| 1 | |
|---|
| 2 | ! $Id: wake.F90 2922 2017-06-29 15:45:27Z lguez $ |
|---|
| 3 | |
|---|
| 4 | SUBROUTINE wake(znatsurf, p, ph, pi, dtime, & |
|---|
| 5 | te0, qe0, omgb, & |
|---|
| 6 | dtdwn, dqdwn, amdwn, amup, dta, dqa, & |
|---|
| 7 | sigd_con, & |
|---|
| 8 | deltatw, deltaqw, sigmaw, wdens, & ! state variables |
|---|
| 9 | dth, hw, wape, fip, gfl, & |
|---|
| 10 | dtls, dqls, ktopw, omgbdth, dp_omgb, tu, qu, & |
|---|
| 11 | dtke, dqke, omg, dp_deltomg, spread, cstar, & |
|---|
| 12 | d_deltat_gw, & |
|---|
| 13 | d_deltatw2, d_deltaqw2, d_sigmaw2, d_wdens2) ! tendencies |
|---|
| 14 | |
|---|
| 15 | |
|---|
| 16 | ! ************************************************************** |
|---|
| 17 | ! * |
|---|
| 18 | ! WAKE * |
|---|
| 19 | ! retour a un Pupper fixe * |
|---|
| 20 | ! * |
|---|
| 21 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
|---|
| 22 | ! modified by : ROEHRIG Romain 01/29/2007 * |
|---|
| 23 | ! ************************************************************** |
|---|
| 24 | |
|---|
| 25 | USE ioipsl_getin_p_mod, ONLY : getin_p |
|---|
| 26 | USE dimphy |
|---|
| 27 | use mod_phys_lmdz_para |
|---|
| 28 | USE print_control_mod, ONLY: prt_level |
|---|
| 29 | IMPLICIT NONE |
|---|
| 30 | ! ============================================================================ |
|---|
| 31 | |
|---|
| 32 | |
|---|
| 33 | ! But : Decrire le comportement des poches froides apparaissant dans les |
|---|
| 34 | ! grands systemes convectifs, et fournir l'energie disponible pour |
|---|
| 35 | ! le declenchement de nouvelles colonnes convectives. |
|---|
| 36 | |
|---|
| 37 | ! State variables : |
|---|
| 38 | ! deltatw : temperature difference between wake and off-wake regions |
|---|
| 39 | ! deltaqw : specific humidity difference between wake and off-wake regions |
|---|
| 40 | ! sigmaw : fractional area covered by wakes. |
|---|
| 41 | ! wdens : number of wakes per unit area |
|---|
| 42 | |
|---|
| 43 | ! Variable de sortie : |
|---|
| 44 | |
|---|
| 45 | ! wape : WAke Potential Energy |
|---|
| 46 | ! fip : Front Incident Power (W/m2) - ALP |
|---|
| 47 | ! gfl : Gust Front Length per unit area (m-1) |
|---|
| 48 | ! dtls : large scale temperature tendency due to wake |
|---|
| 49 | ! dqls : large scale humidity tendency due to wake |
|---|
| 50 | ! hw : hauteur de la poche |
|---|
| 51 | ! dp_omgb : vertical gradient of large scale omega |
|---|
| 52 | ! wdens : densite de poches |
|---|
| 53 | ! omgbdth: flux of Delta_Theta transported by LS omega |
|---|
| 54 | ! dtKE : differential heating (wake - unpertubed) |
|---|
| 55 | ! dqKE : differential moistening (wake - unpertubed) |
|---|
| 56 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
|---|
| 57 | ! dp_deltomg : vertical gradient of omg (s-1) |
|---|
| 58 | ! spread : spreading term in d_t_wake and d_q_wake |
|---|
| 59 | ! deltatw : updated temperature difference (T_w-T_u). |
|---|
| 60 | ! deltaqw : updated humidity difference (q_w-q_u). |
|---|
| 61 | ! sigmaw : updated wake fractional area. |
|---|
| 62 | ! d_deltat_gw : delta T tendency due to GW |
|---|
| 63 | |
|---|
| 64 | ! Variables d'entree : |
|---|
| 65 | |
|---|
| 66 | ! aire : aire de la maille |
|---|
| 67 | ! te0 : temperature dans l'environnement (K) |
|---|
| 68 | ! qe0 : humidite dans l'environnement (kg/kg) |
|---|
| 69 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
|---|
| 70 | ! dtdwn: source de chaleur due aux descentes (K/s) |
|---|
| 71 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
|---|
| 72 | ! dta : source de chaleur due courants satures et detrain (K/s) |
|---|
| 73 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
|---|
| 74 | ! amdwn: flux de masse total des descentes, par unite de |
|---|
| 75 | ! surface de la maille (kg/m2/s) |
|---|
| 76 | ! amup : flux de masse total des ascendances, par unite de |
|---|
| 77 | ! surface de la maille (kg/m2/s) |
|---|
| 78 | ! p : pressions aux milieux des couches (Pa) |
|---|
| 79 | ! ph : pressions aux interfaces (Pa) |
|---|
| 80 | ! pi : (p/p_0)**kapa (adim) |
|---|
| 81 | ! dtime: increment temporel (s) |
|---|
| 82 | |
|---|
| 83 | ! Variables internes : |
|---|
| 84 | |
|---|
| 85 | ! rhow : masse volumique de la poche froide |
|---|
| 86 | ! rho : environment density at P levels |
|---|
| 87 | ! rhoh : environment density at Ph levels |
|---|
| 88 | ! te : environment temperature | may change within |
|---|
| 89 | ! qe : environment humidity | sub-time-stepping |
|---|
| 90 | ! the : environment potential temperature |
|---|
| 91 | ! thu : potential temperature in undisturbed area |
|---|
| 92 | ! tu : temperature in undisturbed area |
|---|
| 93 | ! qu : humidity in undisturbed area |
|---|
| 94 | ! dp_omgb: vertical gradient og LS omega |
|---|
| 95 | ! omgbw : wake average vertical omega |
|---|
| 96 | ! dp_omgbw: vertical gradient of omgbw |
|---|
| 97 | ! omgbdq : flux of Delta_q transported by LS omega |
|---|
| 98 | ! dth : potential temperature diff. wake-undist. |
|---|
| 99 | ! th1 : first pot. temp. for vertical advection (=thu) |
|---|
| 100 | ! th2 : second pot. temp. for vertical advection (=thw) |
|---|
| 101 | ! q1 : first humidity for vertical advection |
|---|
| 102 | ! q2 : second humidity for vertical advection |
|---|
| 103 | ! d_deltatw : terme de redistribution pour deltatw |
|---|
| 104 | ! d_deltaqw : terme de redistribution pour deltaqw |
|---|
| 105 | ! deltatw0 : deltatw initial |
|---|
| 106 | ! deltaqw0 : deltaqw initial |
|---|
| 107 | ! hw0 : hw initial |
|---|
| 108 | ! sigmaw0: sigmaw initial |
|---|
| 109 | ! amflux : horizontal mass flux through wake boundary |
|---|
| 110 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
|---|
| 111 | ! unit length (2D), at the beginning of each time step |
|---|
| 112 | ! Tgw : 1 sur la période de onde de gravité |
|---|
| 113 | ! Cgw : vitesse de propagation de onde de gravité |
|---|
| 114 | ! LL : distance entre 2 poches |
|---|
| 115 | |
|---|
| 116 | ! ------------------------------------------------------------------------- |
|---|
| 117 | ! Déclaration de variables |
|---|
| 118 | ! ------------------------------------------------------------------------- |
|---|
| 119 | |
|---|
| 120 | include "YOMCST.h" |
|---|
| 121 | include "cvthermo.h" |
|---|
| 122 | |
|---|
| 123 | ! Arguments en entree |
|---|
| 124 | ! -------------------- |
|---|
| 125 | |
|---|
| 126 | INTEGER, DIMENSION (klon), INTENT(IN) :: znatsurf |
|---|
| 127 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
|---|
| 128 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph |
|---|
| 129 | REAL, DIMENSION (klon, klev), INTENT(IN) :: omgb |
|---|
| 130 | REAL, INTENT(IN) :: dtime |
|---|
| 131 | REAL, DIMENSION (klon, klev), INTENT(IN) :: te0, qe0 |
|---|
| 132 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
|---|
| 133 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
|---|
| 134 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
|---|
| 135 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
|---|
| 136 | |
|---|
| 137 | ! |
|---|
| 138 | ! Input/Output |
|---|
| 139 | ! State variables |
|---|
| 140 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
|---|
| 141 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
|---|
| 142 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens |
|---|
| 143 | |
|---|
| 144 | ! Sorties |
|---|
| 145 | ! -------- |
|---|
| 146 | |
|---|
| 147 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
|---|
| 148 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
|---|
| 149 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
|---|
| 150 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
|---|
| 151 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: spread |
|---|
| 152 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: omgbdth, omg |
|---|
| 153 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
|---|
| 154 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
|---|
| 155 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
|---|
| 156 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
|---|
| 157 | ! Tendencies of state variables |
|---|
| 158 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
|---|
| 159 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw2, d_wdens2 |
|---|
| 160 | |
|---|
| 161 | ! Variables internes |
|---|
| 162 | ! ------------------- |
|---|
| 163 | |
|---|
| 164 | ! Variables à fixer |
|---|
| 165 | INTEGER, SAVE :: igout |
|---|
| 166 | !$OMP THREADPRIVATE(igout) |
|---|
| 167 | REAL :: alon |
|---|
| 168 | LOGICAL, SAVE :: first = .TRUE. |
|---|
| 169 | !$OMP THREADPRIVATE(first) |
|---|
| 170 | !jyg< |
|---|
| 171 | !! REAL, SAVE :: stark, wdens_ref, coefgw, alpk |
|---|
| 172 | REAL, SAVE, DIMENSION(2) :: wdens_ref |
|---|
| 173 | REAL, SAVE :: stark, coefgw, alpk |
|---|
| 174 | !>jyg |
|---|
| 175 | REAL, SAVE :: crep_upper, crep_sol |
|---|
| 176 | !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) |
|---|
| 177 | |
|---|
| 178 | LOGICAL, SAVE :: flag_wk_check_trgl |
|---|
| 179 | !$OMP THREADPRIVATE(flag_wk_check_trgl) |
|---|
| 180 | INTEGER, SAVE :: iflag_wk_check_trgl |
|---|
| 181 | !$OMP THREADPRIVATE(iflag_wk_check_trgl) |
|---|
| 182 | |
|---|
| 183 | REAL :: delta_t_min |
|---|
| 184 | INTEGER :: nsub |
|---|
| 185 | REAL :: dtimesub |
|---|
| 186 | REAL :: sigmad, hwmin, wapecut |
|---|
| 187 | REAL :: sigmaw_max |
|---|
| 188 | REAL :: dens_rate |
|---|
| 189 | REAL :: wdens0 |
|---|
| 190 | ! IM 080208 |
|---|
| 191 | LOGICAL, DIMENSION (klon) :: gwake |
|---|
| 192 | |
|---|
| 193 | ! Variables de sauvegarde |
|---|
| 194 | REAL, DIMENSION (klon, klev) :: deltatw0 |
|---|
| 195 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
|---|
| 196 | REAL, DIMENSION (klon, klev) :: te, qe |
|---|
| 197 | REAL, DIMENSION (klon) :: sigmaw0 |
|---|
| 198 | !! REAL, DIMENSION (klon) :: sigmaw1 |
|---|
| 199 | |
|---|
| 200 | ! Variables pour les GW |
|---|
| 201 | REAL, DIMENSION (klon) :: ll |
|---|
| 202 | REAL, DIMENSION (klon, klev) :: n2 |
|---|
| 203 | REAL, DIMENSION (klon, klev) :: cgw |
|---|
| 204 | REAL, DIMENSION (klon, klev) :: tgw |
|---|
| 205 | |
|---|
| 206 | ! Variables liées au calcul de hw |
|---|
| 207 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
|---|
| 208 | REAL, DIMENSION (klon) :: sum_dth |
|---|
| 209 | REAL, DIMENSION (klon) :: dthmin |
|---|
| 210 | REAL, DIMENSION (klon) :: z, dz, hw0 |
|---|
| 211 | INTEGER, DIMENSION (klon) :: ktop, kupper |
|---|
| 212 | |
|---|
| 213 | ! Variables liées au test de la forme triangulaire du profil de Delta_theta |
|---|
| 214 | REAL, DIMENSION (klon) :: sum_half_dth |
|---|
| 215 | REAL, DIMENSION (klon) :: dz_half |
|---|
| 216 | |
|---|
| 217 | ! Sub-timestep tendencies and related variables |
|---|
| 218 | REAL, DIMENSION (klon, klev) :: d_deltatw, d_deltaqw |
|---|
| 219 | REAL, DIMENSION (klon, klev) :: d_te, d_qe |
|---|
| 220 | REAL, DIMENSION (klon) :: d_sigmaw, alpha |
|---|
| 221 | REAL, DIMENSION (klon) :: q0_min, q1_min |
|---|
| 222 | LOGICAL, DIMENSION (klon) :: wk_adv, ok_qx_qw |
|---|
| 223 | REAL, SAVE :: epsilon |
|---|
| 224 | !$OMP THREADPRIVATE(epsilon) |
|---|
| 225 | DATA epsilon/1.E-15/ |
|---|
| 226 | |
|---|
| 227 | ! Autres variables internes |
|---|
| 228 | INTEGER ::isubstep, k, i |
|---|
| 229 | |
|---|
| 230 | REAL :: sigmaw_targ |
|---|
| 231 | |
|---|
| 232 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
|---|
| 233 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
|---|
| 234 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
|---|
| 235 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
|---|
| 236 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
|---|
| 237 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
|---|
| 238 | |
|---|
| 239 | REAL, DIMENSION (klon, klev) :: rho, rhow |
|---|
| 240 | REAL, DIMENSION (klon, klev+1) :: rhoh |
|---|
| 241 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
|---|
| 242 | REAL, DIMENSION (klon, klev) :: zh |
|---|
| 243 | REAL, DIMENSION (klon, klev+1) :: zhh |
|---|
| 244 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
|---|
| 245 | |
|---|
| 246 | REAL, DIMENSION (klon, klev) :: the, thu |
|---|
| 247 | |
|---|
| 248 | REAL, DIMENSION (klon, klev) :: omgbw |
|---|
| 249 | REAL, DIMENSION (klon) :: pupper |
|---|
| 250 | REAL, DIMENSION (klon) :: omgtop |
|---|
| 251 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
|---|
| 252 | REAL, DIMENSION (klon) :: ztop, dztop |
|---|
| 253 | REAL, DIMENSION (klon, klev) :: alpha_up |
|---|
| 254 | |
|---|
| 255 | REAL, DIMENSION (klon) :: rre1, rre2 |
|---|
| 256 | REAL :: rrd1, rrd2 |
|---|
| 257 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
|---|
| 258 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
|---|
| 259 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
|---|
| 260 | REAL, DIMENSION (klon, klev) :: omgbdq |
|---|
| 261 | |
|---|
| 262 | REAL, DIMENSION (klon) :: ff, gg |
|---|
| 263 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
|---|
| 264 | |
|---|
| 265 | REAL, DIMENSION (klon, klev) :: crep |
|---|
| 266 | |
|---|
| 267 | REAL, DIMENSION (klon, klev) :: ppi |
|---|
| 268 | |
|---|
| 269 | ! cc nrlmd |
|---|
| 270 | REAL, DIMENSION (klon) :: death_rate |
|---|
| 271 | !! REAL, DIMENSION (klon) :: nat_rate |
|---|
| 272 | REAL, DIMENSION (klon, klev) :: entr |
|---|
| 273 | REAL, DIMENSION (klon, klev) :: detr |
|---|
| 274 | |
|---|
| 275 | REAL, DIMENSION(klon) :: sigmaw_in ! pour les prints |
|---|
| 276 | |
|---|
| 277 | ! ------------------------------------------------------------------------- |
|---|
| 278 | ! Initialisations |
|---|
| 279 | ! ------------------------------------------------------------------------- |
|---|
| 280 | |
|---|
| 281 | ! print*, 'wake initialisations' |
|---|
| 282 | |
|---|
| 283 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
|---|
| 284 | ! ------------------------------------------------------------------------- |
|---|
| 285 | |
|---|
| 286 | DATA wapecut, sigmad, hwmin/5., .02, 10./ |
|---|
| 287 | ! cc nrlmd |
|---|
| 288 | DATA sigmaw_max/0.4/ |
|---|
| 289 | DATA dens_rate/0.1/ |
|---|
| 290 | ! cc |
|---|
| 291 | ! Longueur de maille (en m) |
|---|
| 292 | ! ------------------------------------------------------------------------- |
|---|
| 293 | |
|---|
| 294 | ! ALON = 3.e5 |
|---|
| 295 | alon = 1.E6 |
|---|
| 296 | |
|---|
| 297 | |
|---|
| 298 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
|---|
| 299 | |
|---|
| 300 | ! coefgw : Coefficient pour les ondes de gravité |
|---|
| 301 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
|---|
| 302 | ! wdens : Densité de poche froide par maille |
|---|
| 303 | ! ------------------------------------------------------------------------- |
|---|
| 304 | |
|---|
| 305 | ! cc nrlmd coefgw=10 |
|---|
| 306 | ! coefgw=1 |
|---|
| 307 | ! wdens0 = 1.0/(alon**2) |
|---|
| 308 | ! cc nrlmd wdens = 1.0/(alon**2) |
|---|
| 309 | ! cc nrlmd stark = 0.50 |
|---|
| 310 | ! CRtest |
|---|
| 311 | ! cc nrlmd alpk=0.1 |
|---|
| 312 | ! alpk = 1.0 |
|---|
| 313 | ! alpk = 0.5 |
|---|
| 314 | ! alpk = 0.05 |
|---|
| 315 | |
|---|
| 316 | if (first) then |
|---|
| 317 | |
|---|
| 318 | igout = klon/2+1/klon |
|---|
| 319 | |
|---|
| 320 | crep_upper = 0.9 |
|---|
| 321 | crep_sol = 1.0 |
|---|
| 322 | |
|---|
| 323 | ! cc nrlmd Lecture du fichier wake_param.data |
|---|
| 324 | stark=0.33 |
|---|
| 325 | CALL getin_p('stark',stark) |
|---|
| 326 | alpk=0.25 |
|---|
| 327 | CALL getin_p('alpk',alpk) |
|---|
| 328 | !jyg< |
|---|
| 329 | !! wdens_ref=8.E-12 |
|---|
| 330 | !! CALL getin_p('wdens_ref',wdens_ref) |
|---|
| 331 | wdens_ref(1)=8.E-12 |
|---|
| 332 | wdens_ref(2)=8.E-12 |
|---|
| 333 | CALL getin_p('wdens_ref_o',wdens_ref(1)) !wake number per unit area ; ocean |
|---|
| 334 | CALL getin_p('wdens_ref_l',wdens_ref(2)) !wake number per unit area ; land |
|---|
| 335 | !>jyg |
|---|
| 336 | coefgw=4. |
|---|
| 337 | CALL getin_p('coefgw',coefgw) |
|---|
| 338 | |
|---|
| 339 | WRITE(*,*) 'stark=', stark |
|---|
| 340 | WRITE(*,*) 'alpk=', alpk |
|---|
| 341 | !jyg< |
|---|
| 342 | !! WRITE(*,*) 'wdens_ref=', wdens_ref |
|---|
| 343 | WRITE(*,*) 'wdens_ref_o=', wdens_ref(1) |
|---|
| 344 | WRITE(*,*) 'wdens_ref_l=', wdens_ref(2) |
|---|
| 345 | !>jyg |
|---|
| 346 | WRITE(*,*) 'coefgw=', coefgw |
|---|
| 347 | |
|---|
| 348 | flag_wk_check_trgl=.false. |
|---|
| 349 | CALL getin_p('flag_wk_check_trgl ', flag_wk_check_trgl) |
|---|
| 350 | WRITE(*,*) 'flag_wk_check_trgl=', flag_wk_check_trgl |
|---|
| 351 | WRITE(*,*) 'flag_wk_check_trgl OBSOLETE. Utilisr iflag_wk_check_trgl plutot' |
|---|
| 352 | iflag_wk_check_trgl=0 ; IF (flag_wk_check_trgl) iflag_wk_check_trgl=1 |
|---|
| 353 | CALL getin_p('iflag_wk_check_trgl ', iflag_wk_check_trgl) |
|---|
| 354 | WRITE(*,*) 'iflag_wk_check_trgl=', iflag_wk_check_trgl |
|---|
| 355 | |
|---|
| 356 | first=.false. |
|---|
| 357 | endif |
|---|
| 358 | |
|---|
| 359 | ! Initialisation de toutes des densites a wdens_ref. |
|---|
| 360 | ! Les densites peuvent evoluer si les poches debordent |
|---|
| 361 | ! (voir au tout debut de la boucle sur les substeps) |
|---|
| 362 | !jyg< |
|---|
| 363 | !! wdens(:) = wdens_ref |
|---|
| 364 | DO i = 1,klon |
|---|
| 365 | wdens(i) = wdens_ref(znatsurf(i)+1) |
|---|
| 366 | ENDDO |
|---|
| 367 | !>jyg |
|---|
| 368 | |
|---|
| 369 | ! print*,'stark',stark |
|---|
| 370 | ! print*,'alpk',alpk |
|---|
| 371 | ! print*,'wdens',wdens |
|---|
| 372 | ! print*,'coefgw',coefgw |
|---|
| 373 | ! cc |
|---|
| 374 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
|---|
| 375 | ! ------------------------------------------------------------------------- |
|---|
| 376 | |
|---|
| 377 | delta_t_min = 0.2 |
|---|
| 378 | |
|---|
| 379 | ! 1. - Save initial values, initialize tendencies, initialize output fields |
|---|
| 380 | ! ------------------------------------------------------------------------ |
|---|
| 381 | |
|---|
| 382 | !jyg< |
|---|
| 383 | !! DO k = 1, klev |
|---|
| 384 | !! DO i = 1, klon |
|---|
| 385 | !! ppi(i, k) = pi(i, k) |
|---|
| 386 | !! deltatw0(i, k) = deltatw(i, k) |
|---|
| 387 | !! deltaqw0(i, k) = deltaqw(i, k) |
|---|
| 388 | !! te(i, k) = te0(i, k) |
|---|
| 389 | !! qe(i, k) = qe0(i, k) |
|---|
| 390 | !! dtls(i, k) = 0. |
|---|
| 391 | !! dqls(i, k) = 0. |
|---|
| 392 | !! d_deltat_gw(i, k) = 0. |
|---|
| 393 | !! d_te(i, k) = 0. |
|---|
| 394 | !! d_qe(i, k) = 0. |
|---|
| 395 | !! d_deltatw(i, k) = 0. |
|---|
| 396 | !! d_deltaqw(i, k) = 0. |
|---|
| 397 | !! ! IM 060508 beg |
|---|
| 398 | !! d_deltatw2(i, k) = 0. |
|---|
| 399 | !! d_deltaqw2(i, k) = 0. |
|---|
| 400 | !! ! IM 060508 end |
|---|
| 401 | !! END DO |
|---|
| 402 | !! END DO |
|---|
| 403 | ppi(:,:) = pi(:,:) |
|---|
| 404 | deltatw0(:,:) = deltatw(:,:) |
|---|
| 405 | deltaqw0(:,:) = deltaqw(:,:) |
|---|
| 406 | te(:,:) = te0(:,:) |
|---|
| 407 | qe(:,:) = qe0(:,:) |
|---|
| 408 | dtls(:,:) = 0. |
|---|
| 409 | dqls(:,:) = 0. |
|---|
| 410 | d_deltat_gw(:,:) = 0. |
|---|
| 411 | d_te(:,:) = 0. |
|---|
| 412 | d_qe(:,:) = 0. |
|---|
| 413 | d_deltatw(:,:) = 0. |
|---|
| 414 | d_deltaqw(:,:) = 0. |
|---|
| 415 | d_deltatw2(:,:) = 0. |
|---|
| 416 | d_deltaqw2(:,:) = 0. |
|---|
| 417 | !! DO i = 1, klon |
|---|
| 418 | !! sigmaw_in(i) = sigmaw(i) |
|---|
| 419 | !! END DO |
|---|
| 420 | sigmaw_in(:) = sigmaw(:) |
|---|
| 421 | !>jyg |
|---|
| 422 | |
|---|
| 423 | ! sigmaw1=sigmaw |
|---|
| 424 | ! IF (sigd_con.GT.sigmaw1) THEN |
|---|
| 425 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
|---|
| 426 | ! ENDIF |
|---|
| 427 | DO i = 1, klon |
|---|
| 428 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
|---|
| 429 | !jyg< |
|---|
| 430 | !! sigmaw(i) = amax1(sigmaw(i), sigmad) |
|---|
| 431 | !! sigmaw(i) = amin1(sigmaw(i), 0.99) |
|---|
| 432 | sigmaw_targ = min(max(sigmaw(i), sigmad),0.99) |
|---|
| 433 | d_sigmaw2(i) = sigmaw_targ - sigmaw(i) |
|---|
| 434 | sigmaw(i) = sigmaw_targ |
|---|
| 435 | !>jyg |
|---|
| 436 | sigmaw0(i) = sigmaw(i) |
|---|
| 437 | wape(i) = 0. |
|---|
| 438 | wape2(i) = 0. |
|---|
| 439 | d_sigmaw(i) = 0. |
|---|
| 440 | d_wdens2(i) = 0. |
|---|
| 441 | ktopw(i) = 0 |
|---|
| 442 | END DO |
|---|
| 443 | ! |
|---|
| 444 | !<jyg |
|---|
| 445 | dth(:,:) = 0. |
|---|
| 446 | tu(:,:) = 0. |
|---|
| 447 | qu(:,:) = 0. |
|---|
| 448 | dtke(:,:) = 0. |
|---|
| 449 | dqke(:,:) = 0. |
|---|
| 450 | spread(:,:) = 0. |
|---|
| 451 | omgbdth(:,:) = 0. |
|---|
| 452 | omg(:,:) = 0. |
|---|
| 453 | dp_omgb(:,:) = 0. |
|---|
| 454 | dp_deltomg(:,:) = 0. |
|---|
| 455 | hw(:) = 0. |
|---|
| 456 | wape(:) = 0. |
|---|
| 457 | fip(:) = 0. |
|---|
| 458 | gfl(:) = 0. |
|---|
| 459 | cstar(:) = 0. |
|---|
| 460 | ktopw(:) = 0 |
|---|
| 461 | ! |
|---|
| 462 | ! Vertical advection local variables |
|---|
| 463 | omgbw(:,:) = 0. |
|---|
| 464 | omgtop(:) = 0 |
|---|
| 465 | dp_omgbw(:,:) = 0. |
|---|
| 466 | omgbdq(:,:) = 0. |
|---|
| 467 | !>jyg |
|---|
| 468 | ! |
|---|
| 469 | IF (prt_level>=10) THEN |
|---|
| 470 | PRINT *, 'wake-1, sigmaw(igout) ', sigmaw(igout) |
|---|
| 471 | PRINT *, 'wake-1, deltatw(igout,k) ', (k,deltatw(igout,k), k=1,klev) |
|---|
| 472 | PRINT *, 'wake-1, deltaqw(igout,k) ', (k,deltaqw(igout,k), k=1,klev) |
|---|
| 473 | PRINT *, 'wake-1, dowwdraughts, amdwn(igout,k) ', (k,amdwn(igout,k), k=1,klev) |
|---|
| 474 | PRINT *, 'wake-1, dowwdraughts, dtdwn(igout,k) ', (k,dtdwn(igout,k), k=1,klev) |
|---|
| 475 | PRINT *, 'wake-1, dowwdraughts, dqdwn(igout,k) ', (k,dqdwn(igout,k), k=1,klev) |
|---|
| 476 | PRINT *, 'wake-1, updraughts, amup(igout,k) ', (k,amup(igout,k), k=1,klev) |
|---|
| 477 | PRINT *, 'wake-1, updraughts, dta(igout,k) ', (k,dta(igout,k), k=1,klev) |
|---|
| 478 | PRINT *, 'wake-1, updraughts, dqa(igout,k) ', (k,dqa(igout,k), k=1,klev) |
|---|
| 479 | ENDIF |
|---|
| 480 | |
|---|
| 481 | ! 2. - Prognostic part |
|---|
| 482 | ! -------------------- |
|---|
| 483 | |
|---|
| 484 | |
|---|
| 485 | ! 2.1 - Undisturbed area and Wake integrals |
|---|
| 486 | ! --------------------------------------------------------- |
|---|
| 487 | |
|---|
| 488 | DO i = 1, klon |
|---|
| 489 | z(i) = 0. |
|---|
| 490 | ktop(i) = 0 |
|---|
| 491 | kupper(i) = 0 |
|---|
| 492 | sum_thu(i) = 0. |
|---|
| 493 | sum_tu(i) = 0. |
|---|
| 494 | sum_qu(i) = 0. |
|---|
| 495 | sum_thvu(i) = 0. |
|---|
| 496 | sum_dth(i) = 0. |
|---|
| 497 | sum_dq(i) = 0. |
|---|
| 498 | sum_rho(i) = 0. |
|---|
| 499 | sum_dtdwn(i) = 0. |
|---|
| 500 | sum_dqdwn(i) = 0. |
|---|
| 501 | |
|---|
| 502 | av_thu(i) = 0. |
|---|
| 503 | av_tu(i) = 0. |
|---|
| 504 | av_qu(i) = 0. |
|---|
| 505 | av_thvu(i) = 0. |
|---|
| 506 | av_dth(i) = 0. |
|---|
| 507 | av_dq(i) = 0. |
|---|
| 508 | av_rho(i) = 0. |
|---|
| 509 | av_dtdwn(i) = 0. |
|---|
| 510 | av_dqdwn(i) = 0. |
|---|
| 511 | END DO |
|---|
| 512 | |
|---|
| 513 | ! Distance between wakes |
|---|
| 514 | DO i = 1, klon |
|---|
| 515 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
|---|
| 516 | END DO |
|---|
| 517 | ! Potential temperatures and humidity |
|---|
| 518 | ! ---------------------------------------------------------- |
|---|
| 519 | DO k = 1, klev |
|---|
| 520 | DO i = 1, klon |
|---|
| 521 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
|---|
| 522 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
|---|
| 523 | ! write(*,*)'wake 2',rho(i,k) |
|---|
| 524 | IF (k==1) THEN |
|---|
| 525 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
|---|
| 526 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
|---|
| 527 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
|---|
| 528 | zhh(i, k) = 0 |
|---|
| 529 | ELSE |
|---|
| 530 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
|---|
| 531 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
|---|
| 532 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
|---|
| 533 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
|---|
| 534 | END IF |
|---|
| 535 | ! write(*,*)'wake 7',ppi(i,k) |
|---|
| 536 | the(i, k) = te(i, k)/ppi(i, k) |
|---|
| 537 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
|---|
| 538 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
|---|
| 539 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
|---|
| 540 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
|---|
| 541 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
|---|
| 542 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 543 | END DO |
|---|
| 544 | END DO |
|---|
| 545 | |
|---|
| 546 | DO k = 1, klev - 1 |
|---|
| 547 | DO i = 1, klon |
|---|
| 548 | IF (k==1) THEN |
|---|
| 549 | n2(i, k) = 0 |
|---|
| 550 | ELSE |
|---|
| 551 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i,k-1))/ & |
|---|
| 552 | (p(i,k+1)-p(i,k-1))) |
|---|
| 553 | END IF |
|---|
| 554 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
|---|
| 555 | |
|---|
| 556 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
|---|
| 557 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
|---|
| 558 | END DO |
|---|
| 559 | END DO |
|---|
| 560 | |
|---|
| 561 | DO i = 1, klon |
|---|
| 562 | n2(i, klev) = 0 |
|---|
| 563 | zh(i, klev) = 0 |
|---|
| 564 | cgw(i, klev) = 0 |
|---|
| 565 | tgw(i, klev) = 0 |
|---|
| 566 | END DO |
|---|
| 567 | |
|---|
| 568 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
|---|
| 569 | ! ----------------------------------------------------------------- |
|---|
| 570 | |
|---|
| 571 | DO k = 1, klev |
|---|
| 572 | DO i = 1, klon |
|---|
| 573 | epaisseur1(i, k) = 0. |
|---|
| 574 | epaisseur2(i, k) = 0. |
|---|
| 575 | END DO |
|---|
| 576 | END DO |
|---|
| 577 | |
|---|
| 578 | DO i = 1, klon |
|---|
| 579 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
|---|
| 580 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
|---|
| 581 | rhow_moyen(i, 1) = rhow(i, 1) |
|---|
| 582 | END DO |
|---|
| 583 | |
|---|
| 584 | DO k = 2, klev |
|---|
| 585 | DO i = 1, klon |
|---|
| 586 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
|---|
| 587 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
|---|
| 588 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
|---|
| 589 | epaisseur1(i,k))/epaisseur2(i, k) |
|---|
| 590 | END DO |
|---|
| 591 | END DO |
|---|
| 592 | |
|---|
| 593 | |
|---|
| 594 | ! Choose an integration bound well above wake top |
|---|
| 595 | ! ----------------------------------------------------------------- |
|---|
| 596 | |
|---|
| 597 | ! Pupper = 50000. ! melting level |
|---|
| 598 | ! Pupper = 60000. |
|---|
| 599 | ! Pupper = 80000. ! essais pour case_e |
|---|
| 600 | DO i = 1, klon |
|---|
| 601 | pupper(i) = 0.6*ph(i, 1) |
|---|
| 602 | pupper(i) = max(pupper(i), 45000.) |
|---|
| 603 | ! cc Pupper(i) = 60000. |
|---|
| 604 | END DO |
|---|
| 605 | |
|---|
| 606 | |
|---|
| 607 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
|---|
| 608 | ! -------------------------------------------------------- |
|---|
| 609 | |
|---|
| 610 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
|---|
| 611 | |
|---|
| 612 | DO i = 1, klon |
|---|
| 613 | ptop_provis(i) = ph(i, 1) |
|---|
| 614 | END DO |
|---|
| 615 | DO k = 2, klev |
|---|
| 616 | DO i = 1, klon |
|---|
| 617 | |
|---|
| 618 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
|---|
| 619 | |
|---|
| 620 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
|---|
| 621 | ptop_provis(i)==ph(i,1)) THEN |
|---|
| 622 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)- & |
|---|
| 623 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
|---|
| 624 | END IF |
|---|
| 625 | END DO |
|---|
| 626 | END DO |
|---|
| 627 | |
|---|
| 628 | ! -2/ dth integral |
|---|
| 629 | |
|---|
| 630 | DO i = 1, klon |
|---|
| 631 | sum_dth(i) = 0. |
|---|
| 632 | dthmin(i) = -delta_t_min |
|---|
| 633 | z(i) = 0. |
|---|
| 634 | END DO |
|---|
| 635 | |
|---|
| 636 | DO k = 1, klev |
|---|
| 637 | DO i = 1, klon |
|---|
| 638 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
|---|
| 639 | IF (dz(i)>0) THEN |
|---|
| 640 | z(i) = z(i) + dz(i) |
|---|
| 641 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 642 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
|---|
| 643 | END IF |
|---|
| 644 | END DO |
|---|
| 645 | END DO |
|---|
| 646 | |
|---|
| 647 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
|---|
| 648 | |
|---|
| 649 | DO i = 1, klon |
|---|
| 650 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
|---|
| 651 | hw0(i) = amax1(hwmin, hw0(i)) |
|---|
| 652 | END DO |
|---|
| 653 | |
|---|
| 654 | ! -4/ now, get Ptop |
|---|
| 655 | |
|---|
| 656 | DO i = 1, klon |
|---|
| 657 | z(i) = 0. |
|---|
| 658 | ptop(i) = ph(i, 1) |
|---|
| 659 | END DO |
|---|
| 660 | |
|---|
| 661 | DO k = 1, klev |
|---|
| 662 | DO i = 1, klon |
|---|
| 663 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
|---|
| 664 | IF (dz(i)>0) THEN |
|---|
| 665 | z(i) = z(i) + dz(i) |
|---|
| 666 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
|---|
| 667 | END IF |
|---|
| 668 | END DO |
|---|
| 669 | END DO |
|---|
| 670 | |
|---|
| 671 | IF (prt_level>=10) THEN |
|---|
| 672 | PRINT *, 'wake-2, ptop_provis(igout), ptop(igout) ', ptop_provis(igout), ptop(igout) |
|---|
| 673 | ENDIF |
|---|
| 674 | |
|---|
| 675 | |
|---|
| 676 | ! -5/ Determination de ktop et kupper |
|---|
| 677 | |
|---|
| 678 | DO k = klev, 1, -1 |
|---|
| 679 | DO i = 1, klon |
|---|
| 680 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
|---|
| 681 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
|---|
| 682 | END DO |
|---|
| 683 | END DO |
|---|
| 684 | |
|---|
| 685 | ! On evite kupper = 1 et kupper = klev |
|---|
| 686 | DO i = 1, klon |
|---|
| 687 | kupper(i) = max(kupper(i), 2) |
|---|
| 688 | kupper(i) = min(kupper(i), klev-1) |
|---|
| 689 | END DO |
|---|
| 690 | |
|---|
| 691 | |
|---|
| 692 | ! -6/ Correct ktop and ptop |
|---|
| 693 | |
|---|
| 694 | DO i = 1, klon |
|---|
| 695 | ptop_new(i) = ptop(i) |
|---|
| 696 | END DO |
|---|
| 697 | DO k = klev, 2, -1 |
|---|
| 698 | DO i = 1, klon |
|---|
| 699 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
|---|
| 700 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
|---|
| 701 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
|---|
| 702 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
|---|
| 703 | END IF |
|---|
| 704 | END DO |
|---|
| 705 | END DO |
|---|
| 706 | |
|---|
| 707 | DO i = 1, klon |
|---|
| 708 | ptop(i) = ptop_new(i) |
|---|
| 709 | END DO |
|---|
| 710 | |
|---|
| 711 | DO k = klev, 1, -1 |
|---|
| 712 | DO i = 1, klon |
|---|
| 713 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
|---|
| 714 | END DO |
|---|
| 715 | END DO |
|---|
| 716 | |
|---|
| 717 | IF (prt_level>=10) THEN |
|---|
| 718 | PRINT *, 'wake-3, ktop(igout), kupper(igout) ', ktop(igout), kupper(igout) |
|---|
| 719 | ENDIF |
|---|
| 720 | |
|---|
| 721 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
|---|
| 722 | |
|---|
| 723 | DO k = 1, klev |
|---|
| 724 | DO i = 1, klon |
|---|
| 725 | IF (k>=kupper(i)) THEN |
|---|
| 726 | deltatw(i, k) = 0. |
|---|
| 727 | deltaqw(i, k) = 0. |
|---|
| 728 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 729 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 730 | END IF |
|---|
| 731 | END DO |
|---|
| 732 | END DO |
|---|
| 733 | |
|---|
| 734 | |
|---|
| 735 | ! Vertical gradient of LS omega |
|---|
| 736 | |
|---|
| 737 | DO k = 1, klev |
|---|
| 738 | DO i = 1, klon |
|---|
| 739 | IF (k<=kupper(i)) THEN |
|---|
| 740 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
|---|
| 741 | END IF |
|---|
| 742 | END DO |
|---|
| 743 | END DO |
|---|
| 744 | |
|---|
| 745 | ! Integrals (and wake top level number) |
|---|
| 746 | ! -------------------------------------- |
|---|
| 747 | |
|---|
| 748 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
|---|
| 749 | |
|---|
| 750 | DO i = 1, klon |
|---|
| 751 | z(i) = 1. |
|---|
| 752 | dz(i) = 1. |
|---|
| 753 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
|---|
| 754 | sum_dth(i) = 0. |
|---|
| 755 | END DO |
|---|
| 756 | |
|---|
| 757 | DO k = 1, klev |
|---|
| 758 | DO i = 1, klon |
|---|
| 759 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
|---|
| 760 | IF (dz(i)>0) THEN |
|---|
| 761 | z(i) = z(i) + dz(i) |
|---|
| 762 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
|---|
| 763 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
|---|
| 764 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
|---|
| 765 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
|---|
| 766 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 767 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
|---|
| 768 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
|---|
| 769 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
|---|
| 770 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
|---|
| 771 | END IF |
|---|
| 772 | END DO |
|---|
| 773 | END DO |
|---|
| 774 | |
|---|
| 775 | DO i = 1, klon |
|---|
| 776 | hw0(i) = z(i) |
|---|
| 777 | END DO |
|---|
| 778 | |
|---|
| 779 | |
|---|
| 780 | ! 2.1 - WAPE and mean forcing computation |
|---|
| 781 | ! --------------------------------------- |
|---|
| 782 | |
|---|
| 783 | ! --------------------------------------- |
|---|
| 784 | |
|---|
| 785 | ! Means |
|---|
| 786 | |
|---|
| 787 | DO i = 1, klon |
|---|
| 788 | av_thu(i) = sum_thu(i)/hw0(i) |
|---|
| 789 | av_tu(i) = sum_tu(i)/hw0(i) |
|---|
| 790 | av_qu(i) = sum_qu(i)/hw0(i) |
|---|
| 791 | av_thvu(i) = sum_thvu(i)/hw0(i) |
|---|
| 792 | ! av_thve = sum_thve/hw0 |
|---|
| 793 | av_dth(i) = sum_dth(i)/hw0(i) |
|---|
| 794 | av_dq(i) = sum_dq(i)/hw0(i) |
|---|
| 795 | av_rho(i) = sum_rho(i)/hw0(i) |
|---|
| 796 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
|---|
| 797 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
|---|
| 798 | |
|---|
| 799 | wape(i) = -rg*hw0(i)*(av_dth(i)+ & |
|---|
| 800 | epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
|---|
| 801 | |
|---|
| 802 | END DO |
|---|
| 803 | |
|---|
| 804 | ! 2.2 Prognostic variable update |
|---|
| 805 | ! ------------------------------ |
|---|
| 806 | |
|---|
| 807 | ! Filter out bad wakes |
|---|
| 808 | |
|---|
| 809 | DO k = 1, klev |
|---|
| 810 | DO i = 1, klon |
|---|
| 811 | IF (wape(i)<0.) THEN |
|---|
| 812 | deltatw(i, k) = 0. |
|---|
| 813 | deltaqw(i, k) = 0. |
|---|
| 814 | dth(i, k) = 0. |
|---|
| 815 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 816 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 817 | END IF |
|---|
| 818 | END DO |
|---|
| 819 | END DO |
|---|
| 820 | |
|---|
| 821 | DO i = 1, klon |
|---|
| 822 | IF (wape(i)<0.) THEN |
|---|
| 823 | wape(i) = 0. |
|---|
| 824 | cstar(i) = 0. |
|---|
| 825 | hw(i) = hwmin |
|---|
| 826 | !jyg< |
|---|
| 827 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
|---|
| 828 | sigmaw_targ = max(sigmad, sigd_con(i)) |
|---|
| 829 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 830 | sigmaw(i) = sigmaw_targ |
|---|
| 831 | !>jyg |
|---|
| 832 | fip(i) = 0. |
|---|
| 833 | gwake(i) = .FALSE. |
|---|
| 834 | ELSE |
|---|
| 835 | cstar(i) = stark*sqrt(2.*wape(i)) |
|---|
| 836 | gwake(i) = .TRUE. |
|---|
| 837 | END IF |
|---|
| 838 | END DO |
|---|
| 839 | |
|---|
| 840 | |
|---|
| 841 | ! Check qx and qw positivity |
|---|
| 842 | ! -------------------------- |
|---|
| 843 | DO i = 1, klon |
|---|
| 844 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), & |
|---|
| 845 | (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1))) |
|---|
| 846 | END DO |
|---|
| 847 | DO k = 2, klev |
|---|
| 848 | DO i = 1, klon |
|---|
| 849 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), & |
|---|
| 850 | (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k))) |
|---|
| 851 | IF (q1_min(i)<=q0_min(i)) THEN |
|---|
| 852 | q0_min(i) = q1_min(i) |
|---|
| 853 | END IF |
|---|
| 854 | END DO |
|---|
| 855 | END DO |
|---|
| 856 | |
|---|
| 857 | DO i = 1, klon |
|---|
| 858 | ok_qx_qw(i) = q0_min(i) >= 0. |
|---|
| 859 | alpha(i) = 1. |
|---|
| 860 | END DO |
|---|
| 861 | |
|---|
| 862 | IF (prt_level>=10) THEN |
|---|
| 863 | PRINT *, 'wake-4, sigmaw(igout), cstar(igout), wape(igout), ktop(igout) ', & |
|---|
| 864 | sigmaw(igout), cstar(igout), wape(igout), ktop(igout) |
|---|
| 865 | ENDIF |
|---|
| 866 | |
|---|
| 867 | |
|---|
| 868 | ! C ----------------------------------------------------------------- |
|---|
| 869 | ! Sub-time-stepping |
|---|
| 870 | ! ----------------- |
|---|
| 871 | |
|---|
| 872 | nsub = 10 |
|---|
| 873 | dtimesub = dtime/nsub |
|---|
| 874 | |
|---|
| 875 | ! ------------------------------------------------------------ |
|---|
| 876 | DO isubstep = 1, nsub |
|---|
| 877 | ! ------------------------------------------------------------ |
|---|
| 878 | |
|---|
| 879 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
|---|
| 880 | ! loop |
|---|
| 881 | DO i = 1, klon |
|---|
| 882 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
|---|
| 883 | END DO |
|---|
| 884 | IF (prt_level>=10) THEN |
|---|
| 885 | PRINT *, 'wake-4.1, isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) ', & |
|---|
| 886 | isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) |
|---|
| 887 | ENDIF |
|---|
| 888 | |
|---|
| 889 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
|---|
| 890 | ! négatif de ktop à kupper -------- |
|---|
| 891 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
|---|
| 892 | ! aurait un entrainement nul --- |
|---|
| 893 | DO i = 1, klon |
|---|
| 894 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
|---|
| 895 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
|---|
| 896 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
|---|
| 897 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
|---|
| 898 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
|---|
| 899 | wdens0 = (sigmaw(i)/(4.*3.14))* & |
|---|
| 900 | ((1.-sigmaw(i))*omg(i,kupper(i)+1)/((ph(i,1)-pupper(i))*cstar(i)))**(2) |
|---|
| 901 | IF (wdens(i)<=wdens0*1.1) THEN |
|---|
| 902 | wdens(i) = wdens0 |
|---|
| 903 | END IF |
|---|
| 904 | ! c print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
|---|
| 905 | ! c $ ,ph(i,1)-pupper(i)', |
|---|
| 906 | ! c $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
|---|
| 907 | ! c $ ,ph(i,1)-pupper(i) |
|---|
| 908 | END IF |
|---|
| 909 | END DO |
|---|
| 910 | |
|---|
| 911 | ! cc nrlmd |
|---|
| 912 | |
|---|
| 913 | DO i = 1, klon |
|---|
| 914 | IF (wk_adv(i)) THEN |
|---|
| 915 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
|---|
| 916 | !jyg< |
|---|
| 917 | !! sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
|---|
| 918 | sigmaw_targ = min(sigmaw(i), sigmaw_max) |
|---|
| 919 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 920 | sigmaw(i) = sigmaw_targ |
|---|
| 921 | !>jyg |
|---|
| 922 | END IF |
|---|
| 923 | END DO |
|---|
| 924 | |
|---|
| 925 | DO i = 1, klon |
|---|
| 926 | IF (wk_adv(i)) THEN |
|---|
| 927 | ! cc nrlmd Introduction du taux de mortalité des poches et |
|---|
| 928 | ! test sur sigmaw_max=0.4 |
|---|
| 929 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
|---|
| 930 | IF (sigmaw(i)>=sigmaw_max) THEN |
|---|
| 931 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
|---|
| 932 | ELSE |
|---|
| 933 | death_rate(i) = 0. |
|---|
| 934 | END IF |
|---|
| 935 | |
|---|
| 936 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
|---|
| 937 | dtimesub |
|---|
| 938 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
|---|
| 939 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
|---|
| 940 | ! c $ death_rate(i),ktop(i),kupper(i)', |
|---|
| 941 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
|---|
| 942 | ! c $ death_rate(i),ktop(i),kupper(i) |
|---|
| 943 | |
|---|
| 944 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
|---|
| 945 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
|---|
| 946 | ! wdens = wdens0/(10.*sigmaw) |
|---|
| 947 | ! sigmaw =max(sigmaw,sigd_con) |
|---|
| 948 | ! sigmaw =max(sigmaw,sigmad) |
|---|
| 949 | END IF |
|---|
| 950 | END DO |
|---|
| 951 | |
|---|
| 952 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
|---|
| 953 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
|---|
| 954 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
|---|
| 955 | ! IM 060208 au niveau k=1..? |
|---|
| 956 | !JYG 161013 Correction : maintenant omg est dimensionne a klev. |
|---|
| 957 | DO k = 1, klev |
|---|
| 958 | DO i = 1, klon |
|---|
| 959 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 960 | dp_deltomg(i, k) = 0. |
|---|
| 961 | END IF |
|---|
| 962 | END DO |
|---|
| 963 | END DO |
|---|
| 964 | DO k = 1, klev |
|---|
| 965 | DO i = 1, klon |
|---|
| 966 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 967 | omg(i, k) = 0. |
|---|
| 968 | END IF |
|---|
| 969 | END DO |
|---|
| 970 | END DO |
|---|
| 971 | |
|---|
| 972 | DO i = 1, klon |
|---|
| 973 | IF (wk_adv(i)) THEN |
|---|
| 974 | z(i) = 0. |
|---|
| 975 | omg(i, 1) = 0. |
|---|
| 976 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
|---|
| 977 | END IF |
|---|
| 978 | END DO |
|---|
| 979 | |
|---|
| 980 | DO k = 2, klev |
|---|
| 981 | DO i = 1, klon |
|---|
| 982 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
|---|
| 983 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
|---|
| 984 | z(i) = z(i) + dz(i) |
|---|
| 985 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
|---|
| 986 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
|---|
| 987 | END IF |
|---|
| 988 | END DO |
|---|
| 989 | END DO |
|---|
| 990 | |
|---|
| 991 | DO i = 1, klon |
|---|
| 992 | IF (wk_adv(i)) THEN |
|---|
| 993 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
|---|
| 994 | ztop(i) = z(i) + dztop(i) |
|---|
| 995 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
|---|
| 996 | END IF |
|---|
| 997 | END DO |
|---|
| 998 | |
|---|
| 999 | IF (prt_level>=10) THEN |
|---|
| 1000 | PRINT *, 'wake-4.2, omg(igout,k) ', (k,omg(igout,k), k=1,klev) |
|---|
| 1001 | PRINT *, 'wake-4.2, omgtop(igout), ptop(igout), ktop(igout) ', & |
|---|
| 1002 | omgtop(igout), ptop(igout), ktop(igout) |
|---|
| 1003 | ENDIF |
|---|
| 1004 | |
|---|
| 1005 | ! ----------------- |
|---|
| 1006 | ! From m/s to Pa/s |
|---|
| 1007 | ! ----------------- |
|---|
| 1008 | |
|---|
| 1009 | DO i = 1, klon |
|---|
| 1010 | IF (wk_adv(i)) THEN |
|---|
| 1011 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
|---|
| 1012 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
|---|
| 1013 | END IF |
|---|
| 1014 | END DO |
|---|
| 1015 | |
|---|
| 1016 | DO k = 1, klev |
|---|
| 1017 | DO i = 1, klon |
|---|
| 1018 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
|---|
| 1019 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
|---|
| 1020 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
|---|
| 1021 | END IF |
|---|
| 1022 | END DO |
|---|
| 1023 | END DO |
|---|
| 1024 | |
|---|
| 1025 | ! raccordement lineaire de omg de ptop a pupper |
|---|
| 1026 | |
|---|
| 1027 | DO i = 1, klon |
|---|
| 1028 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
|---|
| 1029 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
|---|
| 1030 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
|---|
| 1031 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
|---|
| 1032 | (ptop(i)-pupper(i)) |
|---|
| 1033 | END IF |
|---|
| 1034 | END DO |
|---|
| 1035 | |
|---|
| 1036 | ! c DO i=1,klon |
|---|
| 1037 | ! c print*,'Pente entre 0 et kupper (référence)' |
|---|
| 1038 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
|---|
| 1039 | ! c print*,'Pente entre ktop et kupper' |
|---|
| 1040 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
|---|
| 1041 | ! c ENDDO |
|---|
| 1042 | ! c |
|---|
| 1043 | DO k = 1, klev |
|---|
| 1044 | DO i = 1, klon |
|---|
| 1045 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
|---|
| 1046 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
|---|
| 1047 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
|---|
| 1048 | END IF |
|---|
| 1049 | END DO |
|---|
| 1050 | END DO |
|---|
| 1051 | !! print *,'omg(igout,k) ', (k,omg(igout,k),k=1,klev) |
|---|
| 1052 | ! cc nrlmd |
|---|
| 1053 | ! c DO i=1,klon |
|---|
| 1054 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
|---|
| 1055 | ! c END DO |
|---|
| 1056 | ! cc |
|---|
| 1057 | |
|---|
| 1058 | |
|---|
| 1059 | ! -- Compute wake average vertical velocity omgbw |
|---|
| 1060 | |
|---|
| 1061 | |
|---|
| 1062 | DO k = 1, klev |
|---|
| 1063 | DO i = 1, klon |
|---|
| 1064 | IF (wk_adv(i)) THEN |
|---|
| 1065 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
|---|
| 1066 | END IF |
|---|
| 1067 | END DO |
|---|
| 1068 | END DO |
|---|
| 1069 | ! -- and its vertical gradient dp_omgbw |
|---|
| 1070 | |
|---|
| 1071 | DO k = 1, klev-1 |
|---|
| 1072 | DO i = 1, klon |
|---|
| 1073 | IF (wk_adv(i)) THEN |
|---|
| 1074 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
|---|
| 1075 | END IF |
|---|
| 1076 | END DO |
|---|
| 1077 | END DO |
|---|
| 1078 | DO i = 1, klon |
|---|
| 1079 | IF (wk_adv(i)) THEN |
|---|
| 1080 | dp_omgbw(i, klev) = 0. |
|---|
| 1081 | END IF |
|---|
| 1082 | END DO |
|---|
| 1083 | |
|---|
| 1084 | ! -- Upstream coefficients for omgb velocity |
|---|
| 1085 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
|---|
| 1086 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
|---|
| 1087 | DO k = 1, klev |
|---|
| 1088 | DO i = 1, klon |
|---|
| 1089 | IF (wk_adv(i)) THEN |
|---|
| 1090 | alpha_up(i, k) = 0. |
|---|
| 1091 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
|---|
| 1092 | END IF |
|---|
| 1093 | END DO |
|---|
| 1094 | END DO |
|---|
| 1095 | |
|---|
| 1096 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
|---|
| 1097 | |
|---|
| 1098 | DO i = 1, klon |
|---|
| 1099 | IF (wk_adv(i)) THEN |
|---|
| 1100 | rre1(i) = 1. - sigmaw(i) |
|---|
| 1101 | rre2(i) = sigmaw(i) |
|---|
| 1102 | END IF |
|---|
| 1103 | END DO |
|---|
| 1104 | rrd1 = -1. |
|---|
| 1105 | rrd2 = 1. |
|---|
| 1106 | |
|---|
| 1107 | ! -- Get [Th1,Th2], dth and [q1,q2] |
|---|
| 1108 | |
|---|
| 1109 | DO k = 1, klev |
|---|
| 1110 | DO i = 1, klon |
|---|
| 1111 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
|---|
| 1112 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 1113 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
|---|
| 1114 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
|---|
| 1115 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
|---|
| 1116 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
|---|
| 1117 | END IF |
|---|
| 1118 | END DO |
|---|
| 1119 | END DO |
|---|
| 1120 | |
|---|
| 1121 | DO i = 1, klon |
|---|
| 1122 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1123 | d_th1(i, 1) = 0. |
|---|
| 1124 | d_th2(i, 1) = 0. |
|---|
| 1125 | d_dth(i, 1) = 0. |
|---|
| 1126 | d_q1(i, 1) = 0. |
|---|
| 1127 | d_q2(i, 1) = 0. |
|---|
| 1128 | d_dq(i, 1) = 0. |
|---|
| 1129 | END IF |
|---|
| 1130 | END DO |
|---|
| 1131 | |
|---|
| 1132 | DO k = 2, klev |
|---|
| 1133 | DO i = 1, klon |
|---|
| 1134 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
|---|
| 1135 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
|---|
| 1136 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
|---|
| 1137 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
|---|
| 1138 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
|---|
| 1139 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
|---|
| 1140 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
|---|
| 1141 | END IF |
|---|
| 1142 | END DO |
|---|
| 1143 | END DO |
|---|
| 1144 | |
|---|
| 1145 | DO i = 1, klon |
|---|
| 1146 | IF (wk_adv(i)) THEN |
|---|
| 1147 | omgbdth(i, 1) = 0. |
|---|
| 1148 | omgbdq(i, 1) = 0. |
|---|
| 1149 | END IF |
|---|
| 1150 | END DO |
|---|
| 1151 | |
|---|
| 1152 | DO k = 2, klev |
|---|
| 1153 | DO i = 1, klon |
|---|
| 1154 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
|---|
| 1155 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
|---|
| 1156 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
|---|
| 1157 | END IF |
|---|
| 1158 | END DO |
|---|
| 1159 | END DO |
|---|
| 1160 | |
|---|
| 1161 | IF (prt_level>=10) THEN |
|---|
| 1162 | PRINT *, 'wake-4.3, th1(igout,k) ', (k,th1(igout,k), k=1,klev) |
|---|
| 1163 | PRINT *, 'wake-4.3, th2(igout,k) ', (k,th2(igout,k), k=1,klev) |
|---|
| 1164 | PRINT *, 'wake-4.3, dth(igout,k) ', (k,dth(igout,k), k=1,klev) |
|---|
| 1165 | PRINT *, 'wake-4.3, omgbdth(igout,k) ', (k,omgbdth(igout,k), k=1,klev) |
|---|
| 1166 | ENDIF |
|---|
| 1167 | |
|---|
| 1168 | ! ----------------------------------------------------------------- |
|---|
| 1169 | DO k = 1, klev-1 |
|---|
| 1170 | DO i = 1, klon |
|---|
| 1171 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
|---|
| 1172 | ! ----------------------------------------------------------------- |
|---|
| 1173 | |
|---|
| 1174 | ! Compute redistribution (advective) term |
|---|
| 1175 | |
|---|
| 1176 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
|---|
| 1177 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k) - & |
|---|
| 1178 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1)- & |
|---|
| 1179 | (1.-alpha_up(i,k))*omgbdth(i,k)- & |
|---|
| 1180 | alpha_up(i,k+1)*omgbdth(i,k+1))*ppi(i, k) |
|---|
| 1181 | ! print*,'d_deltatw=', k, d_deltatw(i,k) |
|---|
| 1182 | |
|---|
| 1183 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
|---|
| 1184 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
|---|
| 1185 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1)- & |
|---|
| 1186 | (1.-alpha_up(i,k))*omgbdq(i,k)- & |
|---|
| 1187 | alpha_up(i,k+1)*omgbdq(i,k+1)) |
|---|
| 1188 | ! print*,'d_deltaqw=', k, d_deltaqw(i,k) |
|---|
| 1189 | |
|---|
| 1190 | ! and increment large scale tendencies |
|---|
| 1191 | |
|---|
| 1192 | |
|---|
| 1193 | |
|---|
| 1194 | |
|---|
| 1195 | ! C |
|---|
| 1196 | ! ----------------------------------------------------------------- |
|---|
| 1197 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)- & |
|---|
| 1198 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/ & |
|---|
| 1199 | (ph(i,k)-ph(i,k+1)) & |
|---|
| 1200 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/ & |
|---|
| 1201 | (ph(i,k)-ph(i,k+1)) )*ppi(i, k) |
|---|
| 1202 | |
|---|
| 1203 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
|---|
| 1204 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/ & |
|---|
| 1205 | (ph(i,k)-ph(i,k+1)) & |
|---|
| 1206 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i,k+1))/ & |
|---|
| 1207 | (ph(i,k)-ph(i,k+1)) ) |
|---|
| 1208 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
|---|
| 1209 | d_te(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)/(ph(i,k)-ph(i,k+1)))*ppi(i, k) |
|---|
| 1210 | |
|---|
| 1211 | d_qe(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)/(ph(i,k)-ph(i,k+1))) |
|---|
| 1212 | |
|---|
| 1213 | END IF |
|---|
| 1214 | ! cc |
|---|
| 1215 | END DO |
|---|
| 1216 | END DO |
|---|
| 1217 | ! ------------------------------------------------------------------ |
|---|
| 1218 | |
|---|
| 1219 | IF (prt_level>=10) THEN |
|---|
| 1220 | PRINT *, 'wake-4.3, d_deltatw(igout,k) ', (k,d_deltatw(igout,k), k=1,klev) |
|---|
| 1221 | PRINT *, 'wake-4.3, d_deltaqw(igout,k) ', (k,d_deltaqw(igout,k), k=1,klev) |
|---|
| 1222 | ENDIF |
|---|
| 1223 | |
|---|
| 1224 | ! Increment state variables |
|---|
| 1225 | |
|---|
| 1226 | DO k = 1, klev |
|---|
| 1227 | DO i = 1, klon |
|---|
| 1228 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
|---|
| 1229 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1230 | ! cc |
|---|
| 1231 | |
|---|
| 1232 | |
|---|
| 1233 | |
|---|
| 1234 | ! Coefficient de répartition |
|---|
| 1235 | |
|---|
| 1236 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
|---|
| 1237 | (ph(i,kupper(i))-ph(i,1)) |
|---|
| 1238 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/ & |
|---|
| 1239 | (p(i,1)-ph(i,kupper(i))) |
|---|
| 1240 | |
|---|
| 1241 | |
|---|
| 1242 | ! Reintroduce compensating subsidence term. |
|---|
| 1243 | |
|---|
| 1244 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
|---|
| 1245 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
|---|
| 1246 | ! . /(1-sigmaw) |
|---|
| 1247 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
|---|
| 1248 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
|---|
| 1249 | ! . /(1-sigmaw) |
|---|
| 1250 | |
|---|
| 1251 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
|---|
| 1252 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
|---|
| 1253 | ! . /(1-sigmaw) |
|---|
| 1254 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
|---|
| 1255 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
|---|
| 1256 | ! . /(1-sigmaw) |
|---|
| 1257 | |
|---|
| 1258 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
|---|
| 1259 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
|---|
| 1260 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
|---|
| 1261 | |
|---|
| 1262 | ! |
|---|
| 1263 | |
|---|
| 1264 | ! cc nrlmd Prise en compte du taux de mortalité |
|---|
| 1265 | ! cc Définitions de entr, detr |
|---|
| 1266 | detr(i, k) = 0. |
|---|
| 1267 | |
|---|
| 1268 | entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
|---|
| 1269 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
|---|
| 1270 | |
|---|
| 1271 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
|---|
| 1272 | ! cc spread(i,k) = |
|---|
| 1273 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
|---|
| 1274 | ! cc $ sigmaw(i) |
|---|
| 1275 | |
|---|
| 1276 | |
|---|
| 1277 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
|---|
| 1278 | ! Jingmei |
|---|
| 1279 | |
|---|
| 1280 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
|---|
| 1281 | ! & Tgw(i,k),deltatw(i,k) |
|---|
| 1282 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
|---|
| 1283 | dtimesub |
|---|
| 1284 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
|---|
| 1285 | ff(i) = d_deltatw(i, k)/dtimesub |
|---|
| 1286 | |
|---|
| 1287 | ! Sans GW |
|---|
| 1288 | |
|---|
| 1289 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
|---|
| 1290 | |
|---|
| 1291 | ! GW formule 1 |
|---|
| 1292 | |
|---|
| 1293 | ! deltatw(k) = deltatw(k)+dtimesub* |
|---|
| 1294 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
|---|
| 1295 | |
|---|
| 1296 | ! GW formule 2 |
|---|
| 1297 | |
|---|
| 1298 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
|---|
| 1299 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k) - & |
|---|
| 1300 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
|---|
| 1301 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & ! cc |
|---|
| 1302 | tgw(i,k)*deltatw(i,k) ) |
|---|
| 1303 | ELSE |
|---|
| 1304 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i,k)))* & |
|---|
| 1305 | (ff(i)+dtke(i,k) - & |
|---|
| 1306 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
|---|
| 1307 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & |
|---|
| 1308 | tgw(i,k)*deltatw(i,k) ) |
|---|
| 1309 | END IF |
|---|
| 1310 | |
|---|
| 1311 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 1312 | |
|---|
| 1313 | gg(i) = d_deltaqw(i, k)/dtimesub |
|---|
| 1314 | |
|---|
| 1315 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k) - & |
|---|
| 1316 | entr(i,k)*deltaqw(i,k)/sigmaw(i) - & |
|---|
| 1317 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
|---|
| 1318 | ! cc |
|---|
| 1319 | |
|---|
| 1320 | ! cc nrlmd |
|---|
| 1321 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
|---|
| 1322 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
|---|
| 1323 | ! cc |
|---|
| 1324 | END IF |
|---|
| 1325 | END DO |
|---|
| 1326 | END DO |
|---|
| 1327 | |
|---|
| 1328 | |
|---|
| 1329 | ! Scale tendencies so that water vapour remains positive in w and x. |
|---|
| 1330 | |
|---|
| 1331 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
|---|
| 1332 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
|---|
| 1333 | |
|---|
| 1334 | ! cc nrlmd |
|---|
| 1335 | ! c print*,'alpha' |
|---|
| 1336 | ! c do i=1,klon |
|---|
| 1337 | ! c print*,alpha(i) |
|---|
| 1338 | ! c end do |
|---|
| 1339 | ! cc |
|---|
| 1340 | DO k = 1, klev |
|---|
| 1341 | DO i = 1, klon |
|---|
| 1342 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1343 | d_te(i, k) = alpha(i)*d_te(i, k) |
|---|
| 1344 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
|---|
| 1345 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
|---|
| 1346 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
|---|
| 1347 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
|---|
| 1348 | END IF |
|---|
| 1349 | END DO |
|---|
| 1350 | END DO |
|---|
| 1351 | DO i = 1, klon |
|---|
| 1352 | IF (wk_adv(i)) THEN |
|---|
| 1353 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
|---|
| 1354 | END IF |
|---|
| 1355 | END DO |
|---|
| 1356 | |
|---|
| 1357 | ! Update large scale variables and wake variables |
|---|
| 1358 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
|---|
| 1359 | ! IM 060208 DO k = 1,kupper(i) |
|---|
| 1360 | DO k = 1, klev |
|---|
| 1361 | DO i = 1, klon |
|---|
| 1362 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1363 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
|---|
| 1364 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
|---|
| 1365 | ! cc nrlmd |
|---|
| 1366 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
|---|
| 1367 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
|---|
| 1368 | ! cc |
|---|
| 1369 | END IF |
|---|
| 1370 | END DO |
|---|
| 1371 | END DO |
|---|
| 1372 | DO k = 1, klev |
|---|
| 1373 | DO i = 1, klon |
|---|
| 1374 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
|---|
| 1375 | te(i, k) = te0(i, k) + dtls(i, k) |
|---|
| 1376 | qe(i, k) = qe0(i, k) + dqls(i, k) |
|---|
| 1377 | the(i, k) = te(i, k)/ppi(i, k) |
|---|
| 1378 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
|---|
| 1379 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
|---|
| 1380 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 1381 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
|---|
| 1382 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
|---|
| 1383 | END IF |
|---|
| 1384 | END DO |
|---|
| 1385 | END DO |
|---|
| 1386 | DO i = 1, klon |
|---|
| 1387 | IF (wk_adv(i)) THEN |
|---|
| 1388 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
|---|
| 1389 | !jyg< |
|---|
| 1390 | d_sigmaw2(i) = d_sigmaw2(i) + d_sigmaw(i) |
|---|
| 1391 | !>jyg |
|---|
| 1392 | END IF |
|---|
| 1393 | END DO |
|---|
| 1394 | |
|---|
| 1395 | |
|---|
| 1396 | ! Determine Ptop from buoyancy integral |
|---|
| 1397 | ! --------------------------------------- |
|---|
| 1398 | |
|---|
| 1399 | ! - 1/ Pressure of the level where dth changes sign. |
|---|
| 1400 | |
|---|
| 1401 | DO i = 1, klon |
|---|
| 1402 | IF (wk_adv(i)) THEN |
|---|
| 1403 | ptop_provis(i) = ph(i, 1) |
|---|
| 1404 | END IF |
|---|
| 1405 | END DO |
|---|
| 1406 | |
|---|
| 1407 | DO k = 2, klev |
|---|
| 1408 | DO i = 1, klon |
|---|
| 1409 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
|---|
| 1410 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
|---|
| 1411 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
|---|
| 1412 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
|---|
| 1413 | END IF |
|---|
| 1414 | END DO |
|---|
| 1415 | END DO |
|---|
| 1416 | |
|---|
| 1417 | ! - 2/ dth integral |
|---|
| 1418 | |
|---|
| 1419 | DO i = 1, klon |
|---|
| 1420 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1421 | sum_dth(i) = 0. |
|---|
| 1422 | dthmin(i) = -delta_t_min |
|---|
| 1423 | z(i) = 0. |
|---|
| 1424 | END IF |
|---|
| 1425 | END DO |
|---|
| 1426 | |
|---|
| 1427 | DO k = 1, klev |
|---|
| 1428 | DO i = 1, klon |
|---|
| 1429 | IF (wk_adv(i)) THEN |
|---|
| 1430 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
|---|
| 1431 | IF (dz(i)>0) THEN |
|---|
| 1432 | z(i) = z(i) + dz(i) |
|---|
| 1433 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 1434 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
|---|
| 1435 | END IF |
|---|
| 1436 | END IF |
|---|
| 1437 | END DO |
|---|
| 1438 | END DO |
|---|
| 1439 | |
|---|
| 1440 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
|---|
| 1441 | |
|---|
| 1442 | DO i = 1, klon |
|---|
| 1443 | IF (wk_adv(i)) THEN |
|---|
| 1444 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
|---|
| 1445 | hw(i) = amax1(hwmin, hw(i)) |
|---|
| 1446 | END IF |
|---|
| 1447 | END DO |
|---|
| 1448 | |
|---|
| 1449 | ! - 4/ now, get Ptop |
|---|
| 1450 | |
|---|
| 1451 | DO i = 1, klon |
|---|
| 1452 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1453 | ktop(i) = 0 |
|---|
| 1454 | z(i) = 0. |
|---|
| 1455 | END IF |
|---|
| 1456 | END DO |
|---|
| 1457 | |
|---|
| 1458 | DO k = 1, klev |
|---|
| 1459 | DO i = 1, klon |
|---|
| 1460 | IF (wk_adv(i)) THEN |
|---|
| 1461 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
|---|
| 1462 | IF (dz(i)>0) THEN |
|---|
| 1463 | z(i) = z(i) + dz(i) |
|---|
| 1464 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
|---|
| 1465 | ktop(i) = k |
|---|
| 1466 | END IF |
|---|
| 1467 | END IF |
|---|
| 1468 | END DO |
|---|
| 1469 | END DO |
|---|
| 1470 | |
|---|
| 1471 | ! 4.5/Correct ktop and ptop |
|---|
| 1472 | |
|---|
| 1473 | DO i = 1, klon |
|---|
| 1474 | IF (wk_adv(i)) THEN |
|---|
| 1475 | ptop_new(i) = ptop(i) |
|---|
| 1476 | END IF |
|---|
| 1477 | END DO |
|---|
| 1478 | |
|---|
| 1479 | DO k = klev, 2, -1 |
|---|
| 1480 | DO i = 1, klon |
|---|
| 1481 | ! IM v3JYG; IF (k .GE. ktop(i) |
|---|
| 1482 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
|---|
| 1483 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
|---|
| 1484 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
|---|
| 1485 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
|---|
| 1486 | END IF |
|---|
| 1487 | END DO |
|---|
| 1488 | END DO |
|---|
| 1489 | |
|---|
| 1490 | |
|---|
| 1491 | DO i = 1, klon |
|---|
| 1492 | IF (wk_adv(i)) THEN |
|---|
| 1493 | ptop(i) = ptop_new(i) |
|---|
| 1494 | END IF |
|---|
| 1495 | END DO |
|---|
| 1496 | |
|---|
| 1497 | DO k = klev, 1, -1 |
|---|
| 1498 | DO i = 1, klon |
|---|
| 1499 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1500 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
|---|
| 1501 | END IF |
|---|
| 1502 | END DO |
|---|
| 1503 | END DO |
|---|
| 1504 | |
|---|
| 1505 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
|---|
| 1506 | |
|---|
| 1507 | DO k = 1, klev |
|---|
| 1508 | DO i = 1, klon |
|---|
| 1509 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
|---|
| 1510 | deltatw(i, k) = 0. |
|---|
| 1511 | deltaqw(i, k) = 0. |
|---|
| 1512 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 1513 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 1514 | END IF |
|---|
| 1515 | END DO |
|---|
| 1516 | END DO |
|---|
| 1517 | |
|---|
| 1518 | |
|---|
| 1519 | ! -------------Cstar computation--------------------------------- |
|---|
| 1520 | DO i = 1, klon |
|---|
| 1521 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1522 | sum_thu(i) = 0. |
|---|
| 1523 | sum_tu(i) = 0. |
|---|
| 1524 | sum_qu(i) = 0. |
|---|
| 1525 | sum_thvu(i) = 0. |
|---|
| 1526 | sum_dth(i) = 0. |
|---|
| 1527 | sum_dq(i) = 0. |
|---|
| 1528 | sum_rho(i) = 0. |
|---|
| 1529 | sum_dtdwn(i) = 0. |
|---|
| 1530 | sum_dqdwn(i) = 0. |
|---|
| 1531 | |
|---|
| 1532 | av_thu(i) = 0. |
|---|
| 1533 | av_tu(i) = 0. |
|---|
| 1534 | av_qu(i) = 0. |
|---|
| 1535 | av_thvu(i) = 0. |
|---|
| 1536 | av_dth(i) = 0. |
|---|
| 1537 | av_dq(i) = 0. |
|---|
| 1538 | av_rho(i) = 0. |
|---|
| 1539 | av_dtdwn(i) = 0. |
|---|
| 1540 | av_dqdwn(i) = 0. |
|---|
| 1541 | END IF |
|---|
| 1542 | END DO |
|---|
| 1543 | |
|---|
| 1544 | ! Integrals (and wake top level number) |
|---|
| 1545 | ! -------------------------------------- |
|---|
| 1546 | |
|---|
| 1547 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
|---|
| 1548 | |
|---|
| 1549 | DO i = 1, klon |
|---|
| 1550 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1551 | z(i) = 1. |
|---|
| 1552 | dz(i) = 1. |
|---|
| 1553 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
|---|
| 1554 | sum_dth(i) = 0. |
|---|
| 1555 | END IF |
|---|
| 1556 | END DO |
|---|
| 1557 | |
|---|
| 1558 | DO k = 1, klev |
|---|
| 1559 | DO i = 1, klon |
|---|
| 1560 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1561 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
|---|
| 1562 | IF (dz(i)>0) THEN |
|---|
| 1563 | z(i) = z(i) + dz(i) |
|---|
| 1564 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
|---|
| 1565 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
|---|
| 1566 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
|---|
| 1567 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
|---|
| 1568 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 1569 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
|---|
| 1570 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
|---|
| 1571 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
|---|
| 1572 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
|---|
| 1573 | END IF |
|---|
| 1574 | END IF |
|---|
| 1575 | END DO |
|---|
| 1576 | END DO |
|---|
| 1577 | |
|---|
| 1578 | DO i = 1, klon |
|---|
| 1579 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1580 | hw0(i) = z(i) |
|---|
| 1581 | END IF |
|---|
| 1582 | END DO |
|---|
| 1583 | |
|---|
| 1584 | |
|---|
| 1585 | ! - WAPE and mean forcing computation |
|---|
| 1586 | ! --------------------------------------- |
|---|
| 1587 | |
|---|
| 1588 | ! --------------------------------------- |
|---|
| 1589 | |
|---|
| 1590 | ! Means |
|---|
| 1591 | |
|---|
| 1592 | DO i = 1, klon |
|---|
| 1593 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1594 | av_thu(i) = sum_thu(i)/hw0(i) |
|---|
| 1595 | av_tu(i) = sum_tu(i)/hw0(i) |
|---|
| 1596 | av_qu(i) = sum_qu(i)/hw0(i) |
|---|
| 1597 | av_thvu(i) = sum_thvu(i)/hw0(i) |
|---|
| 1598 | av_dth(i) = sum_dth(i)/hw0(i) |
|---|
| 1599 | av_dq(i) = sum_dq(i)/hw0(i) |
|---|
| 1600 | av_rho(i) = sum_rho(i)/hw0(i) |
|---|
| 1601 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
|---|
| 1602 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
|---|
| 1603 | |
|---|
| 1604 | wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
|---|
| 1605 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
|---|
| 1606 | END IF |
|---|
| 1607 | END DO |
|---|
| 1608 | |
|---|
| 1609 | ! Filter out bad wakes |
|---|
| 1610 | |
|---|
| 1611 | DO k = 1, klev |
|---|
| 1612 | DO i = 1, klon |
|---|
| 1613 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1614 | IF (wape(i)<0.) THEN |
|---|
| 1615 | deltatw(i, k) = 0. |
|---|
| 1616 | deltaqw(i, k) = 0. |
|---|
| 1617 | dth(i, k) = 0. |
|---|
| 1618 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 1619 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 1620 | END IF |
|---|
| 1621 | END IF |
|---|
| 1622 | END DO |
|---|
| 1623 | END DO |
|---|
| 1624 | |
|---|
| 1625 | DO i = 1, klon |
|---|
| 1626 | IF (wk_adv(i)) THEN !!! nrlmd |
|---|
| 1627 | IF (wape(i)<0.) THEN |
|---|
| 1628 | wape(i) = 0. |
|---|
| 1629 | cstar(i) = 0. |
|---|
| 1630 | hw(i) = hwmin |
|---|
| 1631 | !jyg< |
|---|
| 1632 | !! sigmaw(i) = max(sigmad, sigd_con(i)) |
|---|
| 1633 | sigmaw_targ = max(sigmad, sigd_con(i)) |
|---|
| 1634 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 1635 | sigmaw(i) = sigmaw_targ |
|---|
| 1636 | !>jyg |
|---|
| 1637 | fip(i) = 0. |
|---|
| 1638 | gwake(i) = .FALSE. |
|---|
| 1639 | ELSE |
|---|
| 1640 | cstar(i) = stark*sqrt(2.*wape(i)) |
|---|
| 1641 | gwake(i) = .TRUE. |
|---|
| 1642 | END IF |
|---|
| 1643 | END IF |
|---|
| 1644 | END DO |
|---|
| 1645 | |
|---|
| 1646 | END DO ! end sub-timestep loop |
|---|
| 1647 | |
|---|
| 1648 | IF (prt_level>=10) THEN |
|---|
| 1649 | PRINT *, 'wake-5, sigmaw(igout), cstar(igout), wape(igout), ptop(igout) ', & |
|---|
| 1650 | sigmaw(igout), cstar(igout), wape(igout), ptop(igout) |
|---|
| 1651 | ENDIF |
|---|
| 1652 | |
|---|
| 1653 | |
|---|
| 1654 | ! ---------------------------------------------------------- |
|---|
| 1655 | ! Determine wake final state; recompute wape, cstar, ktop; |
|---|
| 1656 | ! filter out bad wakes. |
|---|
| 1657 | ! ---------------------------------------------------------- |
|---|
| 1658 | |
|---|
| 1659 | ! 2.1 - Undisturbed area and Wake integrals |
|---|
| 1660 | ! --------------------------------------------------------- |
|---|
| 1661 | |
|---|
| 1662 | DO i = 1, klon |
|---|
| 1663 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
|---|
| 1664 | IF (ok_qx_qw(i)) THEN |
|---|
| 1665 | ! cc |
|---|
| 1666 | z(i) = 0. |
|---|
| 1667 | sum_thu(i) = 0. |
|---|
| 1668 | sum_tu(i) = 0. |
|---|
| 1669 | sum_qu(i) = 0. |
|---|
| 1670 | sum_thvu(i) = 0. |
|---|
| 1671 | sum_dth(i) = 0. |
|---|
| 1672 | sum_half_dth(i) = 0. |
|---|
| 1673 | sum_dq(i) = 0. |
|---|
| 1674 | sum_rho(i) = 0. |
|---|
| 1675 | sum_dtdwn(i) = 0. |
|---|
| 1676 | sum_dqdwn(i) = 0. |
|---|
| 1677 | |
|---|
| 1678 | av_thu(i) = 0. |
|---|
| 1679 | av_tu(i) = 0. |
|---|
| 1680 | av_qu(i) = 0. |
|---|
| 1681 | av_thvu(i) = 0. |
|---|
| 1682 | av_dth(i) = 0. |
|---|
| 1683 | av_dq(i) = 0. |
|---|
| 1684 | av_rho(i) = 0. |
|---|
| 1685 | av_dtdwn(i) = 0. |
|---|
| 1686 | av_dqdwn(i) = 0. |
|---|
| 1687 | |
|---|
| 1688 | dthmin(i) = -delta_t_min |
|---|
| 1689 | END IF |
|---|
| 1690 | END DO |
|---|
| 1691 | ! Potential temperatures and humidity |
|---|
| 1692 | ! ---------------------------------------------------------- |
|---|
| 1693 | |
|---|
| 1694 | DO k = 1, klev |
|---|
| 1695 | DO i = 1, klon |
|---|
| 1696 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1697 | IF (ok_qx_qw(i)) THEN |
|---|
| 1698 | ! cc |
|---|
| 1699 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
|---|
| 1700 | IF (k==1) THEN |
|---|
| 1701 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
|---|
| 1702 | zhh(i, k) = 0 |
|---|
| 1703 | ELSE |
|---|
| 1704 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
|---|
| 1705 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
|---|
| 1706 | END IF |
|---|
| 1707 | the(i, k) = te(i, k)/ppi(i, k) |
|---|
| 1708 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
|---|
| 1709 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
|---|
| 1710 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
|---|
| 1711 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
|---|
| 1712 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
|---|
| 1713 | END IF |
|---|
| 1714 | END DO |
|---|
| 1715 | END DO |
|---|
| 1716 | |
|---|
| 1717 | ! Integrals (and wake top level number) |
|---|
| 1718 | ! ----------------------------------------------------------- |
|---|
| 1719 | |
|---|
| 1720 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
|---|
| 1721 | |
|---|
| 1722 | DO i = 1, klon |
|---|
| 1723 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1724 | IF (ok_qx_qw(i)) THEN |
|---|
| 1725 | ! cc |
|---|
| 1726 | z(i) = 1. |
|---|
| 1727 | dz(i) = 1. |
|---|
| 1728 | dz_half(i) = 1. |
|---|
| 1729 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
|---|
| 1730 | sum_dth(i) = 0. |
|---|
| 1731 | END IF |
|---|
| 1732 | END DO |
|---|
| 1733 | |
|---|
| 1734 | DO k = 1, klev |
|---|
| 1735 | DO i = 1, klon |
|---|
| 1736 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1737 | IF (ok_qx_qw(i)) THEN |
|---|
| 1738 | ! cc |
|---|
| 1739 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
|---|
| 1740 | dz_half(i) = -(amax1(ph(i,k+1),0.5*(ptop(i)+ph(i,1)))-ph(i,k))/(rho(i,k)*rg) |
|---|
| 1741 | IF (dz(i)>0) THEN |
|---|
| 1742 | z(i) = z(i) + dz(i) |
|---|
| 1743 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
|---|
| 1744 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
|---|
| 1745 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
|---|
| 1746 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
|---|
| 1747 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
|---|
| 1748 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
|---|
| 1749 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
|---|
| 1750 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
|---|
| 1751 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
|---|
| 1752 | ! |
|---|
| 1753 | dthmin(i) = min(dthmin(i), dth(i,k)) |
|---|
| 1754 | END IF |
|---|
| 1755 | IF (dz_half(i)>0) THEN |
|---|
| 1756 | sum_half_dth(i) = sum_half_dth(i) + dth(i, k)*dz_half(i) |
|---|
| 1757 | END IF |
|---|
| 1758 | END IF |
|---|
| 1759 | END DO |
|---|
| 1760 | END DO |
|---|
| 1761 | |
|---|
| 1762 | DO i = 1, klon |
|---|
| 1763 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1764 | IF (ok_qx_qw(i)) THEN |
|---|
| 1765 | ! cc |
|---|
| 1766 | hw0(i) = z(i) |
|---|
| 1767 | END IF |
|---|
| 1768 | END DO |
|---|
| 1769 | |
|---|
| 1770 | ! - WAPE and mean forcing computation |
|---|
| 1771 | ! ------------------------------------------------------------- |
|---|
| 1772 | |
|---|
| 1773 | ! Means |
|---|
| 1774 | |
|---|
| 1775 | DO i = 1, klon |
|---|
| 1776 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1777 | IF (ok_qx_qw(i)) THEN |
|---|
| 1778 | ! cc |
|---|
| 1779 | av_thu(i) = sum_thu(i)/hw0(i) |
|---|
| 1780 | av_tu(i) = sum_tu(i)/hw0(i) |
|---|
| 1781 | av_qu(i) = sum_qu(i)/hw0(i) |
|---|
| 1782 | av_thvu(i) = sum_thvu(i)/hw0(i) |
|---|
| 1783 | av_dth(i) = sum_dth(i)/hw0(i) |
|---|
| 1784 | av_dq(i) = sum_dq(i)/hw0(i) |
|---|
| 1785 | av_rho(i) = sum_rho(i)/hw0(i) |
|---|
| 1786 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
|---|
| 1787 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
|---|
| 1788 | |
|---|
| 1789 | wape2(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
|---|
| 1790 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
|---|
| 1791 | END IF |
|---|
| 1792 | END DO |
|---|
| 1793 | |
|---|
| 1794 | |
|---|
| 1795 | |
|---|
| 1796 | ! Prognostic variable update |
|---|
| 1797 | ! ------------------------------------------------------------ |
|---|
| 1798 | |
|---|
| 1799 | ! Filter out bad wakes |
|---|
| 1800 | |
|---|
| 1801 | IF (iflag_wk_check_trgl>=1) THEN |
|---|
| 1802 | ! Check triangular shape of dth profile |
|---|
| 1803 | DO i = 1, klon |
|---|
| 1804 | IF (ok_qx_qw(i)) THEN |
|---|
| 1805 | !! print *,'wake, hw0(i), dthmin(i) ', hw0(i), dthmin(i) |
|---|
| 1806 | !! print *,'wake, 2.*sum_dth(i)/(hw0(i)*dthmin(i)) ', & |
|---|
| 1807 | !! 2.*sum_dth(i)/(hw0(i)*dthmin(i)) |
|---|
| 1808 | !! print *,'wake, sum_half_dth(i), sum_dth(i) ', & |
|---|
| 1809 | !! sum_half_dth(i), sum_dth(i) |
|---|
| 1810 | IF ((hw0(i) < 1.) .or. (dthmin(i) >= -delta_t_min) ) THEN |
|---|
| 1811 | wape2(i) = -1. |
|---|
| 1812 | !! print *,'wake, rej 1' |
|---|
| 1813 | ELSE IF (iflag_wk_check_trgl==1.AND.abs(2.*sum_dth(i)/(hw0(i)*dthmin(i)) - 1.) > 0.5) THEN |
|---|
| 1814 | wape2(i) = -1. |
|---|
| 1815 | !! print *,'wake, rej 2' |
|---|
| 1816 | ELSE IF (abs(sum_half_dth(i)) < 0.5*abs(sum_dth(i)) ) THEN |
|---|
| 1817 | wape2(i) = -1. |
|---|
| 1818 | !! print *,'wake, rej 3' |
|---|
| 1819 | END IF |
|---|
| 1820 | END IF |
|---|
| 1821 | END DO |
|---|
| 1822 | END IF |
|---|
| 1823 | |
|---|
| 1824 | |
|---|
| 1825 | DO k = 1, klev |
|---|
| 1826 | DO i = 1, klon |
|---|
| 1827 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
|---|
| 1828 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
|---|
| 1829 | ! cc |
|---|
| 1830 | deltatw(i, k) = 0. |
|---|
| 1831 | deltaqw(i, k) = 0. |
|---|
| 1832 | dth(i, k) = 0. |
|---|
| 1833 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 1834 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 1835 | END IF |
|---|
| 1836 | END DO |
|---|
| 1837 | END DO |
|---|
| 1838 | |
|---|
| 1839 | |
|---|
| 1840 | DO i = 1, klon |
|---|
| 1841 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1842 | IF (ok_qx_qw(i)) THEN |
|---|
| 1843 | ! cc |
|---|
| 1844 | IF (wape2(i)<0.) THEN |
|---|
| 1845 | wape2(i) = 0. |
|---|
| 1846 | cstar2(i) = 0. |
|---|
| 1847 | hw(i) = hwmin |
|---|
| 1848 | !jyg< |
|---|
| 1849 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
|---|
| 1850 | sigmaw_targ = max(sigmad, sigd_con(i)) |
|---|
| 1851 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
|---|
| 1852 | sigmaw(i) = sigmaw_targ |
|---|
| 1853 | !>jyg |
|---|
| 1854 | fip(i) = 0. |
|---|
| 1855 | gwake(i) = .FALSE. |
|---|
| 1856 | ELSE |
|---|
| 1857 | IF (prt_level>=10) PRINT *, 'wape2>0' |
|---|
| 1858 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
|---|
| 1859 | gwake(i) = .TRUE. |
|---|
| 1860 | END IF |
|---|
| 1861 | END IF |
|---|
| 1862 | END DO |
|---|
| 1863 | |
|---|
| 1864 | DO i = 1, klon |
|---|
| 1865 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1866 | IF (ok_qx_qw(i)) THEN |
|---|
| 1867 | ! cc |
|---|
| 1868 | ktopw(i) = ktop(i) |
|---|
| 1869 | END IF |
|---|
| 1870 | END DO |
|---|
| 1871 | |
|---|
| 1872 | DO i = 1, klon |
|---|
| 1873 | ! cc nrlmd IF ( wk_adv(i)) THEN |
|---|
| 1874 | IF (ok_qx_qw(i)) THEN |
|---|
| 1875 | ! cc |
|---|
| 1876 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
|---|
| 1877 | |
|---|
| 1878 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
|---|
| 1879 | ! cc heff = 600. |
|---|
| 1880 | ! Utilisation de la hauteur hw |
|---|
| 1881 | ! c heff = 0.7*hw |
|---|
| 1882 | heff(i) = hw(i) |
|---|
| 1883 | |
|---|
| 1884 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
|---|
| 1885 | sqrt(sigmaw(i)*wdens(i)*3.14) |
|---|
| 1886 | fip(i) = alpk*fip(i) |
|---|
| 1887 | ! jyg2 |
|---|
| 1888 | ELSE |
|---|
| 1889 | fip(i) = 0. |
|---|
| 1890 | END IF |
|---|
| 1891 | END IF |
|---|
| 1892 | END DO |
|---|
| 1893 | |
|---|
| 1894 | ! Limitation de sigmaw |
|---|
| 1895 | |
|---|
| 1896 | ! cc nrlmd |
|---|
| 1897 | ! DO i=1,klon |
|---|
| 1898 | ! IF (OK_qx_qw(i)) THEN |
|---|
| 1899 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
|---|
| 1900 | ! ENDIF |
|---|
| 1901 | ! ENDDO |
|---|
| 1902 | ! cc |
|---|
| 1903 | DO k = 1, klev |
|---|
| 1904 | DO i = 1, klon |
|---|
| 1905 | |
|---|
| 1906 | ! cc nrlmd On maintient désormais constant sigmaw en régime |
|---|
| 1907 | ! permanent |
|---|
| 1908 | ! cc IF ((sigmaw(i).GT.sigmaw_max).or. |
|---|
| 1909 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
|---|
| 1910 | .NOT. ok_qx_qw(i)) THEN |
|---|
| 1911 | ! cc |
|---|
| 1912 | dtls(i, k) = 0. |
|---|
| 1913 | dqls(i, k) = 0. |
|---|
| 1914 | deltatw(i, k) = 0. |
|---|
| 1915 | deltaqw(i, k) = 0. |
|---|
| 1916 | d_deltatw2(i,k) = -deltatw0(i,k) |
|---|
| 1917 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
|---|
| 1918 | END IF |
|---|
| 1919 | END DO |
|---|
| 1920 | END DO |
|---|
| 1921 | |
|---|
| 1922 | ! cc nrlmd On maintient désormais constant sigmaw en régime permanent |
|---|
| 1923 | DO i = 1, klon |
|---|
| 1924 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
|---|
| 1925 | .NOT. ok_qx_qw(i)) THEN |
|---|
| 1926 | ktopw(i) = 0 |
|---|
| 1927 | wape(i) = 0. |
|---|
| 1928 | cstar(i) = 0. |
|---|
| 1929 | !!jyg Outside subroutine "Wake" hw and sigmaw are zero when there are no wakes |
|---|
| 1930 | !! hw(i) = hwmin !jyg |
|---|
| 1931 | !! sigmaw(i) = sigmad !jyg |
|---|
| 1932 | hw(i) = 0. !jyg |
|---|
| 1933 | sigmaw(i) = 0. !jyg |
|---|
| 1934 | fip(i) = 0. |
|---|
| 1935 | ELSE |
|---|
| 1936 | wape(i) = wape2(i) |
|---|
| 1937 | cstar(i) = cstar2(i) |
|---|
| 1938 | END IF |
|---|
| 1939 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
|---|
| 1940 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
|---|
| 1941 | END DO |
|---|
| 1942 | |
|---|
| 1943 | IF (prt_level>=10) THEN |
|---|
| 1944 | PRINT *, 'wake-6, wape wape2 ktopw OK_qx_qw =', & |
|---|
| 1945 | wape(igout),wape2(igout),ktopw(igout),OK_qx_qw(igout) |
|---|
| 1946 | ENDIF |
|---|
| 1947 | |
|---|
| 1948 | |
|---|
| 1949 | ! ----------------------------------------------------------------- |
|---|
| 1950 | ! Get back to tendencies per second |
|---|
| 1951 | |
|---|
| 1952 | DO k = 1, klev |
|---|
| 1953 | DO i = 1, klon |
|---|
| 1954 | |
|---|
| 1955 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
|---|
| 1956 | !jyg< |
|---|
| 1957 | !! IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
|---|
| 1958 | IF (ok_qx_qw(i)) THEN |
|---|
| 1959 | !>jyg |
|---|
| 1960 | ! cc |
|---|
| 1961 | dtls(i, k) = dtls(i, k)/dtime |
|---|
| 1962 | dqls(i, k) = dqls(i, k)/dtime |
|---|
| 1963 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
|---|
| 1964 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
|---|
| 1965 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
|---|
| 1966 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
|---|
| 1967 | ! c $ ,death_rate(i)*sigmaw(i) |
|---|
| 1968 | END IF |
|---|
| 1969 | END DO |
|---|
| 1970 | END DO |
|---|
| 1971 | !jyg< |
|---|
| 1972 | DO i = 1, klon |
|---|
| 1973 | d_sigmaw2(i) = d_sigmaw2(i)/dtime |
|---|
| 1974 | d_wdens2(i) = d_wdens2(i)/dtime |
|---|
| 1975 | ENDDO |
|---|
| 1976 | !>jyg |
|---|
| 1977 | |
|---|
| 1978 | |
|---|
| 1979 | |
|---|
| 1980 | RETURN |
|---|
| 1981 | END SUBROUTINE wake |
|---|
| 1982 | |
|---|
| 1983 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
|---|
| 1984 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
|---|
| 1985 | ! ------------------------------------------------------ |
|---|
| 1986 | ! Dtermination du coefficient alpha tel que les tendances |
|---|
| 1987 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
|---|
| 1988 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
|---|
| 1989 | ! ------------------------------------------------------ |
|---|
| 1990 | IMPLICIT NONE |
|---|
| 1991 | |
|---|
| 1992 | ! Input |
|---|
| 1993 | REAL qe(nlon, nl), d_qe(nlon, nl) |
|---|
| 1994 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
|---|
| 1995 | REAL sigmaw(nlon), d_sigmaw(nlon) |
|---|
| 1996 | LOGICAL wk_adv(nlon) |
|---|
| 1997 | INTEGER nl, nlon |
|---|
| 1998 | ! Output |
|---|
| 1999 | REAL alpha(nlon) |
|---|
| 2000 | ! Internal variables |
|---|
| 2001 | REAL zeta(nlon, nl) |
|---|
| 2002 | REAL alpha1(nlon) |
|---|
| 2003 | REAL x, a, b, c, discrim |
|---|
| 2004 | REAL epsilon |
|---|
| 2005 | ! DATA epsilon/1.e-15/ |
|---|
| 2006 | INTEGER i,k |
|---|
| 2007 | |
|---|
| 2008 | DO k = 1, nl |
|---|
| 2009 | DO i = 1, nlon |
|---|
| 2010 | IF (wk_adv(i)) THEN |
|---|
| 2011 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
|---|
| 2012 | zeta(i, k) = 0. |
|---|
| 2013 | ELSE |
|---|
| 2014 | zeta(i, k) = 1. |
|---|
| 2015 | END IF |
|---|
| 2016 | END IF |
|---|
| 2017 | END DO |
|---|
| 2018 | DO i = 1, nlon |
|---|
| 2019 | IF (wk_adv(i)) THEN |
|---|
| 2020 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
|---|
| 2021 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i) * & |
|---|
| 2022 | (deltaqw(i,k)+d_deltaqw(i,k)) |
|---|
| 2023 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
|---|
| 2024 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
|---|
| 2025 | deltaqw(i, k)*d_sigmaw(i) |
|---|
| 2026 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
|---|
| 2027 | discrim = b*b - 4.*a*c |
|---|
| 2028 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
|---|
| 2029 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
|---|
| 2030 | alpha1(i) = 1. |
|---|
| 2031 | ELSE |
|---|
| 2032 | IF (x>=0.) THEN |
|---|
| 2033 | alpha1(i) = 1. |
|---|
| 2034 | ELSE |
|---|
| 2035 | IF (a>0.) THEN |
|---|
| 2036 | alpha1(i) = 0.9*min( (2.*c)/(-b+sqrt(discrim)), & |
|---|
| 2037 | (-b+sqrt(discrim))/(2.*a) ) |
|---|
| 2038 | ELSE IF (a==0.) THEN |
|---|
| 2039 | alpha1(i) = 0.9*(-c/b) |
|---|
| 2040 | ELSE |
|---|
| 2041 | ! print*,'a,b,c discrim',a,b,c discrim |
|---|
| 2042 | alpha1(i) = 0.9*max( (2.*c)/(-b+sqrt(discrim)), & |
|---|
| 2043 | (-b+sqrt(discrim))/(2.*a)) |
|---|
| 2044 | END IF |
|---|
| 2045 | END IF |
|---|
| 2046 | END IF |
|---|
| 2047 | alpha(i) = min(alpha(i), alpha1(i)) |
|---|
| 2048 | END IF |
|---|
| 2049 | END DO |
|---|
| 2050 | END DO |
|---|
| 2051 | |
|---|
| 2052 | RETURN |
|---|
| 2053 | END SUBROUTINE wake_vec_modulation |
|---|
| 2054 | |
|---|
| 2055 | |
|---|
| 2056 | |
|---|
| 2057 | |
|---|