1 | module fyhyp_m |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE fyhyp(rlatu, yyprimu, rlatv, rlatu2, yprimu2, rlatu1, yprimu1) |
---|
8 | |
---|
9 | ! From LMDZ4/libf/dyn3d/fyhyp.F, version 1.2, 2005/06/03 09:11:32 |
---|
10 | |
---|
11 | ! Author: P. Le Van, from analysis by R. Sadourny |
---|
12 | |
---|
13 | ! Calcule les latitudes et dérivées dans la grille du GCM pour une |
---|
14 | ! fonction f(y) à dérivée tangente hyperbolique. |
---|
15 | |
---|
16 | ! Il vaut mieux avoir : grossismy * dzoom < pi / 2 |
---|
17 | |
---|
18 | USE lmdz_coefpoly, ONLY: coefpoly |
---|
19 | USE lmdz_physical_constants, ONLY: k8 |
---|
20 | USE serre_mod, ONLY: clat, grossismy, dzoomy, tauy |
---|
21 | |
---|
22 | include "dimensions.h" |
---|
23 | ! for jjm |
---|
24 | |
---|
25 | REAL, INTENT(OUT):: rlatu(jjm + 1), yyprimu(jjm + 1) |
---|
26 | REAL, INTENT(OUT):: rlatv(jjm) |
---|
27 | REAL, INTENT(OUT):: rlatu2(jjm), yprimu2(jjm), rlatu1(jjm), yprimu1(jjm) |
---|
28 | |
---|
29 | ! Local: |
---|
30 | |
---|
31 | REAL(K8) champmin, champmax |
---|
32 | INTEGER, PARAMETER:: nmax=30000, nmax2=2*nmax |
---|
33 | REAL dzoom ! distance totale de la zone du zoom (en radians) |
---|
34 | REAL(K8) ylat(jjm + 1), yprim(jjm + 1) |
---|
35 | REAL(K8) yuv |
---|
36 | REAL(K8), save:: yt(0:nmax2) |
---|
37 | REAL(K8) fhyp(0:nmax2), beta |
---|
38 | REAL(K8), save:: ytprim(0:nmax2) |
---|
39 | REAL(K8) fxm(0:nmax2) |
---|
40 | REAL(K8), save:: yf(0:nmax2) |
---|
41 | REAL(K8) yypr(0:nmax2) |
---|
42 | REAL(K8) yvrai(jjm + 1), yprimm(jjm + 1), ylatt(jjm + 1) |
---|
43 | REAL(K8) pi, pis2, epsilon, y0, pisjm |
---|
44 | REAL(K8) yo1, yi, ylon2, ymoy, yprimin |
---|
45 | REAL(K8) yfi, yf1, ffdy |
---|
46 | REAL(K8) ypn, deply, y00 |
---|
47 | SAVE y00, deply |
---|
48 | |
---|
49 | INTEGER i, j, it, ik, iter, jlat |
---|
50 | INTEGER jpn, jjpn |
---|
51 | SAVE jpn |
---|
52 | REAL(K8) a0, a1, a2, a3, yi2, heavyy0, heavyy0m |
---|
53 | REAL(K8) fa(0:nmax2), fb(0:nmax2) |
---|
54 | REAL y0min, y0max |
---|
55 | |
---|
56 | REAL(K8) heavyside |
---|
57 | |
---|
58 | !------------------------------------------------------------------- |
---|
59 | |
---|
60 | print *, "Call sequence information: fyhyp" |
---|
61 | |
---|
62 | pi = 2.*asin(1.) |
---|
63 | pis2 = pi/2. |
---|
64 | pisjm = pi/real(jjm) |
---|
65 | epsilon = 1e-3 |
---|
66 | y0 = clat*pi/180. |
---|
67 | dzoom = dzoomy*pi |
---|
68 | print *, 'yzoom(rad), grossismy, tauy, dzoom (rad):' |
---|
69 | print *, y0, grossismy, tauy, dzoom |
---|
70 | |
---|
71 | DO i = 0, nmax2 |
---|
72 | yt(i) = -pis2 + real(i)*pi/nmax2 |
---|
73 | END DO |
---|
74 | |
---|
75 | heavyy0m = heavyside(-y0) |
---|
76 | heavyy0 = heavyside(y0) |
---|
77 | y0min = 2.*y0*heavyy0m - pis2 |
---|
78 | y0max = 2.*y0*heavyy0 + pis2 |
---|
79 | |
---|
80 | fa = 999.999 |
---|
81 | fb = 999.999 |
---|
82 | |
---|
83 | DO i = 0, nmax2 |
---|
84 | IF (yt(i)<y0) THEN |
---|
85 | fa(i) = tauy*(yt(i)-y0 + dzoom/2.) |
---|
86 | fb(i) = (yt(i)-2.*y0*heavyy0m + pis2)*(y0-yt(i)) |
---|
87 | ELSE IF (yt(i)>y0) THEN |
---|
88 | fa(i) = tauy*(y0-yt(i) + dzoom/2.) |
---|
89 | fb(i) = (2.*y0*heavyy0-yt(i) + pis2)*(yt(i)-y0) |
---|
90 | END IF |
---|
91 | |
---|
92 | IF (200.*fb(i)<-fa(i)) THEN |
---|
93 | fhyp(i) = -1. |
---|
94 | ELSE IF (200.*fb(i)<fa(i)) THEN |
---|
95 | fhyp(i) = 1. |
---|
96 | ELSE |
---|
97 | fhyp(i) = tanh(fa(i)/fb(i)) |
---|
98 | END IF |
---|
99 | |
---|
100 | IF (yt(i)==y0) fhyp(i) = 1. |
---|
101 | IF (yt(i)==y0min .OR. yt(i)==y0max) fhyp(i) = -1. |
---|
102 | END DO |
---|
103 | |
---|
104 | ! Calcul de beta |
---|
105 | |
---|
106 | ffdy = 0. |
---|
107 | |
---|
108 | DO i = 1, nmax2 |
---|
109 | ymoy = 0.5*(yt(i-1) + yt(i)) |
---|
110 | IF (ymoy<y0) THEN |
---|
111 | fa(i) = tauy*(ymoy-y0 + dzoom/2.) |
---|
112 | fb(i) = (ymoy-2.*y0*heavyy0m + pis2)*(y0-ymoy) |
---|
113 | ELSE IF (ymoy>y0) THEN |
---|
114 | fa(i) = tauy*(y0-ymoy + dzoom/2.) |
---|
115 | fb(i) = (2.*y0*heavyy0-ymoy + pis2)*(ymoy-y0) |
---|
116 | END IF |
---|
117 | |
---|
118 | IF (200.*fb(i)<-fa(i)) THEN |
---|
119 | fxm(i) = -1. |
---|
120 | ELSE IF (200.*fb(i)<fa(i)) THEN |
---|
121 | fxm(i) = 1. |
---|
122 | ELSE |
---|
123 | fxm(i) = tanh(fa(i)/fb(i)) |
---|
124 | END IF |
---|
125 | IF (ymoy==y0) fxm(i) = 1. |
---|
126 | IF (ymoy==y0min .OR. yt(i)==y0max) fxm(i) = -1. |
---|
127 | ffdy = ffdy + fxm(i)*(yt(i)-yt(i-1)) |
---|
128 | END DO |
---|
129 | |
---|
130 | beta = (grossismy*ffdy-pi)/(ffdy-pi) |
---|
131 | |
---|
132 | IF (2. * beta - grossismy <= 0.) THEN |
---|
133 | print *, 'Attention ! La valeur beta calculee dans la routine fyhyp ' & |
---|
134 | // 'est mauvaise. Modifier les valeurs de grossismy, tauy ou ' & |
---|
135 | // 'dzoomy et relancer.' |
---|
136 | STOP 1 |
---|
137 | END IF |
---|
138 | |
---|
139 | ! calcul de Ytprim |
---|
140 | |
---|
141 | DO i = 0, nmax2 |
---|
142 | ytprim(i) = beta + (grossismy-beta)*fhyp(i) |
---|
143 | END DO |
---|
144 | |
---|
145 | ! Calcul de Yf |
---|
146 | |
---|
147 | yf(0) = -pis2 |
---|
148 | DO i = 1, nmax2 |
---|
149 | yypr(i) = beta + (grossismy-beta)*fxm(i) |
---|
150 | END DO |
---|
151 | |
---|
152 | DO i = 1, nmax2 |
---|
153 | yf(i) = yf(i-1) + yypr(i)*(yt(i)-yt(i-1)) |
---|
154 | END DO |
---|
155 | |
---|
156 | ! yuv = 0. si calcul des latitudes aux pts. U |
---|
157 | ! yuv = 0.5 si calcul des latitudes aux pts. V |
---|
158 | |
---|
159 | loop_ik: DO ik = 1, 4 |
---|
160 | IF (ik==1) THEN |
---|
161 | yuv = 0. |
---|
162 | jlat = jjm + 1 |
---|
163 | ELSE IF (ik==2) THEN |
---|
164 | yuv = 0.5 |
---|
165 | jlat = jjm |
---|
166 | ELSE IF (ik==3) THEN |
---|
167 | yuv = 0.25 |
---|
168 | jlat = jjm |
---|
169 | ELSE IF (ik==4) THEN |
---|
170 | yuv = 0.75 |
---|
171 | jlat = jjm |
---|
172 | END IF |
---|
173 | |
---|
174 | yo1 = 0. |
---|
175 | DO j = 1, jlat |
---|
176 | yo1 = 0. |
---|
177 | ylon2 = -pis2 + pisjm*(real(j) + yuv-1.) |
---|
178 | yfi = ylon2 |
---|
179 | |
---|
180 | it = nmax2 |
---|
181 | DO while (it >= 1 .AND. yfi < yf(it)) |
---|
182 | it = it - 1 |
---|
183 | END DO |
---|
184 | |
---|
185 | yi = yt(it) |
---|
186 | IF (it==nmax2) THEN |
---|
187 | it = nmax2 - 1 |
---|
188 | yf(it + 1) = pis2 |
---|
189 | END IF |
---|
190 | |
---|
191 | ! Interpolation entre yi(it) et yi(it + 1) pour avoir Y(yi) |
---|
192 | ! et Y'(yi) |
---|
193 | |
---|
194 | CALL coefpoly(yf(it), yf(it + 1), ytprim(it), ytprim(it + 1), & |
---|
195 | yt(it), yt(it + 1), a0, a1, a2, a3) |
---|
196 | |
---|
197 | yf1 = yf(it) |
---|
198 | yprimin = a1 + 2.*a2*yi + 3.*a3*yi*yi |
---|
199 | |
---|
200 | iter = 1 |
---|
201 | DO |
---|
202 | yi = yi - (yf1-yfi)/yprimin |
---|
203 | IF (abs(yi-yo1)<=epsilon .OR. iter == 300) exit |
---|
204 | yo1 = yi |
---|
205 | yi2 = yi*yi |
---|
206 | yf1 = a0 + a1*yi + a2*yi2 + a3*yi2*yi |
---|
207 | yprimin = a1 + 2.*a2*yi + 3.*a3*yi2 |
---|
208 | END DO |
---|
209 | IF (abs(yi-yo1) > epsilon) THEN |
---|
210 | print *, 'Pas de solution.', j, ylon2 |
---|
211 | STOP 1 |
---|
212 | end if |
---|
213 | |
---|
214 | yprimin = a1 + 2.*a2*yi + 3.*a3*yi*yi |
---|
215 | yprim(j) = pi/(jjm*yprimin) |
---|
216 | yvrai(j) = yi |
---|
217 | END DO |
---|
218 | |
---|
219 | DO j = 1, jlat - 1 |
---|
220 | IF (yvrai(j + 1)<yvrai(j)) THEN |
---|
221 | print *, 'Problème avec rlat(', j + 1, ') plus petit que rlat(', & |
---|
222 | j, ')' |
---|
223 | STOP 1 |
---|
224 | END IF |
---|
225 | END DO |
---|
226 | |
---|
227 | print *, 'Reorganisation des latitudes pour avoir entre - pi/2 et pi/2' |
---|
228 | |
---|
229 | IF (ik==1) THEN |
---|
230 | ypn = pis2 |
---|
231 | DO j = jjm + 1, 1, -1 |
---|
232 | IF (yvrai(j)<=ypn) exit |
---|
233 | END DO |
---|
234 | |
---|
235 | jpn = j |
---|
236 | y00 = yvrai(jpn) |
---|
237 | deply = pis2 - y00 |
---|
238 | END IF |
---|
239 | |
---|
240 | DO j = 1, jjm + 1 - jpn |
---|
241 | ylatt(j) = -pis2 - y00 + yvrai(jpn + j-1) |
---|
242 | yprimm(j) = yprim(jpn + j-1) |
---|
243 | END DO |
---|
244 | |
---|
245 | jjpn = jpn |
---|
246 | IF (jlat==jjm) jjpn = jpn - 1 |
---|
247 | |
---|
248 | DO j = 1, jjpn |
---|
249 | ylatt(j + jjm + 1-jpn) = yvrai(j) + deply |
---|
250 | yprimm(j + jjm + 1-jpn) = yprim(j) |
---|
251 | END DO |
---|
252 | |
---|
253 | ! Fin de la reorganisation |
---|
254 | |
---|
255 | DO j = 1, jlat |
---|
256 | ylat(j) = ylatt(jlat + 1-j) |
---|
257 | yprim(j) = yprimm(jlat + 1-j) |
---|
258 | END DO |
---|
259 | |
---|
260 | DO j = 1, jlat |
---|
261 | yvrai(j) = ylat(j)*180./pi |
---|
262 | END DO |
---|
263 | |
---|
264 | IF (ik==1) THEN |
---|
265 | DO j = 1, jjm + 1 |
---|
266 | rlatu(j) = ylat(j) |
---|
267 | yyprimu(j) = yprim(j) |
---|
268 | END DO |
---|
269 | ELSE IF (ik==2) THEN |
---|
270 | DO j = 1, jjm |
---|
271 | rlatv(j) = ylat(j) |
---|
272 | END DO |
---|
273 | ELSE IF (ik==3) THEN |
---|
274 | DO j = 1, jjm |
---|
275 | rlatu2(j) = ylat(j) |
---|
276 | yprimu2(j) = yprim(j) |
---|
277 | END DO |
---|
278 | ELSE IF (ik==4) THEN |
---|
279 | DO j = 1, jjm |
---|
280 | rlatu1(j) = ylat(j) |
---|
281 | yprimu1(j) = yprim(j) |
---|
282 | END DO |
---|
283 | END IF |
---|
284 | END DO loop_ik |
---|
285 | |
---|
286 | DO j = 1, jjm |
---|
287 | ylat(j) = rlatu(j) - rlatu(j + 1) |
---|
288 | END DO |
---|
289 | champmin = 1e12 |
---|
290 | champmax = -1e12 |
---|
291 | DO j = 1, jjm |
---|
292 | champmin = min(champmin, ylat(j)) |
---|
293 | champmax = max(champmax, ylat(j)) |
---|
294 | END DO |
---|
295 | champmin = champmin*180./pi |
---|
296 | champmax = champmax*180./pi |
---|
297 | |
---|
298 | DO j = 1, jjm |
---|
299 | IF (rlatu1(j) <= rlatu2(j)) THEN |
---|
300 | print *, 'Attention ! rlatu1 < rlatu2 ', rlatu1(j), rlatu2(j), j |
---|
301 | STOP 13 |
---|
302 | ENDIF |
---|
303 | |
---|
304 | IF (rlatu2(j) <= rlatu(j+1)) THEN |
---|
305 | print *, 'Attention ! rlatu2 < rlatup1 ', rlatu2(j), rlatu(j+1), j |
---|
306 | STOP 14 |
---|
307 | ENDIF |
---|
308 | |
---|
309 | IF (rlatu(j) <= rlatu1(j)) THEN |
---|
310 | print *, ' Attention ! rlatu < rlatu1 ', rlatu(j), rlatu1(j), j |
---|
311 | STOP 15 |
---|
312 | ENDIF |
---|
313 | |
---|
314 | IF (rlatv(j) <= rlatu2(j)) THEN |
---|
315 | print *, ' Attention ! rlatv < rlatu2 ', rlatv(j), rlatu2(j), j |
---|
316 | STOP 16 |
---|
317 | ENDIF |
---|
318 | |
---|
319 | IF (rlatv(j) >= rlatu1(j)) THEN |
---|
320 | print *, ' Attention ! rlatv > rlatu1 ', rlatv(j), rlatu1(j), j |
---|
321 | STOP 17 |
---|
322 | ENDIF |
---|
323 | |
---|
324 | IF (rlatv(j) >= rlatu(j)) THEN |
---|
325 | print *, ' Attention ! rlatv > rlatu ', rlatv(j), rlatu(j), j |
---|
326 | STOP 18 |
---|
327 | ENDIF |
---|
328 | ENDDO |
---|
329 | |
---|
330 | print *, 'Latitudes' |
---|
331 | print 3, champmin, champmax |
---|
332 | |
---|
333 | 3 Format(1x, ' Au centre du zoom, la longueur de la maille est', & |
---|
334 | ' d environ ', f0.2, ' degres ', /, & |
---|
335 | ' alors que la maille en dehors de la zone du zoom est ', & |
---|
336 | "d'environ ", f0.2, ' degres ') |
---|
337 | |
---|
338 | END SUBROUTINE fyhyp |
---|
339 | |
---|
340 | END MODULE fyhyp_m |
---|