[2089] | 1 | !OPTIONS XOPT(HSFUN) |
---|
| 2 | SUBROUTINE OLWTTM(KIDIA,KFDIA,KLON, PGA,PGB,PUU1,PUU2, PTT) |
---|
| 3 | ! |
---|
| 4 | !**** *LWTT* - LONGWAVE TRANSMISSION FUNCTIONS |
---|
| 5 | ! |
---|
| 6 | ! PURPOSE. |
---|
| 7 | ! -------- |
---|
| 8 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 9 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
| 10 | ! INTERVALS. |
---|
| 11 | ! |
---|
| 12 | !** INTERFACE. |
---|
| 13 | ! ---------- |
---|
| 14 | ! *LWTT* IS CALLED FROM *LWVN*, *LWVD*, *LWVB* |
---|
| 15 | ! |
---|
| 16 | ! |
---|
| 17 | ! EXPLICIT ARGUMENTS : |
---|
| 18 | ! -------------------- |
---|
| 19 | ! ==== INPUTS === |
---|
| 20 | ! PGA, PGB ; PADE APPROXIMANTS |
---|
| 21 | ! PUU1 : (KLON,NUA) ; ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
---|
| 22 | ! PUU2 : (KLON,NUA) ; ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
---|
| 23 | ! ==== OUTPUTS === |
---|
| 24 | ! PTT : (KLON,NTRA) ; TRANSMISSION FUNCTIONS |
---|
| 25 | ! |
---|
| 26 | ! IMPLICIT ARGUMENTS : NONE |
---|
| 27 | ! -------------------- |
---|
| 28 | ! |
---|
| 29 | ! METHOD. |
---|
| 30 | ! ------- |
---|
| 31 | ! |
---|
| 32 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
| 33 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
| 34 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
| 35 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
| 36 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
| 37 | ! |
---|
| 38 | ! EXTERNALS. |
---|
| 39 | ! ---------- |
---|
| 40 | ! |
---|
| 41 | ! NONE |
---|
| 42 | ! |
---|
| 43 | ! REFERENCE. |
---|
| 44 | ! ---------- |
---|
| 45 | ! |
---|
| 46 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 47 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 48 | ! |
---|
| 49 | ! AUTHOR. |
---|
| 50 | ! ------- |
---|
| 51 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 52 | ! |
---|
| 53 | ! MODIFICATIONS. |
---|
| 54 | ! -------------- |
---|
| 55 | ! ORIGINAL : 88-12-15 |
---|
| 56 | ! |
---|
| 57 | !----------------------------------------------------------------------- |
---|
| 58 | ! IMPLICIT LOGICAL (L) |
---|
| 59 | ! |
---|
| 60 | !#include "yoelw.h" |
---|
| 61 | !#include "yoerad.h" |
---|
| 62 | !#include "yoerdu.h" |
---|
| 63 | |
---|
| 64 | #include "tsmbkind.h" |
---|
| 65 | |
---|
| 66 | USE YOEOLW , ONLY : NTRA ,NUA ,& |
---|
| 67 | & O1H , O2H ,RPIALF0 |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | IMPLICIT NONE |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | ! DUMMY INTEGER SCALARS |
---|
| 74 | INTEGER_M :: KFDIA |
---|
| 75 | INTEGER_M :: KIDIA |
---|
| 76 | INTEGER_M :: KLON |
---|
| 77 | |
---|
| 78 | ! ------------------------------------------------------------------ |
---|
| 79 | ! |
---|
| 80 | !* 0.1 ARGUMENTS |
---|
| 81 | ! --------- |
---|
| 82 | ! |
---|
| 83 | REAL_B :: PUU1(KLON,NUA), PUU2(KLON,NUA), PTT(KLON,NTRA) & |
---|
| 84 | & , PGA(KLON,8,2), PGB(KLON,8,2) |
---|
| 85 | ! |
---|
| 86 | |
---|
| 87 | ! LOCAL INTEGER SCALARS |
---|
| 88 | INTEGER_M :: JA, JL |
---|
| 89 | |
---|
| 90 | ! LOCAL REAL SCALARS |
---|
| 91 | REAL_B :: ZA11, ZA12, ZAERCN, ZEU, ZEU10, ZEU11, ZEU12,& |
---|
| 92 | &ZEU13, ZODH41, ZODH42, ZODN21, ZODN22, ZPU, & |
---|
| 93 | &ZPU10, ZPU11, ZPU12, ZPU13, ZSQ1, ZSQ2, ZSQH41, & |
---|
| 94 | &ZSQH42, ZSQN21, ZSQN22, ZTO1, ZTO2, ZTTF11, & |
---|
| 95 | &ZTTF12, ZUU11, ZUU12, ZUXY, ZVXY, ZX, ZXCH4, & |
---|
| 96 | &ZXD, ZXN, ZXN2O, ZY, ZYCH4, ZYN2O, ZZ |
---|
| 97 | |
---|
| 98 | ! ------------------------------------------------------------------ |
---|
| 99 | !#!DIR$ VFUNCTION SQRTHF |
---|
| 100 | ! |
---|
| 101 | ! |
---|
| 102 | !* 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
| 103 | ! ----------------------------------------------- |
---|
| 104 | ! |
---|
| 105 | DO JA = 1 , 8 |
---|
| 106 | DO JL = KIDIA,KFDIA |
---|
| 107 | ZZ =SQRT(PUU1(JL,JA) - PUU2(JL,JA)) |
---|
| 108 | ZXD =PGB( JL,JA,1) + ZZ *(PGB( JL,JA,2) + ZZ ) |
---|
| 109 | ZXN =PGA( JL,JA,1) + ZZ *(PGA( JL,JA,2) ) |
---|
| 110 | PTT(JL,JA)=ZXN /ZXD |
---|
| 111 | END DO |
---|
| 112 | END DO |
---|
| 113 | ! |
---|
| 114 | ! ------------------------------------------------------------------ |
---|
| 115 | ! |
---|
| 116 | !* 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
| 117 | ! --------------------------------------------------- |
---|
| 118 | ! |
---|
| 119 | DO JL = KIDIA,KFDIA |
---|
| 120 | PTT(JL, 9) = PTT(JL, 8) |
---|
| 121 | ! |
---|
| 122 | !- CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
| 123 | ! |
---|
| 124 | ! 10: interval 500- 800 |
---|
| 125 | ! 11: interval 800- 970 + 1110-1250 |
---|
| 126 | ! 12: interval 970-1110 |
---|
| 127 | ! 13: interval 350- 500 |
---|
| 128 | ! |
---|
| 129 | ! IF (INWCONT.EQ.0) THEN! |
---|
| 130 | !- original ECMWF 16r1 coefficients |
---|
| 131 | ZPU = 0.002 * (PUU1(JL,10) - PUU2(JL,10)) |
---|
| 132 | ZPU10 = 112. * ZPU |
---|
| 133 | ZPU11 = 6.25 * ZPU |
---|
| 134 | ZPU12 = 5.00 * ZPU |
---|
| 135 | ZPU13 = 80.0 * ZPU |
---|
| 136 | ZEU = (PUU1(JL,11) - PUU2(JL,11)) |
---|
| 137 | ZEU10 = 12. * ZEU |
---|
| 138 | ZEU11 = 6.25 * ZEU |
---|
| 139 | ZEU12 = 5.00 * ZEU |
---|
| 140 | ZEU13 = 80.0 * ZEU |
---|
| 141 | ! ELSE IF (INWCONT.EQ.1) THEN |
---|
| 142 | !- coefficients proposed by Giorgetta and Wild |
---|
| 143 | ! ZPU = (PUU1(JL,10) - PUU2(JL,10)) |
---|
| 144 | ! ZPU10 = 0.8109 * ZPU |
---|
| 145 | ! ZPU11 = 0.0208 * ZPU |
---|
| 146 | ! ZPU12 = 0.0106 * ZPU |
---|
| 147 | ! ZPU13 = 12.331 * ZPU |
---|
| 148 | ! ZEU = (PUU1(JL,11) - PUU2(JL,11)) |
---|
| 149 | ! ZEU10 = 47.7 * ZEU |
---|
| 150 | ! ZEU11 = 8.31 * ZEU |
---|
| 151 | ! ZEU12 = 5.87 * ZEU |
---|
| 152 | ! ZEU13 = 209. * ZEU |
---|
| 153 | ! ELSE IF (INWCONT.EQ.2) THEN |
---|
| 154 | !- coefficients adjusted from Clough CKD22 |
---|
| 155 | ! ZPU = PUU1(JL,10) - PUU2(JL,10) |
---|
| 156 | ! ZPU10 = 0.18 * ZPU |
---|
| 157 | ! ZPU11 = 0.00127 * ZPU |
---|
| 158 | ! ZPU12 = 0.00071 * ZPU |
---|
| 159 | ! ZPU13 = 26.26 * ZPU |
---|
| 160 | ! |
---|
| 161 | ! ZEU = PUU1(JL,11) - PUU2(JL,11) |
---|
| 162 | ! ZEU10 = 18. * ZEU |
---|
| 163 | ! ZEU11 = 8.43 * ZEU |
---|
| 164 | ! ZEU12 = 5.08 * ZEU |
---|
| 165 | ! ZEU13 = 721.8 * ZEU |
---|
| 166 | ! END IF |
---|
| 167 | ! |
---|
| 168 | ! IF (LNOCONT) THEN |
---|
| 169 | ! ZPU10 = 0. |
---|
| 170 | ! ZPU11 = 0. |
---|
| 171 | ! ZPU12 = 0. |
---|
| 172 | ! ZPU13 = 0. |
---|
| 173 | ! |
---|
| 174 | ! ZEU10 = 0. |
---|
| 175 | ! ZEU11 = 0. |
---|
| 176 | ! ZEU12 = 0. |
---|
| 177 | ! ZEU13 = 0. |
---|
| 178 | ! END IF |
---|
| 179 | ! |
---|
| 180 | ! |
---|
| 181 | !- OZONE ABSORPTION |
---|
| 182 | ! |
---|
| 183 | ZX = (PUU1(JL,12) - PUU2(JL,12)) |
---|
| 184 | ZY = (PUU1(JL,13) - PUU2(JL,13)) |
---|
| 185 | ZUXY = 4. * ZX * ZX / (RPIALF0 * ZY) |
---|
| 186 | ZSQ1 = SQRT(1. + O1H * ZUXY ) - 1. |
---|
| 187 | ZSQ2 = SQRT(1. + O2H * ZUXY ) - 1. |
---|
| 188 | ZVXY = RPIALF0 * ZY / (2. * ZX) |
---|
| 189 | ZAERCN = (PUU1(JL,17) -PUU2(JL,17)) + ZEU12 + ZPU12 |
---|
| 190 | ZTO1 = EXP( - ZVXY * ZSQ1 - ZAERCN ) |
---|
| 191 | ZTO2 = EXP( - ZVXY * ZSQ2 - ZAERCN ) |
---|
| 192 | |
---|
| 193 | ! IF (LNOOZON) THEN |
---|
| 194 | ! ZTO1 = EXP( - ZAERCN ) |
---|
| 195 | ! ZTO2 = EXP( - ZAERCN ) |
---|
| 196 | ! END IF |
---|
| 197 | ! |
---|
| 198 | !-- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
| 199 | ! |
---|
| 200 | !* CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 201 | ! |
---|
| 202 | ZXCH4 = (PUU1(JL,19) - PUU2(JL,19)) |
---|
| 203 | ZYCH4 = (PUU1(JL,20) - PUU2(JL,20)) |
---|
| 204 | ZUXY = 4. * ZXCH4*ZXCH4/(0.103*ZYCH4) |
---|
| 205 | ZSQH41 = SQRT(1. + 33.7 * ZUXY) - 1. |
---|
| 206 | ZVXY = 0.103 * ZYCH4 / (2. * ZXCH4) |
---|
| 207 | ZODH41 = ZVXY * ZSQH41 |
---|
| 208 | ! |
---|
| 209 | !* N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 210 | ! |
---|
| 211 | ZXN2O = (PUU1(JL,21) - PUU2(JL,21)) |
---|
| 212 | ZYN2O = (PUU1(JL,22) - PUU2(JL,22)) |
---|
| 213 | ZUXY = 4. * ZXN2O*ZXN2O/(0.416*ZYN2O) |
---|
| 214 | ZSQN21 = SQRT(1. + 21.3 * ZUXY) - 1. |
---|
| 215 | ZVXY = 0.416 * ZYN2O / (2. * ZXN2O) |
---|
| 216 | ZODN21 = ZVXY * ZSQN21 |
---|
| 217 | ! |
---|
| 218 | !* CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 219 | ! |
---|
| 220 | ZUXY = 4. * ZXCH4*ZXCH4/(0.113*ZYCH4) |
---|
| 221 | ZSQH42 = SQRT(1. + 400. * ZUXY) - 1. |
---|
| 222 | ZVXY = 0.113 * ZYCH4 / (2. * ZXCH4) |
---|
| 223 | ZODH42 = ZVXY * ZSQH42 |
---|
| 224 | ! |
---|
| 225 | !* N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 226 | ! |
---|
| 227 | ZUXY = 4. * ZXN2O*ZXN2O/(0.197*ZYN2O) |
---|
| 228 | ZSQN22 = SQRT(1. + 2000. * ZUXY) - 1. |
---|
| 229 | ZVXY = 0.197 * ZYN2O / (2. * ZXN2O) |
---|
| 230 | ZODN22 = ZVXY * ZSQN22 |
---|
| 231 | ! |
---|
| 232 | !* CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 233 | ! |
---|
| 234 | ZA11 = (PUU1(JL,23) - PUU2(JL,23)) * 4.404E+05 |
---|
| 235 | ZTTF11 = 1. - ZA11 * 0.003225 |
---|
| 236 | ! |
---|
| 237 | !* CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 238 | ! |
---|
| 239 | ZA12 = (PUU1(JL,24) - PUU2(JL,24)) * 6.7435E+05 |
---|
| 240 | ZTTF12 = 1. - ZA12 * 0.003225 |
---|
| 241 | ! |
---|
| 242 | |
---|
| 243 | ! IF (LNOUMG) THEN |
---|
| 244 | ! PTT(JL,7) = 1. |
---|
| 245 | ! PTT(JL,8) = 1. |
---|
| 246 | ! PTT(JL,9) = 1. |
---|
| 247 | ! ZODH41 = 0. |
---|
| 248 | ! ZODH42 = 0. |
---|
| 249 | ! ZODN21 = 0. |
---|
| 250 | ! ZODN22 = 0. |
---|
| 251 | ! ZTTF11 = 1. |
---|
| 252 | ! ZTTF12 = 1. |
---|
| 253 | ! END IF |
---|
| 254 | |
---|
| 255 | ZUU11 = - (PUU1(JL,15) - PUU2(JL,15)) - ZEU10 - ZPU10 |
---|
| 256 | ZUU12 = - (PUU1(JL,16) - PUU2(JL,16)) - ZEU11 - ZPU11 - & |
---|
| 257 | & ZODH41 - ZODN21 |
---|
| 258 | PTT(JL,10) = EXP( - (PUU1(JL,14)- PUU2(JL,14)) ) |
---|
| 259 | PTT(JL,11) = EXP( ZUU11 ) |
---|
| 260 | PTT(JL,12) = EXP( ZUU12 ) * ZTTF11 * ZTTF12 |
---|
| 261 | PTT(JL,13) = 0.7554 * ZTO1 + 0.2446 * ZTO2 |
---|
| 262 | PTT(JL,14) = PTT(JL,10) * EXP( - ZEU13 - ZPU13 ) |
---|
| 263 | PTT(JL,15) = EXP ( - (PUU1(JL,14) - PUU2(JL,14)) - ZODH42-ZODN22 ) |
---|
| 264 | END DO |
---|
| 265 | ! |
---|
| 266 | RETURN |
---|
| 267 | END SUBROUTINE OLWTTM |
---|