---|
[5105] | 130 | ! / \ --------------------------------- AP(NLAY), BP(NLAY) |
---|
| 131 | ! | |
---|
| 132 | ! delp(NLAY) | ........... Q(i,j,NLAY) ......... |
---|
| 133 | ! | |
---|
| 134 | ! W(NLAY)=0 \ / ------------- surface ----------- AP(NLAY+1), BP(NLAY+1) |
---|
| 135 | ! ////////////////////////////////// |
---|
[5159] | 136 | |
---|
[5105] | 137 | ! U(IMR,JNP,NLAY) & V(IMR,JNP,NLAY):winds (m/s) at mid-time-level (t+NDT/2) |
---|
| 138 | ! U and V may need to be polar filtered in advance in some cases. |
---|
[5159] | 139 | |
---|
[5105] | 140 | ! IGD: grid type on which winds are defined. |
---|
| 141 | ! IGD = 0: A-Grid [all variables defined at the same point from south |
---|
| 142 | ! pole (j=1) to north pole (j=JNP) ] |
---|
[5159] | 143 | |
---|
[5105] | 144 | ! IGD = 1 GEOS-GCM C-Grid |
---|
| 145 | ! [North] |
---|
[5159] | 146 | |
---|
[5105] | 147 | ! V(i,j) |
---|
| 148 | ! | |
---|
| 149 | ! | |
---|
| 150 | ! | |
---|
| 151 | ! U(i-1,j)---Q(i,j)---U(i,j) [EAST] |
---|
| 152 | ! | |
---|
| 153 | ! | |
---|
| 154 | ! | |
---|
| 155 | ! V(i,j-1) |
---|
[5159] | 156 | |
---|
[5105] | 157 | ! U(i, 1) is defined at South Pole. |
---|
| 158 | ! V(i, 1) is half grid north of the South Pole. |
---|
| 159 | ! V(i,JMR) is half grid south of the North Pole. |
---|
[5159] | 160 | |
---|
[5105] | 161 | ! V must be defined at j=1 and j=JMR if IGD=1 |
---|
| 162 | ! V at JNP need not be given. |
---|
[5159] | 163 | |
---|
[5105] | 164 | ! NDT: time step in seconds (need not be constant during the course of |
---|
| 165 | ! the integration). Suggested value: 30 min. for 4x5, 15 min. for 2x2.5 |
---|
| 166 | ! (Lat-Lon) resolution. Smaller values are recommanded if the model |
---|
| 167 | ! has a well-resolved stratosphere. |
---|
[5159] | 168 | |
---|
[5105] | 169 | ! J1 defines the size of the polar cap: |
---|
| 170 | ! South polar cap edge is located at -90 + (j1-1.5)*180/(JNP-1) deg. |
---|
| 171 | ! North polar cap edge is located at 90 - (j1-1.5)*180/(JNP-1) deg. |
---|
| 172 | ! There are currently only two choices (j1=2 or 3). |
---|
| 173 | ! IMR must be an even integer if j1 = 2. Recommended value: J1=3. |
---|
[5159] | 174 | |
---|
[5105] | 175 | ! IORD, JORD, and KORD are integers controlling various options in E-W, N-S, |
---|
| 176 | ! and vertical transport, respectively. Recommended values for positive |
---|
| 177 | ! definite scalars: IORD=JORD=3, KORD=5. Use KORD=3 for non- |
---|
| 178 | ! positive definite scalars or when linear correlation between constituents |
---|
| 179 | ! is to be maintained. |
---|
[5159] | 180 | |
---|
[5105] | 181 | ! _ORD= |
---|
| 182 | ! 1: 1st order upstream scheme (too diffusive, not a useful option; it |
---|
| 183 | ! can be used for debugging purposes; this is THE only known "linear" |
---|
| 184 | ! monotonic advection scheme.). |
---|
| 185 | ! 2: 2nd order van Leer (full monotonicity constraint; |
---|
| 186 | ! see Lin et al 1994, MWR) |
---|
| 187 | ! 3: monotonic PPM* (slightly improved PPM of Collela & Woodward 1984) |
---|
| 188 | ! 4: semi-monotonic PPM (same as 3, but overshoots are allowed) |
---|
| 189 | ! 5: positive-definite PPM (constraint on the subgrid distribution is |
---|
| 190 | ! only strong enough to prevent generation of negative values; |
---|
| 191 | ! both overshoots & undershoots are possible). |
---|
| 192 | ! 6: un-constrained PPM (nearly diffusion free; slightly faster but |
---|
| 193 | ! positivity not quaranteed. Use this option only when the fields |
---|
| 194 | ! and winds are very smooth). |
---|
[5159] | 195 | |
---|
[5105] | 196 | ! *PPM: Piece-wise Parabolic Method |
---|
[5159] | 197 | |
---|
[5105] | 198 | ! Note that KORD <=2 options are no longer supported. DO not use option 4 or 5. |
---|
| 199 | ! for non-positive definite scalars (such as Ertel Potential Vorticity). |
---|
[5159] | 200 | |
---|
[5105] | 201 | ! The implicit numerical diffusion decreases as _ORD increases. |
---|
| 202 | ! The last two options (ORDER=5, 6) should only be used when there is |
---|
| 203 | ! significant explicit diffusion (such as a turbulence parameterization). You |
---|
| 204 | ! might get dispersive results otherwise. |
---|
| 205 | ! No filter of any kind is applied to the constituent fields here. |
---|
[5159] | 206 | |
---|
[5105] | 207 | ! AE: Radius of the sphere (meters). |
---|
| 208 | ! Recommended value for the planet earth: 6.371E6 |
---|
[5159] | 209 | |
---|
[5105] | 210 | ! fill(logical): flag to do filling for negatives (see note below). |
---|
[5159] | 211 | |
---|
[5105] | 212 | ! Umax: Estimate (upper limit) of the maximum U-wind speed (m/s). |
---|
| 213 | ! (220 m/s is a good value for troposphere model; 280 m/s otherwise) |
---|
[5159] | 214 | |
---|
[5105] | 215 | ! ============= |
---|
| 216 | ! Output |
---|
| 217 | ! ============= |
---|
[5159] | 218 | |
---|
[5105] | 219 | ! Q: mixing ratios at future time (t+NDT) (original values are over-written) |
---|
| 220 | ! W(NLAY): large-scale vertical mass flux as diagnosed from the hydrostatic |
---|
| 221 | ! relationship. W will have the same unit as PS1 and PS2 (eg, mb). |
---|
| 222 | ! W must be divided by NDT to get the correct mass-flux unit. |
---|
| 223 | ! The vertical Courant number C = W/delp_UPWIND, where delp_UPWIND |
---|
| 224 | ! is the pressure thickness in the "upwind" direction. For example, |
---|
| 225 | ! C(k) = W(k)/delp(k) if W(k) > 0; |
---|
| 226 | ! C(k) = W(k)/delp(k+1) if W(k) < 0. |
---|
| 227 | ! ( W > 0 is downward, ie, toward surface) |
---|
| 228 | ! PS2: predicted PS at t+NDT (original values are over-written) |
---|
[5159] | 229 | |
---|
[5105] | 230 | ! ******************************************************************** |
---|
| 231 | ! NOTES: |
---|
| 232 | ! This forward-in-time upstream-biased transport scheme reduces to |
---|
| 233 | ! the 2nd order center-in-time center-in-space mass continuity eqn. |
---|
| 234 | ! if Q = 1 (constant fields will remain constant). This also ensures |
---|
| 235 | ! that the computed vertical velocity to be identical to GEOS-1 GCM |
---|
| 236 | ! for on-line transport. |
---|
[5159] | 237 | |
---|
[5105] | 238 | ! A larger polar cap is used if j1=3 (recommended for C-Grid winds or when |
---|
| 239 | ! winds are noisy near poles). |
---|
[5159] | 240 | |
---|
[5105] | 241 | ! Flux-Form Semi-Lagrangian transport in the East-West direction is used |
---|
| 242 | ! when and where Courant # is greater than one. |
---|
[5159] | 243 | |
---|
[5105] | 244 | ! The user needs to change the parameter Jmax or Kmax if the resolution |
---|
| 245 | ! is greater than 0.5 deg in N-S or 150 layers in the vertical direction. |
---|
| 246 | ! (this TransPort Core is otherwise resolution independent and can be used |
---|
| 247 | ! as a library routine). |
---|
[5159] | 248 | |
---|
[5105] | 249 | ! PPM is 4th order accurate when grid spacing is uniform (x & y); 3rd |
---|
| 250 | ! order accurate for non-uniform grid (vertical sigma coord.). |
---|
[5159] | 251 | |
---|
[5105] | 252 | ! Time step is limitted only by transport in the meridional direction. |
---|
| 253 | ! (the FFSL scheme is not implemented in the meridional direction). |
---|
[5159] | 254 | |
---|
[5105] | 255 | ! Since only 1-D limiters are applied, negative values could |
---|
| 256 | ! potentially be generated when large time step is used and when the |
---|
| 257 | ! initial fields contain discontinuities. |
---|
| 258 | ! This does not necessarily imply the integration is unstable. |
---|
| 259 | ! These negatives are typically very small. A filling algorithm is |
---|
| 260 | ! activated if the user set "fill" to be true. |
---|
[5159] | 261 | |
---|
[5105] | 262 | ! The van Leer scheme used here is nearly as accurate as the original PPM |
---|
| 263 | ! due to the use of a 4th order accurate reference slope. The PPM imple- |
---|
| 264 | ! mented here is an improvement over the original and is also based on |
---|
| 265 | ! the 4th order reference slope. |
---|
[5159] | 266 | |
---|
[5105] | 267 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5159] | 268 | |
---|
[5105] | 269 | ! User modifiable parameters |
---|
[5159] | 270 | |
---|
[5117] | 271 | INTEGER,parameter :: Jmax = 361, kmax = 150 |
---|
[5159] | 272 | |
---|
[5105] | 273 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5159] | 274 | |
---|
[5105] | 275 | ! Input-Output arrays |
---|
| 276 | ! |
---|
[524] | 277 | |
---|
[5116] | 278 | REAL :: Q(IMR,JNP,NLAY,NC),PS1(IMR,JNP),PS2(IMR,JNP), & |
---|
[5105] | 279 | U(IMR,JNP,NLAY),V(IMR,JNP,NLAY),AP(NLAY+1), & |
---|
| 280 | BP(NLAY+1),W(IMR,JNP,NLAY),NDT,val(NLAY),Umax |
---|
[5116] | 281 | INTEGER :: IGD,IORD,JORD,KORD,NC,IMR,JNP,j1,NLAY,AE |
---|
| 282 | INTEGER :: IMRD2 |
---|
| 283 | REAL :: PT |
---|
[5117] | 284 | LOGICAL :: cross, fill, dum |
---|
[5159] | 285 | |
---|
[5105] | 286 | ! Local dynamic arrays |
---|
[5159] | 287 | |
---|
[5116] | 288 | REAL :: CRX(IMR,JNP),CRY(IMR,JNP),xmass(IMR,JNP),ymass(IMR,JNP), & |
---|
[5105] | 289 | fx1(IMR+1),DPI(IMR,JNP,NLAY),delp1(IMR,JNP,NLAY), & |
---|
| 290 | WK1(IMR,JNP,NLAY),PU(IMR,JNP),PV(IMR,JNP),DC2(IMR,JNP), & |
---|
| 291 | delp2(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY,NC),VA(IMR,JNP), & |
---|
| 292 | UA(IMR,JNP),qtmp(-IMR:2*IMR) |
---|
[5159] | 293 | |
---|
[5105] | 294 | ! Local static arrays |
---|
[5159] | 295 | |
---|
[5116] | 296 | REAL :: DTDX(Jmax), DTDX5(Jmax), acosp(Jmax), & |
---|
[5105] | 297 | cosp(Jmax), cose(Jmax), DAP(kmax),DBK(Kmax) |
---|
| 298 | data NDT0, NSTEP /0, 0/ |
---|
| 299 | data cross /.TRUE./ |
---|
| 300 | REAL :: DTDY, DTDY5, RCAP |
---|
| 301 | INTEGER :: JS0, JN0, IML, JMR, IMJM |
---|
| 302 | SAVE DTDY, DTDY5, RCAP, JS0, JN0, IML, & |
---|
| 303 | DTDX, DTDX5, ACOSP, COSP, COSE, DAP,DBK |
---|
[5159] | 304 | |
---|
[5105] | 305 | INTEGER :: NDT0, NSTEP, j2, k,j,i,ic,l,JS,JN,IMH |
---|
| 306 | INTEGER :: IU,IIU,JT,iad,jad,krd |
---|
| 307 | REAL :: r23,r3,PI,DL,DP,DT,CR1,MAXDT,ZTC,D5 |
---|
| 308 | REAL :: sum1,sum2,ru |
---|
[524] | 309 | |
---|
[5105] | 310 | JMR = JNP -1 |
---|
| 311 | IMJM = IMR*JNP |
---|
| 312 | j2 = JNP - j1 + 1 |
---|
| 313 | NSTEP = NSTEP + 1 |
---|
[5159] | 314 | |
---|
[5105] | 315 | ! *********** Initialization ********************** |
---|
[5116] | 316 | IF(NSTEP==1) THEN |
---|
[5159] | 317 | |
---|
[5116] | 318 | WRITE(6,*) '------------------------------------ ' |
---|
| 319 | WRITE(6,*) 'NASA/GSFC Transport Core Version 4.5' |
---|
| 320 | WRITE(6,*) '------------------------------------ ' |
---|
[5159] | 321 | |
---|
[5105] | 322 | WRITE(6,*) 'IMR=',IMR,' JNP=',JNP,' NLAY=',NLAY,' j1=',j1 |
---|
| 323 | WRITE(6,*) 'NC=',NC,IORD,JORD,KORD,NDT |
---|
[5159] | 324 | |
---|
[5105] | 325 | ! controles sur les parametres |
---|
[5116] | 326 | IF(NLAY<6) THEN |
---|
| 327 | WRITE(6,*) 'NLAY must be >= 6' |
---|
[5105] | 328 | stop |
---|
[5117] | 329 | ENDIF |
---|
| 330 | IF (JNP<NLAY) THEN |
---|
[5116] | 331 | WRITE(6,*) 'JNP must be >= NLAY' |
---|
[5105] | 332 | stop |
---|
[5117] | 333 | ENDIF |
---|
[5105] | 334 | IMRD2=mod(IMR,2) |
---|
[5117] | 335 | IF (j1==2.AND.IMRD2/=0) THEN |
---|
[5116] | 336 | WRITE(6,*) 'if j1=2 IMR must be an even integer' |
---|
[5105] | 337 | stop |
---|
[5117] | 338 | ENDIF |
---|
[524] | 339 | |
---|
[5159] | 340 | |
---|
[5117] | 341 | IF(Jmax<JNP .OR. Kmax<NLAY) THEN |
---|
[5116] | 342 | WRITE(6,*) 'Jmax or Kmax is too small' |
---|
[5105] | 343 | stop |
---|
[5117] | 344 | ENDIF |
---|
[5159] | 345 | |
---|
[5105] | 346 | DO k=1,NLAY |
---|
| 347 | DAP(k) = (AP(k+1) - AP(k))*PT |
---|
| 348 | DBK(k) = BP(k+1) - BP(k) |
---|
| 349 | ENDDO |
---|
[5159] | 350 | |
---|
[5105] | 351 | PI = 4. * ATAN(1.) |
---|
| 352 | DL = 2.*PI / REAL(IMR) |
---|
| 353 | DP = PI / REAL(JMR) |
---|
[5159] | 354 | |
---|
[5116] | 355 | IF(IGD==0) THEN |
---|
[5105] | 356 | ! Compute analytic cosine at cell edges |
---|
| 357 | CALL cosa(cosp,cose,JNP,PI,DP) |
---|
| 358 | else |
---|
| 359 | ! Define cosine consistent with GEOS-GCM (using dycore2.0 or later) |
---|
| 360 | CALL cosc(cosp,cose,JNP,PI,DP) |
---|
[5117] | 361 | ENDIF |
---|
[5159] | 362 | |
---|
[5158] | 363 | DO J=2,JMR |
---|
[5105] | 364 | acosp(j) = 1. / cosp(j) |
---|
| 365 | END DO |
---|
[5159] | 366 | |
---|
[5105] | 367 | ! Inverse of the Scaled polar cap area. |
---|
[5159] | 368 | |
---|
[5105] | 369 | RCAP = DP / (IMR*(1.-COS((j1-1.5)*DP))) |
---|
| 370 | acosp(1) = RCAP |
---|
| 371 | acosp(JNP) = RCAP |
---|
[5117] | 372 | ENDIF |
---|
[5159] | 373 | |
---|
[5116] | 374 | IF(NDT0 /= NDT) THEN |
---|
[5105] | 375 | DT = NDT |
---|
| 376 | NDT0 = NDT |
---|
[524] | 377 | |
---|
[5116] | 378 | IF(Umax < 180.) THEN |
---|
| 379 | WRITE(6,*) 'Umax may be too small!' |
---|
[5105] | 380 | endif |
---|
| 381 | CR1 = abs(Umax*DT)/(DL*AE) |
---|
| 382 | MaxDT = DP*AE / abs(Umax) + 0.5 |
---|
[5116] | 383 | WRITE(6,*)'Largest time step for max(V)=',Umax,' is ',MaxDT |
---|
| 384 | IF(MaxDT < abs(NDT)) THEN |
---|
| 385 | WRITE(6,*) 'Warning!!! NDT maybe too large!' |
---|
[5117] | 386 | ENDIF |
---|
[5159] | 387 | |
---|
[5116] | 388 | IF(CR1>=0.95) THEN |
---|
[5105] | 389 | JS0 = 0 |
---|
| 390 | JN0 = 0 |
---|
| 391 | IML = IMR-2 |
---|
| 392 | ZTC = 0. |
---|
| 393 | else |
---|
| 394 | ZTC = acos(CR1) * (180./PI) |
---|
[5159] | 395 | |
---|
[5105] | 396 | JS0 = REAL(JMR)*(90.-ZTC)/180. + 2 |
---|
| 397 | JS0 = max(JS0, J1+1) |
---|
| 398 | IML = min(6*JS0/(J1-1)+2, 4*IMR/5) |
---|
| 399 | JN0 = JNP-JS0+1 |
---|
[5117] | 400 | ENDIF |
---|
[5159] | 401 | |
---|
| 402 | |
---|
[5158] | 403 | DO J=2,JMR |
---|
[5105] | 404 | DTDX(j) = DT / ( DL*AE*COSP(J) ) |
---|
| 405 | |
---|
| 406 | ! PRINT*,'dtdx=',dtdx(j) |
---|
| 407 | DTDX5(j) = 0.5*DTDX(j) |
---|
| 408 | enddo |
---|
| 409 | ! |
---|
| 410 | |
---|
| 411 | DTDY = DT /(AE*DP) |
---|
| 412 | ! PRINT*,'dtdy=',dtdy |
---|
| 413 | DTDY5 = 0.5*DTDY |
---|
[5159] | 414 | |
---|
[5116] | 415 | ! WRITE(6,*) 'J1=',J1,' J2=', J2 |
---|
[5117] | 416 | ENDIF |
---|
[5159] | 417 | |
---|
[5105] | 418 | ! *********** End Initialization ********************** |
---|
[5159] | 419 | |
---|
[5105] | 420 | ! delp = pressure thickness: the psudo-density in a hydrostatic system. |
---|
[5158] | 421 | DO k=1,NLAY |
---|
| 422 | DO j=1,JNP |
---|
| 423 | DO i=1,IMR |
---|
[5105] | 424 | delp1(i,j,k)=DAP(k)+DBK(k)*PS1(i,j) |
---|
| 425 | delp2(i,j,k)=DAP(k)+DBK(k)*PS2(i,j) |
---|
[524] | 426 | enddo |
---|
[5105] | 427 | enddo |
---|
| 428 | enddo |
---|
[524] | 429 | |
---|
[5159] | 430 | |
---|
[5116] | 431 | IF(j1/=2) THEN |
---|
[5105] | 432 | DO IC=1,NC |
---|
| 433 | DO L=1,NLAY |
---|
| 434 | DO I=1,IMR |
---|
| 435 | Q(I, 2,L,IC) = Q(I, 1,L,IC) |
---|
| 436 | Q(I,JMR,L,IC) = Q(I,JNP,L,IC) |
---|
| 437 | END DO |
---|
| 438 | END DO |
---|
| 439 | END DO |
---|
[5117] | 440 | ENDIF |
---|
[5159] | 441 | |
---|
[5105] | 442 | ! Compute "tracer density" |
---|
| 443 | DO IC=1,NC |
---|
| 444 | DO k=1,NLAY |
---|
| 445 | DO j=1,JNP |
---|
| 446 | DO i=1,IMR |
---|
| 447 | DQ(i,j,k,IC) = Q(i,j,k,IC)*delp1(i,j,k) |
---|
| 448 | END DO |
---|
| 449 | END DO |
---|
| 450 | END DO |
---|
| 451 | END DO |
---|
[5159] | 452 | |
---|
[5158] | 453 | DO k=1,NLAY |
---|
[5159] | 454 | |
---|
[5116] | 455 | IF(IGD==0) THEN |
---|
[5105] | 456 | ! Convert winds on A-Grid to Courant # on C-Grid. |
---|
| 457 | CALL A2C(U(1,1,k),V(1,1,k),IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) |
---|
| 458 | else |
---|
| 459 | ! Convert winds on C-grid to Courant # |
---|
[5158] | 460 | DO j=j1,j2 |
---|
| 461 | DO i=2,IMR |
---|
[5105] | 462 | CRX(i,J) = dtdx(j)*U(i-1,j,k) |
---|
| 463 | END DO |
---|
| 464 | END DO |
---|
| 465 | |
---|
[5159] | 466 | |
---|
[5158] | 467 | DO j=j1,j2 |
---|
[5105] | 468 | CRX(1,J) = dtdx(j)*U(IMR,j,k) |
---|
| 469 | END DO |
---|
[5159] | 470 | |
---|
[5158] | 471 | DO i=1,IMR*JMR |
---|
[5105] | 472 | CRY(i,2) = DTDY*V(i,1,k) |
---|
| 473 | END DO |
---|
[5117] | 474 | ENDIF |
---|
[5159] | 475 | |
---|
[5105] | 476 | ! Determine JS and JN |
---|
| 477 | JS = j1 |
---|
| 478 | JN = j2 |
---|
[5159] | 479 | |
---|
[5158] | 480 | DO j=JS0,j1+1,-1 |
---|
| 481 | DO i=1,IMR |
---|
[5116] | 482 | IF(abs(CRX(i,j))>1.) THEN |
---|
[5105] | 483 | JS = j |
---|
| 484 | go to 2222 |
---|
[5117] | 485 | ENDIF |
---|
[5105] | 486 | enddo |
---|
| 487 | enddo |
---|
[5159] | 488 | |
---|
[5105] | 489 | 2222 continue |
---|
[5158] | 490 | DO j=JN0,j2-1 |
---|
| 491 | DO i=1,IMR |
---|
[5116] | 492 | IF(abs(CRX(i,j))>1.) THEN |
---|
[5105] | 493 | JN = j |
---|
| 494 | go to 2233 |
---|
[5117] | 495 | ENDIF |
---|
[5105] | 496 | enddo |
---|
| 497 | enddo |
---|
| 498 | 2233 continue |
---|
[5159] | 499 | |
---|
[5116] | 500 | IF(j1/=2) then ! Enlarged polar cap. |
---|
[5158] | 501 | DO i=1,IMR |
---|
[5105] | 502 | DPI(i, 2,k) = 0. |
---|
| 503 | DPI(i,JMR,k) = 0. |
---|
| 504 | enddo |
---|
[5117] | 505 | ENDIF |
---|
[5159] | 506 | |
---|
[5105] | 507 | ! ******* Compute horizontal mass fluxes ************ |
---|
[5159] | 508 | |
---|
[5105] | 509 | ! N-S component |
---|
[5158] | 510 | DO j=j1,j2+1 |
---|
[5105] | 511 | D5 = 0.5 * COSE(j) |
---|
[5158] | 512 | DO i=1,IMR |
---|
[5105] | 513 | ymass(i,j) = CRY(i,j)*D5*(delp2(i,j,k) + delp2(i,j-1,k)) |
---|
| 514 | enddo |
---|
| 515 | enddo |
---|
[5159] | 516 | |
---|
[5158] | 517 | DO j=j1,j2 |
---|
[5105] | 518 | DO i=1,IMR |
---|
| 519 | DPI(i,j,k) = (ymass(i,j) - ymass(i,j+1)) * acosp(j) |
---|
| 520 | END DO |
---|
| 521 | END DO |
---|
[5159] | 522 | |
---|
[5105] | 523 | ! Poles |
---|
| 524 | sum1 = ymass(IMR,j1 ) |
---|
| 525 | sum2 = ymass(IMR,J2+1) |
---|
[5158] | 526 | DO i=1,IMR-1 |
---|
[5105] | 527 | sum1 = sum1 + ymass(i,j1 ) |
---|
| 528 | sum2 = sum2 + ymass(i,J2+1) |
---|
| 529 | enddo |
---|
[5159] | 530 | |
---|
[5105] | 531 | sum1 = - sum1 * RCAP |
---|
| 532 | sum2 = sum2 * RCAP |
---|
[5158] | 533 | DO i=1,IMR |
---|
[5105] | 534 | DPI(i, 1,k) = sum1 |
---|
| 535 | DPI(i,JNP,k) = sum2 |
---|
| 536 | enddo |
---|
[5159] | 537 | |
---|
[5105] | 538 | ! E-W component |
---|
[5159] | 539 | |
---|
[5158] | 540 | DO j=j1,j2 |
---|
| 541 | DO i=2,IMR |
---|
[5105] | 542 | PU(i,j) = 0.5 * (delp2(i,j,k) + delp2(i-1,j,k)) |
---|
| 543 | enddo |
---|
| 544 | enddo |
---|
[5159] | 545 | |
---|
[5158] | 546 | DO j=j1,j2 |
---|
[5105] | 547 | PU(1,j) = 0.5 * (delp2(1,j,k) + delp2(IMR,j,k)) |
---|
| 548 | enddo |
---|
[5159] | 549 | |
---|
[5158] | 550 | DO j=j1,j2 |
---|
[5105] | 551 | DO i=1,IMR |
---|
| 552 | xmass(i,j) = PU(i,j)*CRX(i,j) |
---|
| 553 | END DO |
---|
| 554 | END DO |
---|
[5159] | 555 | |
---|
[5105] | 556 | DO j=j1,j2 |
---|
| 557 | DO i=1,IMR-1 |
---|
| 558 | DPI(i,j,k) = DPI(i,j,k) + xmass(i,j) - xmass(i+1,j) |
---|
| 559 | END DO |
---|
| 560 | END DO |
---|
[5159] | 561 | |
---|
[5105] | 562 | DO j=j1,j2 |
---|
| 563 | DPI(IMR,j,k) = DPI(IMR,j,k) + xmass(IMR,j) - xmass(1,j) |
---|
| 564 | END DO |
---|
[5159] | 565 | |
---|
[5105] | 566 | DO j=j1,j2 |
---|
[5158] | 567 | DO i=1,IMR-1 |
---|
[5105] | 568 | UA(i,j) = 0.5 * (CRX(i,j)+CRX(i+1,j)) |
---|
| 569 | enddo |
---|
| 570 | enddo |
---|
[5159] | 571 | |
---|
[5105] | 572 | DO j=j1,j2 |
---|
| 573 | UA(imr,j) = 0.5 * (CRX(imr,j)+CRX(1,j)) |
---|
| 574 | enddo |
---|
| 575 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 576 | ! Rajouts pour LMDZ.3.3 |
---|
| 577 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
[5158] | 578 | DO i=1,IMR |
---|
| 579 | DO j=1,JNP |
---|
[5105] | 580 | VA(i,j)=0. |
---|
| 581 | enddo |
---|
| 582 | enddo |
---|
| 583 | |
---|
[5158] | 584 | DO i=1,imr*(JMR-1) |
---|
[5105] | 585 | VA(i,2) = 0.5*(CRY(i,2)+CRY(i,3)) |
---|
| 586 | enddo |
---|
[5159] | 587 | |
---|
[5116] | 588 | IF(j1==2) THEN |
---|
[5105] | 589 | IMH = IMR/2 |
---|
[5158] | 590 | DO i=1,IMH |
---|
[5105] | 591 | VA(i, 1) = 0.5*(CRY(i,2)-CRY(i+IMH,2)) |
---|
| 592 | VA(i+IMH, 1) = -VA(i,1) |
---|
| 593 | VA(i, JNP) = 0.5*(CRY(i,JNP)-CRY(i+IMH,JMR)) |
---|
| 594 | VA(i+IMH,JNP) = -VA(i,JNP) |
---|
| 595 | enddo |
---|
| 596 | VA(IMR,1)=VA(1,1) |
---|
| 597 | VA(IMR,JNP)=VA(1,JNP) |
---|
[5117] | 598 | ENDIF |
---|
[5159] | 599 | |
---|
[5105] | 600 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5158] | 601 | DO IC=1,NC |
---|
[5159] | 602 | |
---|
[5158] | 603 | DO i=1,IMJM |
---|
[5105] | 604 | wk1(i,1,1) = 0. |
---|
| 605 | wk1(i,1,2) = 0. |
---|
| 606 | enddo |
---|
[5159] | 607 | |
---|
[5105] | 608 | ! E-W advective cross term |
---|
[5158] | 609 | DO j=J1,J2 |
---|
[5117] | 610 | IF(J>JS .AND. J<JN) GO TO 250 |
---|
[5159] | 611 | |
---|
[5158] | 612 | DO i=1,IMR |
---|
[5105] | 613 | qtmp(i) = q(i,j,k,IC) |
---|
| 614 | enddo |
---|
[5159] | 615 | |
---|
[5158] | 616 | DO i=-IML,0 |
---|
[5105] | 617 | qtmp(i) = q(IMR+i,j,k,IC) |
---|
| 618 | qtmp(IMR+1-i) = q(1-i,j,k,IC) |
---|
| 619 | enddo |
---|
[5159] | 620 | |
---|
[5105] | 621 | DO i=1,IMR |
---|
| 622 | iu = UA(i,j) |
---|
| 623 | ru = UA(i,j) - iu |
---|
| 624 | iiu = i-iu |
---|
[5116] | 625 | IF(UA(i,j)>=0.) THEN |
---|
[5105] | 626 | wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) |
---|
| 627 | else |
---|
| 628 | wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) |
---|
[5117] | 629 | ENDIF |
---|
[5105] | 630 | wk1(i,j,1) = wk1(i,j,1) - qtmp(i) |
---|
| 631 | END DO |
---|
| 632 | 250 continue |
---|
| 633 | END DO |
---|
[5159] | 634 | |
---|
[5116] | 635 | IF(JN/=0) THEN |
---|
[5158] | 636 | DO j=JS+1,JN-1 |
---|
[5159] | 637 | |
---|
[5158] | 638 | DO i=1,IMR |
---|
[5105] | 639 | qtmp(i) = q(i,j,k,IC) |
---|
| 640 | enddo |
---|
[5159] | 641 | |
---|
[5105] | 642 | qtmp(0) = q(IMR,J,k,IC) |
---|
| 643 | qtmp(IMR+1) = q( 1,J,k,IC) |
---|
[5159] | 644 | |
---|
[5158] | 645 | DO i=1,imr |
---|
[5105] | 646 | iu = i - UA(i,j) |
---|
| 647 | wk1(i,j,1) = UA(i,j)*(qtmp(iu) - qtmp(iu+1)) |
---|
| 648 | enddo |
---|
| 649 | enddo |
---|
[5117] | 650 | ENDIF |
---|
[5105] | 651 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 652 | ! Contribution from the N-S advection |
---|
[5158] | 653 | DO i=1,imr*(j2-j1+1) |
---|
[5105] | 654 | JT = REAL(J1) - VA(i,j1) |
---|
| 655 | wk1(i,j1,2) = VA(i,j1) * (q(i,jt,k,IC) - q(i,jt+1,k,IC)) |
---|
| 656 | enddo |
---|
[5159] | 657 | |
---|
[5158] | 658 | DO i=1,IMJM |
---|
[5105] | 659 | wk1(i,1,1) = q(i,1,k,IC) + 0.5*wk1(i,1,1) |
---|
| 660 | wk1(i,1,2) = q(i,1,k,IC) + 0.5*wk1(i,1,2) |
---|
| 661 | enddo |
---|
[5159] | 662 | |
---|
[5116] | 663 | IF(cross) THEN |
---|
[5105] | 664 | ! Add cross terms in the vertical direction. |
---|
[5116] | 665 | IF(IORD >= 2) THEN |
---|
[5105] | 666 | iad = 2 |
---|
| 667 | else |
---|
| 668 | iad = 1 |
---|
| 669 | endif |
---|
[5159] | 670 | |
---|
[5116] | 671 | IF(JORD >= 2) THEN |
---|
[5105] | 672 | jad = 2 |
---|
| 673 | else |
---|
| 674 | jad = 1 |
---|
| 675 | endif |
---|
| 676 | CALL xadv(IMR,JNP,j1,j2,wk1(1,1,2),UA,JS,JN,IML,DC2,iad) |
---|
| 677 | CALL yadv(IMR,JNP,j1,j2,wk1(1,1,1),VA,PV,W,jad) |
---|
[5158] | 678 | DO j=1,JNP |
---|
| 679 | DO i=1,IMR |
---|
[5105] | 680 | q(i,j,k,IC) = q(i,j,k,IC) + DC2(i,j) + PV(i,j) |
---|
| 681 | enddo |
---|
| 682 | enddo |
---|
[5117] | 683 | ENDIF |
---|
[5159] | 684 | |
---|
[5105] | 685 | CALL xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ(1,1,k,IC),wk1(1,1,2) & |
---|
| 686 | ,CRX,fx1,xmass,IORD) |
---|
| 687 | |
---|
| 688 | CALL ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ(1,1,k,IC),wk1(1,1,1),CRY, & |
---|
| 689 | DC2,ymass,WK1(1,1,3),wk1(1,1,4),WK1(1,1,5),WK1(1,1,6),JORD) |
---|
[5159] | 690 | |
---|
[5105] | 691 | END DO |
---|
| 692 | END DO |
---|
[5159] | 693 | |
---|
[5105] | 694 | ! ******* Compute vertical mass flux (same unit as PS) *********** |
---|
[5159] | 695 | |
---|
[5105] | 696 | ! 1st step: compute total column mass CONVERGENCE. |
---|
[5159] | 697 | |
---|
[5158] | 698 | DO j=1,JNP |
---|
| 699 | DO i=1,IMR |
---|
[5105] | 700 | CRY(i,j) = DPI(i,j,1) |
---|
| 701 | END DO |
---|
| 702 | END DO |
---|
[5159] | 703 | |
---|
[5158] | 704 | DO k=2,NLAY |
---|
| 705 | DO j=1,JNP |
---|
| 706 | DO i=1,IMR |
---|
[5105] | 707 | CRY(i,j) = CRY(i,j) + DPI(i,j,k) |
---|
| 708 | END DO |
---|
| 709 | END DO |
---|
| 710 | END DO |
---|
[5159] | 711 | |
---|
[5158] | 712 | DO j=1,JNP |
---|
| 713 | DO i=1,IMR |
---|
[5159] | 714 | |
---|
[5105] | 715 | ! 2nd step: compute PS2 (PS at n+1) using the hydrostatic assumption. |
---|
| 716 | ! Changes (increases) to surface pressure = total column mass convergence |
---|
[5159] | 717 | |
---|
[5105] | 718 | PS2(i,j) = PS1(i,j) + CRY(i,j) |
---|
[5159] | 719 | |
---|
[5105] | 720 | ! 3rd step: compute vertical mass flux from mass conservation principle. |
---|
[5159] | 721 | |
---|
[5105] | 722 | W(i,j,1) = DPI(i,j,1) - DBK(1)*CRY(i,j) |
---|
| 723 | W(i,j,NLAY) = 0. |
---|
| 724 | END DO |
---|
| 725 | END DO |
---|
[5159] | 726 | |
---|
[5158] | 727 | DO k=2,NLAY-1 |
---|
| 728 | DO j=1,JNP |
---|
| 729 | DO i=1,IMR |
---|
[5105] | 730 | W(i,j,k) = W(i,j,k-1) + DPI(i,j,k) - DBK(k)*CRY(i,j) |
---|
| 731 | END DO |
---|
| 732 | END DO |
---|
| 733 | END DO |
---|
[5159] | 734 | |
---|
[5105] | 735 | DO k=1,NLAY |
---|
| 736 | DO j=1,JNP |
---|
| 737 | DO i=1,IMR |
---|
| 738 | delp2(i,j,k) = DAP(k) + DBK(k)*PS2(i,j) |
---|
| 739 | END DO |
---|
| 740 | END DO |
---|
| 741 | END DO |
---|
[5159] | 742 | |
---|
[5105] | 743 | KRD = max(3, KORD) |
---|
[5158] | 744 | DO IC=1,NC |
---|
[5159] | 745 | |
---|
[5105] | 746 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 747 | |
---|
| 748 | CALL FZPPM(IMR,JNP,NLAY,j1,DQ(1,1,1,IC),W,Q(1,1,1,IC),WK1,DPI, & |
---|
| 749 | DC2,CRX,CRY,PU,PV,xmass,ymass,delp1,KRD) |
---|
| 750 | ! |
---|
| 751 | |
---|
[5116] | 752 | IF(fill) CALL qckxyz(DQ(1,1,1,IC),DC2,IMR,JNP,NLAY,j1,j2, & |
---|
[5105] | 753 | cosp,acosp,.FALSE.,IC,NSTEP) |
---|
[5159] | 754 | |
---|
[5105] | 755 | ! Recover tracer mixing ratio from "density" using predicted |
---|
| 756 | ! "air density" (pressure thickness) at time-level n+1 |
---|
[5159] | 757 | |
---|
[5105] | 758 | DO k=1,NLAY |
---|
| 759 | DO j=1,JNP |
---|
| 760 | DO i=1,IMR |
---|
| 761 | Q(i,j,k,IC) = DQ(i,j,k,IC) / delp2(i,j,k) |
---|
| 762 | ! PRINT*,'i=',i,'j=',j,'k=',k,'Q(i,j,k,IC)=',Q(i,j,k,IC) |
---|
| 763 | enddo |
---|
| 764 | enddo |
---|
| 765 | enddo |
---|
[5159] | 766 | |
---|
[5116] | 767 | IF(j1/=2) THEN |
---|
[5105] | 768 | DO k=1,NLAY |
---|
| 769 | DO I=1,IMR |
---|
| 770 | ! j=1 c'est le pôle Sud, j=JNP c'est le pôle Nord |
---|
| 771 | Q(I, 2,k,IC) = Q(I, 1,k,IC) |
---|
| 772 | Q(I,JMR,k,IC) = Q(I,JNP,k,IC) |
---|
| 773 | END DO |
---|
| 774 | END DO |
---|
[5117] | 775 | ENDIF |
---|
[5105] | 776 | END DO |
---|
[5159] | 777 | |
---|
[5116] | 778 | IF(j1/=2) THEN |
---|
[5105] | 779 | DO k=1,NLAY |
---|
| 780 | DO i=1,IMR |
---|
| 781 | W(i, 2,k) = W(i, 1,k) |
---|
| 782 | W(i,JMR,k) = W(i,JNP,k) |
---|
| 783 | END DO |
---|
| 784 | END DO |
---|
[5117] | 785 | ENDIF |
---|
[5159] | 786 | |
---|
[5105] | 787 | RETURN |
---|
| 788 | END SUBROUTINE ppm3d |
---|
[5159] | 789 | |
---|
[5105] | 790 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 791 | SUBROUTINE FZPPM(IMR,JNP,NLAY,j1,DQ,WZ,P,DC,DQDT,AR,AL,A6, & |
---|
| 792 | flux,wk1,wk2,wz2,delp,KORD) |
---|
[5113] | 793 | IMPLICIT NONE |
---|
[5117] | 794 | INTEGER,parameter :: kmax = 150 |
---|
| 795 | REAL,parameter :: R23 = 2./3., R3 = 1./3. |
---|
[5116] | 796 | INTEGER :: IMR,JNP,NLAY,J1,KORD |
---|
| 797 | REAL :: WZ(IMR,JNP,NLAY),P(IMR,JNP,NLAY),DC(IMR,JNP,NLAY), & |
---|
[5105] | 798 | wk1(IMR,*),delp(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY), & |
---|
| 799 | DQDT(IMR,JNP,NLAY) |
---|
| 800 | ! Assuming JNP >= NLAY |
---|
[5116] | 801 | REAL :: AR(IMR,*),AL(IMR,*),A6(IMR,*),flux(IMR,*),wk2(IMR,*), & |
---|
[5105] | 802 | wz2(IMR,*) |
---|
[5116] | 803 | INTEGER :: JMR,IMJM,NLAYM1,LMT,K,I,J |
---|
| 804 | REAL :: c0,c1,c2,tmp,qmax,qmin,a,b,fct,a1,a2,cm,cp |
---|
[5159] | 805 | |
---|
[5105] | 806 | JMR = JNP - 1 |
---|
| 807 | IMJM = IMR*JNP |
---|
| 808 | NLAYM1 = NLAY - 1 |
---|
[5159] | 809 | |
---|
[5105] | 810 | LMT = KORD - 3 |
---|
[5159] | 811 | |
---|
[5105] | 812 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 813 | ! Compute DC for PPM |
---|
| 814 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5159] | 815 | |
---|
[5158] | 816 | DO k=1,NLAYM1 |
---|
| 817 | DO i=1,IMJM |
---|
[5105] | 818 | DQDT(i,1,k) = P(i,1,k+1) - P(i,1,k) |
---|
| 819 | END DO |
---|
| 820 | END DO |
---|
[5159] | 821 | |
---|
[5105] | 822 | DO k=2,NLAYM1 |
---|
| 823 | DO I=1,IMJM |
---|
| 824 | c0 = delp(i,1,k) / (delp(i,1,k-1)+delp(i,1,k)+delp(i,1,k+1)) |
---|
| 825 | c1 = (delp(i,1,k-1)+0.5*delp(i,1,k))/(delp(i,1,k+1)+delp(i,1,k)) |
---|
| 826 | c2 = (delp(i,1,k+1)+0.5*delp(i,1,k))/(delp(i,1,k-1)+delp(i,1,k)) |
---|
| 827 | tmp = c0*(c1*DQDT(i,1,k) + c2*DQDT(i,1,k-1)) |
---|
| 828 | Qmax = max(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) - P(i,1,k) |
---|
| 829 | Qmin = P(i,1,k) - min(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) |
---|
| 830 | DC(i,1,k) = sign(min(abs(tmp),Qmax,Qmin), tmp) |
---|
| 831 | END DO |
---|
| 832 | END DO |
---|
| 833 | |
---|
[5159] | 834 | |
---|
[5105] | 835 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 836 | ! Loop over latitudes (to save memory) |
---|
| 837 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5159] | 838 | |
---|
[5105] | 839 | DO j=1,JNP |
---|
[5117] | 840 | IF((j==2 .OR. j==JMR) .AND. j1/=2) goto 2000 |
---|
[5159] | 841 | |
---|
[5105] | 842 | DO k=1,NLAY |
---|
| 843 | DO i=1,IMR |
---|
| 844 | wz2(i,k) = WZ(i,j,k) |
---|
| 845 | wk1(i,k) = P(i,j,k) |
---|
| 846 | wk2(i,k) = delp(i,j,k) |
---|
| 847 | flux(i,k) = DC(i,j,k) !this flux is actually the monotone slope |
---|
| 848 | enddo |
---|
| 849 | enddo |
---|
[5159] | 850 | |
---|
[5105] | 851 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 852 | ! Compute first guesses at cell interfaces |
---|
| 853 | ! First guesses are required to be continuous. |
---|
| 854 | ! ****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5159] | 855 | |
---|
[5105] | 856 | ! three-cell parabolic subgrid distribution at model top |
---|
| 857 | ! two-cell parabolic with zero gradient subgrid distribution |
---|
| 858 | ! at the surface. |
---|
[5159] | 859 | |
---|
[5105] | 860 | ! First guess top edge value |
---|
| 861 | DO i=1,IMR |
---|
| 862 | ! three-cell PPM |
---|
| 863 | ! Compute a,b, and c of q = aP**2 + bP + c using cell averages and delp |
---|
| 864 | a = 3.*( DQDT(i,j,2) - DQDT(i,j,1)*(wk2(i,2)+wk2(i,3))/ & |
---|
| 865 | (wk2(i,1)+wk2(i,2)) ) / & |
---|
| 866 | ( (wk2(i,2)+wk2(i,3))*(wk2(i,1)+wk2(i,2)+wk2(i,3)) ) |
---|
| 867 | b = 2.*DQDT(i,j,1)/(wk2(i,1)+wk2(i,2)) - & |
---|
| 868 | R23*a*(2.*wk2(i,1)+wk2(i,2)) |
---|
| 869 | AL(i,1) = wk1(i,1) - wk2(i,1)*(R3*a*wk2(i,1) + 0.5*b) |
---|
| 870 | AL(i,2) = wk2(i,1)*(a*wk2(i,1) + b) + AL(i,1) |
---|
[5159] | 871 | |
---|
[5105] | 872 | ! Check if change sign |
---|
[5116] | 873 | IF(wk1(i,1)*AL(i,1)<=0.) THEN |
---|
[5105] | 874 | AL(i,1) = 0. |
---|
| 875 | flux(i,1) = 0. |
---|
| 876 | else |
---|
| 877 | flux(i,1) = wk1(i,1) - AL(i,1) |
---|
| 878 | endif |
---|
| 879 | END DO |
---|
[5159] | 880 | |
---|
[5105] | 881 | ! Bottom |
---|
| 882 | DO i=1,IMR |
---|
| 883 | ! 2-cell PPM with zero gradient right at the surface |
---|
[5159] | 884 | |
---|
[5105] | 885 | fct = DQDT(i,j,NLAYM1)*wk2(i,NLAY)**2 / & |
---|
| 886 | ( (wk2(i,NLAY)+wk2(i,NLAYM1))*(2.*wk2(i,NLAY)+wk2(i,NLAYM1))) |
---|
| 887 | AR(i,NLAY) = wk1(i,NLAY) + fct |
---|
| 888 | AL(i,NLAY) = wk1(i,NLAY) - (fct+fct) |
---|
[5116] | 889 | IF(wk1(i,NLAY)*AR(i,NLAY)<=0.) AR(i,NLAY) = 0. |
---|
[5105] | 890 | flux(i,NLAY) = AR(i,NLAY) - wk1(i,NLAY) |
---|
| 891 | END DO |
---|
| 892 | |
---|
[5159] | 893 | |
---|
[5105] | 894 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 895 | ! 4th order interpolation in the interior. |
---|
| 896 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5159] | 897 | |
---|
[5105] | 898 | DO k=3,NLAYM1 |
---|
| 899 | DO i=1,IMR |
---|
| 900 | c1 = DQDT(i,j,k-1)*wk2(i,k-1) / (wk2(i,k-1)+wk2(i,k)) |
---|
| 901 | c2 = 2. / (wk2(i,k-2)+wk2(i,k-1)+wk2(i,k)+wk2(i,k+1)) |
---|
| 902 | A1 = (wk2(i,k-2)+wk2(i,k-1)) / (2.*wk2(i,k-1)+wk2(i,k)) |
---|
| 903 | A2 = (wk2(i,k )+wk2(i,k+1)) / (2.*wk2(i,k)+wk2(i,k-1)) |
---|
| 904 | AL(i,k) = wk1(i,k-1) + c1 + c2 * & |
---|
| 905 | ( wk2(i,k )*(c1*(A1 - A2)+A2*flux(i,k-1)) - & |
---|
| 906 | wk2(i,k-1)*A1*flux(i,k) ) |
---|
[5160] | 907 | ! PRINT *,'AL1',i,k, AL(i,k) |
---|
[5105] | 908 | END DO |
---|
| 909 | END DO |
---|
[5159] | 910 | |
---|
[5158] | 911 | DO i=1,IMR*NLAYM1 |
---|
[5105] | 912 | AR(i,1) = AL(i,2) |
---|
[5160] | 913 | ! PRINT *,'AR1',i,AR(i,1) |
---|
[5105] | 914 | END DO |
---|
[5159] | 915 | |
---|
[5158] | 916 | DO i=1,IMR*NLAY |
---|
[5105] | 917 | A6(i,1) = 3.*(wk1(i,1)+wk1(i,1) - (AL(i,1)+AR(i,1))) |
---|
[5160] | 918 | ! PRINT *,'A61',i,A6(i,1) |
---|
[5105] | 919 | END DO |
---|
[5159] | 920 | |
---|
[5105] | 921 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
| 922 | ! Top & Bot always monotonic |
---|
| 923 | CALL lmtppm(flux(1,1),A6(1,1),AR(1,1),AL(1,1),wk1(1,1),IMR,0) |
---|
| 924 | CALL lmtppm(flux(1,NLAY),A6(1,NLAY),AR(1,NLAY),AL(1,NLAY), & |
---|
| 925 | wk1(1,NLAY),IMR,0) |
---|
[5159] | 926 | |
---|
[5105] | 927 | ! Interior depending on KORD |
---|
[5116] | 928 | IF(LMT<=2) & |
---|
[5105] | 929 | CALL lmtppm(flux(1,2),A6(1,2),AR(1,2),AL(1,2),wk1(1,2), & |
---|
| 930 | IMR*(NLAY-2),LMT) |
---|
[5159] | 931 | |
---|
[5105] | 932 | !****6***0*********0*********0*********0*********0*********0**********72 |
---|
[5159] | 933 | |
---|
[5105] | 934 | DO i=1,IMR*NLAYM1 |
---|
[5116] | 935 | IF(wz2(i,1)>0.) THEN |
---|
[5105] | 936 | CM = wz2(i,1) / wk2(i,1) |
---|
| 937 | flux(i,2) = AR(i,1)+0.5*CM*(AL(i,1)-AR(i,1)+A6(i,1)*(1.-R23*CM)) |
---|
| 938 | else |
---|
[5160] | 939 | ! PRINT *,'test2-0',i,j,wz2(i,1),wk2(i,2) |
---|
[5105] | 940 | CP= wz2(i,1) / wk2(i,2) |
---|
[5160] | 941 | ! PRINT *,'testCP',CP |
---|
[5105] | 942 | flux(i,2) = AL(i,2)+0.5*CP*(AL(i,2)-AR(i,2)-A6(i,2)*(1.+R23*CP)) |
---|
[5160] | 943 | ! PRINT *,'test2',i, AL(i,2),AR(i,2),A6(i,2),R23 |
---|
[5117] | 944 | ENDIF |
---|
[5105] | 945 | END DO |
---|
[5159] | 946 | |
---|
[5105] | 947 | DO i=1,IMR*NLAYM1 |
---|
| 948 | flux(i,2) = wz2(i,1) * flux(i,2) |
---|
| 949 | END DO |
---|
[5159] | 950 | |
---|
[5158] | 951 | DO i=1,IMR |
---|
[5105] | 952 | DQ(i,j, 1) = DQ(i,j, 1) - flux(i, 2) |
---|
| 953 | DQ(i,j,NLAY) = DQ(i,j,NLAY) + flux(i,NLAY) |
---|
| 954 | END DO |
---|
[5159] | 955 | |
---|
[5158] | 956 | DO k=2,NLAYM1 |
---|
| 957 | DO i=1,IMR |
---|
[5105] | 958 | DQ(i,j,k) = DQ(i,j,k) + flux(i,k) - flux(i,k+1) |
---|
| 959 | END DO |
---|
| 960 | END DO |
---|
| 961 | 2000 continue |
---|
| 962 | END DO |
---|
[5116] | 963 | RETURN |
---|
| 964 | END SUBROUTINE fzppm |
---|
[5159] | 965 | |
---|
[5105] | 966 | SUBROUTINE xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ,Q,UC, & |
---|
| 967 | fx1,xmass,IORD) |
---|
[5113] | 968 | IMPLICIT NONE |
---|
[5116] | 969 | INTEGER :: IMR,JNP,IML,j1,j2,JN,JS,IORD |
---|
| 970 | REAL :: PU,DQ,Q,UC,fx1,xmass |
---|
| 971 | REAL :: dc,qtmp |
---|
| 972 | INTEGER :: ISAVE(IMR) |
---|
[5105] | 973 | dimension UC(IMR,*),DC(-IML:IMR+IML+1),xmass(IMR,JNP) & |
---|
| 974 | ,fx1(IMR+1),DQ(IMR,JNP),qtmp(-IML:IMR+1+IML) |
---|
| 975 | dimension PU(IMR,JNP),Q(IMR,JNP) |
---|
[5116] | 976 | INTEGER :: jvan,j1vl,j2vl,j,i,iu,itmp,ist,imp |
---|
| 977 | REAL :: rut |
---|
[5159] | 978 | |
---|
[5105] | 979 | IMP = IMR + 1 |
---|
[5159] | 980 | |
---|
[5105] | 981 | ! van Leer at high latitudes |
---|
| 982 | jvan = max(1,JNP/18) |
---|
| 983 | j1vl = j1+jvan |
---|
| 984 | j2vl = j2-jvan |
---|
[5159] | 985 | |
---|
[5158] | 986 | DO j=j1,j2 |
---|
[5159] | 987 | |
---|
[5158] | 988 | DO i=1,IMR |
---|
[5105] | 989 | qtmp(i) = q(i,j) |
---|
| 990 | enddo |
---|
[5159] | 991 | |
---|
[5117] | 992 | IF(j>=JN .OR. j<=JS) goto 2222 |
---|
[5105] | 993 | ! ************* Eulerian ********** |
---|
[5159] | 994 | |
---|
[5105] | 995 | qtmp(0) = q(IMR,J) |
---|
| 996 | qtmp(-1) = q(IMR-1,J) |
---|
| 997 | qtmp(IMP) = q(1,J) |
---|
| 998 | qtmp(IMP+1) = q(2,J) |
---|
[5159] | 999 | |
---|
[5117] | 1000 | IF(IORD==1 .OR. j==j1 .OR. j==j2) THEN |
---|
[5105] | 1001 | DO i=1,IMR |
---|
| 1002 | iu = REAL(i) - uc(i,j) |
---|
| 1003 | fx1(i) = qtmp(iu) |
---|
| 1004 | END DO |
---|
| 1005 | ELSE |
---|
| 1006 | CALL xmist(IMR,IML,Qtmp,DC) |
---|
| 1007 | DC(0) = DC(IMR) |
---|
[5159] | 1008 | |
---|
[5117] | 1009 | IF(IORD==2 .OR. j<=j1vl .OR. j>=j2vl) THEN |
---|
[5105] | 1010 | DO i=1,IMR |
---|
| 1011 | iu = REAL(i) - uc(i,j) |
---|
| 1012 | fx1(i) = qtmp(iu) + DC(iu)*(sign(1.,uc(i,j))-uc(i,j)) |
---|
| 1013 | END DO |
---|
| 1014 | else |
---|
| 1015 | CALL fxppm(IMR,IML,UC(1,j),Qtmp,DC,fx1,IORD) |
---|
[5117] | 1016 | ENDIF |
---|
[5159] | 1017 | |
---|
[5105] | 1018 | ENDIF |
---|
[5159] | 1019 | |
---|
[5105] | 1020 | DO i=1,IMR |
---|
| 1021 | fx1(i) = fx1(i)*xmass(i,j) |
---|
| 1022 | END DO |
---|
[5159] | 1023 | |
---|
[5105] | 1024 | goto 1309 |
---|
[5159] | 1025 | |
---|
[5105] | 1026 | ! ***** Conservative (flux-form) Semi-Lagrangian transport ***** |
---|
[5159] | 1027 | |
---|
[5105] | 1028 | 2222 continue |
---|
[5159] | 1029 | |
---|
[5158] | 1030 | DO i=-IML,0 |
---|
[5105] | 1031 | qtmp(i) = q(IMR+i,j) |
---|
| 1032 | qtmp(IMP-i) = q(1-i,j) |
---|
| 1033 | enddo |
---|
[5159] | 1034 | |
---|
[5117] | 1035 | IF(IORD==1 .OR. j==j1 .OR. j==j2) THEN |
---|
[5105] | 1036 | DO i=1,IMR |
---|
| 1037 | itmp = INT(uc(i,j)) |
---|
| 1038 | ISAVE(i) = i - itmp |
---|
| 1039 | iu = i - uc(i,j) |
---|
| 1040 | fx1(i) = (uc(i,j) - itmp)*qtmp(iu) |
---|
| 1041 | END DO |
---|
| 1042 | ELSE |
---|
| 1043 | CALL xmist(IMR,IML,Qtmp,DC) |
---|
[5159] | 1044 | |
---|
[5158] | 1045 | DO i=-IML,0 |
---|
[5105] | 1046 | DC(i) = DC(IMR+i) |
---|
| 1047 | DC(IMP-i) = DC(1-i) |
---|
| 1048 | enddo |
---|
[5159] | 1049 | |
---|
[5105] | 1050 | DO i=1,IMR |
---|
| 1051 | itmp = INT(uc(i,j)) |
---|
| 1052 | rut = uc(i,j) - itmp |
---|
| 1053 | ISAVE(i) = i - itmp |
---|
| 1054 | iu = i - uc(i,j) |
---|
| 1055 | fx1(i) = rut*(qtmp(iu) + DC(iu)*(sign(1.,rut) - rut)) |
---|
| 1056 | END DO |
---|
| 1057 | ENDIF |
---|
[5159] | 1058 | |
---|
[5158] | 1059 | DO i=1,IMR |
---|
[5116] | 1060 | IF(uc(i,j)>1.) THEN |
---|
[5105] | 1061 | !DIR$ NOVECTOR |
---|
[5158] | 1062 | DO ist = ISAVE(i),i-1 |
---|
[5105] | 1063 | fx1(i) = fx1(i) + qtmp(ist) |
---|
| 1064 | enddo |
---|
[5116] | 1065 | elseIF(uc(i,j)<-1.) THEN |
---|
[5158] | 1066 | DO ist = i,ISAVE(i)-1 |
---|
[5105] | 1067 | fx1(i) = fx1(i) - qtmp(ist) |
---|
| 1068 | enddo |
---|
| 1069 | !DIR$ VECTOR |
---|
[5117] | 1070 | ENDIF |
---|
[5105] | 1071 | END DO |
---|
[5158] | 1072 | DO i=1,IMR |
---|
[5105] | 1073 | fx1(i) = PU(i,j)*fx1(i) |
---|
| 1074 | enddo |
---|
[5159] | 1075 | |
---|
[5105] | 1076 | ! *************************************** |
---|
[5159] | 1077 | |
---|
[5105] | 1078 | 1309 fx1(IMP) = fx1(1) |
---|
| 1079 | DO i=1,IMR |
---|
| 1080 | DQ(i,j) = DQ(i,j) + fx1(i)-fx1(i+1) |
---|
| 1081 | END DO |
---|
[5159] | 1082 | |
---|
[5105] | 1083 | ! *************************************** |
---|
[5159] | 1084 | |
---|
[5105] | 1085 | END DO |
---|
[5116] | 1086 | RETURN |
---|
| 1087 | END SUBROUTINE xtp |
---|
[5159] | 1088 | |
---|
[5105] | 1089 | SUBROUTINE fxppm(IMR,IML,UT,P,DC,flux,IORD) |
---|
[5113] | 1090 | IMPLICIT NONE |
---|
[5116] | 1091 | INTEGER :: IMR,IML,IORD |
---|
| 1092 | REAL :: UT,P,DC,flux |
---|
[5117] | 1093 | REAL,parameter :: R3 = 1./3., R23 = 2./3. |
---|
[5105] | 1094 | DIMENSION UT(*),flux(*),P(-IML:IMR+IML+1),DC(-IML:IMR+IML+1) |
---|
| 1095 | REAL :: AR(0:IMR),AL(0:IMR),A6(0:IMR) |
---|
[5116] | 1096 | INTEGER :: LMT,IMP,JLVL,i |
---|
[5117] | 1097 | ! LOGICAL first |
---|
[5105] | 1098 | ! data first /.TRUE./ |
---|
| 1099 | ! SAVE LMT |
---|
[5116] | 1100 | ! IF(first) THEN |
---|
[5159] | 1101 | |
---|
[5105] | 1102 | ! correction calcul de LMT a chaque passage pour pouvoir choisir |
---|
| 1103 | ! plusieurs schemas PPM pour differents traceurs |
---|
[5116] | 1104 | ! IF (IORD.LE.0) THEN |
---|
| 1105 | ! IF(IMR.GE.144) THEN |
---|
[5105] | 1106 | ! LMT = 0 |
---|
[5116] | 1107 | ! elseif(IMR.GE.72) THEN |
---|
[5105] | 1108 | ! LMT = 1 |
---|
| 1109 | ! else |
---|
| 1110 | ! LMT = 2 |
---|
| 1111 | ! endif |
---|
| 1112 | ! else |
---|
| 1113 | ! LMT = IORD - 3 |
---|
[5117] | 1114 | ! ENDIF |
---|
[5159] | 1115 | |
---|
[5105] | 1116 | LMT = IORD - 3 |
---|
[5116] | 1117 | ! WRITE(6,*) 'PPM option in E-W direction = ', LMT |
---|
[5105] | 1118 | ! first = .FALSE. |
---|
[5117] | 1119 | ! END IF |
---|
[5159] | 1120 | |
---|
[5105] | 1121 | DO i=1,IMR |
---|
| 1122 | AL(i) = 0.5*(p(i-1)+p(i)) + (DC(i-1) - DC(i))*R3 |
---|
| 1123 | END DO |
---|
[5159] | 1124 | |
---|
[5158] | 1125 | DO i=1,IMR-1 |
---|
[5105] | 1126 | AR(i) = AL(i+1) |
---|
| 1127 | END DO |
---|
| 1128 | AR(IMR) = AL(1) |
---|
[5159] | 1129 | |
---|
[5158] | 1130 | DO i=1,IMR |
---|
[5105] | 1131 | A6(i) = 3.*(p(i)+p(i) - (AL(i)+AR(i))) |
---|
| 1132 | END DO |
---|
[5159] | 1133 | |
---|
[5116] | 1134 | IF(LMT<=2) CALL lmtppm(DC(1),A6(1),AR(1),AL(1),P(1),IMR,LMT) |
---|
[5159] | 1135 | |
---|
[5105] | 1136 | AL(0) = AL(IMR) |
---|
| 1137 | AR(0) = AR(IMR) |
---|
| 1138 | A6(0) = A6(IMR) |
---|
[5159] | 1139 | |
---|
[5105] | 1140 | DO i=1,IMR |
---|
[5116] | 1141 | IF(UT(i)>0.) THEN |
---|
[5105] | 1142 | flux(i) = AR(i-1) + 0.5*UT(i)*(AL(i-1) - AR(i-1) + & |
---|
| 1143 | A6(i-1)*(1.-R23*UT(i)) ) |
---|
| 1144 | else |
---|
| 1145 | flux(i) = AL(i) - 0.5*UT(i)*(AR(i) - AL(i) + & |
---|
| 1146 | A6(i)*(1.+R23*UT(i))) |
---|
[5117] | 1147 | ENDIF |
---|
[5105] | 1148 | enddo |
---|
[5116] | 1149 | RETURN |
---|
| 1150 | END SUBROUTINE fxppm |
---|
[5159] | 1151 | |
---|
[5105] | 1152 | SUBROUTINE xmist(IMR,IML,P,DC) |
---|
[5113] | 1153 | IMPLICIT NONE |
---|
[5116] | 1154 | INTEGER :: IMR,IML |
---|
[5117] | 1155 | REAL,parameter :: R24 = 1./24. |
---|
[5116] | 1156 | REAL :: P(-IML:IMR+1+IML),DC(-IML:IMR+1+IML) |
---|
| 1157 | INTEGER :: i |
---|
| 1158 | REAL :: tmp,pmax,pmin |
---|
[5159] | 1159 | |
---|
[5158] | 1160 | DO i=1,IMR |
---|
[5105] | 1161 | tmp = R24*(8.*(p(i+1) - p(i-1)) + p(i-2) - p(i+2)) |
---|
| 1162 | Pmax = max(P(i-1), p(i), p(i+1)) - p(i) |
---|
| 1163 | Pmin = p(i) - min(P(i-1), p(i), p(i+1)) |
---|
| 1164 | DC(i) = sign(min(abs(tmp),Pmax,Pmin), tmp) |
---|
| 1165 | END DO |
---|
[5116] | 1166 | RETURN |
---|
| 1167 | END SUBROUTINE xmist |
---|
[5159] | 1168 | |
---|
[5105] | 1169 | SUBROUTINE ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ,P,VC,DC2 & |
---|
| 1170 | ,ymass,fx,A6,AR,AL,JORD) |
---|
[5113] | 1171 | IMPLICIT NONE |
---|
[5116] | 1172 | INTEGER :: IMR,JNP,j1,j2,JORD |
---|
| 1173 | REAL :: acosp,RCAP,DQ,P,VC,DC2,ymass,fx,A6,AR,AL |
---|
[5105] | 1174 | dimension P(IMR,JNP),VC(IMR,JNP),ymass(IMR,JNP) & |
---|
| 1175 | ,DC2(IMR,JNP),DQ(IMR,JNP),acosp(JNP) |
---|
| 1176 | ! Work array |
---|
| 1177 | DIMENSION fx(IMR,JNP),AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) |
---|
[5116] | 1178 | INTEGER :: JMR,len,i,jt,j |
---|
| 1179 | REAL :: sum1,sum2 |
---|
[5159] | 1180 | |
---|
[5105] | 1181 | JMR = JNP - 1 |
---|
| 1182 | len = IMR*(J2-J1+2) |
---|
[5159] | 1183 | |
---|
[5116] | 1184 | IF(JORD==1) THEN |
---|
[5105] | 1185 | DO i=1,len |
---|
| 1186 | JT = REAL(J1) - VC(i,J1) |
---|
| 1187 | fx(i,j1) = p(i,JT) |
---|
| 1188 | END DO |
---|
| 1189 | else |
---|
| 1190 | |
---|
| 1191 | CALL ymist(IMR,JNP,j1,P,DC2,4) |
---|
[5159] | 1192 | |
---|
[5117] | 1193 | IF(JORD<=0 .OR. JORD>=3) THEN |
---|
[5105] | 1194 | CALL fyppm(VC,P,DC2,fx,IMR,JNP,j1,j2,A6,AR,AL,JORD) |
---|
| 1195 | |
---|
| 1196 | else |
---|
| 1197 | DO i=1,len |
---|
| 1198 | JT = REAL(J1) - VC(i,J1) |
---|
| 1199 | fx(i,j1) = p(i,JT) + (sign(1.,VC(i,j1))-VC(i,j1))*DC2(i,JT) |
---|
| 1200 | END DO |
---|
[5117] | 1201 | ENDIF |
---|
| 1202 | ENDIF |
---|
[5159] | 1203 | |
---|
[5105] | 1204 | DO i=1,len |
---|
| 1205 | fx(i,j1) = fx(i,j1)*ymass(i,j1) |
---|
| 1206 | END DO |
---|
[5159] | 1207 | |
---|
[5105] | 1208 | DO j=j1,j2 |
---|
| 1209 | DO i=1,IMR |
---|
| 1210 | DQ(i,j) = DQ(i,j) + (fx(i,j) - fx(i,j+1)) * acosp(j) |
---|
| 1211 | END DO |
---|
| 1212 | END DO |
---|
[5159] | 1213 | |
---|
[5105] | 1214 | ! Poles |
---|
| 1215 | sum1 = fx(IMR,j1 ) |
---|
| 1216 | sum2 = fx(IMR,J2+1) |
---|
[5158] | 1217 | DO i=1,IMR-1 |
---|
[5105] | 1218 | sum1 = sum1 + fx(i,j1 ) |
---|
| 1219 | sum2 = sum2 + fx(i,J2+1) |
---|
| 1220 | enddo |
---|
[5159] | 1221 | |
---|
[5105] | 1222 | sum1 = DQ(1, 1) - sum1 * RCAP |
---|
| 1223 | sum2 = DQ(1,JNP) + sum2 * RCAP |
---|
[5158] | 1224 | DO i=1,IMR |
---|
[5105] | 1225 | DQ(i, 1) = sum1 |
---|
| 1226 | DQ(i,JNP) = sum2 |
---|
| 1227 | enddo |
---|
[5159] | 1228 | |
---|
[5116] | 1229 | IF(j1/=2) THEN |
---|
[5158] | 1230 | DO i=1,IMR |
---|
[5105] | 1231 | DQ(i, 2) = sum1 |
---|
| 1232 | DQ(i,JMR) = sum2 |
---|
| 1233 | enddo |
---|
[5117] | 1234 | ENDIF |
---|
[5159] | 1235 | |
---|
[5116] | 1236 | RETURN |
---|
| 1237 | END SUBROUTINE ytp |
---|
[5159] | 1238 | |
---|
[5105] | 1239 | subroutine ymist(IMR,JNP,j1,P,DC,ID) |
---|
[5113] | 1240 | IMPLICIT NONE |
---|
[5116] | 1241 | INTEGER :: IMR,JNP,j1,ID |
---|
[5117] | 1242 | REAL,parameter :: R24 = 1./24. |
---|
[5116] | 1243 | REAL :: P(IMR,JNP),DC(IMR,JNP) |
---|
| 1244 | INTEGER :: iimh,jmr,ijm3,imh,i |
---|
| 1245 | REAL :: pmax,pmin,tmp |
---|
[5159] | 1246 | |
---|
[5105] | 1247 | IMH = IMR / 2 |
---|
| 1248 | JMR = JNP - 1 |
---|
| 1249 | IJM3 = IMR*(JMR-3) |
---|
[5159] | 1250 | |
---|
[5105] | 1251 | IF(ID==2) THEN |
---|
[5158] | 1252 | DO i=1,IMR*(JMR-1) |
---|
[5105] | 1253 | tmp = 0.25*(p(i,3) - p(i,1)) |
---|
| 1254 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
| 1255 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
| 1256 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1257 | END DO |
---|
| 1258 | ELSE |
---|
[5158] | 1259 | DO i=1,IMH |
---|
[5105] | 1260 | ! J=2 |
---|
| 1261 | tmp = (8.*(p(i,3) - p(i,1)) + p(i+IMH,2) - p(i,4))*R24 |
---|
| 1262 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
| 1263 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
| 1264 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1265 | ! J=JMR |
---|
| 1266 | tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i+IMH,JMR))*R24 |
---|
| 1267 | Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) |
---|
| 1268 | Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) |
---|
| 1269 | DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1270 | END DO |
---|
[5158] | 1271 | DO i=IMH+1,IMR |
---|
[5105] | 1272 | ! J=2 |
---|
| 1273 | tmp = (8.*(p(i,3) - p(i,1)) + p(i-IMH,2) - p(i,4))*R24 |
---|
| 1274 | Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2) |
---|
| 1275 | Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3)) |
---|
| 1276 | DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1277 | ! J=JMR |
---|
| 1278 | tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i-IMH,JMR))*R24 |
---|
| 1279 | Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR) |
---|
| 1280 | Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP)) |
---|
| 1281 | DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1282 | END DO |
---|
[5159] | 1283 | |
---|
[5158] | 1284 | DO i=1,IJM3 |
---|
[5105] | 1285 | tmp = (8.*(p(i,4) - p(i,2)) + p(i,1) - p(i,5))*R24 |
---|
| 1286 | Pmax = max(p(i,2),p(i,3),p(i,4)) - p(i,3) |
---|
| 1287 | Pmin = p(i,3) - min(p(i,2),p(i,3),p(i,4)) |
---|
| 1288 | DC(i,3) = sign(min(abs(tmp),Pmin,Pmax),tmp) |
---|
| 1289 | END DO |
---|
| 1290 | ENDIF |
---|
[5159] | 1291 | |
---|
[5116] | 1292 | IF(j1/=2) THEN |
---|
[5158] | 1293 | DO i=1,IMR |
---|
[5105] | 1294 | DC(i,1) = 0. |
---|
| 1295 | DC(i,JNP) = 0. |
---|
| 1296 | enddo |
---|
| 1297 | else |
---|
| 1298 | ! Determine slopes in polar caps for scalars! |
---|
[5159] | 1299 | |
---|
[5158] | 1300 | DO i=1,IMH |
---|
[5105] | 1301 | ! South |
---|
| 1302 | tmp = 0.25*(p(i,2) - p(i+imh,2)) |
---|
| 1303 | Pmax = max(p(i,2),p(i,1), p(i+imh,2)) - p(i,1) |
---|
| 1304 | Pmin = p(i,1) - min(p(i,2),p(i,1), p(i+imh,2)) |
---|
| 1305 | DC(i,1)=sign(min(abs(tmp),Pmax,Pmin),tmp) |
---|
| 1306 | ! North. |
---|
| 1307 | tmp = 0.25*(p(i+imh,JMR) - p(i,JMR)) |
---|
| 1308 | Pmax = max(p(i+imh,JMR),p(i,jnp), p(i,JMR)) - p(i,JNP) |
---|
| 1309 | Pmin = p(i,JNP) - min(p(i+imh,JMR),p(i,jnp), p(i,JMR)) |
---|
| 1310 | DC(i,JNP) = sign(min(abs(tmp),Pmax,pmin),tmp) |
---|
| 1311 | END DO |
---|
[5159] | 1312 | |
---|
[5158] | 1313 | DO i=imh+1,IMR |
---|
[5105] | 1314 | DC(i, 1) = - DC(i-imh, 1) |
---|
| 1315 | DC(i,JNP) = - DC(i-imh,JNP) |
---|
| 1316 | END DO |
---|
[5117] | 1317 | ENDIF |
---|
[5116] | 1318 | RETURN |
---|
| 1319 | END SUBROUTINE ymist |
---|
[5159] | 1320 | |
---|
[5105] | 1321 | SUBROUTINE fyppm(VC,P,DC,flux,IMR,JNP,j1,j2,A6,AR,AL,JORD) |
---|
[5113] | 1322 | IMPLICIT NONE |
---|
[5116] | 1323 | INTEGER :: IMR,JNP,j1,j2,JORD |
---|
[5117] | 1324 | REAL,parameter :: R3 = 1./3., R23 = 2./3. |
---|
[5116] | 1325 | REAL :: VC(IMR,*),flux(IMR,*),P(IMR,*),DC(IMR,*) |
---|
[5105] | 1326 | ! Local work arrays. |
---|
[5116] | 1327 | REAL :: AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP) |
---|
| 1328 | INTEGER :: LMT,i |
---|
| 1329 | INTEGER :: IMH,JMR,j11,IMJM1,len |
---|
[5117] | 1330 | ! LOGICAL first |
---|
[5105] | 1331 | ! data first /.TRUE./ |
---|
| 1332 | ! SAVE LMT |
---|
[5159] | 1333 | |
---|
[5105] | 1334 | IMH = IMR / 2 |
---|
| 1335 | JMR = JNP - 1 |
---|
| 1336 | j11 = j1-1 |
---|
| 1337 | IMJM1 = IMR*(J2-J1+2) |
---|
| 1338 | len = IMR*(J2-J1+3) |
---|
[5116] | 1339 | ! IF(first) THEN |
---|
| 1340 | ! IF(JORD.LE.0) THEN |
---|
| 1341 | ! IF(JMR.GE.90) THEN |
---|
[5105] | 1342 | ! LMT = 0 |
---|
[5116] | 1343 | ! elseif(JMR.GE.45) THEN |
---|
[5105] | 1344 | ! LMT = 1 |
---|
| 1345 | ! else |
---|
| 1346 | ! LMT = 2 |
---|
| 1347 | ! endif |
---|
| 1348 | ! else |
---|
| 1349 | ! LMT = JORD - 3 |
---|
[5117] | 1350 | ! END IF |
---|
[5159] | 1351 | |
---|
[5105] | 1352 | ! first = .FALSE. |
---|
[5117] | 1353 | ! ENDIF |
---|
[5159] | 1354 | |
---|
[5105] | 1355 | ! modifs pour pouvoir choisir plusieurs schemas PPM |
---|
| 1356 | LMT = JORD - 3 |
---|
[5159] | 1357 | |
---|
[5105] | 1358 | DO i=1,IMR*JMR |
---|
| 1359 | AL(i,2) = 0.5*(p(i,1)+p(i,2)) + (DC(i,1) - DC(i,2))*R3 |
---|
| 1360 | AR(i,1) = AL(i,2) |
---|
| 1361 | END DO |
---|
[5159] | 1362 | |
---|
[5105] | 1363 | !Poles: |
---|
[5159] | 1364 | |
---|
[5105] | 1365 | DO i=1,IMH |
---|
| 1366 | AL(i,1) = AL(i+IMH,2) |
---|
| 1367 | AL(i+IMH,1) = AL(i,2) |
---|
[5159] | 1368 | |
---|
[5105] | 1369 | AR(i,JNP) = AR(i+IMH,JMR) |
---|
| 1370 | AR(i+IMH,JNP) = AR(i,JMR) |
---|
| 1371 | ENDDO |
---|
| 1372 | |
---|
| 1373 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 1374 | ! Rajout pour LMDZ.3.3 |
---|
| 1375 | !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 1376 | AR(IMR,1)=AL(1,1) |
---|
| 1377 | AR(IMR,JNP)=AL(1,JNP) |
---|
| 1378 | !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 1379 | |
---|
| 1380 | |
---|
[5158] | 1381 | DO i=1,len |
---|
[5105] | 1382 | A6(i,j11) = 3.*(p(i,j11)+p(i,j11) - (AL(i,j11)+AR(i,j11))) |
---|
| 1383 | END DO |
---|
[5159] | 1384 | |
---|
[5116] | 1385 | IF(LMT<=2) CALL lmtppm(DC(1,j11),A6(1,j11),AR(1,j11) & |
---|
[5105] | 1386 | ,AL(1,j11),P(1,j11),len,LMT) |
---|
| 1387 | ! |
---|
| 1388 | |
---|
| 1389 | DO i=1,IMJM1 |
---|
[5116] | 1390 | IF(VC(i,j1)>0.) THEN |
---|
[5105] | 1391 | flux(i,j1) = AR(i,j11) + 0.5*VC(i,j1)*(AL(i,j11) - AR(i,j11) + & |
---|
| 1392 | A6(i,j11)*(1.-R23*VC(i,j1)) ) |
---|
| 1393 | else |
---|
| 1394 | flux(i,j1) = AL(i,j1) - 0.5*VC(i,j1)*(AR(i,j1) - AL(i,j1) + & |
---|
| 1395 | A6(i,j1)*(1.+R23*VC(i,j1))) |
---|
[5117] | 1396 | ENDIF |
---|
[5105] | 1397 | END DO |
---|
[5116] | 1398 | RETURN |
---|
| 1399 | END SUBROUTINE fyppm |
---|
[5159] | 1400 | |
---|
[5105] | 1401 | SUBROUTINE yadv(IMR,JNP,j1,j2,p,VA,ady,wk,IAD) |
---|
[5113] | 1402 | IMPLICIT NONE |
---|
[5116] | 1403 | INTEGER :: IMR,JNP,j1,j2,IAD |
---|
[5105] | 1404 | REAL :: p(IMR,JNP),ady(IMR,JNP),VA(IMR,JNP) |
---|
| 1405 | REAL :: WK(IMR,-1:JNP+2) |
---|
| 1406 | INTEGER :: JMR,IMH,i,j,jp |
---|
| 1407 | REAL :: rv,a1,b1,sum1,sum2 |
---|
[5159] | 1408 | |
---|
[5105] | 1409 | JMR = JNP-1 |
---|
| 1410 | IMH = IMR/2 |
---|
[5158] | 1411 | DO j=1,JNP |
---|
| 1412 | DO i=1,IMR |
---|
[5105] | 1413 | wk(i,j) = p(i,j) |
---|
| 1414 | enddo |
---|
| 1415 | enddo |
---|
| 1416 | ! Poles: |
---|
[5158] | 1417 | DO i=1,IMH |
---|
[5105] | 1418 | wk(i, -1) = p(i+IMH,3) |
---|
| 1419 | wk(i+IMH,-1) = p(i,3) |
---|
| 1420 | wk(i, 0) = p(i+IMH,2) |
---|
| 1421 | wk(i+IMH,0) = p(i,2) |
---|
| 1422 | wk(i,JNP+1) = p(i+IMH,JMR) |
---|
| 1423 | wk(i+IMH,JNP+1) = p(i,JMR) |
---|
| 1424 | wk(i,JNP+2) = p(i+IMH,JNP-2) |
---|
| 1425 | wk(i+IMH,JNP+2) = p(i,JNP-2) |
---|
| 1426 | enddo |
---|
[5116] | 1427 | ! WRITE(*,*) 'toto 1' |
---|
[5105] | 1428 | ! -------------------------------- |
---|
[5116] | 1429 | IF(IAD==2) THEN |
---|
[5158] | 1430 | DO j=j1-1,j2+1 |
---|
| 1431 | DO i=1,IMR |
---|
[5116] | 1432 | ! WRITE(*,*) 'avt NINT','i=',i,'j=',j |
---|
[5105] | 1433 | JP = NINT(VA(i,j)) |
---|
| 1434 | rv = JP - VA(i,j) |
---|
[5116] | 1435 | ! WRITE(*,*) 'VA=',VA(i,j), 'JP1=',JP,'rv=',rv |
---|
[5105] | 1436 | JP = j - JP |
---|
[5116] | 1437 | ! WRITE(*,*) 'JP2=',JP |
---|
[5105] | 1438 | a1 = 0.5*(wk(i,jp+1)+wk(i,jp-1)) - wk(i,jp) |
---|
| 1439 | b1 = 0.5*(wk(i,jp+1)-wk(i,jp-1)) |
---|
[5116] | 1440 | ! WRITE(*,*) 'a1=',a1,'b1=',b1 |
---|
[5105] | 1441 | ady(i,j) = wk(i,jp) + rv*(a1*rv + b1) - wk(i,j) |
---|
| 1442 | enddo |
---|
| 1443 | enddo |
---|
[5116] | 1444 | ! WRITE(*,*) 'toto 2' |
---|
[5159] | 1445 | |
---|
[5116] | 1446 | ELSEIF(IAD==1) THEN |
---|
[5158] | 1447 | DO j=j1-1,j2+1 |
---|
| 1448 | DO i=1,imr |
---|
[5105] | 1449 | JP = REAL(j)-VA(i,j) |
---|
| 1450 | ady(i,j) = VA(i,j)*(wk(i,jp)-wk(i,jp+1)) |
---|
| 1451 | enddo |
---|
| 1452 | enddo |
---|
| 1453 | ENDIF |
---|
[5159] | 1454 | |
---|
[5116] | 1455 | IF(j1/=2) THEN |
---|
[5105] | 1456 | sum1 = 0. |
---|
| 1457 | sum2 = 0. |
---|
[5158] | 1458 | DO i=1,imr |
---|
[5105] | 1459 | sum1 = sum1 + ady(i,2) |
---|
| 1460 | sum2 = sum2 + ady(i,JMR) |
---|
| 1461 | enddo |
---|
| 1462 | sum1 = sum1 / IMR |
---|
| 1463 | sum2 = sum2 / IMR |
---|
[5159] | 1464 | |
---|
[5158] | 1465 | DO i=1,imr |
---|
[5105] | 1466 | ady(i, 2) = sum1 |
---|
| 1467 | ady(i,JMR) = sum2 |
---|
| 1468 | ady(i, 1) = sum1 |
---|
| 1469 | ady(i,JNP) = sum2 |
---|
| 1470 | enddo |
---|
| 1471 | else |
---|
| 1472 | ! Poles: |
---|
| 1473 | sum1 = 0. |
---|
| 1474 | sum2 = 0. |
---|
[5158] | 1475 | DO i=1,imr |
---|
[5105] | 1476 | sum1 = sum1 + ady(i,1) |
---|
| 1477 | sum2 = sum2 + ady(i,JNP) |
---|
| 1478 | enddo |
---|
| 1479 | sum1 = sum1 / IMR |
---|
| 1480 | sum2 = sum2 / IMR |
---|
[5159] | 1481 | |
---|
[5158] | 1482 | DO i=1,imr |
---|
[5105] | 1483 | ady(i, 1) = sum1 |
---|
| 1484 | ady(i,JNP) = sum2 |
---|
| 1485 | enddo |
---|
| 1486 | endif |
---|
[5159] | 1487 | |
---|
[5116] | 1488 | RETURN |
---|
| 1489 | END SUBROUTINE yadv |
---|
[5159] | 1490 | |
---|
[5105] | 1491 | SUBROUTINE xadv(IMR,JNP,j1,j2,p,UA,JS,JN,IML,adx,IAD) |
---|
[5113] | 1492 | IMPLICIT NONE |
---|
[5105] | 1493 | INTEGER :: IMR,JNP,j1,j2,JS,JN,IML,IAD |
---|
| 1494 | REAL :: p(IMR,JNP),adx(IMR,JNP),qtmp(-IMR:IMR+IMR),UA(IMR,JNP) |
---|
| 1495 | INTEGER :: JMR,j,i,ip,iu,iiu |
---|
| 1496 | REAL :: ru,a1,b1 |
---|
[5159] | 1497 | |
---|
[5105] | 1498 | JMR = JNP-1 |
---|
[5158] | 1499 | DO j=j1,j2 |
---|
[5117] | 1500 | IF(J>JS .AND. J<JN) GO TO 1309 |
---|
[5159] | 1501 | |
---|
[5158] | 1502 | DO i=1,IMR |
---|
[5105] | 1503 | qtmp(i) = p(i,j) |
---|
| 1504 | enddo |
---|
[5159] | 1505 | |
---|
[5158] | 1506 | DO i=-IML,0 |
---|
[5105] | 1507 | qtmp(i) = p(IMR+i,j) |
---|
| 1508 | qtmp(IMR+1-i) = p(1-i,j) |
---|
| 1509 | enddo |
---|
[5159] | 1510 | |
---|
[5105] | 1511 | IF(IAD==2) THEN |
---|
| 1512 | DO i=1,IMR |
---|
| 1513 | IP = NINT(UA(i,j)) |
---|
| 1514 | ru = IP - UA(i,j) |
---|
| 1515 | IP = i - IP |
---|
| 1516 | a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) |
---|
| 1517 | b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) |
---|
| 1518 | adx(i,j) = qtmp(ip) + ru*(a1*ru + b1) |
---|
| 1519 | enddo |
---|
[5116] | 1520 | ELSEIF(IAD==1) THEN |
---|
[5105] | 1521 | DO i=1,IMR |
---|
| 1522 | iu = UA(i,j) |
---|
| 1523 | ru = UA(i,j) - iu |
---|
| 1524 | iiu = i-iu |
---|
[5116] | 1525 | IF(UA(i,j)>=0.) THEN |
---|
[5105] | 1526 | adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu)) |
---|
| 1527 | else |
---|
| 1528 | adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1)) |
---|
[5117] | 1529 | ENDIF |
---|
[5105] | 1530 | enddo |
---|
| 1531 | ENDIF |
---|
[5159] | 1532 | |
---|
[5158] | 1533 | DO i=1,IMR |
---|
[5105] | 1534 | adx(i,j) = adx(i,j) - p(i,j) |
---|
| 1535 | enddo |
---|
| 1536 | 1309 continue |
---|
| 1537 | END DO |
---|
[5159] | 1538 | |
---|
[5105] | 1539 | ! Eulerian upwind |
---|
[5159] | 1540 | |
---|
[5158] | 1541 | DO j=JS+1,JN-1 |
---|
[5159] | 1542 | |
---|
[5158] | 1543 | DO i=1,IMR |
---|
[5105] | 1544 | qtmp(i) = p(i,j) |
---|
| 1545 | enddo |
---|
[5159] | 1546 | |
---|
[5105] | 1547 | qtmp(0) = p(IMR,J) |
---|
| 1548 | qtmp(IMR+1) = p(1,J) |
---|
[5159] | 1549 | |
---|
[5105] | 1550 | IF(IAD==2) THEN |
---|
| 1551 | qtmp(-1) = p(IMR-1,J) |
---|
| 1552 | qtmp(IMR+2) = p(2,J) |
---|
[5158] | 1553 | DO i=1,imr |
---|
[5105] | 1554 | IP = NINT(UA(i,j)) |
---|
| 1555 | ru = IP - UA(i,j) |
---|
| 1556 | IP = i - IP |
---|
| 1557 | a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip) |
---|
| 1558 | b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1)) |
---|
| 1559 | adx(i,j) = qtmp(ip)- p(i,j) + ru*(a1*ru + b1) |
---|
| 1560 | enddo |
---|
[5116] | 1561 | ELSEIF(IAD==1) THEN |
---|
[5105] | 1562 | ! 1st order |
---|
| 1563 | DO i=1,IMR |
---|
| 1564 | IP = i - UA(i,j) |
---|
| 1565 | adx(i,j) = UA(i,j)*(qtmp(ip)-qtmp(ip+1)) |
---|
| 1566 | enddo |
---|
| 1567 | ENDIF |
---|
| 1568 | enddo |
---|
[5159] | 1569 | |
---|
[5116] | 1570 | IF(j1/=2) THEN |
---|
[5158] | 1571 | DO i=1,IMR |
---|
[5105] | 1572 | adx(i, 2) = 0. |
---|
| 1573 | adx(i,JMR) = 0. |
---|
| 1574 | enddo |
---|
| 1575 | endif |
---|
| 1576 | ! set cross term due to x-adv at the poles to zero. |
---|
[5158] | 1577 | DO i=1,IMR |
---|
[5105] | 1578 | adx(i, 1) = 0. |
---|
| 1579 | adx(i,JNP) = 0. |
---|
| 1580 | enddo |
---|
[5116] | 1581 | RETURN |
---|
| 1582 | END SUBROUTINE xadv |
---|
[5159] | 1583 | |
---|
[5105] | 1584 | SUBROUTINE lmtppm(DC,A6,AR,AL,P,IM,LMT) |
---|
[5113] | 1585 | IMPLICIT NONE |
---|
[5159] | 1586 | |
---|
[5105] | 1587 | ! A6 = CURVATURE OF THE TEST PARABOLA |
---|
| 1588 | ! AR = RIGHT EDGE VALUE OF THE TEST PARABOLA |
---|
| 1589 | ! AL = LEFT EDGE VALUE OF THE TEST PARABOLA |
---|
| 1590 | ! DC = 0.5 * MISMATCH |
---|
| 1591 | ! P = CELL-AVERAGED VALUE |
---|
| 1592 | ! IM = VECTOR LENGTH |
---|
[5159] | 1593 | |
---|
[5105] | 1594 | ! OPTIONS: |
---|
[5159] | 1595 | |
---|
[5105] | 1596 | ! LMT = 0: FULL MONOTONICITY |
---|
| 1597 | ! LMT = 1: SEMI-MONOTONIC CONSTRAINT (NO UNDERSHOOTS) |
---|
| 1598 | ! LMT = 2: POSITIVE-DEFINITE CONSTRAINT |
---|
[5159] | 1599 | |
---|
[5117] | 1600 | REAL,parameter :: R12 = 1./12. |
---|
[5116] | 1601 | REAL :: A6(IM),AR(IM),AL(IM),P(IM),DC(IM) |
---|
| 1602 | INTEGER :: IM,LMT |
---|
[5105] | 1603 | INTEGER :: i |
---|
| 1604 | REAL :: da1,da2,a6da,fmin |
---|
[5159] | 1605 | |
---|
[5116] | 1606 | IF(LMT==0) THEN |
---|
[5105] | 1607 | ! Full constraint |
---|
[5158] | 1608 | DO i=1,IM |
---|
[5116] | 1609 | IF(DC(i)==0.) THEN |
---|
[5105] | 1610 | AR(i) = p(i) |
---|
| 1611 | AL(i) = p(i) |
---|
| 1612 | A6(i) = 0. |
---|
| 1613 | else |
---|
| 1614 | da1 = AR(i) - AL(i) |
---|
| 1615 | da2 = da1**2 |
---|
| 1616 | A6DA = A6(i)*da1 |
---|
[5116] | 1617 | IF(A6DA < -da2) THEN |
---|
[5105] | 1618 | A6(i) = 3.*(AL(i)-p(i)) |
---|
| 1619 | AR(i) = AL(i) - A6(i) |
---|
[5116] | 1620 | elseif(A6DA > da2) THEN |
---|
[5105] | 1621 | A6(i) = 3.*(AR(i)-p(i)) |
---|
| 1622 | AL(i) = AR(i) - A6(i) |
---|
[5117] | 1623 | ENDIF |
---|
| 1624 | ENDIF |
---|
[5105] | 1625 | END DO |
---|
[5116] | 1626 | elseif(LMT==1) THEN |
---|
[5105] | 1627 | ! Semi-monotonic constraint |
---|
[5158] | 1628 | DO i=1,IM |
---|
[5116] | 1629 | IF(abs(AR(i)-AL(i)) >= -A6(i)) go to 150 |
---|
[5117] | 1630 | IF(p(i)<AR(i) .AND. p(i)<AL(i)) THEN |
---|
[5105] | 1631 | AR(i) = p(i) |
---|
| 1632 | AL(i) = p(i) |
---|
| 1633 | A6(i) = 0. |
---|
[5116] | 1634 | elseif(AR(i) > AL(i)) THEN |
---|
[5105] | 1635 | A6(i) = 3.*(AL(i)-p(i)) |
---|
| 1636 | AR(i) = AL(i) - A6(i) |
---|
| 1637 | else |
---|
| 1638 | A6(i) = 3.*(AR(i)-p(i)) |
---|
| 1639 | AL(i) = AR(i) - A6(i) |
---|
[5117] | 1640 | ENDIF |
---|
[524] | 1641 | 150 continue |
---|
[5105] | 1642 | END DO |
---|
[5116] | 1643 | elseif(LMT==2) THEN |
---|
[5158] | 1644 | DO i=1,IM |
---|
[5116] | 1645 | IF(abs(AR(i)-AL(i)) >= -A6(i)) go to 250 |
---|
[5105] | 1646 | fmin = p(i) + 0.25*(AR(i)-AL(i))**2/A6(i) + A6(i)*R12 |
---|
[5116] | 1647 | IF(fmin>=0.) go to 250 |
---|
[5117] | 1648 | IF(p(i)<AR(i) .AND. p(i)<AL(i)) THEN |
---|
[5105] | 1649 | AR(i) = p(i) |
---|
| 1650 | AL(i) = p(i) |
---|
| 1651 | A6(i) = 0. |
---|
[5116] | 1652 | elseif(AR(i) > AL(i)) THEN |
---|
[5105] | 1653 | A6(i) = 3.*(AL(i)-p(i)) |
---|
| 1654 | AR(i) = AL(i) - A6(i) |
---|
| 1655 | else |
---|
| 1656 | A6(i) = 3.*(AR(i)-p(i)) |
---|
| 1657 | AL(i) = AR(i) - A6(i) |
---|
[5117] | 1658 | ENDIF |
---|
[524] | 1659 | 250 continue |
---|
[5105] | 1660 | END DO |
---|
[5117] | 1661 | ENDIF |
---|
[5116] | 1662 | RETURN |
---|
| 1663 | END SUBROUTINE lmtppm |
---|
[5159] | 1664 | |
---|
[5105] | 1665 | SUBROUTINE A2C(U,V,IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5) |
---|
[5113] | 1666 | IMPLICIT NONE |
---|
[5116] | 1667 | INTEGER :: IMR,JMR,j1,j2 |
---|
| 1668 | REAL :: U(IMR,*),V(IMR,*),CRX(IMR,*),CRY(IMR,*),DTDX5(*),DTDY5 |
---|
| 1669 | INTEGER :: i,j |
---|
[5159] | 1670 | |
---|
[5158] | 1671 | DO j=j1,j2 |
---|
| 1672 | DO i=2,IMR |
---|
[5105] | 1673 | CRX(i,J) = dtdx5(j)*(U(i,j)+U(i-1,j)) |
---|
| 1674 | END DO |
---|
| 1675 | END DO |
---|
[5159] | 1676 | |
---|
[5158] | 1677 | DO j=j1,j2 |
---|
[5105] | 1678 | CRX(1,J) = dtdx5(j)*(U(1,j)+U(IMR,j)) |
---|
| 1679 | END DO |
---|
[5159] | 1680 | |
---|
[5158] | 1681 | DO i=1,IMR*JMR |
---|
[5105] | 1682 | CRY(i,2) = DTDY5*(V(i,2)+V(i,1)) |
---|
| 1683 | END DO |
---|
[5116] | 1684 | RETURN |
---|
| 1685 | END SUBROUTINE a2c |
---|
[5159] | 1686 | |
---|
[5105] | 1687 | SUBROUTINE cosa(cosp,cose,JNP,PI,DP) |
---|
[5113] | 1688 | IMPLICIT NONE |
---|
[5116] | 1689 | INTEGER :: JNP |
---|
| 1690 | REAL :: cosp(*),cose(*),PI,DP |
---|
| 1691 | INTEGER :: JMR,j,jeq |
---|
| 1692 | REAL :: ph5 |
---|
[5105] | 1693 | JMR = JNP-1 |
---|
[5158] | 1694 | DO j=2,JNP |
---|
[5105] | 1695 | ph5 = -0.5*PI + (REAL(J-1)-0.5)*DP |
---|
| 1696 | cose(j) = cos(ph5) |
---|
| 1697 | END DO |
---|
[5159] | 1698 | |
---|
[5105] | 1699 | JEQ = (JNP+1) / 2 |
---|
[5116] | 1700 | IF(JMR == 2*(JMR/2) ) THEN |
---|
[5158] | 1701 | DO j=JNP, JEQ+1, -1 |
---|
[5105] | 1702 | cose(j) = cose(JNP+2-j) |
---|
| 1703 | enddo |
---|
| 1704 | else |
---|
| 1705 | ! cell edge at equator. |
---|
| 1706 | cose(JEQ+1) = 1. |
---|
[5158] | 1707 | DO j=JNP, JEQ+2, -1 |
---|
[5105] | 1708 | cose(j) = cose(JNP+2-j) |
---|
| 1709 | enddo |
---|
[5117] | 1710 | ENDIF |
---|
[5159] | 1711 | |
---|
[5158] | 1712 | DO j=2,JMR |
---|
[5105] | 1713 | cosp(j) = 0.5*(cose(j)+cose(j+1)) |
---|
| 1714 | END DO |
---|
| 1715 | cosp(1) = 0. |
---|
| 1716 | cosp(JNP) = 0. |
---|
[5116] | 1717 | RETURN |
---|
| 1718 | END SUBROUTINE cosa |
---|
[5159] | 1719 | |
---|
[5105] | 1720 | SUBROUTINE cosc(cosp,cose,JNP,PI,DP) |
---|
[5113] | 1721 | IMPLICIT NONE |
---|
[5116] | 1722 | INTEGER :: JNP |
---|
| 1723 | REAL :: cosp(*),cose(*),PI,DP |
---|
| 1724 | REAL :: phi |
---|
| 1725 | INTEGER :: j |
---|
[5159] | 1726 | |
---|
[5105] | 1727 | phi = -0.5*PI |
---|
[5158] | 1728 | DO j=2,JNP-1 |
---|
[5105] | 1729 | phi = phi + DP |
---|
| 1730 | cosp(j) = cos(phi) |
---|
| 1731 | END DO |
---|
| 1732 | cosp( 1) = 0. |
---|
| 1733 | cosp(JNP) = 0. |
---|
[5159] | 1734 | |
---|
[5158] | 1735 | DO j=2,JNP |
---|
[5105] | 1736 | cose(j) = 0.5*(cosp(j)+cosp(j-1)) |
---|
| 1737 | END DO |
---|
[5159] | 1738 | |
---|
[5158] | 1739 | DO j=2,JNP-1 |
---|
[5105] | 1740 | cosp(j) = 0.5*(cose(j)+cose(j+1)) |
---|
| 1741 | END DO |
---|
[5116] | 1742 | RETURN |
---|
| 1743 | END SUBROUTINE cosc |
---|
[5159] | 1744 | |
---|
[5106] | 1745 | SUBROUTINE qckxyz(Q,qtmp,IMR,JNP,NLAY,j1,j2,cosp,acosp, & |
---|
[5105] | 1746 | cross,IC,NSTEP) |
---|
[5159] | 1747 | |
---|
[5117] | 1748 | REAL,parameter :: tiny = 1.E-60 |
---|
[5105] | 1749 | INTEGER :: IMR,JNP,NLAY,j1,j2,IC,NSTEP |
---|
| 1750 | REAL :: Q(IMR,JNP,NLAY),qtmp(IMR,JNP),cosp(*),acosp(*) |
---|
[5117] | 1751 | LOGICAL :: cross |
---|
[5105] | 1752 | INTEGER :: NLAYM1,len,ip,L,icr,ipy,ipx,i |
---|
[5116] | 1753 | REAL :: qup,qly,dup,sum |
---|
[5159] | 1754 | |
---|
[5105] | 1755 | NLAYM1 = NLAY-1 |
---|
| 1756 | len = IMR*(j2-j1+1) |
---|
| 1757 | ip = 0 |
---|
[5159] | 1758 | |
---|
[5105] | 1759 | ! Top layer |
---|
| 1760 | L = 1 |
---|
| 1761 | icr = 1 |
---|
| 1762 | CALL filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
[5116] | 1763 | IF(ipy==0) goto 50 |
---|
[5105] | 1764 | CALL filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
[5116] | 1765 | IF(ipx==0) goto 50 |
---|
[5159] | 1766 | |
---|
[5116] | 1767 | IF(cross) THEN |
---|
[5105] | 1768 | CALL filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
[5117] | 1769 | ENDIF |
---|
[5116] | 1770 | IF(icr==0) goto 50 |
---|
[5159] | 1771 | |
---|
[5105] | 1772 | ! Vertical filling... |
---|
[5158] | 1773 | DO i=1,len |
---|
[5105] | 1774 | IF( Q(i,j1,1)<0.) THEN |
---|
| 1775 | ip = ip + 1 |
---|
| 1776 | Q(i,j1,2) = Q(i,j1,2) + Q(i,j1,1) |
---|
| 1777 | Q(i,j1,1) = 0. |
---|
[5117] | 1778 | ENDIF |
---|
[5105] | 1779 | enddo |
---|
[5159] | 1780 | |
---|
[5105] | 1781 | 50 continue |
---|
| 1782 | DO L = 2,NLAYM1 |
---|
| 1783 | icr = 1 |
---|
[5159] | 1784 | |
---|
[5105] | 1785 | CALL filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
[5116] | 1786 | IF(ipy==0) goto 225 |
---|
[5105] | 1787 | CALL filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
[5116] | 1788 | IF(ipx==0) go to 225 |
---|
| 1789 | IF(cross) THEN |
---|
[5105] | 1790 | CALL filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
[5117] | 1791 | ENDIF |
---|
[5116] | 1792 | IF(icr==0) goto 225 |
---|
[5159] | 1793 | |
---|
[5158] | 1794 | DO i=1,len |
---|
[5105] | 1795 | IF( Q(I,j1,L)<0.) THEN |
---|
[5159] | 1796 | |
---|
[5105] | 1797 | ip = ip + 1 |
---|
| 1798 | ! From above |
---|
| 1799 | qup = Q(I,j1,L-1) |
---|
| 1800 | qly = -Q(I,j1,L) |
---|
| 1801 | dup = min(qly,qup) |
---|
| 1802 | Q(I,j1,L-1) = qup - dup |
---|
| 1803 | Q(I,j1,L ) = dup-qly |
---|
| 1804 | ! Below |
---|
| 1805 | Q(I,j1,L+1) = Q(I,j1,L+1) + Q(I,j1,L) |
---|
| 1806 | Q(I,j1,L) = 0. |
---|
| 1807 | ENDIF |
---|
| 1808 | ENDDO |
---|
[524] | 1809 | 225 CONTINUE |
---|
[5105] | 1810 | END DO |
---|
[5159] | 1811 | |
---|
[5105] | 1812 | ! BOTTOM LAYER |
---|
| 1813 | sum = 0. |
---|
| 1814 | L = NLAY |
---|
[5159] | 1815 | |
---|
[5105] | 1816 | CALL filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
[5116] | 1817 | IF(ipy==0) goto 911 |
---|
[5105] | 1818 | CALL filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
[5116] | 1819 | IF(ipx==0) goto 911 |
---|
[5159] | 1820 | |
---|
[5105] | 1821 | CALL filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
[5116] | 1822 | IF(icr==0) goto 911 |
---|
[5159] | 1823 | |
---|
[5105] | 1824 | DO I=1,len |
---|
| 1825 | IF( Q(I,j1,L)<0.) THEN |
---|
| 1826 | ip = ip + 1 |
---|
[5159] | 1827 | |
---|
[5105] | 1828 | ! From above |
---|
[5159] | 1829 | |
---|
[5105] | 1830 | qup = Q(I,j1,NLAYM1) |
---|
| 1831 | qly = -Q(I,j1,L) |
---|
| 1832 | dup = min(qly,qup) |
---|
| 1833 | Q(I,j1,NLAYM1) = qup - dup |
---|
| 1834 | ! From "below" the surface. |
---|
| 1835 | sum = sum + qly-dup |
---|
| 1836 | Q(I,j1,L) = 0. |
---|
| 1837 | ENDIF |
---|
| 1838 | ENDDO |
---|
[5159] | 1839 | |
---|
[524] | 1840 | 911 continue |
---|
[5159] | 1841 | |
---|
[5116] | 1842 | IF(ip>IMR) THEN |
---|
| 1843 | WRITE(6,*) 'IC=',IC,' STEP=',NSTEP, & |
---|
[5105] | 1844 | ' Vertical filling pts=',ip |
---|
[5117] | 1845 | ENDIF |
---|
[5159] | 1846 | |
---|
[5116] | 1847 | IF(sum>1.e-25) THEN |
---|
| 1848 | WRITE(6,*) IC,NSTEP,' Mass source from the ground=',sum |
---|
[5117] | 1849 | ENDIF |
---|
[5105] | 1850 | RETURN |
---|
| 1851 | END SUBROUTINE qckxyz |
---|
[5159] | 1852 | |
---|
[5105] | 1853 | SUBROUTINE filcr(q,IMR,JNP,j1,j2,cosp,acosp,icr,tiny) |
---|
[5113] | 1854 | IMPLICIT NONE |
---|
[5116] | 1855 | INTEGER :: IMR,JNP,j1,j2,icr |
---|
| 1856 | REAL :: q(IMR,*),cosp(*),acosp(*),tiny |
---|
| 1857 | INTEGER :: i,j |
---|
| 1858 | REAL :: dq,dn,d0,d1,ds,d2 |
---|
[5105] | 1859 | icr = 0 |
---|
[5158] | 1860 | DO j=j1+1,j2-1 |
---|
[5105] | 1861 | DO i=1,IMR-1 |
---|
| 1862 | IF(q(i,j)<0.) THEN |
---|
| 1863 | icr = 1 |
---|
| 1864 | dq = - q(i,j)*cosp(j) |
---|
| 1865 | ! N-E |
---|
| 1866 | dn = q(i+1,j+1)*cosp(j+1) |
---|
| 1867 | d0 = max(0.,dn) |
---|
| 1868 | d1 = min(dq,d0) |
---|
| 1869 | q(i+1,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1870 | dq = dq - d1 |
---|
| 1871 | ! S-E |
---|
| 1872 | ds = q(i+1,j-1)*cosp(j-1) |
---|
| 1873 | d0 = max(0.,ds) |
---|
| 1874 | d2 = min(dq,d0) |
---|
| 1875 | q(i+1,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1876 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
[5117] | 1877 | ENDIF |
---|
[5105] | 1878 | END DO |
---|
[5117] | 1879 | IF(icr==0 .AND. q(IMR,j)>=0.) goto 65 |
---|
[5105] | 1880 | DO i=2,IMR |
---|
| 1881 | IF(q(i,j)<0.) THEN |
---|
| 1882 | icr = 1 |
---|
| 1883 | dq = - q(i,j)*cosp(j) |
---|
| 1884 | ! N-W |
---|
| 1885 | dn = q(i-1,j+1)*cosp(j+1) |
---|
| 1886 | d0 = max(0.,dn) |
---|
| 1887 | d1 = min(dq,d0) |
---|
| 1888 | q(i-1,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1889 | dq = dq - d1 |
---|
| 1890 | ! S-W |
---|
| 1891 | ds = q(i-1,j-1)*cosp(j-1) |
---|
| 1892 | d0 = max(0.,ds) |
---|
| 1893 | d2 = min(dq,d0) |
---|
| 1894 | q(i-1,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1895 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
[5117] | 1896 | ENDIF |
---|
[5105] | 1897 | END DO |
---|
| 1898 | ! ***************************************** |
---|
| 1899 | ! i=1 |
---|
| 1900 | i=1 |
---|
| 1901 | IF(q(i,j)<0.) THEN |
---|
| 1902 | icr = 1 |
---|
| 1903 | dq = - q(i,j)*cosp(j) |
---|
| 1904 | ! N-W |
---|
| 1905 | dn = q(IMR,j+1)*cosp(j+1) |
---|
| 1906 | d0 = max(0.,dn) |
---|
| 1907 | d1 = min(dq,d0) |
---|
| 1908 | q(IMR,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1909 | dq = dq - d1 |
---|
| 1910 | ! S-W |
---|
| 1911 | ds = q(IMR,j-1)*cosp(j-1) |
---|
| 1912 | d0 = max(0.,ds) |
---|
| 1913 | d2 = min(dq,d0) |
---|
| 1914 | q(IMR,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1915 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
[5117] | 1916 | ENDIF |
---|
[5105] | 1917 | ! ***************************************** |
---|
| 1918 | ! i=IMR |
---|
| 1919 | i=IMR |
---|
| 1920 | IF(q(i,j)<0.) THEN |
---|
| 1921 | icr = 1 |
---|
| 1922 | dq = - q(i,j)*cosp(j) |
---|
| 1923 | ! N-E |
---|
| 1924 | dn = q(1,j+1)*cosp(j+1) |
---|
| 1925 | d0 = max(0.,dn) |
---|
| 1926 | d1 = min(dq,d0) |
---|
| 1927 | q(1,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1928 | dq = dq - d1 |
---|
| 1929 | ! S-E |
---|
| 1930 | ds = q(1,j-1)*cosp(j-1) |
---|
| 1931 | d0 = max(0.,ds) |
---|
| 1932 | d2 = min(dq,d0) |
---|
| 1933 | q(1,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1934 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
[5117] | 1935 | ENDIF |
---|
[5105] | 1936 | ! ***************************************** |
---|
| 1937 | 65 continue |
---|
| 1938 | END DO |
---|
[5159] | 1939 | |
---|
[5158] | 1940 | DO i=1,IMR |
---|
[5117] | 1941 | IF(q(i,j1)<0. .OR. q(i,j2)<0.) THEN |
---|
[5105] | 1942 | icr = 1 |
---|
| 1943 | goto 80 |
---|
[5117] | 1944 | ENDIF |
---|
[5105] | 1945 | enddo |
---|
[5159] | 1946 | |
---|
[5105] | 1947 | 80 continue |
---|
[5159] | 1948 | |
---|
[5117] | 1949 | IF(q(1,1)<0. .OR. q(1,jnp)<0.) THEN |
---|
[5105] | 1950 | icr = 1 |
---|
[5117] | 1951 | ENDIF |
---|
[5159] | 1952 | |
---|
[5116] | 1953 | RETURN |
---|
| 1954 | END SUBROUTINE filcr |
---|
[5159] | 1955 | |
---|
[5105] | 1956 | SUBROUTINE filns(q,IMR,JNP,j1,j2,cosp,acosp,ipy,tiny) |
---|
[5113] | 1957 | IMPLICIT NONE |
---|
[5116] | 1958 | INTEGER :: IMR,JNP,j1,j2,ipy |
---|
| 1959 | REAL :: q(IMR,*),cosp(*),acosp(*),tiny |
---|
| 1960 | REAL :: DP,CAP1,dq,dn,d0,d1,ds,d2 |
---|
[5105] | 1961 | INTEGER :: i,j |
---|
[5117] | 1962 | ! LOGICAL first |
---|
[5105] | 1963 | ! data first /.TRUE./ |
---|
| 1964 | ! save cap1 |
---|
[5159] | 1965 | |
---|
[5116] | 1966 | ! IF(first) THEN |
---|
[5105] | 1967 | DP = 4.*ATAN(1.)/REAL(JNP-1) |
---|
| 1968 | CAP1 = IMR*(1.-COS((j1-1.5)*DP))/DP |
---|
| 1969 | ! first = .FALSE. |
---|
[5117] | 1970 | ! END IF |
---|
[5159] | 1971 | |
---|
[5105] | 1972 | ipy = 0 |
---|
[5158] | 1973 | DO j=j1+1,j2-1 |
---|
[5105] | 1974 | DO i=1,IMR |
---|
| 1975 | IF(q(i,j)<0.) THEN |
---|
| 1976 | ipy = 1 |
---|
| 1977 | dq = - q(i,j)*cosp(j) |
---|
| 1978 | ! North |
---|
| 1979 | dn = q(i,j+1)*cosp(j+1) |
---|
| 1980 | d0 = max(0.,dn) |
---|
| 1981 | d1 = min(dq,d0) |
---|
| 1982 | q(i,j+1) = (dn - d1)*acosp(j+1) |
---|
| 1983 | dq = dq - d1 |
---|
| 1984 | ! South |
---|
| 1985 | ds = q(i,j-1)*cosp(j-1) |
---|
| 1986 | d0 = max(0.,ds) |
---|
| 1987 | d2 = min(dq,d0) |
---|
| 1988 | q(i,j-1) = (ds - d2)*acosp(j-1) |
---|
| 1989 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
[5117] | 1990 | ENDIF |
---|
[5105] | 1991 | END DO |
---|
| 1992 | END DO |
---|
[5159] | 1993 | |
---|
[5158] | 1994 | DO i=1,imr |
---|
[5105] | 1995 | IF(q(i,j1)<0.) THEN |
---|
| 1996 | ipy = 1 |
---|
| 1997 | dq = - q(i,j1)*cosp(j1) |
---|
| 1998 | ! North |
---|
| 1999 | dn = q(i,j1+1)*cosp(j1+1) |
---|
| 2000 | d0 = max(0.,dn) |
---|
| 2001 | d1 = min(dq,d0) |
---|
| 2002 | q(i,j1+1) = (dn - d1)*acosp(j1+1) |
---|
| 2003 | q(i,j1) = (d1 - dq)*acosp(j1) + tiny |
---|
[5117] | 2004 | ENDIF |
---|
[5105] | 2005 | enddo |
---|
[5159] | 2006 | |
---|
[5105] | 2007 | j = j2 |
---|
[5158] | 2008 | DO i=1,imr |
---|
[5105] | 2009 | IF(q(i,j)<0.) THEN |
---|
| 2010 | ipy = 1 |
---|
| 2011 | dq = - q(i,j)*cosp(j) |
---|
| 2012 | ! South |
---|
| 2013 | ds = q(i,j-1)*cosp(j-1) |
---|
| 2014 | d0 = max(0.,ds) |
---|
| 2015 | d2 = min(dq,d0) |
---|
| 2016 | q(i,j-1) = (ds - d2)*acosp(j-1) |
---|
| 2017 | q(i,j) = (d2 - dq)*acosp(j) + tiny |
---|
[5117] | 2018 | ENDIF |
---|
[5105] | 2019 | enddo |
---|
[5159] | 2020 | |
---|
[5105] | 2021 | ! Check Poles. |
---|
[5116] | 2022 | IF(q(1,1)<0.) THEN |
---|
[5105] | 2023 | dq = q(1,1)*cap1/REAL(IMR)*acosp(j1) |
---|
[5158] | 2024 | DO i=1,imr |
---|
[5105] | 2025 | q(i,1) = 0. |
---|
| 2026 | q(i,j1) = q(i,j1) + dq |
---|
[5116] | 2027 | IF(q(i,j1)<0.) ipy = 1 |
---|
[5105] | 2028 | enddo |
---|
[5117] | 2029 | ENDIF |
---|
[5159] | 2030 | |
---|
[5116] | 2031 | IF(q(1,JNP)<0.) THEN |
---|
[5105] | 2032 | dq = q(1,JNP)*cap1/REAL(IMR)*acosp(j2) |
---|
[5158] | 2033 | DO i=1,imr |
---|
[5105] | 2034 | q(i,JNP) = 0. |
---|
| 2035 | q(i,j2) = q(i,j2) + dq |
---|
[5116] | 2036 | IF(q(i,j2)<0.) ipy = 1 |
---|
[5105] | 2037 | enddo |
---|
[5117] | 2038 | ENDIF |
---|
[5159] | 2039 | |
---|
[5116] | 2040 | RETURN |
---|
| 2041 | END SUBROUTINE filns |
---|
[5159] | 2042 | |
---|
[5105] | 2043 | SUBROUTINE filew(q,qtmp,IMR,JNP,j1,j2,ipx,tiny) |
---|
[5113] | 2044 | IMPLICIT NONE |
---|
[5116] | 2045 | INTEGER :: IMR,JNP,j1,j2,ipx |
---|
| 2046 | REAL :: q(IMR,*),qtmp(JNP,IMR),tiny |
---|
| 2047 | INTEGER :: i,j |
---|
| 2048 | REAL :: d0,d1,d2 |
---|
[5159] | 2049 | |
---|
[5105] | 2050 | ipx = 0 |
---|
| 2051 | ! Copy & swap direction for vectorization. |
---|
[5158] | 2052 | DO i=1,imr |
---|
| 2053 | DO j=j1,j2 |
---|
[5105] | 2054 | qtmp(j,i) = q(i,j) |
---|
| 2055 | END DO |
---|
| 2056 | END DO |
---|
[5159] | 2057 | |
---|
[5158] | 2058 | DO i=2,imr-1 |
---|
| 2059 | DO j=j1,j2 |
---|
[5116] | 2060 | IF(qtmp(j,i)<0.) THEN |
---|
[5105] | 2061 | ipx = 1 |
---|
| 2062 | ! west |
---|
| 2063 | d0 = max(0.,qtmp(j,i-1)) |
---|
| 2064 | d1 = min(-qtmp(j,i),d0) |
---|
| 2065 | qtmp(j,i-1) = qtmp(j,i-1) - d1 |
---|
| 2066 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
| 2067 | ! east |
---|
| 2068 | d0 = max(0.,qtmp(j,i+1)) |
---|
| 2069 | d2 = min(-qtmp(j,i),d0) |
---|
| 2070 | qtmp(j,i+1) = qtmp(j,i+1) - d2 |
---|
| 2071 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
[5117] | 2072 | ENDIF |
---|
[5105] | 2073 | END DO |
---|
| 2074 | END DO |
---|
[5159] | 2075 | |
---|
[5105] | 2076 | i=1 |
---|
[5158] | 2077 | DO j=j1,j2 |
---|
[5116] | 2078 | IF(qtmp(j,i)<0.) THEN |
---|
[5105] | 2079 | ipx = 1 |
---|
| 2080 | ! west |
---|
| 2081 | d0 = max(0.,qtmp(j,imr)) |
---|
| 2082 | d1 = min(-qtmp(j,i),d0) |
---|
| 2083 | qtmp(j,imr) = qtmp(j,imr) - d1 |
---|
| 2084 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
| 2085 | ! east |
---|
| 2086 | d0 = max(0.,qtmp(j,i+1)) |
---|
| 2087 | d2 = min(-qtmp(j,i),d0) |
---|
| 2088 | qtmp(j,i+1) = qtmp(j,i+1) - d2 |
---|
[5159] | 2089 | |
---|
[5105] | 2090 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
[5117] | 2091 | ENDIF |
---|
[5105] | 2092 | END DO |
---|
| 2093 | i=IMR |
---|
[5158] | 2094 | DO j=j1,j2 |
---|
[5116] | 2095 | IF(qtmp(j,i)<0.) THEN |
---|
[5105] | 2096 | ipx = 1 |
---|
| 2097 | ! west |
---|
| 2098 | d0 = max(0.,qtmp(j,i-1)) |
---|
| 2099 | d1 = min(-qtmp(j,i),d0) |
---|
| 2100 | qtmp(j,i-1) = qtmp(j,i-1) - d1 |
---|
| 2101 | qtmp(j,i) = qtmp(j,i) + d1 |
---|
| 2102 | ! east |
---|
| 2103 | d0 = max(0.,qtmp(j,1)) |
---|
| 2104 | d2 = min(-qtmp(j,i),d0) |
---|
| 2105 | qtmp(j,1) = qtmp(j,1) - d2 |
---|
[5159] | 2106 | |
---|
[5105] | 2107 | qtmp(j,i) = qtmp(j,i) + d2 + tiny |
---|
[5117] | 2108 | ENDIF |
---|
[5105] | 2109 | END DO |
---|
[5159] | 2110 | |
---|
[5116] | 2111 | IF(ipx/=0) THEN |
---|
[5158] | 2112 | DO j=j1,j2 |
---|
| 2113 | DO i=1,imr |
---|
[5105] | 2114 | q(i,j) = qtmp(j,i) |
---|
| 2115 | END DO |
---|
| 2116 | END DO |
---|
| 2117 | else |
---|
[5159] | 2118 | |
---|
[5105] | 2119 | ! Poles. |
---|
[5117] | 2120 | IF(q(1,1)<0 .OR. q(1,JNP)<0.) ipx = 1 |
---|
| 2121 | ENDIF |
---|
[5116] | 2122 | RETURN |
---|
| 2123 | END SUBROUTINE filew |
---|
[5159] | 2124 | |
---|
[5105] | 2125 | SUBROUTINE zflip(q,im,km,nc) |
---|
[5113] | 2126 | IMPLICIT NONE |
---|
[5105] | 2127 | ! This routine flip the array q (in the vertical). |
---|
[5116] | 2128 | INTEGER :: im,km,nc |
---|
| 2129 | REAL :: q(im,km,nc) |
---|
[5105] | 2130 | ! local dynamic array |
---|
[5116] | 2131 | REAL :: qtmp(im,km) |
---|
| 2132 | INTEGER :: IC,k,i |
---|
[5159] | 2133 | |
---|
[5158] | 2134 | DO IC = 1, nc |
---|
[5159] | 2135 | |
---|
[5158] | 2136 | DO k=1,km |
---|
| 2137 | DO i=1,im |
---|
[5105] | 2138 | qtmp(i,k) = q(i,km+1-k,IC) |
---|
| 2139 | END DO |
---|
| 2140 | END DO |
---|
[5159] | 2141 | |
---|
[5158] | 2142 | DO i=1,im*km |
---|
[5105] | 2143 | q(i,1,IC) = qtmp(i,1) |
---|
| 2144 | END DO |
---|
| 2145 | END DO |
---|
[5116] | 2146 | RETURN |
---|
| 2147 | END SUBROUTINE zflip |
---|