1 | !****************** SUBROUTINE RRTM_ECRT_140GP ************************** |
---|
2 | |
---|
3 | SUBROUTINE RRTM_ECRT_140GP & |
---|
4 | &( iplon, klon , klev, kcld & |
---|
5 | &, paer , paph , pap & |
---|
6 | &, pts , pth , pt & |
---|
7 | &, zemis, zemiw & |
---|
8 | &, pq , pcco2, pozn, pcldf, ptaucld, ptclear & |
---|
9 | &, CLDFRAC,TAUCLD,COLDRY,WKL,WX & |
---|
10 | &, TAUAERL,PAVEL,TAVEL,PZ,TZ,TBOUND,NLAYERS,SEMISS,IREFLECT) |
---|
11 | |
---|
12 | ! Reformatted for F90 by JJMorcrette, ECMWF, 980714 |
---|
13 | |
---|
14 | ! Read in atmospheric profile from ECMWF radiation code, and prepare it |
---|
15 | ! for use in RRTM. Set other RRTM input parameters. Values are passed |
---|
16 | ! back through existing RRTM arrays and commons. |
---|
17 | |
---|
18 | !- Modifications |
---|
19 | |
---|
20 | ! 2000-05-15 Deborah Salmond Speed-up |
---|
21 | |
---|
22 | |
---|
23 | #include "tsmbkind.h" |
---|
24 | |
---|
25 | USE PARRRTM , ONLY : JPBAND ,JPG ,JPXSEC ,JPGPT ,JPLAY ,& |
---|
26 | &JPINPX |
---|
27 | USE YOERAD , ONLY : NOVLP |
---|
28 | USE YOERDI , ONLY : RCARDI ,RCH4 ,RN2O ,RCFC11 ,RCFC12 |
---|
29 | USE YOESW , ONLY : RAER |
---|
30 | |
---|
31 | !------------------------------Arguments-------------------------------- |
---|
32 | |
---|
33 | |
---|
34 | IMPLICIT NONE |
---|
35 | |
---|
36 | |
---|
37 | ! DUMMY INTEGER SCALARS |
---|
38 | INTEGER_M :: iplon |
---|
39 | INTEGER_M :: kcld |
---|
40 | |
---|
41 | ! DUMMY REAL SCALARS |
---|
42 | REAL_B :: ptclear |
---|
43 | |
---|
44 | INTEGER_M :: kidia ! First atmosphere index |
---|
45 | INTEGER_M :: kfdia ! Last atmosphere index |
---|
46 | INTEGER_M :: klon ! Number of atmospheres (longitudes) |
---|
47 | INTEGER_M :: klev ! Number of atmospheric layers |
---|
48 | REAL_B :: paer(klon,6,klev) ! Aerosol optical thickness |
---|
49 | REAL_B :: pap(klon,klev) ! Layer pressures (Pa) |
---|
50 | REAL_B :: paph(klon,klev+1) ! Interface pressures (Pa) |
---|
51 | REAL_B :: pts(klon) ! Surface temperature (K) |
---|
52 | REAL_B :: pth(klon,klev+1) ! Interface temperatures (K) |
---|
53 | REAL_B :: pt(klon,klev) ! Layer temperature (K) |
---|
54 | REAL_B :: zemis(klon) ! Non-window surface emissivity |
---|
55 | REAL_B :: zemiw(klon) ! Window surface emissivity |
---|
56 | REAL_B :: pq(klon,klev) ! H2O specific humidity (mmr) |
---|
57 | REAL_B :: pozn(klon,klev) ! O3 mass mixing ratio |
---|
58 | REAL_B :: pcco2 ! CO2 mass mixing ratio |
---|
59 | ! real rch4 ! CH4 mass mixing ratio |
---|
60 | ! real rn2o ! N2O mass mixing ratio |
---|
61 | ! real rcfc11 ! CFC11 mass mixing ratio |
---|
62 | ! real rcfc12 ! CFC12 mass mixing ratio |
---|
63 | REAL_B :: pcldf(klon,klev) ! Cloud fraction |
---|
64 | REAL_B :: ptaucld(klon,klev,JPBAND) ! Cloud optical depth |
---|
65 | REAL_B :: CLDFRAC(JPLAY) ! Cloud fraction |
---|
66 | REAL_B :: TAUCLD(JPLAY,JPBAND) ! Spectral optical thickness |
---|
67 | REAL_B :: COLDRY(JPLAY) |
---|
68 | REAL_B :: WKL(JPINPX,JPLAY) |
---|
69 | REAL_B :: WX(JPXSEC,JPLAY) ! Amount of trace gases |
---|
70 | |
---|
71 | !- from AER |
---|
72 | REAL_B :: TAUAERL(JPLAY,JPBAND) |
---|
73 | |
---|
74 | !- from PROFILE |
---|
75 | REAL_B :: PAVEL(JPLAY) |
---|
76 | REAL_B :: TAVEL(JPLAY) |
---|
77 | REAL_B :: PZ(0:JPLAY) |
---|
78 | REAL_B :: TZ(0:JPLAY) |
---|
79 | REAL_B :: TBOUND |
---|
80 | INTEGER_M :: NLAYERS |
---|
81 | |
---|
82 | !- from SURFACE |
---|
83 | REAL_B :: SEMISS(JPBAND) |
---|
84 | INTEGER_M :: IREFLECT |
---|
85 | |
---|
86 | REAL_B :: ztauaer(5) |
---|
87 | REAL_B :: zc1j(0:klev) ! total cloud from top and level k |
---|
88 | INTEGER_M :: IXINDX(JPINPX) ! Indices of trace gases accounted for |
---|
89 | |
---|
90 | REAL_B :: amd ! Effective molecular weight of dry air (g/mol) |
---|
91 | REAL_B :: amw ! Molecular weight of water vapor (g/mol) |
---|
92 | REAL_B :: amco2 ! Molecular weight of carbon dioxide (g/mol) |
---|
93 | REAL_B :: amo ! Molecular weight of ozone (g/mol) |
---|
94 | REAL_B :: amch4 ! Molecular weight of methane (g/mol) |
---|
95 | REAL_B :: amn2o ! Molecular weight of nitrous oxide (g/mol) |
---|
96 | REAL_B :: amc11 ! Molecular weight of CFC11 (g/mol) - CFCL3 |
---|
97 | REAL_B :: amc12 ! Molecular weight of CFC12 (g/mol) - CF2CL2 |
---|
98 | REAL_B :: avgdro ! Avogadro's number (molecules/mole) |
---|
99 | REAL_B :: gravit ! Gravitational acceleration (cm/sec2) |
---|
100 | |
---|
101 | ! Atomic weights for conversion from mass to volume mixing ratios; these |
---|
102 | ! are the same values used in ECRT to assure accurate conversion to vmr |
---|
103 | data amd / 28.970_JPRB / |
---|
104 | data amw / 18.0154_JPRB / |
---|
105 | data amco2 / 44.011_JPRB / |
---|
106 | data amo / 47.9982_JPRB / |
---|
107 | data amch4 / 16.043_JPRB / |
---|
108 | data amn2o / 44.013_JPRB / |
---|
109 | data amc11 / 137.3686_JPRB / |
---|
110 | data amc12 / 120.9140_JPRB / |
---|
111 | data avgdro/ 6.02214E23_JPRB / |
---|
112 | data gravit/ 9.80665E02_JPRB / |
---|
113 | |
---|
114 | ! LOCAL INTEGER SCALARS |
---|
115 | INTEGER_M :: IATM, IMOL, IX, IXMAX, J1, J2, JAE, JB, JK, JL, L, JIS |
---|
116 | INTEGER_M :: NMOL, NXMOL |
---|
117 | |
---|
118 | ! LOCAL REAL SCALARS |
---|
119 | REAL_B :: amm, ZCLDLY, ZCLEAR, ZCLOUD, ZEPSEC |
---|
120 | |
---|
121 | ! *** |
---|
122 | |
---|
123 | ! *** mji |
---|
124 | ! Initialize all molecular amounts and aerosol optical depths to zero here, |
---|
125 | ! then pass ECRT amounts into RRTM arrays below. |
---|
126 | |
---|
127 | ! DATA ZWKL /MAXPRDW*0.0/ |
---|
128 | ! DATA ZWX /MAXPROD*0.0/ |
---|
129 | ! DATA KREFLECT /0/ |
---|
130 | |
---|
131 | ! Activate cross section molecules: |
---|
132 | ! NXMOL - number of cross-sections input by user |
---|
133 | ! IXINDX(I) - index of cross-section molecule corresponding to Ith |
---|
134 | ! cross-section specified by user |
---|
135 | ! = 0 -- not allowed in RRTM |
---|
136 | ! = 1 -- CCL4 |
---|
137 | ! = 2 -- CFC11 |
---|
138 | ! = 3 -- CFC12 |
---|
139 | ! = 4 -- CFC22 |
---|
140 | ! DATA KXMOL /2/ |
---|
141 | ! DATA KXINDX /0,2,3,0,31*0/ |
---|
142 | |
---|
143 | ! IREFLECT=KREFLECT |
---|
144 | ! NXMOL=KXMOL |
---|
145 | |
---|
146 | !print *,'Just entering RRTM_ECRT_140GP KLEV=',KLEV,' IPLON=',IPLON |
---|
147 | |
---|
148 | IREFLECT=0 |
---|
149 | NXMOL=2 |
---|
150 | |
---|
151 | DO J1=1,35 |
---|
152 | IXINDX(J1)=0 |
---|
153 | DO J2=1,KLEV |
---|
154 | WKL(J1,J2)=_ZERO_ |
---|
155 | ENDDO |
---|
156 | ENDDO |
---|
157 | IXINDX(2)=2 |
---|
158 | IXINDX(3)=3 |
---|
159 | DO J1=1,JPXSEC |
---|
160 | DO J2=1,KLEV |
---|
161 | WX(J1,J2)=_ZERO_ |
---|
162 | ENDDO |
---|
163 | ENDDO |
---|
164 | |
---|
165 | ! Set parameters needed for RRTM execution: |
---|
166 | IATM = 0 |
---|
167 | ! IXSECT = 1 |
---|
168 | ! NUMANGS = 0 |
---|
169 | ! IOUT = -1 |
---|
170 | IXMAX = 4 |
---|
171 | |
---|
172 | ! Bands 6,7,8 are considered the 'window' and allowed to have a |
---|
173 | ! different surface emissivity (as in ECMWF). Eli wrote this part.... |
---|
174 | SEMISS(1) = ZEMIS(IPLON) |
---|
175 | SEMISS(2) = ZEMIS(IPLON) |
---|
176 | SEMISS(3) = ZEMIS(IPLON) |
---|
177 | SEMISS(4) = ZEMIS(IPLON) |
---|
178 | SEMISS(5) = ZEMIS(IPLON) |
---|
179 | SEMISS(6) = ZEMIW(IPLON) |
---|
180 | SEMISS(7) = ZEMIW(IPLON) |
---|
181 | SEMISS(8) = ZEMIW(IPLON) |
---|
182 | SEMISS(9) = ZEMIS(IPLON) |
---|
183 | SEMISS(10) = ZEMIS(IPLON) |
---|
184 | SEMISS(11) = ZEMIS(IPLON) |
---|
185 | SEMISS(12) = ZEMIS(IPLON) |
---|
186 | SEMISS(13) = ZEMIS(IPLON) |
---|
187 | SEMISS(14) = ZEMIS(IPLON) |
---|
188 | SEMISS(15) = ZEMIS(IPLON) |
---|
189 | SEMISS(16) = ZEMIS(IPLON) |
---|
190 | |
---|
191 | !print *,'after SEMISS' |
---|
192 | |
---|
193 | ! Set surface temperature. |
---|
194 | |
---|
195 | TBOUND = pts(iplon) |
---|
196 | !print *,'after TBOUND=',TBOUND |
---|
197 | |
---|
198 | ! Install ECRT arrays into RRTM arrays for pressure, temperature, |
---|
199 | ! and molecular amounts. Pressures are converted from Pascals |
---|
200 | ! (ECRT) to mb (RRTM). H2O, CO2, O3 and trace gas amounts are |
---|
201 | ! converted from mass mixing ratio to volume mixing ratio. CO2 |
---|
202 | ! converted with same dry air and CO2 molecular weights used in |
---|
203 | ! ECRT to assure correct conversion back to the proper CO2 vmr. |
---|
204 | ! The dry air column COLDRY (in molec/cm2) is calculated from |
---|
205 | ! the level pressures PZ (in mb) based on the hydrostatic equation |
---|
206 | ! and includes a correction to account for H2O in the layer. The |
---|
207 | ! molecular weight of moist air (amm) is calculated for each layer. |
---|
208 | ! Note: RRTM levels count from bottom to top, while the ECRT input |
---|
209 | ! variables count from the top down and must be reversed here. |
---|
210 | |
---|
211 | NLAYERS = klev |
---|
212 | NMOL = 6 |
---|
213 | PZ(0) = paph(iplon,klev+1)/100._JPRB |
---|
214 | TZ(0) = pth(iplon,klev+1) |
---|
215 | DO L = 1, KLEV |
---|
216 | PAVEL(L) = pap(iplon,KLEV-L+1)/100._JPRB |
---|
217 | TAVEL(L) = pt(iplon,KLEV-L+1) |
---|
218 | PZ(L) = paph(iplon,KLEV-L+1)/100._JPRB |
---|
219 | TZ(L) = pth(iplon,KLEV-L+1) |
---|
220 | WKL(1,L) = pq(iplon,KLEV-L+1)*amd/amw |
---|
221 | WKL(2,L) = pcco2*amd/amco2 |
---|
222 | WKL(3,L) = pozn(iplon,KLEV-L+1)*amd/amo |
---|
223 | WKL(4,L) = rn2o*amd/amn2o |
---|
224 | WKL(6,L) = rch4*amd/amch4 |
---|
225 | amm = (1-WKL(1,L))*amd + WKL(1,L)*amw |
---|
226 | COLDRY(L) = (PZ(L-1)-PZ(L))*1.E3_JPRB*avgdro/(gravit*amm*(1+WKL(1,L))) |
---|
227 | ENDDO |
---|
228 | |
---|
229 | !print *,'after WKL' |
---|
230 | !print 9001,((RAER(JIS,JAE),JAE=1,6),JIS=1,5) |
---|
231 | 9001 format(1x,6E12.5) |
---|
232 | |
---|
233 | |
---|
234 | !- Fill RRTM aerosol arrays with operational ECMWF aerosols, |
---|
235 | ! do the mixing and distribute over the 16 spectral intervals |
---|
236 | |
---|
237 | DO L=1,KLEV |
---|
238 | JK=KLEV-L+1 |
---|
239 | ! print 9002,JK,(PAER(IPLON,JK,JAE),JAE=1,6) |
---|
240 | 9002 format(1x,I3,6E12.5) |
---|
241 | |
---|
242 | |
---|
243 | ! DO JAE=1,5 |
---|
244 | JAE=1 |
---|
245 | ZTAUAER(JAE) =& |
---|
246 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
247 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
248 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
249 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
250 | TAUAERL(L, 1)=ZTAUAER(1) |
---|
251 | TAUAERL(L, 2)=ZTAUAER(1) |
---|
252 | JAE=2 |
---|
253 | ZTAUAER(JAE) =& |
---|
254 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
255 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
256 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
257 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
258 | TAUAERL(L, 3)=ZTAUAER(2) |
---|
259 | TAUAERL(L, 4)=ZTAUAER(2) |
---|
260 | TAUAERL(L, 5)=ZTAUAER(2) |
---|
261 | JAE=3 |
---|
262 | ZTAUAER(JAE) =& |
---|
263 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
264 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
265 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
266 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
267 | TAUAERL(L, 6)=ZTAUAER(3) |
---|
268 | TAUAERL(L, 8)=ZTAUAER(3) |
---|
269 | TAUAERL(L, 9)=ZTAUAER(3) |
---|
270 | JAE=4 |
---|
271 | ZTAUAER(JAE) =& |
---|
272 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
273 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
274 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
275 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
276 | TAUAERL(L, 7)=ZTAUAER(4) |
---|
277 | JAE=5 |
---|
278 | ZTAUAER(JAE) =& |
---|
279 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
280 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
281 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
282 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
283 | ! END DO |
---|
284 | TAUAERL(L,10)=ZTAUAER(5) |
---|
285 | TAUAERL(L,11)=ZTAUAER(5) |
---|
286 | TAUAERL(L,12)=ZTAUAER(5) |
---|
287 | TAUAERL(L,13)=ZTAUAER(5) |
---|
288 | TAUAERL(L,14)=ZTAUAER(5) |
---|
289 | TAUAERL(L,15)=ZTAUAER(5) |
---|
290 | TAUAERL(L,16)=ZTAUAER(5) |
---|
291 | ! print 9003,L,(ZTAUAER(JAE),JAE=1,5) |
---|
292 | 9003 format(1x,'rrtm_ecrt ZTAUAER:',I3,5e13.6) |
---|
293 | ENDDO |
---|
294 | |
---|
295 | DO L = 1, KLEV |
---|
296 | !- Set cross section molecule amounts from ECRT; convert to vmr |
---|
297 | WX(2,L) = rcfc11*amd/amc11 |
---|
298 | WX(3,L) = rcfc12*amd/amc12 |
---|
299 | !-- DS_000515 |
---|
300 | END DO |
---|
301 | |
---|
302 | !- Here, all molecules in WKL and WX are in volume mixing ratio; convert to |
---|
303 | ! molec/cm2 based on COLDRY for use in RRTM |
---|
304 | DO IMOL = 1, NMOL |
---|
305 | DO L = 1, KLEV |
---|
306 | !-- DS_000515 |
---|
307 | WKL(IMOL,L) = COLDRY(L) * WKL(IMOL,L) |
---|
308 | END DO |
---|
309 | ENDDO |
---|
310 | |
---|
311 | DO IX = 1,JPXSEC |
---|
312 | IF (IXINDX(IX) /= 0) THEN |
---|
313 | !-- DS_000515 |
---|
314 | DO L=1 , KLEV |
---|
315 | WX(IXINDX(IX),L) = COLDRY(L) * WX(IX,L) * 1.E-20_JPRB |
---|
316 | END DO |
---|
317 | ENDIF |
---|
318 | ENDDO |
---|
319 | |
---|
320 | |
---|
321 | !- Approximate treatment for various cloud overlaps |
---|
322 | ZCLEAR=_ONE_ |
---|
323 | ZCLOUD=_ZERO_ |
---|
324 | ZC1J(0)=_ZERO_ |
---|
325 | ZEPSEC=1.E-03_JPRB |
---|
326 | JL=IPLON |
---|
327 | |
---|
328 | IF (NOVLP == 1) THEN |
---|
329 | |
---|
330 | DO JK=1,KLEV |
---|
331 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
332 | ZCLDLY=pcldf(JL,JK) |
---|
333 | ZCLEAR=ZCLEAR & |
---|
334 | &*(_ONE_-MAX( ZCLDLY , ZCLOUD ))& |
---|
335 | &/(_ONE_-MIN( ZCLOUD , _ONE_-ZEPSEC )) |
---|
336 | ZCLOUD = ZCLDLY |
---|
337 | ZC1J(JK)= _ONE_ - ZCLEAR |
---|
338 | ELSE |
---|
339 | ZCLDLY=_ZERO_ |
---|
340 | ZCLEAR=ZCLEAR & |
---|
341 | &*(_ONE_-MAX( ZCLDLY , ZCLOUD ))& |
---|
342 | &/(_ONE_-MIN( ZCLOUD , _ONE_-ZEPSEC )) |
---|
343 | ZCLOUD = ZCLDLY |
---|
344 | ZC1J(JK)= _ONE_ - ZCLEAR |
---|
345 | ENDIF |
---|
346 | ENDDO |
---|
347 | |
---|
348 | ELSEIF (NOVLP == 2) THEN |
---|
349 | |
---|
350 | DO JK=1,KLEV |
---|
351 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
352 | ZCLDLY=pcldf(JL,JK) |
---|
353 | ZCLOUD = MAX( ZCLDLY , ZCLOUD ) |
---|
354 | ZC1J(JK) = ZCLOUD |
---|
355 | ELSE |
---|
356 | ZCLDLY=_ZERO_ |
---|
357 | ZCLOUD = MAX( ZCLDLY , ZCLOUD ) |
---|
358 | ZC1J(JK) = ZCLOUD |
---|
359 | ENDIF |
---|
360 | ENDDO |
---|
361 | |
---|
362 | ELSEIF (NOVLP == 3) THEN |
---|
363 | |
---|
364 | DO JK=1,KLEV |
---|
365 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
366 | ZCLDLY=pcldf(JL,JK) |
---|
367 | ZCLEAR = ZCLEAR * (_ONE_-ZCLDLY) |
---|
368 | ZCLOUD = _ONE_ - ZCLEAR |
---|
369 | ZC1J(JK) = ZCLOUD |
---|
370 | ELSE |
---|
371 | ZCLDLY=_ZERO_ |
---|
372 | ZCLEAR = ZCLEAR * (_ONE_-ZCLDLY) |
---|
373 | ZCLOUD = _ONE_ - ZCLEAR |
---|
374 | ZC1J(JK) = ZCLOUD |
---|
375 | ENDIF |
---|
376 | ENDDO |
---|
377 | |
---|
378 | ENDIF |
---|
379 | PTCLEAR=_ONE_-ZC1J(KLEV) |
---|
380 | |
---|
381 | ! Transfer cloud fraction and cloud optical depth to RRTM arrays; |
---|
382 | ! invert array index for pcldf to go from bottom to top for RRTM |
---|
383 | |
---|
384 | !- clear-sky column |
---|
385 | IF (PTCLEAR > _ONE_-ZEPSEC) THEN |
---|
386 | KCLD=0 |
---|
387 | DO L = 1, KLEV |
---|
388 | CLDFRAC(L) = _ZERO_ |
---|
389 | ENDDO |
---|
390 | DO JB=1,JPBAND |
---|
391 | DO L=1,KLEV |
---|
392 | TAUCLD(L,JB) = _ZERO_ |
---|
393 | ENDDO |
---|
394 | ENDDO |
---|
395 | |
---|
396 | ELSE |
---|
397 | |
---|
398 | !- cloudy column |
---|
399 | ! The diffusivity factor (Savijarvi, 1997) on the cloud optical |
---|
400 | ! thickness TAUCLD has already been applied in RADLSW |
---|
401 | |
---|
402 | KCLD=1 |
---|
403 | DO L=1,KLEV |
---|
404 | CLDFRAC(L) = pcldf(iplon,L) |
---|
405 | ENDDO |
---|
406 | DO JB=1,JPBAND |
---|
407 | DO L=1,KLEV |
---|
408 | TAUCLD(L,JB) = ptaucld(iplon,L,JB) |
---|
409 | ENDDO |
---|
410 | ENDDO |
---|
411 | |
---|
412 | ENDIF |
---|
413 | |
---|
414 | ! ------------------------------------------------------------------ |
---|
415 | |
---|
416 | RETURN |
---|
417 | END SUBROUTINE RRTM_ECRT_140GP |
---|