[2089] | 1 | !****************** SUBROUTINE RRTM_ECRT_140GP ************************** |
---|
| 2 | |
---|
| 3 | SUBROUTINE RRTM_ECRT_140GP & |
---|
| 4 | &( iplon, klon , klev, kcld & |
---|
| 5 | &, paer , paph , pap & |
---|
| 6 | &, pts , pth , pt & |
---|
| 7 | &, zemis, zemiw & |
---|
| 8 | &, pq , pcco2, pozn, pcldf, ptaucld, ptclear & |
---|
| 9 | &, CLDFRAC,TAUCLD,COLDRY,WKL,WX & |
---|
| 10 | &, TAUAERL,PAVEL,TAVEL,PZ,TZ,TBOUND,NLAYERS,SEMISS,IREFLECT) |
---|
| 11 | |
---|
| 12 | ! Reformatted for F90 by JJMorcrette, ECMWF, 980714 |
---|
| 13 | |
---|
| 14 | ! Read in atmospheric profile from ECMWF radiation code, and prepare it |
---|
| 15 | ! for use in RRTM. Set other RRTM input parameters. Values are passed |
---|
| 16 | ! back through existing RRTM arrays and commons. |
---|
| 17 | |
---|
| 18 | !- Modifications |
---|
| 19 | |
---|
| 20 | ! 2000-05-15 Deborah Salmond Speed-up |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | #include "tsmbkind.h" |
---|
| 24 | |
---|
| 25 | USE PARRRTM , ONLY : JPBAND ,JPG ,JPXSEC ,JPGPT ,JPLAY ,& |
---|
| 26 | &JPINPX |
---|
| 27 | USE YOERAD , ONLY : NOVLP |
---|
| 28 | USE YOERDI , ONLY : RCARDI ,RCH4 ,RN2O ,RCFC11 ,RCFC12 |
---|
| 29 | USE YOESW , ONLY : RAER |
---|
| 30 | |
---|
| 31 | !------------------------------Arguments-------------------------------- |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | IMPLICIT NONE |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | ! DUMMY INTEGER SCALARS |
---|
| 38 | INTEGER_M :: iplon |
---|
| 39 | INTEGER_M :: kcld |
---|
| 40 | |
---|
| 41 | ! DUMMY REAL SCALARS |
---|
| 42 | REAL_B :: ptclear |
---|
| 43 | |
---|
| 44 | INTEGER_M :: kidia ! First atmosphere index |
---|
| 45 | INTEGER_M :: kfdia ! Last atmosphere index |
---|
| 46 | INTEGER_M :: klon ! Number of atmospheres (longitudes) |
---|
| 47 | INTEGER_M :: klev ! Number of atmospheric layers |
---|
| 48 | REAL_B :: paer(klon,6,klev) ! Aerosol optical thickness |
---|
| 49 | REAL_B :: pap(klon,klev) ! Layer pressures (Pa) |
---|
| 50 | REAL_B :: paph(klon,klev+1) ! Interface pressures (Pa) |
---|
| 51 | REAL_B :: pts(klon) ! Surface temperature (K) |
---|
| 52 | REAL_B :: pth(klon,klev+1) ! Interface temperatures (K) |
---|
| 53 | REAL_B :: pt(klon,klev) ! Layer temperature (K) |
---|
| 54 | REAL_B :: zemis(klon) ! Non-window surface emissivity |
---|
| 55 | REAL_B :: zemiw(klon) ! Window surface emissivity |
---|
| 56 | REAL_B :: pq(klon,klev) ! H2O specific humidity (mmr) |
---|
| 57 | REAL_B :: pozn(klon,klev) ! O3 mass mixing ratio |
---|
| 58 | REAL_B :: pcco2 ! CO2 mass mixing ratio |
---|
| 59 | ! real rch4 ! CH4 mass mixing ratio |
---|
| 60 | ! real rn2o ! N2O mass mixing ratio |
---|
| 61 | ! real rcfc11 ! CFC11 mass mixing ratio |
---|
| 62 | ! real rcfc12 ! CFC12 mass mixing ratio |
---|
| 63 | REAL_B :: pcldf(klon,klev) ! Cloud fraction |
---|
| 64 | REAL_B :: ptaucld(klon,klev,JPBAND) ! Cloud optical depth |
---|
| 65 | REAL_B :: CLDFRAC(JPLAY) ! Cloud fraction |
---|
| 66 | REAL_B :: TAUCLD(JPLAY,JPBAND) ! Spectral optical thickness |
---|
| 67 | REAL_B :: COLDRY(JPLAY) |
---|
| 68 | REAL_B :: WKL(JPINPX,JPLAY) |
---|
| 69 | REAL_B :: WX(JPXSEC,JPLAY) ! Amount of trace gases |
---|
| 70 | |
---|
| 71 | !- from AER |
---|
| 72 | REAL_B :: TAUAERL(JPLAY,JPBAND) |
---|
| 73 | |
---|
| 74 | !- from PROFILE |
---|
| 75 | REAL_B :: PAVEL(JPLAY) |
---|
| 76 | REAL_B :: TAVEL(JPLAY) |
---|
| 77 | REAL_B :: PZ(0:JPLAY) |
---|
| 78 | REAL_B :: TZ(0:JPLAY) |
---|
| 79 | REAL_B :: TBOUND |
---|
| 80 | INTEGER_M :: NLAYERS |
---|
| 81 | |
---|
| 82 | !- from SURFACE |
---|
| 83 | REAL_B :: SEMISS(JPBAND) |
---|
| 84 | INTEGER_M :: IREFLECT |
---|
| 85 | |
---|
| 86 | REAL_B :: ztauaer(5) |
---|
| 87 | REAL_B :: zc1j(0:klev) ! total cloud from top and level k |
---|
| 88 | INTEGER_M :: IXINDX(JPINPX) ! Indices of trace gases accounted for |
---|
| 89 | |
---|
| 90 | REAL_B :: amd ! Effective molecular weight of dry air (g/mol) |
---|
| 91 | REAL_B :: amw ! Molecular weight of water vapor (g/mol) |
---|
| 92 | REAL_B :: amco2 ! Molecular weight of carbon dioxide (g/mol) |
---|
| 93 | REAL_B :: amo ! Molecular weight of ozone (g/mol) |
---|
| 94 | REAL_B :: amch4 ! Molecular weight of methane (g/mol) |
---|
| 95 | REAL_B :: amn2o ! Molecular weight of nitrous oxide (g/mol) |
---|
| 96 | REAL_B :: amc11 ! Molecular weight of CFC11 (g/mol) - CFCL3 |
---|
| 97 | REAL_B :: amc12 ! Molecular weight of CFC12 (g/mol) - CF2CL2 |
---|
| 98 | REAL_B :: avgdro ! Avogadro's number (molecules/mole) |
---|
| 99 | REAL_B :: gravit ! Gravitational acceleration (cm/sec2) |
---|
| 100 | |
---|
| 101 | ! Atomic weights for conversion from mass to volume mixing ratios; these |
---|
| 102 | ! are the same values used in ECRT to assure accurate conversion to vmr |
---|
| 103 | data amd / 28.970_JPRB / |
---|
| 104 | data amw / 18.0154_JPRB / |
---|
| 105 | data amco2 / 44.011_JPRB / |
---|
| 106 | data amo / 47.9982_JPRB / |
---|
| 107 | data amch4 / 16.043_JPRB / |
---|
| 108 | data amn2o / 44.013_JPRB / |
---|
| 109 | data amc11 / 137.3686_JPRB / |
---|
| 110 | data amc12 / 120.9140_JPRB / |
---|
| 111 | data avgdro/ 6.02214E23_JPRB / |
---|
| 112 | data gravit/ 9.80665E02_JPRB / |
---|
| 113 | |
---|
| 114 | ! LOCAL INTEGER SCALARS |
---|
| 115 | INTEGER_M :: IATM, IMOL, IX, IXMAX, J1, J2, JAE, JB, JK, JL, L, JIS |
---|
| 116 | INTEGER_M :: NMOL, NXMOL |
---|
| 117 | |
---|
| 118 | ! LOCAL REAL SCALARS |
---|
| 119 | REAL_B :: amm, ZCLDLY, ZCLEAR, ZCLOUD, ZEPSEC |
---|
| 120 | |
---|
| 121 | ! *** |
---|
| 122 | |
---|
| 123 | ! *** mji |
---|
| 124 | ! Initialize all molecular amounts and aerosol optical depths to zero here, |
---|
| 125 | ! then pass ECRT amounts into RRTM arrays below. |
---|
| 126 | |
---|
| 127 | ! DATA ZWKL /MAXPRDW*0.0/ |
---|
| 128 | ! DATA ZWX /MAXPROD*0.0/ |
---|
| 129 | ! DATA KREFLECT /0/ |
---|
| 130 | |
---|
| 131 | ! Activate cross section molecules: |
---|
| 132 | ! NXMOL - number of cross-sections input by user |
---|
| 133 | ! IXINDX(I) - index of cross-section molecule corresponding to Ith |
---|
| 134 | ! cross-section specified by user |
---|
| 135 | ! = 0 -- not allowed in RRTM |
---|
| 136 | ! = 1 -- CCL4 |
---|
| 137 | ! = 2 -- CFC11 |
---|
| 138 | ! = 3 -- CFC12 |
---|
| 139 | ! = 4 -- CFC22 |
---|
| 140 | ! DATA KXMOL /2/ |
---|
| 141 | ! DATA KXINDX /0,2,3,0,31*0/ |
---|
| 142 | |
---|
| 143 | ! IREFLECT=KREFLECT |
---|
| 144 | ! NXMOL=KXMOL |
---|
| 145 | |
---|
| 146 | !print *,'Just entering RRTM_ECRT_140GP KLEV=',KLEV,' IPLON=',IPLON |
---|
| 147 | |
---|
| 148 | IREFLECT=0 |
---|
| 149 | NXMOL=2 |
---|
| 150 | |
---|
| 151 | DO J1=1,35 |
---|
| 152 | IXINDX(J1)=0 |
---|
| 153 | DO J2=1,KLEV |
---|
| 154 | WKL(J1,J2)=_ZERO_ |
---|
| 155 | ENDDO |
---|
| 156 | ENDDO |
---|
| 157 | IXINDX(2)=2 |
---|
| 158 | IXINDX(3)=3 |
---|
| 159 | DO J1=1,JPXSEC |
---|
| 160 | DO J2=1,KLEV |
---|
| 161 | WX(J1,J2)=_ZERO_ |
---|
| 162 | ENDDO |
---|
| 163 | ENDDO |
---|
| 164 | |
---|
| 165 | ! Set parameters needed for RRTM execution: |
---|
| 166 | IATM = 0 |
---|
| 167 | ! IXSECT = 1 |
---|
| 168 | ! NUMANGS = 0 |
---|
| 169 | ! IOUT = -1 |
---|
| 170 | IXMAX = 4 |
---|
| 171 | |
---|
| 172 | ! Bands 6,7,8 are considered the 'window' and allowed to have a |
---|
| 173 | ! different surface emissivity (as in ECMWF). Eli wrote this part.... |
---|
| 174 | SEMISS(1) = ZEMIS(IPLON) |
---|
| 175 | SEMISS(2) = ZEMIS(IPLON) |
---|
| 176 | SEMISS(3) = ZEMIS(IPLON) |
---|
| 177 | SEMISS(4) = ZEMIS(IPLON) |
---|
| 178 | SEMISS(5) = ZEMIS(IPLON) |
---|
| 179 | SEMISS(6) = ZEMIW(IPLON) |
---|
| 180 | SEMISS(7) = ZEMIW(IPLON) |
---|
| 181 | SEMISS(8) = ZEMIW(IPLON) |
---|
| 182 | SEMISS(9) = ZEMIS(IPLON) |
---|
| 183 | SEMISS(10) = ZEMIS(IPLON) |
---|
| 184 | SEMISS(11) = ZEMIS(IPLON) |
---|
| 185 | SEMISS(12) = ZEMIS(IPLON) |
---|
| 186 | SEMISS(13) = ZEMIS(IPLON) |
---|
| 187 | SEMISS(14) = ZEMIS(IPLON) |
---|
| 188 | SEMISS(15) = ZEMIS(IPLON) |
---|
| 189 | SEMISS(16) = ZEMIS(IPLON) |
---|
| 190 | |
---|
| 191 | !print *,'after SEMISS' |
---|
| 192 | |
---|
| 193 | ! Set surface temperature. |
---|
| 194 | |
---|
| 195 | TBOUND = pts(iplon) |
---|
| 196 | !print *,'after TBOUND=',TBOUND |
---|
| 197 | |
---|
| 198 | ! Install ECRT arrays into RRTM arrays for pressure, temperature, |
---|
| 199 | ! and molecular amounts. Pressures are converted from Pascals |
---|
| 200 | ! (ECRT) to mb (RRTM). H2O, CO2, O3 and trace gas amounts are |
---|
| 201 | ! converted from mass mixing ratio to volume mixing ratio. CO2 |
---|
| 202 | ! converted with same dry air and CO2 molecular weights used in |
---|
| 203 | ! ECRT to assure correct conversion back to the proper CO2 vmr. |
---|
| 204 | ! The dry air column COLDRY (in molec/cm2) is calculated from |
---|
| 205 | ! the level pressures PZ (in mb) based on the hydrostatic equation |
---|
| 206 | ! and includes a correction to account for H2O in the layer. The |
---|
| 207 | ! molecular weight of moist air (amm) is calculated for each layer. |
---|
| 208 | ! Note: RRTM levels count from bottom to top, while the ECRT input |
---|
| 209 | ! variables count from the top down and must be reversed here. |
---|
| 210 | |
---|
| 211 | NLAYERS = klev |
---|
| 212 | NMOL = 6 |
---|
| 213 | PZ(0) = paph(iplon,klev+1)/100._JPRB |
---|
| 214 | TZ(0) = pth(iplon,klev+1) |
---|
| 215 | DO L = 1, KLEV |
---|
| 216 | PAVEL(L) = pap(iplon,KLEV-L+1)/100._JPRB |
---|
| 217 | TAVEL(L) = pt(iplon,KLEV-L+1) |
---|
| 218 | PZ(L) = paph(iplon,KLEV-L+1)/100._JPRB |
---|
| 219 | TZ(L) = pth(iplon,KLEV-L+1) |
---|
| 220 | WKL(1,L) = pq(iplon,KLEV-L+1)*amd/amw |
---|
| 221 | WKL(2,L) = pcco2*amd/amco2 |
---|
| 222 | WKL(3,L) = pozn(iplon,KLEV-L+1)*amd/amo |
---|
| 223 | WKL(4,L) = rn2o*amd/amn2o |
---|
| 224 | WKL(6,L) = rch4*amd/amch4 |
---|
| 225 | amm = (1-WKL(1,L))*amd + WKL(1,L)*amw |
---|
| 226 | COLDRY(L) = (PZ(L-1)-PZ(L))*1.E3_JPRB*avgdro/(gravit*amm*(1+WKL(1,L))) |
---|
| 227 | ENDDO |
---|
| 228 | |
---|
| 229 | !print *,'after WKL' |
---|
| 230 | !print 9001,((RAER(JIS,JAE),JAE=1,6),JIS=1,5) |
---|
| 231 | 9001 format(1x,6E12.5) |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | !- Fill RRTM aerosol arrays with operational ECMWF aerosols, |
---|
| 235 | ! do the mixing and distribute over the 16 spectral intervals |
---|
| 236 | |
---|
| 237 | DO L=1,KLEV |
---|
| 238 | JK=KLEV-L+1 |
---|
| 239 | ! print 9002,JK,(PAER(IPLON,JK,JAE),JAE=1,6) |
---|
| 240 | 9002 format(1x,I3,6E12.5) |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | ! DO JAE=1,5 |
---|
| 244 | JAE=1 |
---|
| 245 | ZTAUAER(JAE) =& |
---|
| 246 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
| 247 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
| 248 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
| 249 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
| 250 | TAUAERL(L, 1)=ZTAUAER(1) |
---|
| 251 | TAUAERL(L, 2)=ZTAUAER(1) |
---|
| 252 | JAE=2 |
---|
| 253 | ZTAUAER(JAE) =& |
---|
| 254 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
| 255 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
| 256 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
| 257 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
| 258 | TAUAERL(L, 3)=ZTAUAER(2) |
---|
| 259 | TAUAERL(L, 4)=ZTAUAER(2) |
---|
| 260 | TAUAERL(L, 5)=ZTAUAER(2) |
---|
| 261 | JAE=3 |
---|
| 262 | ZTAUAER(JAE) =& |
---|
| 263 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
| 264 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
| 265 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
| 266 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
| 267 | TAUAERL(L, 6)=ZTAUAER(3) |
---|
| 268 | TAUAERL(L, 8)=ZTAUAER(3) |
---|
| 269 | TAUAERL(L, 9)=ZTAUAER(3) |
---|
| 270 | JAE=4 |
---|
| 271 | ZTAUAER(JAE) =& |
---|
| 272 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
| 273 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
| 274 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
| 275 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
| 276 | TAUAERL(L, 7)=ZTAUAER(4) |
---|
| 277 | JAE=5 |
---|
| 278 | ZTAUAER(JAE) =& |
---|
| 279 | &(RAER(JAE,1)*PAER(IPLON,1,JK)+RAER(JAE,2)*PAER(IPLON,2,JK)& |
---|
| 280 | &+RAER(JAE,3)*PAER(IPLON,3,JK)+RAER(JAE,4)*PAER(IPLON,4,JK)& |
---|
| 281 | &+RAER(JAE,5)*PAER(IPLON,5,JK)+RAER(JAE,6)*PAER(IPLON,6,JK)) |
---|
| 282 | ! &/(PAPH(IPLON,JK+1)-PAPH(IPLON,JK)) |
---|
| 283 | ! END DO |
---|
| 284 | TAUAERL(L,10)=ZTAUAER(5) |
---|
| 285 | TAUAERL(L,11)=ZTAUAER(5) |
---|
| 286 | TAUAERL(L,12)=ZTAUAER(5) |
---|
| 287 | TAUAERL(L,13)=ZTAUAER(5) |
---|
| 288 | TAUAERL(L,14)=ZTAUAER(5) |
---|
| 289 | TAUAERL(L,15)=ZTAUAER(5) |
---|
| 290 | TAUAERL(L,16)=ZTAUAER(5) |
---|
| 291 | ! print 9003,L,(ZTAUAER(JAE),JAE=1,5) |
---|
| 292 | 9003 format(1x,'rrtm_ecrt ZTAUAER:',I3,5e13.6) |
---|
| 293 | ENDDO |
---|
| 294 | |
---|
| 295 | DO L = 1, KLEV |
---|
| 296 | !- Set cross section molecule amounts from ECRT; convert to vmr |
---|
| 297 | WX(2,L) = rcfc11*amd/amc11 |
---|
| 298 | WX(3,L) = rcfc12*amd/amc12 |
---|
| 299 | !-- DS_000515 |
---|
| 300 | END DO |
---|
| 301 | |
---|
| 302 | !- Here, all molecules in WKL and WX are in volume mixing ratio; convert to |
---|
| 303 | ! molec/cm2 based on COLDRY for use in RRTM |
---|
| 304 | DO IMOL = 1, NMOL |
---|
| 305 | DO L = 1, KLEV |
---|
| 306 | !-- DS_000515 |
---|
| 307 | WKL(IMOL,L) = COLDRY(L) * WKL(IMOL,L) |
---|
| 308 | END DO |
---|
| 309 | ENDDO |
---|
| 310 | |
---|
| 311 | DO IX = 1,JPXSEC |
---|
| 312 | IF (IXINDX(IX) /= 0) THEN |
---|
| 313 | !-- DS_000515 |
---|
| 314 | DO L=1 , KLEV |
---|
| 315 | WX(IXINDX(IX),L) = COLDRY(L) * WX(IX,L) * 1.E-20_JPRB |
---|
| 316 | END DO |
---|
| 317 | ENDIF |
---|
| 318 | ENDDO |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | !- Approximate treatment for various cloud overlaps |
---|
| 322 | ZCLEAR=_ONE_ |
---|
| 323 | ZCLOUD=_ZERO_ |
---|
| 324 | ZC1J(0)=_ZERO_ |
---|
| 325 | ZEPSEC=1.E-03_JPRB |
---|
| 326 | JL=IPLON |
---|
| 327 | |
---|
| 328 | IF (NOVLP == 1) THEN |
---|
| 329 | |
---|
| 330 | DO JK=1,KLEV |
---|
| 331 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
| 332 | ZCLDLY=pcldf(JL,JK) |
---|
| 333 | ZCLEAR=ZCLEAR & |
---|
| 334 | &*(_ONE_-MAX( ZCLDLY , ZCLOUD ))& |
---|
| 335 | &/(_ONE_-MIN( ZCLOUD , _ONE_-ZEPSEC )) |
---|
| 336 | ZCLOUD = ZCLDLY |
---|
| 337 | ZC1J(JK)= _ONE_ - ZCLEAR |
---|
| 338 | ELSE |
---|
| 339 | ZCLDLY=_ZERO_ |
---|
| 340 | ZCLEAR=ZCLEAR & |
---|
| 341 | &*(_ONE_-MAX( ZCLDLY , ZCLOUD ))& |
---|
| 342 | &/(_ONE_-MIN( ZCLOUD , _ONE_-ZEPSEC )) |
---|
| 343 | ZCLOUD = ZCLDLY |
---|
| 344 | ZC1J(JK)= _ONE_ - ZCLEAR |
---|
| 345 | ENDIF |
---|
| 346 | ENDDO |
---|
| 347 | |
---|
| 348 | ELSEIF (NOVLP == 2) THEN |
---|
| 349 | |
---|
| 350 | DO JK=1,KLEV |
---|
| 351 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
| 352 | ZCLDLY=pcldf(JL,JK) |
---|
| 353 | ZCLOUD = MAX( ZCLDLY , ZCLOUD ) |
---|
| 354 | ZC1J(JK) = ZCLOUD |
---|
| 355 | ELSE |
---|
| 356 | ZCLDLY=_ZERO_ |
---|
| 357 | ZCLOUD = MAX( ZCLDLY , ZCLOUD ) |
---|
| 358 | ZC1J(JK) = ZCLOUD |
---|
| 359 | ENDIF |
---|
| 360 | ENDDO |
---|
| 361 | |
---|
| 362 | ELSEIF (NOVLP == 3) THEN |
---|
| 363 | |
---|
| 364 | DO JK=1,KLEV |
---|
| 365 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
| 366 | ZCLDLY=pcldf(JL,JK) |
---|
| 367 | ZCLEAR = ZCLEAR * (_ONE_-ZCLDLY) |
---|
| 368 | ZCLOUD = _ONE_ - ZCLEAR |
---|
| 369 | ZC1J(JK) = ZCLOUD |
---|
| 370 | ELSE |
---|
| 371 | ZCLDLY=_ZERO_ |
---|
| 372 | ZCLEAR = ZCLEAR * (_ONE_-ZCLDLY) |
---|
| 373 | ZCLOUD = _ONE_ - ZCLEAR |
---|
| 374 | ZC1J(JK) = ZCLOUD |
---|
| 375 | ENDIF |
---|
| 376 | ENDDO |
---|
| 377 | |
---|
| 378 | ENDIF |
---|
| 379 | PTCLEAR=_ONE_-ZC1J(KLEV) |
---|
| 380 | |
---|
| 381 | ! Transfer cloud fraction and cloud optical depth to RRTM arrays; |
---|
| 382 | ! invert array index for pcldf to go from bottom to top for RRTM |
---|
| 383 | |
---|
| 384 | !- clear-sky column |
---|
| 385 | IF (PTCLEAR > _ONE_-ZEPSEC) THEN |
---|
| 386 | KCLD=0 |
---|
| 387 | DO L = 1, KLEV |
---|
| 388 | CLDFRAC(L) = _ZERO_ |
---|
| 389 | ENDDO |
---|
| 390 | DO JB=1,JPBAND |
---|
| 391 | DO L=1,KLEV |
---|
| 392 | TAUCLD(L,JB) = _ZERO_ |
---|
| 393 | ENDDO |
---|
| 394 | ENDDO |
---|
| 395 | |
---|
| 396 | ELSE |
---|
| 397 | |
---|
| 398 | !- cloudy column |
---|
| 399 | ! The diffusivity factor (Savijarvi, 1997) on the cloud optical |
---|
| 400 | ! thickness TAUCLD has already been applied in RADLSW |
---|
| 401 | |
---|
| 402 | KCLD=1 |
---|
| 403 | DO L=1,KLEV |
---|
| 404 | CLDFRAC(L) = pcldf(iplon,L) |
---|
| 405 | ENDDO |
---|
| 406 | DO JB=1,JPBAND |
---|
| 407 | DO L=1,KLEV |
---|
| 408 | TAUCLD(L,JB) = ptaucld(iplon,L,JB) |
---|
| 409 | ENDDO |
---|
| 410 | ENDDO |
---|
| 411 | |
---|
| 412 | ENDIF |
---|
| 413 | |
---|
| 414 | ! ------------------------------------------------------------------ |
---|
| 415 | |
---|
| 416 | RETURN |
---|
| 417 | END SUBROUTINE RRTM_ECRT_140GP |
---|