[1793] | 1 | ! $Id: top_bound.F90 5159 2024-08-02 19:58:25Z fhourdin $ |
---|
[5099] | 2 | |
---|
[5103] | 3 | SUBROUTINE top_bound(vcov, ucov, teta, masse, dt) |
---|
[999] | 4 | |
---|
[5103] | 5 | USE comconst_mod, ONLY: iflag_top_bound, mode_top_bound, & |
---|
| 6 | tau_top_bound |
---|
| 7 | USE comvert_mod, ONLY: presnivs, preff, scaleheight |
---|
[5118] | 8 | USE lmdz_iniprint, ONLY: lunout, prt_level |
---|
[5134] | 9 | USE lmdz_comdissipn, ONLY: tetaudiv, tetaurot, tetah, cdivu, crot, cdivh |
---|
[5136] | 10 | USE lmdz_comgeom2 |
---|
[999] | 11 | |
---|
[5159] | 12 | USE lmdz_dimensions, ONLY: iim, jjm, llm, ndm |
---|
| 13 | USE lmdz_paramet |
---|
[5103] | 14 | IMPLICIT NONE |
---|
| 15 | ! |
---|
[999] | 16 | |
---|
| 17 | |
---|
[5159] | 18 | |
---|
| 19 | |
---|
[5103] | 20 | ! .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
---|
| 21 | ! F. LOTT DEC. 2006 |
---|
| 22 | ! ( 10/12/06 ) |
---|
[1793] | 23 | |
---|
[5103] | 24 | !======================================================================= |
---|
[5159] | 25 | |
---|
[5103] | 26 | ! Auteur: F. LOTT |
---|
| 27 | ! ------- |
---|
[5159] | 28 | |
---|
[5103] | 29 | ! Objet: |
---|
| 30 | ! ------ |
---|
[5159] | 31 | |
---|
[5103] | 32 | ! Dissipation linéaire (ex top_bound de la physique) |
---|
[5159] | 33 | |
---|
[5103] | 34 | !======================================================================= |
---|
[1793] | 35 | |
---|
[5103] | 36 | ! top_bound sponge layer model: |
---|
| 37 | ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t) |
---|
| 38 | ! where Am is the zonal average of the field (or zero), and lambda the inverse |
---|
| 39 | ! of the characteristic quenching/relaxation time scale |
---|
| 40 | ! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
---|
| 41 | ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
---|
| 42 | ! Moreover lambda can be a function of model level (see below), and relaxation |
---|
| 43 | ! can be toward the average zonal field or just zero (see below). |
---|
[1793] | 44 | |
---|
[5103] | 45 | ! NB: top_bound sponge is only called from leapfrog if ok_strato=.TRUE. |
---|
[1793] | 46 | |
---|
[5103] | 47 | ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod) |
---|
| 48 | ! iflag_top_bound=0 for no sponge |
---|
| 49 | ! iflag_top_bound=1 for sponge over 4 topmost layers |
---|
| 50 | ! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
---|
| 51 | ! mode_top_bound=0: no relaxation |
---|
| 52 | ! mode_top_bound=1: u and v relax towards 0 |
---|
| 53 | ! mode_top_bound=2: u and v relax towards their zonal mean |
---|
| 54 | ! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
---|
| 55 | ! tau_top_bound : inverse of charactericstic relaxation time scale at |
---|
| 56 | ! the topmost layer (Hz) |
---|
[999] | 57 | |
---|
[5103] | 58 | ! Arguments: |
---|
| 59 | ! ---------- |
---|
[999] | 60 | |
---|
[5117] | 61 | REAL, INTENT(INOUT) :: ucov(iip1, jjp1, llm) ! covariant zonal wind |
---|
| 62 | REAL, INTENT(INOUT) :: vcov(iip1, jjm, llm) ! covariant meridional wind |
---|
| 63 | REAL, INTENT(INOUT) :: teta(iip1, jjp1, llm) ! potential temperature |
---|
| 64 | REAL, INTENT(IN) :: masse(iip1, jjp1, llm) ! mass of atmosphere |
---|
| 65 | REAL, INTENT(IN) :: dt ! time step (s) of sponge model |
---|
[999] | 66 | |
---|
[5103] | 67 | ! Local: |
---|
| 68 | ! ------ |
---|
[999] | 69 | |
---|
[5103] | 70 | REAL :: massebx(iip1, jjp1, llm), masseby(iip1, jjm, llm), zm |
---|
| 71 | REAL :: uzon(jjp1, llm), vzon(jjm, llm), tzon(jjp1, llm) |
---|
[1279] | 72 | |
---|
[5116] | 73 | INTEGER :: i |
---|
[5103] | 74 | REAL, SAVE :: rdamp(llm) ! quenching coefficient |
---|
[5117] | 75 | REAL, save :: lambda(llm) ! inverse or quenching time scale (Hz) |
---|
[1279] | 76 | |
---|
[5103] | 77 | LOGICAL, SAVE :: first = .TRUE. |
---|
[1793] | 78 | |
---|
[5103] | 79 | INTEGER :: j, l |
---|
[1793] | 80 | |
---|
[5117] | 81 | IF (iflag_top_bound==0) return |
---|
[1279] | 82 | |
---|
[5117] | 83 | IF (first) THEN |
---|
| 84 | IF (iflag_top_bound==1) THEN |
---|
[5103] | 85 | ! sponge quenching over the topmost 4 atmospheric layers |
---|
| 86 | lambda(:) = 0. |
---|
| 87 | lambda(llm) = tau_top_bound |
---|
| 88 | lambda(llm - 1) = tau_top_bound / 2. |
---|
| 89 | lambda(llm - 2) = tau_top_bound / 4. |
---|
| 90 | lambda(llm - 3) = tau_top_bound / 8. |
---|
[5117] | 91 | ELSE IF (iflag_top_bound==2) THEN |
---|
[5103] | 92 | ! sponge quenching over topmost layers down to pressures which are |
---|
| 93 | ! higher than 100 times the topmost layer pressure |
---|
| 94 | lambda(:) = tau_top_bound & |
---|
| 95 | * max(presnivs(llm) / presnivs(:) - 0.01, 0.) |
---|
| 96 | endif |
---|
[1279] | 97 | |
---|
[5103] | 98 | ! quenching coefficient rdamp(:) |
---|
| 99 | ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
---|
| 100 | rdamp(:) = 1. - exp(-lambda(:) * dt) |
---|
| 101 | |
---|
[5116] | 102 | WRITE(lunout, *)'TOP_BOUND mode', mode_top_bound |
---|
| 103 | WRITE(lunout, *)'Sponge layer coefficients' |
---|
| 104 | WRITE(lunout, *)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
---|
[5158] | 105 | DO l = 1, llm |
---|
[5117] | 106 | IF (rdamp(l)/=0.) THEN |
---|
[5116] | 107 | WRITE(lunout, '(6(1pe12.4,1x))') & |
---|
[5103] | 108 | presnivs(l), log(preff / presnivs(l)) * scaleheight, & |
---|
| 109 | 1. / lambda(l), lambda(l) |
---|
| 110 | endif |
---|
| 111 | enddo |
---|
| 112 | first = .FALSE. |
---|
[5117] | 113 | ENDIF ! of if (first) |
---|
[5103] | 114 | |
---|
| 115 | CALL massbar(masse, massebx, masseby) |
---|
| 116 | |
---|
[5113] | 117 | ! compute zonal average of vcov and u |
---|
[5117] | 118 | IF (mode_top_bound>=2) THEN |
---|
[5158] | 119 | DO l = 1, llm |
---|
| 120 | DO j = 1, jjm |
---|
[5103] | 121 | vzon(j, l) = 0. |
---|
| 122 | zm = 0. |
---|
[5158] | 123 | DO i = 1, iim |
---|
[5103] | 124 | ! NB: we can work using vcov zonal mean rather than v since the |
---|
| 125 | ! cv coefficient (which relates the two) only varies with latitudes |
---|
| 126 | vzon(j, l) = vzon(j, l) + vcov(i, j, l) * masseby(i, j, l) |
---|
| 127 | zm = zm + masseby(i, j, l) |
---|
[999] | 128 | enddo |
---|
[5103] | 129 | vzon(j, l) = vzon(j, l) / zm |
---|
| 130 | enddo |
---|
| 131 | enddo |
---|
[999] | 132 | |
---|
[5158] | 133 | DO l = 1, llm |
---|
| 134 | DO j = 2, jjm ! excluding poles |
---|
[5103] | 135 | uzon(j, l) = 0. |
---|
| 136 | zm = 0. |
---|
[5158] | 137 | DO i = 1, iim |
---|
[5103] | 138 | uzon(j, l) = uzon(j, l) + massebx(i, j, l) * ucov(i, j, l) / cu(i, j) |
---|
| 139 | zm = zm + massebx(i, j, l) |
---|
[1279] | 140 | enddo |
---|
[5103] | 141 | uzon(j, l) = uzon(j, l) / zm |
---|
| 142 | enddo |
---|
| 143 | enddo |
---|
| 144 | else ! ucov and vcov will relax towards 0 |
---|
| 145 | vzon(:, :) = 0. |
---|
| 146 | uzon(:, :) = 0. |
---|
[5117] | 147 | ENDIF ! of if (mode_top_bound.ge.2) |
---|
[1279] | 148 | |
---|
[5113] | 149 | ! compute zonal average of potential temperature, if necessary |
---|
[5117] | 150 | IF (mode_top_bound>=3) THEN |
---|
[5158] | 151 | DO l = 1, llm |
---|
| 152 | DO j = 2, jjm ! excluding poles |
---|
[5103] | 153 | zm = 0. |
---|
| 154 | tzon(j, l) = 0. |
---|
[5158] | 155 | DO i = 1, iim |
---|
[5103] | 156 | tzon(j, l) = tzon(j, l) + teta(i, j, l) * masse(i, j, l) |
---|
| 157 | zm = zm + masse(i, j, l) |
---|
[999] | 158 | enddo |
---|
[5103] | 159 | tzon(j, l) = tzon(j, l) / zm |
---|
| 160 | enddo |
---|
| 161 | enddo |
---|
[5117] | 162 | ENDIF ! of if (mode_top_bound.ge.3) |
---|
[999] | 163 | |
---|
[5117] | 164 | IF (mode_top_bound>=1) THEN |
---|
[5113] | 165 | ! Apply sponge quenching on vcov: |
---|
[5158] | 166 | DO l = 1, llm |
---|
| 167 | DO i = 1, iip1 |
---|
| 168 | DO j = 1, jjm |
---|
[5103] | 169 | vcov(i, j, l) = vcov(i, j, l) & |
---|
| 170 | - rdamp(l) * (vcov(i, j, l) - vzon(j, l)) |
---|
[1793] | 171 | enddo |
---|
[5103] | 172 | enddo |
---|
| 173 | enddo |
---|
[999] | 174 | |
---|
[5113] | 175 | ! Apply sponge quenching on ucov: |
---|
[5158] | 176 | DO l = 1, llm |
---|
| 177 | DO i = 1, iip1 |
---|
| 178 | DO j = 2, jjm ! excluding poles |
---|
[5103] | 179 | ucov(i, j, l) = ucov(i, j, l) & |
---|
| 180 | - rdamp(l) * (ucov(i, j, l) - cu(i, j) * uzon(j, l)) |
---|
[999] | 181 | enddo |
---|
[5103] | 182 | enddo |
---|
| 183 | enddo |
---|
[5117] | 184 | ENDIF ! of if (mode_top_bound.ge.1) |
---|
[999] | 185 | |
---|
[5117] | 186 | IF (mode_top_bound>=3) THEN |
---|
[5113] | 187 | ! Apply sponge quenching on teta: |
---|
[5158] | 188 | DO l = 1, llm |
---|
| 189 | DO i = 1, iip1 |
---|
| 190 | DO j = 2, jjm ! excluding poles |
---|
[5103] | 191 | teta(i, j, l) = teta(i, j, l) & |
---|
| 192 | - rdamp(l) * (teta(i, j, l) - tzon(j, l)) |
---|
[1793] | 193 | enddo |
---|
[5103] | 194 | enddo |
---|
| 195 | enddo |
---|
[5117] | 196 | ENDIF ! of if (mode_top_bound.ge.3) |
---|
[5103] | 197 | |
---|
| 198 | END SUBROUTINE top_bound |
---|