1 | ! $Header$ |
---|
2 | |
---|
3 | SUBROUTINE advy(limit, dty, pbarv, sm, s0, sx, sy, sz) |
---|
4 | USE lmdz_comgeom2 |
---|
5 | |
---|
6 | USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm |
---|
7 | USE lmdz_paramet |
---|
8 | IMPLICIT NONE |
---|
9 | |
---|
10 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
11 | ! C |
---|
12 | ! first-order moments (SOM) advection of tracer in Y direction C |
---|
13 | ! C |
---|
14 | ! Source : Pascal Simon ( Meteo, CNRM ) C |
---|
15 | ! Adaptation : A.A. (LGGE) C |
---|
16 | ! Derniere Modif : 15/12/94 LAST |
---|
17 | ! C |
---|
18 | ! sont les arguments d'entree pour le s-pg C |
---|
19 | ! C |
---|
20 | ! argument de sortie du s-pg C |
---|
21 | ! C |
---|
22 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
23 | !CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
24 | |
---|
25 | ! Rem : Probleme aux poles il faut reecrire ce cas specifique |
---|
26 | ! Attention au sens de l'indexation |
---|
27 | |
---|
28 | ! parametres principaux du modele |
---|
29 | |
---|
30 | ! |
---|
31 | |
---|
32 | |
---|
33 | |
---|
34 | ! Arguments : |
---|
35 | ! ---------- |
---|
36 | ! dty : frequence fictive d'appel du transport |
---|
37 | ! parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
38 | |
---|
39 | INTEGER :: lon, lat, niv |
---|
40 | INTEGER :: i, j, jv, k, kp, l |
---|
41 | INTEGER :: ntra |
---|
42 | PARAMETER (ntra = 1) |
---|
43 | |
---|
44 | REAL :: dty |
---|
45 | REAL :: pbarv (iip1, jjm, llm) |
---|
46 | |
---|
47 | ! moments: SM total mass in each grid box |
---|
48 | ! S0 mass of tracer in each grid box |
---|
49 | ! Si 1rst order moment in i direction |
---|
50 | |
---|
51 | REAL :: SM(iip1, jjp1, llm) & |
---|
52 | , S0(iip1, jjp1, llm, ntra) |
---|
53 | REAL :: sx(iip1, jjp1, llm, ntra) & |
---|
54 | , sy(iip1, jjp1, llm, ntra) & |
---|
55 | , sz(iip1, jjp1, llm, ntra) |
---|
56 | |
---|
57 | |
---|
58 | ! Local : |
---|
59 | ! ------- |
---|
60 | |
---|
61 | ! mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
62 | ! mass fluxes in kg |
---|
63 | ! declaration : |
---|
64 | |
---|
65 | REAL :: VGRI(iip1, 0:jjp1, llm) |
---|
66 | |
---|
67 | ! Rem : UGRI et WGRI ne sont pas utilises dans |
---|
68 | ! cette SUBROUTINE ( advection en y uniquement ) |
---|
69 | ! Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
---|
70 | |
---|
71 | ! the moments F are similarly defined and used as temporary |
---|
72 | ! storage for portions of the grid boxes in transit |
---|
73 | |
---|
74 | REAL :: F0(iim, 0:jjp1, ntra), FM(iim, 0:jjp1) |
---|
75 | REAL :: FX(iim, jjm, ntra), FY(iim, jjm, ntra) |
---|
76 | REAL :: FZ(iim, jjm, ntra) |
---|
77 | REAL :: S00(ntra) |
---|
78 | REAL :: SM0 ! Just temporal variable |
---|
79 | |
---|
80 | ! work arrays |
---|
81 | |
---|
82 | REAL :: ALF(iim, 0:jjp1), ALF1(iim, 0:jjp1) |
---|
83 | REAL :: ALFQ(iim, 0:jjp1), ALF1Q(iim, 0:jjp1) |
---|
84 | REAL :: TEMPTM ! Just temporal variable |
---|
85 | |
---|
86 | ! Special pour poles |
---|
87 | |
---|
88 | REAL :: sbms, sfms, sfzs, sbmn, sfmn, sfzn |
---|
89 | REAL :: sns0(ntra), snsz(ntra), snsm |
---|
90 | REAL :: s1v(llm), slatv(llm) |
---|
91 | REAL :: qy1(iim, llm, ntra), qylat(iim, llm, ntra) |
---|
92 | REAL :: cx1(llm, ntra), cxLAT(llm, ntra) |
---|
93 | REAL :: cy1(llm, ntra), cyLAT(llm, ntra) |
---|
94 | REAL :: z1(iim), zcos(iim), zsin(iim) |
---|
95 | REAL :: smpn, smps, s0pn, s0ps |
---|
96 | |
---|
97 | REAL :: sqi, sqf |
---|
98 | LOGICAL :: LIMIT |
---|
99 | |
---|
100 | lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
---|
101 | lat = jjp1 ! a cause des dim. differentes entre les |
---|
102 | niv = llm |
---|
103 | |
---|
104 | |
---|
105 | ! the moments Fi are used as temporary storage for |
---|
106 | ! portions of the grid boxes in transit at the current level |
---|
107 | |
---|
108 | ! work arrays |
---|
109 | ! |
---|
110 | |
---|
111 | DO l = 1, llm |
---|
112 | DO j = 1, jjm |
---|
113 | DO i = 1, iip1 |
---|
114 | vgri (i, j, llm + 1 - l) = -1. * pbarv(i, j, l) |
---|
115 | enddo |
---|
116 | enddo |
---|
117 | DO i = 1, iip1 |
---|
118 | vgri(i, 0, l) = 0. |
---|
119 | vgri(i, jjp1, l) = 0. |
---|
120 | enddo |
---|
121 | enddo |
---|
122 | |
---|
123 | DO L = 1, NIV |
---|
124 | |
---|
125 | ! place limits on appropriate moments before transport |
---|
126 | ! (if flux-limiting is to be applied) |
---|
127 | |
---|
128 | IF(.NOT.LIMIT) GO TO 11 |
---|
129 | |
---|
130 | DO JV = 1, NTRA |
---|
131 | DO K = 1, LAT |
---|
132 | DO I = 1, LON |
---|
133 | sy(I, K, L, JV) = SIGN(AMIN1(AMAX1(S0(I, K, L, JV), 0.), & |
---|
134 | ABS(sy(I, K, L, JV))), sy(I, K, L, JV)) |
---|
135 | END DO |
---|
136 | END DO |
---|
137 | END DO |
---|
138 | |
---|
139 | 11 CONTINUE |
---|
140 | |
---|
141 | ! le flux a travers le pole Nord est traite separement |
---|
142 | |
---|
143 | SM0 = 0. |
---|
144 | DO JV = 1, NTRA |
---|
145 | S00(JV) = 0. |
---|
146 | END DO |
---|
147 | |
---|
148 | DO I = 1, LON |
---|
149 | |
---|
150 | IF(VGRI(I, 0, L)<=0.) THEN |
---|
151 | FM(I, 0) = -VGRI(I, 0, L) * DTY |
---|
152 | ALF(I, 0) = FM(I, 0) / SM(I, 1, L) |
---|
153 | SM(I, 1, L) = SM(I, 1, L) - FM(I, 0) |
---|
154 | SM0 = SM0 + FM(I, 0) |
---|
155 | ENDIF |
---|
156 | |
---|
157 | ALFQ(I, 0) = ALF(I, 0) * ALF(I, 0) |
---|
158 | ALF1(I, 0) = 1. - ALF(I, 0) |
---|
159 | ALF1Q(I, 0) = ALF1(I, 0) * ALF1(I, 0) |
---|
160 | |
---|
161 | END DO |
---|
162 | |
---|
163 | DO JV = 1, NTRA |
---|
164 | DO I = 1, LON |
---|
165 | |
---|
166 | IF(VGRI(I, 0, L)<=0.) THEN |
---|
167 | |
---|
168 | F0(I, 0, JV) = ALF(I, 0) * & |
---|
169 | (S0(I, 1, L, JV) - ALF1(I, 0) * sy(I, 1, L, JV)) |
---|
170 | |
---|
171 | S00(JV) = S00(JV) + F0(I, 0, JV) |
---|
172 | S0(I, 1, L, JV) = S0(I, 1, L, JV) - F0(I, 0, JV) |
---|
173 | sy(I, 1, L, JV) = ALF1Q(I, 0) * sy(I, 1, L, JV) |
---|
174 | sx(I, 1, L, JV) = ALF1 (I, 0) * sx(I, 1, L, JV) |
---|
175 | sz(I, 1, L, JV) = ALF1 (I, 0) * sz(I, 1, L, JV) |
---|
176 | |
---|
177 | ENDIF |
---|
178 | |
---|
179 | END DO |
---|
180 | END DO |
---|
181 | |
---|
182 | DO I = 1, LON |
---|
183 | IF(VGRI(I, 0, L)>0.) THEN |
---|
184 | FM(I, 0) = VGRI(I, 0, L) * DTY |
---|
185 | ALF(I, 0) = FM(I, 0) / SM0 |
---|
186 | ENDIF |
---|
187 | END DO |
---|
188 | |
---|
189 | DO JV = 1, NTRA |
---|
190 | DO I = 1, LON |
---|
191 | IF(VGRI(I, 0, L)>0.) THEN |
---|
192 | F0(I, 0, JV) = ALF(I, 0) * S00(JV) |
---|
193 | ENDIF |
---|
194 | END DO |
---|
195 | END DO |
---|
196 | |
---|
197 | ! puts the temporary moments Fi into appropriate neighboring boxes |
---|
198 | |
---|
199 | DO I = 1, LON |
---|
200 | |
---|
201 | IF(VGRI(I, 0, L)>0.) THEN |
---|
202 | SM(I, 1, L) = SM(I, 1, L) + FM(I, 0) |
---|
203 | ALF(I, 0) = FM(I, 0) / SM(I, 1, L) |
---|
204 | ENDIF |
---|
205 | |
---|
206 | ALF1(I, 0) = 1. - ALF(I, 0) |
---|
207 | |
---|
208 | END DO |
---|
209 | |
---|
210 | DO JV = 1, NTRA |
---|
211 | DO I = 1, LON |
---|
212 | |
---|
213 | IF(VGRI(I, 0, L)>0.) THEN |
---|
214 | |
---|
215 | TEMPTM = ALF(I, 0) * S0(I, 1, L, JV) - ALF1(I, 0) * F0(I, 0, JV) |
---|
216 | S0(I, 1, L, JV) = S0(I, 1, L, JV) + F0(I, 0, JV) |
---|
217 | sy(I, 1, L, JV) = ALF1(I, 0) * sy(I, 1, L, JV) + 3. * TEMPTM |
---|
218 | |
---|
219 | ENDIF |
---|
220 | |
---|
221 | END DO |
---|
222 | END DO |
---|
223 | |
---|
224 | ! calculate flux and moments between adjacent boxes |
---|
225 | ! 1- create temporary moments/masses for partial boxes in transit |
---|
226 | ! 2- reajusts moments remaining in the box |
---|
227 | |
---|
228 | ! flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
---|
229 | |
---|
230 | DO K = 1, LAT - 1 |
---|
231 | KP = K + 1 |
---|
232 | DO I = 1, LON |
---|
233 | |
---|
234 | IF(VGRI(I, K, L)<0.) THEN |
---|
235 | FM(I, K) = -VGRI(I, K, L) * DTY |
---|
236 | ALF(I, K) = FM(I, K) / SM(I, KP, L) |
---|
237 | SM(I, KP, L) = SM(I, KP, L) - FM(I, K) |
---|
238 | ELSE |
---|
239 | FM(I, K) = VGRI(I, K, L) * DTY |
---|
240 | ALF(I, K) = FM(I, K) / SM(I, K, L) |
---|
241 | SM(I, K, L) = SM(I, K, L) - FM(I, K) |
---|
242 | ENDIF |
---|
243 | |
---|
244 | ALFQ(I, K) = ALF(I, K) * ALF(I, K) |
---|
245 | ALF1(I, K) = 1. - ALF(I, K) |
---|
246 | ALF1Q(I, K) = ALF1(I, K) * ALF1(I, K) |
---|
247 | |
---|
248 | END DO |
---|
249 | END DO |
---|
250 | |
---|
251 | DO JV = 1, NTRA |
---|
252 | DO K = 1, LAT - 1 |
---|
253 | KP = K + 1 |
---|
254 | DO I = 1, LON |
---|
255 | |
---|
256 | IF(VGRI(I, K, L)<0.) THEN |
---|
257 | |
---|
258 | F0(I, K, JV) = ALF (I, K) * & |
---|
259 | (S0(I, KP, L, JV) - ALF1(I, K) * sy(I, KP, L, JV)) |
---|
260 | FY(I, K, JV) = ALFQ(I, K) * sy(I, KP, L, JV) |
---|
261 | FX(I, K, JV) = ALF (I, K) * sx(I, KP, L, JV) |
---|
262 | FZ(I, K, JV) = ALF (I, K) * sz(I, KP, L, JV) |
---|
263 | |
---|
264 | S0(I, KP, L, JV) = S0(I, KP, L, JV) - F0(I, K, JV) |
---|
265 | sy(I, KP, L, JV) = ALF1Q(I, K) * sy(I, KP, L, JV) |
---|
266 | sx(I, KP, L, JV) = sx(I, KP, L, JV) - FX(I, K, JV) |
---|
267 | sz(I, KP, L, JV) = sz(I, KP, L, JV) - FZ(I, K, JV) |
---|
268 | |
---|
269 | ELSE |
---|
270 | |
---|
271 | F0(I, K, JV) = ALF (I, K) * & |
---|
272 | (S0(I, K, L, JV) + ALF1(I, K) * sy(I, K, L, JV)) |
---|
273 | FY(I, K, JV) = ALFQ(I, K) * sy(I, K, L, JV) |
---|
274 | FX(I, K, JV) = ALF(I, K) * sx(I, K, L, JV) |
---|
275 | FZ(I, K, JV) = ALF(I, K) * sz(I, K, L, JV) |
---|
276 | |
---|
277 | S0(I, K, L, JV) = S0(I, K, L, JV) - F0(I, K, JV) |
---|
278 | sy(I, K, L, JV) = ALF1Q(I, K) * sy(I, K, L, JV) |
---|
279 | sx(I, K, L, JV) = sx(I, K, L, JV) - FX(I, K, JV) |
---|
280 | sz(I, K, L, JV) = sz(I, K, L, JV) - FZ(I, K, JV) |
---|
281 | |
---|
282 | ENDIF |
---|
283 | |
---|
284 | END DO |
---|
285 | END DO |
---|
286 | END DO |
---|
287 | |
---|
288 | ! puts the temporary moments Fi into appropriate neighboring boxes |
---|
289 | |
---|
290 | DO K = 1, LAT - 1 |
---|
291 | KP = K + 1 |
---|
292 | DO I = 1, LON |
---|
293 | |
---|
294 | IF(VGRI(I, K, L)<0.) THEN |
---|
295 | SM(I, K, L) = SM(I, K, L) + FM(I, K) |
---|
296 | ALF(I, K) = FM(I, K) / SM(I, K, L) |
---|
297 | ELSE |
---|
298 | SM(I, KP, L) = SM(I, KP, L) + FM(I, K) |
---|
299 | ALF(I, K) = FM(I, K) / SM(I, KP, L) |
---|
300 | ENDIF |
---|
301 | |
---|
302 | ALF1(I, K) = 1. - ALF(I, K) |
---|
303 | |
---|
304 | END DO |
---|
305 | END DO |
---|
306 | |
---|
307 | DO JV = 1, NTRA |
---|
308 | DO K = 1, LAT - 1 |
---|
309 | KP = K + 1 |
---|
310 | DO I = 1, LON |
---|
311 | |
---|
312 | IF(VGRI(I, K, L)<0.) THEN |
---|
313 | |
---|
314 | TEMPTM = -ALF(I, K) * S0(I, K, L, JV) + ALF1(I, K) * F0(I, K, JV) |
---|
315 | S0(I, K, L, JV) = S0(I, K, L, JV) + F0(I, K, JV) |
---|
316 | sy(I, K, L, JV) = ALF(I, K) * FY(I, K, JV) + ALF1(I, K) * sy(I, K, L, JV) & |
---|
317 | + 3. * TEMPTM |
---|
318 | sx(I, K, L, JV) = sx(I, K, L, JV) + FX(I, K, JV) |
---|
319 | sz(I, K, L, JV) = sz(I, K, L, JV) + FZ(I, K, JV) |
---|
320 | |
---|
321 | ELSE |
---|
322 | |
---|
323 | TEMPTM = ALF(I, K) * S0(I, KP, L, JV) - ALF1(I, K) * F0(I, K, JV) |
---|
324 | S0(I, KP, L, JV) = S0(I, KP, L, JV) + F0(I, K, JV) |
---|
325 | sy(I, KP, L, JV) = ALF(I, K) * FY(I, K, JV) + ALF1(I, K) * sy(I, KP, L, JV) & |
---|
326 | + 3. * TEMPTM |
---|
327 | sx(I, KP, L, JV) = sx(I, KP, L, JV) + FX(I, K, JV) |
---|
328 | sz(I, KP, L, JV) = sz(I, KP, L, JV) + FZ(I, K, JV) |
---|
329 | |
---|
330 | ENDIF |
---|
331 | |
---|
332 | END DO |
---|
333 | END DO |
---|
334 | END DO |
---|
335 | |
---|
336 | ! traitement special pour le pole Sud (idem pole Nord) |
---|
337 | |
---|
338 | K = LAT |
---|
339 | |
---|
340 | SM0 = 0. |
---|
341 | DO JV = 1, NTRA |
---|
342 | S00(JV) = 0. |
---|
343 | END DO |
---|
344 | |
---|
345 | DO I = 1, LON |
---|
346 | |
---|
347 | IF(VGRI(I, K, L)>=0.) THEN |
---|
348 | FM(I, K) = VGRI(I, K, L) * DTY |
---|
349 | ALF(I, K) = FM(I, K) / SM(I, K, L) |
---|
350 | SM(I, K, L) = SM(I, K, L) - FM(I, K) |
---|
351 | SM0 = SM0 + FM(I, K) |
---|
352 | ENDIF |
---|
353 | |
---|
354 | ALFQ(I, K) = ALF(I, K) * ALF(I, K) |
---|
355 | ALF1(I, K) = 1. - ALF(I, K) |
---|
356 | ALF1Q(I, K) = ALF1(I, K) * ALF1(I, K) |
---|
357 | |
---|
358 | END DO |
---|
359 | |
---|
360 | DO JV = 1, NTRA |
---|
361 | DO I = 1, LON |
---|
362 | |
---|
363 | IF(VGRI(I, K, L)>=0.) THEN |
---|
364 | F0 (I, K, JV) = ALF(I, K) * & |
---|
365 | (S0(I, K, L, JV) + ALF1(I, K) * sy(I, K, L, JV)) |
---|
366 | S00(JV) = S00(JV) + F0(I, K, JV) |
---|
367 | |
---|
368 | S0(I, K, L, JV) = S0 (I, K, L, JV) - F0 (I, K, JV) |
---|
369 | sy(I, K, L, JV) = ALF1Q(I, K) * sy(I, K, L, JV) |
---|
370 | sx(I, K, L, JV) = ALF1(I, K) * sx(I, K, L, JV) |
---|
371 | sz(I, K, L, JV) = ALF1(I, K) * sz(I, K, L, JV) |
---|
372 | ENDIF |
---|
373 | |
---|
374 | END DO |
---|
375 | END DO |
---|
376 | |
---|
377 | DO I = 1, LON |
---|
378 | IF(VGRI(I, K, L)<0.) THEN |
---|
379 | FM(I, K) = -VGRI(I, K, L) * DTY |
---|
380 | ALF(I, K) = FM(I, K) / SM0 |
---|
381 | ENDIF |
---|
382 | END DO |
---|
383 | |
---|
384 | DO JV = 1, NTRA |
---|
385 | DO I = 1, LON |
---|
386 | IF(VGRI(I, K, L)<0.) THEN |
---|
387 | F0(I, K, JV) = ALF(I, K) * S00(JV) |
---|
388 | ENDIF |
---|
389 | END DO |
---|
390 | END DO |
---|
391 | |
---|
392 | ! puts the temporary moments Fi into appropriate neighboring boxes |
---|
393 | |
---|
394 | DO I = 1, LON |
---|
395 | |
---|
396 | IF(VGRI(I, K, L)<0.) THEN |
---|
397 | SM(I, K, L) = SM(I, K, L) + FM(I, K) |
---|
398 | ALF(I, K) = FM(I, K) / SM(I, K, L) |
---|
399 | ENDIF |
---|
400 | |
---|
401 | ALF1(I, K) = 1. - ALF(I, K) |
---|
402 | |
---|
403 | END DO |
---|
404 | |
---|
405 | DO JV = 1, NTRA |
---|
406 | DO I = 1, LON |
---|
407 | |
---|
408 | IF(VGRI(I, K, L)<0.) THEN |
---|
409 | |
---|
410 | TEMPTM = -ALF(I, K) * S0(I, K, L, JV) + ALF1(I, K) * F0(I, K, JV) |
---|
411 | S0(I, K, L, JV) = S0(I, K, L, JV) + F0(I, K, JV) |
---|
412 | sy(I, K, L, JV) = ALF1(I, K) * sy(I, K, L, JV) + 3. * TEMPTM |
---|
413 | |
---|
414 | ENDIF |
---|
415 | |
---|
416 | END DO |
---|
417 | END DO |
---|
418 | |
---|
419 | END DO |
---|
420 | |
---|
421 | RETURN |
---|
422 | END SUBROUTINE advy |
---|
423 | |
---|