[2089] | 1 | !OPTIONS XOPT(HSFUN) |
---|
| 2 | SUBROUTINE LWTT ( KIDIA, KFDIA, KLON, PGA , PGB, PUU , PTT ) |
---|
| 3 | |
---|
| 4 | !**** *LWTT* - LONGWAVE TRANSMISSION FUNCTIONS |
---|
| 5 | |
---|
| 6 | ! PURPOSE. |
---|
| 7 | ! -------- |
---|
| 8 | ! THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 9 | ! ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
| 10 | ! INTERVALS. |
---|
| 11 | |
---|
| 12 | !** INTERFACE. |
---|
| 13 | ! ---------- |
---|
| 14 | ! *LWTT* IS CALLED FROM *LWVN*, *LWVD*, *LWVB* |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | ! EXPLICIT ARGUMENTS : |
---|
| 18 | ! -------------------- |
---|
| 19 | ! ==== INPUTS === |
---|
| 20 | ! KND : ; WEIGHTING INDEX |
---|
| 21 | ! PUU : (KLON,NUA) ; ABSORBER AMOUNTS |
---|
| 22 | ! ==== OUTPUTS === |
---|
| 23 | ! PTT : (KLON,NTRA) ; TRANSMISSION FUNCTIONS |
---|
| 24 | |
---|
| 25 | ! IMPLICIT ARGUMENTS : NONE |
---|
| 26 | ! -------------------- |
---|
| 27 | |
---|
| 28 | ! METHOD. |
---|
| 29 | ! ------- |
---|
| 30 | |
---|
| 31 | ! 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
| 32 | ! COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
| 33 | ! 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
| 34 | ! 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
| 35 | ! A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
| 36 | |
---|
| 37 | ! EXTERNALS. |
---|
| 38 | ! ---------- |
---|
| 39 | |
---|
| 40 | ! NONE |
---|
| 41 | |
---|
| 42 | ! REFERENCE. |
---|
| 43 | ! ---------- |
---|
| 44 | |
---|
| 45 | ! SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 46 | ! ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 47 | |
---|
| 48 | ! AUTHOR. |
---|
| 49 | ! ------- |
---|
| 50 | ! JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 51 | |
---|
| 52 | ! MODIFICATIONS. |
---|
| 53 | ! -------------- |
---|
| 54 | ! ORIGINAL : 88-12-15 |
---|
| 55 | ! 97-04-18 JJ Morcrette Revised continuum |
---|
| 56 | |
---|
| 57 | !----------------------------------------------------------------------- |
---|
| 58 | |
---|
| 59 | #include "tsmbkind.h" |
---|
| 60 | |
---|
| 61 | USE YOELW , ONLY : NTRA ,NUA ,RPTYPE ,RETYPE ,& |
---|
| 62 | &RO1H ,RO2H ,RPIALF0 |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | IMPLICIT NONE |
---|
| 66 | |
---|
| 67 | |
---|
| 68 | ! DUMMY INTEGER SCALARS |
---|
| 69 | INTEGER_M :: KFDIA |
---|
| 70 | INTEGER_M :: KIDIA |
---|
| 71 | INTEGER_M :: KLON |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | ! ------------------------------------------------------------------ |
---|
| 76 | |
---|
| 77 | !* 0.1 ARGUMENTS |
---|
| 78 | ! --------- |
---|
| 79 | |
---|
| 80 | REAL_B :: PUU(KLON,NUA), PTT(KLON,NTRA), PGA(KLON,8,2), PGB(KLON,8,2) |
---|
| 81 | |
---|
| 82 | ! LOCAL INTEGER SCALARS |
---|
| 83 | INTEGER_M :: JA, JL |
---|
| 84 | |
---|
| 85 | ! LOCAL REAL SCALARS |
---|
| 86 | REAL_B :: ZA11, ZA12, ZAERCN, ZEU10, ZEU11, ZEU12,& |
---|
| 87 | &ZEU13, ZODH41, ZODH42, ZODN21, ZODN22, ZPU10, & |
---|
| 88 | &ZPU11, ZPU12, ZPU13, ZSQ1, ZSQ2, ZSQH41, & |
---|
| 89 | &ZSQH42, ZSQN21, ZSQN22, ZTO1, ZTO2, ZTTF11, & |
---|
| 90 | &ZTTF12, ZUU11, ZUU12, ZUXY, ZVXY, ZX, ZXCH4, & |
---|
| 91 | &ZXD, ZXN, ZXN2O, ZY, ZYCH4, ZYN2O, ZZ |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | ! ------------------------------------------------------------------ |
---|
| 95 | |
---|
| 96 | !* 0.2 LOCAL ARRAYS |
---|
| 97 | ! ------------ |
---|
| 98 | |
---|
| 99 | ! ------------------------------------------------------------------ |
---|
| 100 | !DIR$ VFUNCTION SQRTHF |
---|
| 101 | |
---|
| 102 | !* 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
| 103 | ! ----------------------------------------------- |
---|
| 104 | |
---|
| 105 | DO JA = 1 , 8 |
---|
| 106 | DO JL = KIDIA,KFDIA |
---|
| 107 | ZZ = SQRT(PUU(JL,JA)) |
---|
| 108 | ZXD = PGB( JL,JA,1) + ZZ* (PGB( JL,JA,2) + ZZ ) |
---|
| 109 | ZXN = PGA( JL,JA,1) + ZZ* (PGA( JL,JA,2) ) |
---|
| 110 | PTT(JL,JA) = ZXN / ZXD |
---|
| 111 | ENDDO |
---|
| 112 | ENDDO |
---|
| 113 | |
---|
| 114 | DO JL = KIDIA,KFDIA |
---|
| 115 | PTT(JL,3)=MAX(PTT(JL,3),_ZERO_) |
---|
| 116 | ENDDO |
---|
| 117 | ! ------------------------------------------------------------------ |
---|
| 118 | |
---|
| 119 | !* 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
| 120 | ! --------------------------------------------------- |
---|
| 121 | |
---|
| 122 | DO JL = KIDIA,KFDIA |
---|
| 123 | PTT(JL, 9) = PTT(JL, 8) |
---|
| 124 | |
---|
| 125 | !- CONTINUUM ABSORPTION: E- AND P-TYPE (from Giorgetta and Wild, 1997) |
---|
| 126 | |
---|
| 127 | ZPU10 = RPTYPE(1) * PUU(JL,10) |
---|
| 128 | ZPU11 = RPTYPE(2) * PUU(JL,10) |
---|
| 129 | ZPU12 = RPTYPE(3) * PUU(JL,10) |
---|
| 130 | ZPU13 = RPTYPE(4) * PUU(JL,10) |
---|
| 131 | ZEU10 = RETYPE(1) * PUU(JL,11) |
---|
| 132 | ZEU11 = RETYPE(2) * PUU(JL,11) |
---|
| 133 | ZEU12 = RETYPE(3) * PUU(JL,11) |
---|
| 134 | ZEU13 = RETYPE(4) * PUU(JL,11) |
---|
| 135 | |
---|
| 136 | !- OZONE ABSORPTION |
---|
| 137 | |
---|
| 138 | ZX = PUU(JL,12) |
---|
| 139 | ZY = PUU(JL,13) |
---|
| 140 | ZUXY = 4._JPRB * ZX * ZX / (RPIALF0 * ZY) |
---|
| 141 | ZSQ1 = SQRT(_ONE_ + RO1H * ZUXY ) - _ONE_ |
---|
| 142 | ZSQ2 = SQRT(_ONE_ + RO2H * ZUXY ) - _ONE_ |
---|
| 143 | ZVXY = RPIALF0 * ZY / (_TWO_ * ZX) |
---|
| 144 | ZAERCN = PUU(JL,17) + ZEU12 + ZPU12 |
---|
| 145 | ZTO1 = EXP( - ZVXY * ZSQ1 - ZAERCN ) |
---|
| 146 | ZTO2 = EXP( - ZVXY * ZSQ2 - ZAERCN ) |
---|
| 147 | |
---|
| 148 | !-- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
| 149 | |
---|
| 150 | !* CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 151 | |
---|
| 152 | ZXCH4 = PUU(JL,19) |
---|
| 153 | ZYCH4 = PUU(JL,20) |
---|
| 154 | ZUXY = 4._JPRB * ZXCH4*ZXCH4/(0.103_JPRB*ZYCH4) |
---|
| 155 | ZSQH41 = SQRT(_ONE_ + 33.7_JPRB * ZUXY) - _ONE_ |
---|
| 156 | ZVXY = 0.103_JPRB * ZYCH4 / (_TWO_ * ZXCH4) |
---|
| 157 | ZODH41 = ZVXY * ZSQH41 |
---|
| 158 | |
---|
| 159 | !* N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 160 | |
---|
| 161 | ZXN2O = PUU(JL,21) |
---|
| 162 | ZYN2O = PUU(JL,22) |
---|
| 163 | ZUXY = 4._JPRB * ZXN2O*ZXN2O/(0.416_JPRB*ZYN2O) |
---|
| 164 | ZSQN21 = SQRT(_ONE_ + 21.3_JPRB * ZUXY) - _ONE_ |
---|
| 165 | ZVXY = 0.416_JPRB * ZYN2O / (_TWO_ * ZXN2O) |
---|
| 166 | ZODN21 = ZVXY * ZSQN21 |
---|
| 167 | |
---|
| 168 | !* CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 169 | |
---|
| 170 | ZUXY = 4._JPRB * ZXCH4*ZXCH4/(0.113_JPRB*ZYCH4) |
---|
| 171 | ZSQH42 = SQRT(_ONE_ + 400._JPRB * ZUXY) - _ONE_ |
---|
| 172 | ZVXY = 0.113_JPRB * ZYCH4 / (_TWO_ * ZXCH4) |
---|
| 173 | ZODH42 = ZVXY * ZSQH42 |
---|
| 174 | |
---|
| 175 | !* N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 176 | |
---|
| 177 | ZUXY = 4._JPRB * ZXN2O*ZXN2O/(0.197_JPRB*ZYN2O) |
---|
| 178 | ZSQN22 = SQRT(_ONE_ + 2000._JPRB * ZUXY) - _ONE_ |
---|
| 179 | ZVXY = 0.197_JPRB * ZYN2O / (_TWO_ * ZXN2O) |
---|
| 180 | ZODN22 = ZVXY * ZSQN22 |
---|
| 181 | |
---|
| 182 | !* CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 183 | |
---|
| 184 | ZA11 = _TWO_ * PUU(JL,23) * 4.404E+05_JPRB |
---|
| 185 | ZTTF11 = _ONE_ - ZA11 * 0.003225_JPRB |
---|
| 186 | |
---|
| 187 | !* CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 188 | |
---|
| 189 | ZA12 = _TWO_ * PUU(JL,24) * 6.7435E+05_JPRB |
---|
| 190 | ZTTF12 = _ONE_ - ZA12 * 0.003225_JPRB |
---|
| 191 | |
---|
| 192 | ZUU11 = - PUU(JL,15) - ZEU10 - ZPU10 |
---|
| 193 | ZUU12 = - PUU(JL,16) - ZEU11 - ZPU11 - ZODH41 - ZODN21 |
---|
| 194 | PTT(JL,10) = EXP( - PUU(JL,14) ) |
---|
| 195 | PTT(JL,11) = EXP( ZUU11 ) |
---|
| 196 | PTT(JL,12) = EXP( ZUU12 ) * ZTTF11 * ZTTF12 |
---|
| 197 | PTT(JL,13) = 0.7554_JPRB * ZTO1 + 0.2446_JPRB * ZTO2 |
---|
| 198 | PTT(JL,14) = PTT(JL,10) * EXP( - ZEU13 - ZPU13 ) |
---|
| 199 | PTT(JL,15) = EXP ( - PUU(JL,14) - ZODH42 - ZODN22 ) |
---|
| 200 | |
---|
| 201 | ENDDO |
---|
| 202 | |
---|
| 203 | RETURN |
---|
| 204 | END SUBROUTINE LWTT |
---|