1 | ! $Header$ |
---|
2 | |
---|
3 | SUBROUTINE ADVZP(LIMIT, DTZ, W, SM, S0, SSX, SY, SZ & |
---|
4 | , SSXX, SSXY, SSXZ, SYY, SYZ, SZZ, ntra) |
---|
5 | USE lmdz_comgeom |
---|
6 | |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
10 | ! C |
---|
11 | ! second-order moments (SOM) advection of tracer in Z direction C |
---|
12 | ! C |
---|
13 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
14 | ! C |
---|
15 | ! Source : Pascal Simon ( Meteo, CNRM ) C |
---|
16 | ! Adaptation : A.A. (LGGE) C |
---|
17 | ! Derniere Modif : 19/11/95 LAST C |
---|
18 | ! C |
---|
19 | ! sont les arguments d'entree pour le s-pg C |
---|
20 | ! C |
---|
21 | ! argument de sortie du s-pg C |
---|
22 | ! C |
---|
23 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
24 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
25 | ! |
---|
26 | ! Rem : Probleme aux poles il faut reecrire ce cas specifique |
---|
27 | ! Attention au sens de l'indexation |
---|
28 | ! |
---|
29 | |
---|
30 | ! |
---|
31 | ! parametres principaux du modele |
---|
32 | ! |
---|
33 | INCLUDE "dimensions.h" |
---|
34 | INCLUDE "paramet.h" |
---|
35 | ! |
---|
36 | ! Arguments : |
---|
37 | ! ---------- |
---|
38 | ! dty : frequence fictive d'appel du transport |
---|
39 | ! parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
40 | ! |
---|
41 | INTEGER :: lon, lat, niv |
---|
42 | INTEGER :: i, j, jv, k, kp, l, lp |
---|
43 | INTEGER :: ntra |
---|
44 | ! PARAMETER (ntra = 1) |
---|
45 | ! |
---|
46 | REAL :: dtz |
---|
47 | REAL :: w (iip1, jjp1, llm) |
---|
48 | ! |
---|
49 | ! moments: SM total mass in each grid box |
---|
50 | ! S0 mass of tracer in each grid box |
---|
51 | ! Si 1rst order moment in i direction |
---|
52 | ! |
---|
53 | REAL :: SM(iip1, jjp1, llm) & |
---|
54 | , S0(iip1, jjp1, llm, ntra) |
---|
55 | REAL :: SSX(iip1, jjp1, llm, ntra) & |
---|
56 | , SY(iip1, jjp1, llm, ntra) & |
---|
57 | , SZ(iip1, jjp1, llm, ntra) & |
---|
58 | , SSXX(iip1, jjp1, llm, ntra) & |
---|
59 | , SSXY(iip1, jjp1, llm, ntra) & |
---|
60 | , SSXZ(iip1, jjp1, llm, ntra) & |
---|
61 | , SYY(iip1, jjp1, llm, ntra) & |
---|
62 | , SYZ(iip1, jjp1, llm, ntra) & |
---|
63 | , SZZ(iip1, jjp1, llm, ntra) |
---|
64 | ! |
---|
65 | ! Local : |
---|
66 | ! ------- |
---|
67 | ! |
---|
68 | ! mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
69 | ! mass fluxes in kg |
---|
70 | ! declaration : |
---|
71 | ! |
---|
72 | REAL :: WGRI(iip1, jjp1, 0:llm) |
---|
73 | |
---|
74 | ! Rem : UGRI et VGRI ne sont pas utilises dans |
---|
75 | ! cette SUBROUTINE ( advection en z uniquement ) |
---|
76 | ! Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
---|
77 | ! attention a celui de WGRI |
---|
78 | ! |
---|
79 | ! the moments F are similarly defined and used as temporary |
---|
80 | ! storage for portions of the grid boxes in transit |
---|
81 | ! |
---|
82 | ! the moments Fij are used as temporary storage for |
---|
83 | ! portions of the grid boxes in transit at the current level |
---|
84 | ! |
---|
85 | ! work arrays |
---|
86 | ! |
---|
87 | ! |
---|
88 | REAL :: F0(iim, llm, ntra), FM(iim, llm) |
---|
89 | REAL :: FX(iim, llm, ntra), FY(iim, llm, ntra) |
---|
90 | REAL :: FZ(iim, llm, ntra) |
---|
91 | REAL :: FXX(iim, llm, ntra), FXY(iim, llm, ntra) |
---|
92 | REAL :: FXZ(iim, llm, ntra), FYY(iim, llm, ntra) |
---|
93 | REAL :: FYZ(iim, llm, ntra), FZZ(iim, llm, ntra) |
---|
94 | REAL :: S00(ntra) |
---|
95 | REAL :: SM0 ! Just temporal variable |
---|
96 | ! |
---|
97 | ! work arrays |
---|
98 | ! |
---|
99 | REAL :: ALF(iim), ALF1(iim) |
---|
100 | REAL :: ALFQ(iim), ALF1Q(iim) |
---|
101 | REAL :: ALF2(iim), ALF3(iim) |
---|
102 | REAL :: ALF4(iim) |
---|
103 | REAL :: TEMPTM ! Just temporal variable |
---|
104 | REAL :: SLPMAX, S1MAX, S1NEW, S2NEW |
---|
105 | ! |
---|
106 | REAL :: sqi, sqf |
---|
107 | LOGICAL :: LIMIT |
---|
108 | |
---|
109 | lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
---|
110 | lat = jjp1 ! a cause des dim. differentes entre les |
---|
111 | niv = llm ! tab. S et VGRI |
---|
112 | |
---|
113 | !----------------------------------------------------------------- |
---|
114 | ! *** Test : diag de la qtite totale de traceur dans |
---|
115 | ! l'atmosphere avant l'advection en Y |
---|
116 | ! |
---|
117 | sqi = 0. |
---|
118 | sqf = 0. |
---|
119 | ! |
---|
120 | DO l = 1, llm |
---|
121 | DO j = 1, jjp1 |
---|
122 | DO i = 1, iim |
---|
123 | sqi = sqi + S0(i, j, l, ntra) |
---|
124 | END DO |
---|
125 | END DO |
---|
126 | END DO |
---|
127 | PRINT*, '---------- DIAG DANS ADVZP - ENTREE --------' |
---|
128 | PRINT*, 'sqi=', sqi |
---|
129 | |
---|
130 | !----------------------------------------------------------------- |
---|
131 | ! Interface : adaptation nouveau modele |
---|
132 | ! ------------------------------------- |
---|
133 | ! |
---|
134 | ! Conversion des flux de masses en kg |
---|
135 | |
---|
136 | DO l = 1, llm |
---|
137 | DO j = 1, jjp1 |
---|
138 | DO i = 1, iip1 |
---|
139 | wgri (i, j, llm + 1 - l) = w (i, j, l) |
---|
140 | END DO |
---|
141 | END DO |
---|
142 | END DO |
---|
143 | do j = 1, jjp1 |
---|
144 | do i = 1, iip1 |
---|
145 | wgri(i, j, 0) = 0. |
---|
146 | enddo |
---|
147 | enddo |
---|
148 | ! |
---|
149 | !AA rem : Je ne suis pas sur du signe |
---|
150 | !AA Je ne suis pas sur pour le 0:llm |
---|
151 | ! |
---|
152 | !----------------------------------------------------------------- |
---|
153 | !---------------------- START HERE ------------------------------- |
---|
154 | ! |
---|
155 | ! boucle sur les latitudes |
---|
156 | ! |
---|
157 | DO K = 1, LAT |
---|
158 | ! |
---|
159 | ! place limits on appropriate moments before transport |
---|
160 | ! (if flux-limiting is to be applied) |
---|
161 | ! |
---|
162 | IF(.NOT.LIMIT) GO TO 101 |
---|
163 | ! |
---|
164 | DO JV = 1, NTRA |
---|
165 | DO L = 1, NIV |
---|
166 | DO I = 1, LON |
---|
167 | IF(S0(I, K, L, JV)>0.) THEN |
---|
168 | SLPMAX = S0(I, K, L, JV) |
---|
169 | S1MAX = 1.5 * SLPMAX |
---|
170 | S1NEW = AMIN1(S1MAX, AMAX1(-S1MAX, SZ(I, K, L, JV))) |
---|
171 | S2NEW = AMIN1(2. * SLPMAX - ABS(S1NEW) / 3., & |
---|
172 | AMAX1(ABS(S1NEW) - SLPMAX, SZZ(I, K, L, JV))) |
---|
173 | SZ (I, K, L, JV) = S1NEW |
---|
174 | SZZ(I, K, L, JV) = S2NEW |
---|
175 | SSXZ(I, K, L, JV) = AMIN1(SLPMAX, AMAX1(-SLPMAX, SSXZ(I, K, L, JV))) |
---|
176 | SYZ(I, K, L, JV) = AMIN1(SLPMAX, AMAX1(-SLPMAX, SYZ(I, K, L, JV))) |
---|
177 | ELSE |
---|
178 | SZ (I, K, L, JV) = 0. |
---|
179 | SZZ(I, K, L, JV) = 0. |
---|
180 | SSXZ(I, K, L, JV) = 0. |
---|
181 | SYZ(I, K, L, JV) = 0. |
---|
182 | ENDIF |
---|
183 | END DO |
---|
184 | END DO |
---|
185 | END DO |
---|
186 | ! |
---|
187 | 101 CONTINUE |
---|
188 | ! |
---|
189 | ! boucle sur les niveaux intercouches de 1 a NIV-1 |
---|
190 | ! (flux nul au sommet L=0 et a la base L=NIV) |
---|
191 | ! |
---|
192 | ! calculate flux and moments between adjacent boxes |
---|
193 | ! (flux from LP to L if WGRI(L).lt.0, from L to LP if WGRI(L).gt.0) |
---|
194 | ! 1- create temporary moments/masses for partial boxes in transit |
---|
195 | ! 2- reajusts moments remaining in the box |
---|
196 | ! |
---|
197 | DO L = 1, NIV - 1 |
---|
198 | LP = L + 1 |
---|
199 | ! |
---|
200 | DO I = 1, LON |
---|
201 | ! |
---|
202 | IF(WGRI(I, K, L)<0.) THEN |
---|
203 | FM(I, L) = -WGRI(I, K, L) * DTZ |
---|
204 | ALF(I) = FM(I, L) / SM(I, K, LP) |
---|
205 | SM(I, K, LP) = SM(I, K, LP) - FM(I, L) |
---|
206 | ELSE |
---|
207 | FM(I, L) = WGRI(I, K, L) * DTZ |
---|
208 | ALF(I) = FM(I, L) / SM(I, K, L) |
---|
209 | SM(I, K, L) = SM(I, K, L) - FM(I, L) |
---|
210 | ENDIF |
---|
211 | ! |
---|
212 | ALFQ (I) = ALF(I) * ALF(I) |
---|
213 | ALF1 (I) = 1. - ALF(I) |
---|
214 | ALF1Q(I) = ALF1(I) * ALF1(I) |
---|
215 | ALF2 (I) = ALF1(I) - ALF(I) |
---|
216 | ALF3 (I) = ALF(I) * ALFQ(I) |
---|
217 | ALF4 (I) = ALF1(I) * ALF1Q(I) |
---|
218 | ! |
---|
219 | END DO |
---|
220 | ! |
---|
221 | DO JV = 1, NTRA |
---|
222 | DO I = 1, LON |
---|
223 | ! |
---|
224 | IF(WGRI(I, K, L)<0.) THEN |
---|
225 | ! |
---|
226 | F0 (I, L, JV) = ALF (I) * (S0(I, K, LP, JV) - ALF1(I) * & |
---|
227 | (SZ(I, K, LP, JV) - ALF2(I) * SZZ(I, K, LP, JV))) |
---|
228 | FZ (I, L, JV) = ALFQ(I) * (SZ(I, K, LP, JV) - 3. * ALF1(I) * SZZ(I, K, LP, JV)) |
---|
229 | FZZ(I, L, JV) = ALF3(I) * SZZ(I, K, LP, JV) |
---|
230 | FXZ(I, L, JV) = ALFQ(I) * SSXZ(I, K, LP, JV) |
---|
231 | FYZ(I, L, JV) = ALFQ(I) * SYZ(I, K, LP, JV) |
---|
232 | FX (I, L, JV) = ALF (I) * (SSX(I, K, LP, JV) - ALF1(I) * SSXZ(I, K, LP, JV)) |
---|
233 | FY (I, L, JV) = ALF (I) * (SY(I, K, LP, JV) - ALF1(I) * SYZ(I, K, LP, JV)) |
---|
234 | FXX(I, L, JV) = ALF (I) * SSXX(I, K, LP, JV) |
---|
235 | FXY(I, L, JV) = ALF (I) * SSXY(I, K, LP, JV) |
---|
236 | FYY(I, L, JV) = ALF (I) * SYY(I, K, LP, JV) |
---|
237 | ! |
---|
238 | S0 (I, K, LP, JV) = S0 (I, K, LP, JV) - F0 (I, L, JV) |
---|
239 | SZ (I, K, LP, JV) = ALF1Q(I) & |
---|
240 | * (SZ(I, K, LP, JV) + 3. * ALF(I) * SZZ(I, K, LP, JV)) |
---|
241 | SZZ(I, K, LP, JV) = ALF4 (I) * SZZ(I, K, LP, JV) |
---|
242 | SSXZ(I, K, LP, JV) = ALF1Q(I) * SSXZ(I, K, LP, JV) |
---|
243 | SYZ(I, K, LP, JV) = ALF1Q(I) * SYZ(I, K, LP, JV) |
---|
244 | SSX (I, K, LP, JV) = SSX (I, K, LP, JV) - FX (I, L, JV) |
---|
245 | SY (I, K, LP, JV) = SY (I, K, LP, JV) - FY (I, L, JV) |
---|
246 | SSXX(I, K, LP, JV) = SSXX(I, K, LP, JV) - FXX(I, L, JV) |
---|
247 | SSXY(I, K, LP, JV) = SSXY(I, K, LP, JV) - FXY(I, L, JV) |
---|
248 | SYY(I, K, LP, JV) = SYY(I, K, LP, JV) - FYY(I, L, JV) |
---|
249 | ! |
---|
250 | ELSE |
---|
251 | ! |
---|
252 | F0 (I, L, JV) = ALF (I) * (S0(I, K, L, JV) & |
---|
253 | + ALF1(I) * (SZ(I, K, L, JV) + ALF2(I) * SZZ(I, K, L, JV))) |
---|
254 | FZ (I, L, JV) = ALFQ(I) * (SZ(I, K, L, JV) + 3. * ALF1(I) * SZZ(I, K, L, JV)) |
---|
255 | FZZ(I, L, JV) = ALF3(I) * SZZ(I, K, L, JV) |
---|
256 | FXZ(I, L, JV) = ALFQ(I) * SSXZ(I, K, L, JV) |
---|
257 | FYZ(I, L, JV) = ALFQ(I) * SYZ(I, K, L, JV) |
---|
258 | FX (I, L, JV) = ALF (I) * (SSX(I, K, L, JV) + ALF1(I) * SSXZ(I, K, L, JV)) |
---|
259 | FY (I, L, JV) = ALF (I) * (SY(I, K, L, JV) + ALF1(I) * SYZ(I, K, L, JV)) |
---|
260 | FXX(I, L, JV) = ALF (I) * SSXX(I, K, L, JV) |
---|
261 | FXY(I, L, JV) = ALF (I) * SSXY(I, K, L, JV) |
---|
262 | FYY(I, L, JV) = ALF (I) * SYY(I, K, L, JV) |
---|
263 | ! |
---|
264 | S0 (I, K, L, JV) = S0 (I, K, L, JV) - F0(I, L, JV) |
---|
265 | SZ (I, K, L, JV) = ALF1Q(I) * (SZ(I, K, L, JV) - 3. * ALF(I) * SZZ(I, K, L, JV)) |
---|
266 | SZZ(I, K, L, JV) = ALF4 (I) * SZZ(I, K, L, JV) |
---|
267 | SSXZ(I, K, L, JV) = ALF1Q(I) * SSXZ(I, K, L, JV) |
---|
268 | SYZ(I, K, L, JV) = ALF1Q(I) * SYZ(I, K, L, JV) |
---|
269 | SSX (I, K, L, JV) = SSX (I, K, L, JV) - FX (I, L, JV) |
---|
270 | SY (I, K, L, JV) = SY (I, K, L, JV) - FY (I, L, JV) |
---|
271 | SSXX(I, K, L, JV) = SSXX(I, K, L, JV) - FXX(I, L, JV) |
---|
272 | SSXY(I, K, L, JV) = SSXY(I, K, L, JV) - FXY(I, L, JV) |
---|
273 | SYY(I, K, L, JV) = SYY(I, K, L, JV) - FYY(I, L, JV) |
---|
274 | ! |
---|
275 | ENDIF |
---|
276 | ! |
---|
277 | END DO |
---|
278 | END DO |
---|
279 | ! |
---|
280 | END DO |
---|
281 | ! |
---|
282 | ! puts the temporary moments Fi into appropriate neighboring boxes |
---|
283 | ! |
---|
284 | DO L = 1, NIV - 1 |
---|
285 | LP = L + 1 |
---|
286 | ! |
---|
287 | DO I = 1, LON |
---|
288 | ! |
---|
289 | IF(WGRI(I, K, L)<0.) THEN |
---|
290 | SM(I, K, L) = SM(I, K, L) + FM(I, L) |
---|
291 | ALF(I) = FM(I, L) / SM(I, K, L) |
---|
292 | ELSE |
---|
293 | SM(I, K, LP) = SM(I, K, LP) + FM(I, L) |
---|
294 | ALF(I) = FM(I, L) / SM(I, K, LP) |
---|
295 | ENDIF |
---|
296 | ! |
---|
297 | ALF1(I) = 1. - ALF(I) |
---|
298 | ALFQ(I) = ALF(I) * ALF(I) |
---|
299 | ALF1Q(I) = ALF1(I) * ALF1(I) |
---|
300 | ALF2(I) = ALF(I) * ALF1(I) |
---|
301 | ALF3(I) = ALF1(I) - ALF(I) |
---|
302 | ! |
---|
303 | END DO |
---|
304 | ! |
---|
305 | DO JV = 1, NTRA |
---|
306 | DO I = 1, LON |
---|
307 | ! |
---|
308 | IF(WGRI(I, K, L)<0.) THEN |
---|
309 | ! |
---|
310 | TEMPTM = -ALF(I) * S0(I, K, L, JV) + ALF1(I) * F0(I, L, JV) |
---|
311 | S0 (I, K, L, JV) = S0(I, K, L, JV) + F0(I, L, JV) |
---|
312 | SZZ(I, K, L, JV) = ALFQ(I) * FZZ(I, L, JV) + ALF1Q(I) * SZZ(I, K, L, JV) & |
---|
313 | + 5. * (ALF2(I) * (FZ(I, L, JV) - SZ(I, K, L, JV)) + ALF3(I) * TEMPTM) |
---|
314 | SZ (I, K, L, JV) = ALF (I) * FZ (I, L, JV) + ALF1 (I) * SZ (I, K, L, JV) & |
---|
315 | + 3. * TEMPTM |
---|
316 | SSXZ(I, K, L, JV) = ALF (I) * FXZ(I, L, JV) + ALF1 (I) * SSXZ(I, K, L, JV) & |
---|
317 | + 3. * (ALF1(I) * FX (I, L, JV) - ALF (I) * SSX (I, K, L, JV)) |
---|
318 | SYZ(I, K, L, JV) = ALF (I) * FYZ(I, L, JV) + ALF1 (I) * SYZ(I, K, L, JV) & |
---|
319 | + 3. * (ALF1(I) * FY (I, L, JV) - ALF (I) * SY (I, K, L, JV)) |
---|
320 | SSX (I, K, L, JV) = SSX (I, K, L, JV) + FX (I, L, JV) |
---|
321 | SY (I, K, L, JV) = SY (I, K, L, JV) + FY (I, L, JV) |
---|
322 | SSXX(I, K, L, JV) = SSXX(I, K, L, JV) + FXX(I, L, JV) |
---|
323 | SSXY(I, K, L, JV) = SSXY(I, K, L, JV) + FXY(I, L, JV) |
---|
324 | SYY(I, K, L, JV) = SYY(I, K, L, JV) + FYY(I, L, JV) |
---|
325 | ! |
---|
326 | ELSE |
---|
327 | ! |
---|
328 | TEMPTM = ALF(I) * S0(I, K, LP, JV) - ALF1(I) * F0(I, L, JV) |
---|
329 | S0 (I, K, LP, JV) = S0(I, K, LP, JV) + F0(I, L, JV) |
---|
330 | SZZ(I, K, LP, JV) = ALFQ(I) * FZZ(I, L, JV) + ALF1Q(I) * SZZ(I, K, LP, JV) & |
---|
331 | + 5. * (ALF2(I) * (SZ(I, K, LP, JV) - FZ(I, L, JV)) - ALF3(I) * TEMPTM) |
---|
332 | SZ (I, K, LP, JV) = ALF (I) * FZ(I, L, JV) + ALF1(I) * SZ(I, K, LP, JV) & |
---|
333 | + 3. * TEMPTM |
---|
334 | SSXZ(I, K, LP, JV) = ALF(I) * FXZ(I, L, JV) + ALF1(I) * SSXZ(I, K, LP, JV) & |
---|
335 | + 3. * (ALF(I) * SSX(I, K, LP, JV) - ALF1(I) * FX(I, L, JV)) |
---|
336 | SYZ(I, K, LP, JV) = ALF(I) * FYZ(I, L, JV) + ALF1(I) * SYZ(I, K, LP, JV) & |
---|
337 | + 3. * (ALF(I) * SY(I, K, LP, JV) - ALF1(I) * FY(I, L, JV)) |
---|
338 | SSX (I, K, LP, JV) = SSX (I, K, LP, JV) + FX (I, L, JV) |
---|
339 | SY (I, K, LP, JV) = SY (I, K, LP, JV) + FY (I, L, JV) |
---|
340 | SSXX(I, K, LP, JV) = SSXX(I, K, LP, JV) + FXX(I, L, JV) |
---|
341 | SSXY(I, K, LP, JV) = SSXY(I, K, LP, JV) + FXY(I, L, JV) |
---|
342 | SYY(I, K, LP, JV) = SYY(I, K, LP, JV) + FYY(I, L, JV) |
---|
343 | ! |
---|
344 | ENDIF |
---|
345 | ! |
---|
346 | END DO |
---|
347 | END DO |
---|
348 | ! |
---|
349 | END DO |
---|
350 | ! |
---|
351 | ! fin de la boucle principale sur les latitudes |
---|
352 | ! |
---|
353 | END DO |
---|
354 | ! |
---|
355 | DO l = 1, llm |
---|
356 | DO j = 1, jjp1 |
---|
357 | SM(iip1, j, l) = SM(1, j, l) |
---|
358 | S0(iip1, j, l, ntra) = S0(1, j, l, ntra) |
---|
359 | SSX(iip1, j, l, ntra) = SSX(1, j, l, ntra) |
---|
360 | SY(iip1, j, l, ntra) = SY(1, j, l, ntra) |
---|
361 | SZ(iip1, j, l, ntra) = SZ(1, j, l, ntra) |
---|
362 | ENDDO |
---|
363 | ENDDO |
---|
364 | ! C------------------------------------------------------------- |
---|
365 | ! *** Test : diag de la qqtite totale de tarceur |
---|
366 | ! dans l'atmosphere avant l'advection en z |
---|
367 | DO l = 1, llm |
---|
368 | DO j = 1, jjp1 |
---|
369 | DO i = 1, iim |
---|
370 | sqf = sqf + S0(i, j, l, ntra) |
---|
371 | ENDDO |
---|
372 | ENDDO |
---|
373 | ENDDO |
---|
374 | PRINT*, '-------- DIAG DANS ADVZ - SORTIE ---------' |
---|
375 | PRINT*, 'sqf=', sqf |
---|
376 | |
---|
377 | RETURN |
---|
378 | END SUBROUTINE ADVZP |
---|