1 | ! $Id: top_bound.F90 5113 2024-07-24 11:17:08Z abarral $ |
---|
2 | |
---|
3 | SUBROUTINE top_bound(vcov, ucov, teta, masse, dt) |
---|
4 | |
---|
5 | USE comconst_mod, ONLY: iflag_top_bound, mode_top_bound, & |
---|
6 | tau_top_bound |
---|
7 | USE comvert_mod, ONLY: presnivs, preff, scaleheight |
---|
8 | |
---|
9 | IMPLICIT NONE |
---|
10 | ! |
---|
11 | include "dimensions.h" |
---|
12 | include "paramet.h" |
---|
13 | include "comgeom2.h" |
---|
14 | |
---|
15 | |
---|
16 | ! .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
---|
17 | ! F. LOTT DEC. 2006 |
---|
18 | ! ( 10/12/06 ) |
---|
19 | |
---|
20 | !======================================================================= |
---|
21 | ! |
---|
22 | ! Auteur: F. LOTT |
---|
23 | ! ------- |
---|
24 | ! |
---|
25 | ! Objet: |
---|
26 | ! ------ |
---|
27 | ! |
---|
28 | ! Dissipation linéaire (ex top_bound de la physique) |
---|
29 | ! |
---|
30 | !======================================================================= |
---|
31 | |
---|
32 | ! top_bound sponge layer model: |
---|
33 | ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t) |
---|
34 | ! where Am is the zonal average of the field (or zero), and lambda the inverse |
---|
35 | ! of the characteristic quenching/relaxation time scale |
---|
36 | ! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
---|
37 | ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
---|
38 | ! Moreover lambda can be a function of model level (see below), and relaxation |
---|
39 | ! can be toward the average zonal field or just zero (see below). |
---|
40 | |
---|
41 | ! NB: top_bound sponge is only called from leapfrog if ok_strato=.TRUE. |
---|
42 | |
---|
43 | ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod) |
---|
44 | ! iflag_top_bound=0 for no sponge |
---|
45 | ! iflag_top_bound=1 for sponge over 4 topmost layers |
---|
46 | ! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
---|
47 | ! mode_top_bound=0: no relaxation |
---|
48 | ! mode_top_bound=1: u and v relax towards 0 |
---|
49 | ! mode_top_bound=2: u and v relax towards their zonal mean |
---|
50 | ! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
---|
51 | ! tau_top_bound : inverse of charactericstic relaxation time scale at |
---|
52 | ! the topmost layer (Hz) |
---|
53 | |
---|
54 | include "comdissipn.h" |
---|
55 | include "iniprint.h" |
---|
56 | |
---|
57 | ! Arguments: |
---|
58 | ! ---------- |
---|
59 | |
---|
60 | real, intent(inout) :: ucov(iip1, jjp1, llm) ! covariant zonal wind |
---|
61 | real, intent(inout) :: vcov(iip1, jjm, llm) ! covariant meridional wind |
---|
62 | real, intent(inout) :: teta(iip1, jjp1, llm) ! potential temperature |
---|
63 | real, intent(in) :: masse(iip1, jjp1, llm) ! mass of atmosphere |
---|
64 | real, intent(in) :: dt ! time step (s) of sponge model |
---|
65 | |
---|
66 | ! Local: |
---|
67 | ! ------ |
---|
68 | |
---|
69 | REAL :: massebx(iip1, jjp1, llm), masseby(iip1, jjm, llm), zm |
---|
70 | REAL :: uzon(jjp1, llm), vzon(jjm, llm), tzon(jjp1, llm) |
---|
71 | |
---|
72 | integer :: i |
---|
73 | REAL, SAVE :: rdamp(llm) ! quenching coefficient |
---|
74 | real, save :: lambda(llm) ! inverse or quenching time scale (Hz) |
---|
75 | |
---|
76 | LOGICAL, SAVE :: first = .TRUE. |
---|
77 | |
---|
78 | INTEGER :: j, l |
---|
79 | |
---|
80 | if (iflag_top_bound==0) return |
---|
81 | |
---|
82 | if (first) then |
---|
83 | if (iflag_top_bound==1) then |
---|
84 | ! sponge quenching over the topmost 4 atmospheric layers |
---|
85 | lambda(:) = 0. |
---|
86 | lambda(llm) = tau_top_bound |
---|
87 | lambda(llm - 1) = tau_top_bound / 2. |
---|
88 | lambda(llm - 2) = tau_top_bound / 4. |
---|
89 | lambda(llm - 3) = tau_top_bound / 8. |
---|
90 | else if (iflag_top_bound==2) then |
---|
91 | ! sponge quenching over topmost layers down to pressures which are |
---|
92 | ! higher than 100 times the topmost layer pressure |
---|
93 | lambda(:) = tau_top_bound & |
---|
94 | * max(presnivs(llm) / presnivs(:) - 0.01, 0.) |
---|
95 | endif |
---|
96 | |
---|
97 | ! quenching coefficient rdamp(:) |
---|
98 | ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
---|
99 | rdamp(:) = 1. - exp(-lambda(:) * dt) |
---|
100 | |
---|
101 | write(lunout, *)'TOP_BOUND mode', mode_top_bound |
---|
102 | write(lunout, *)'Sponge layer coefficients' |
---|
103 | write(lunout, *)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
---|
104 | do l = 1, llm |
---|
105 | if (rdamp(l)/=0.) then |
---|
106 | write(lunout, '(6(1pe12.4,1x))') & |
---|
107 | presnivs(l), log(preff / presnivs(l)) * scaleheight, & |
---|
108 | 1. / lambda(l), lambda(l) |
---|
109 | endif |
---|
110 | enddo |
---|
111 | first = .FALSE. |
---|
112 | endif ! of if (first) |
---|
113 | |
---|
114 | CALL massbar(masse, massebx, masseby) |
---|
115 | |
---|
116 | ! compute zonal average of vcov and u |
---|
117 | if (mode_top_bound>=2) then |
---|
118 | do l = 1, llm |
---|
119 | do j = 1, jjm |
---|
120 | vzon(j, l) = 0. |
---|
121 | zm = 0. |
---|
122 | do i = 1, iim |
---|
123 | ! NB: we can work using vcov zonal mean rather than v since the |
---|
124 | ! cv coefficient (which relates the two) only varies with latitudes |
---|
125 | vzon(j, l) = vzon(j, l) + vcov(i, j, l) * masseby(i, j, l) |
---|
126 | zm = zm + masseby(i, j, l) |
---|
127 | enddo |
---|
128 | vzon(j, l) = vzon(j, l) / zm |
---|
129 | enddo |
---|
130 | enddo |
---|
131 | |
---|
132 | do l = 1, llm |
---|
133 | do j = 2, jjm ! excluding poles |
---|
134 | uzon(j, l) = 0. |
---|
135 | zm = 0. |
---|
136 | do i = 1, iim |
---|
137 | uzon(j, l) = uzon(j, l) + massebx(i, j, l) * ucov(i, j, l) / cu(i, j) |
---|
138 | zm = zm + massebx(i, j, l) |
---|
139 | enddo |
---|
140 | uzon(j, l) = uzon(j, l) / zm |
---|
141 | enddo |
---|
142 | enddo |
---|
143 | else ! ucov and vcov will relax towards 0 |
---|
144 | vzon(:, :) = 0. |
---|
145 | uzon(:, :) = 0. |
---|
146 | endif ! of if (mode_top_bound.ge.2) |
---|
147 | |
---|
148 | ! compute zonal average of potential temperature, if necessary |
---|
149 | if (mode_top_bound>=3) then |
---|
150 | do l = 1, llm |
---|
151 | do j = 2, jjm ! excluding poles |
---|
152 | zm = 0. |
---|
153 | tzon(j, l) = 0. |
---|
154 | do i = 1, iim |
---|
155 | tzon(j, l) = tzon(j, l) + teta(i, j, l) * masse(i, j, l) |
---|
156 | zm = zm + masse(i, j, l) |
---|
157 | enddo |
---|
158 | tzon(j, l) = tzon(j, l) / zm |
---|
159 | enddo |
---|
160 | enddo |
---|
161 | endif ! of if (mode_top_bound.ge.3) |
---|
162 | |
---|
163 | if (mode_top_bound>=1) then |
---|
164 | ! Apply sponge quenching on vcov: |
---|
165 | do l = 1, llm |
---|
166 | do i = 1, iip1 |
---|
167 | do j = 1, jjm |
---|
168 | vcov(i, j, l) = vcov(i, j, l) & |
---|
169 | - rdamp(l) * (vcov(i, j, l) - vzon(j, l)) |
---|
170 | enddo |
---|
171 | enddo |
---|
172 | enddo |
---|
173 | |
---|
174 | ! Apply sponge quenching on ucov: |
---|
175 | do l = 1, llm |
---|
176 | do i = 1, iip1 |
---|
177 | do j = 2, jjm ! excluding poles |
---|
178 | ucov(i, j, l) = ucov(i, j, l) & |
---|
179 | - rdamp(l) * (ucov(i, j, l) - cu(i, j) * uzon(j, l)) |
---|
180 | enddo |
---|
181 | enddo |
---|
182 | enddo |
---|
183 | endif ! of if (mode_top_bound.ge.1) |
---|
184 | |
---|
185 | if (mode_top_bound>=3) then |
---|
186 | ! Apply sponge quenching on teta: |
---|
187 | do l = 1, llm |
---|
188 | do i = 1, iip1 |
---|
189 | do j = 2, jjm ! excluding poles |
---|
190 | teta(i, j, l) = teta(i, j, l) & |
---|
191 | - rdamp(l) * (teta(i, j, l) - tzon(j, l)) |
---|
192 | enddo |
---|
193 | enddo |
---|
194 | enddo |
---|
195 | endif ! of if (mode_top_bound.ge.3) |
---|
196 | |
---|
197 | END SUBROUTINE top_bound |
---|