1 | |
---|
2 | ! $Id: wake.F90 2346 2015-08-21 15:13:46Z jyg $ |
---|
3 | |
---|
4 | SUBROUTINE wake(p, ph, pi, dtime, sigd_con, & |
---|
5 | te0, qe0, omgb, & |
---|
6 | dtdwn, dqdwn, amdwn, amup, dta, dqa, & |
---|
7 | wdtpbl, wdqpbl, udtpbl, udqpbl, & |
---|
8 | deltatw, deltaqw, dth, hw, sigmaw, wape, fip, gfl, & |
---|
9 | dtls, dqls, ktopw, omgbdth, dp_omgb, wdens, tu, qu, & |
---|
10 | dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, spread, cstar, & |
---|
11 | d_deltat_gw, d_deltatw2, d_deltaqw2) |
---|
12 | |
---|
13 | |
---|
14 | ! ************************************************************** |
---|
15 | ! * |
---|
16 | ! WAKE * |
---|
17 | ! retour a un Pupper fixe * |
---|
18 | ! * |
---|
19 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
20 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
21 | ! ************************************************************** |
---|
22 | |
---|
23 | USE dimphy |
---|
24 | use mod_phys_lmdz_para |
---|
25 | USE print_control_mod, ONLY: prt_level |
---|
26 | IMPLICIT NONE |
---|
27 | ! ============================================================================ |
---|
28 | |
---|
29 | |
---|
30 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
31 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
32 | ! le declenchement de nouvelles colonnes convectives. |
---|
33 | |
---|
34 | ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed |
---|
35 | ! area |
---|
36 | ! deltaqw : ecart d'humidite wake-undisturbed area |
---|
37 | ! sigmaw : fraction d'aire occupee par la poche. |
---|
38 | |
---|
39 | ! Variable de sortie : |
---|
40 | |
---|
41 | ! wape : WAke Potential Energy |
---|
42 | ! fip : Front Incident Power (W/m2) - ALP |
---|
43 | ! gfl : Gust Front Length per unit area (m-1) |
---|
44 | ! dtls : large scale temperature tendency due to wake |
---|
45 | ! dqls : large scale humidity tendency due to wake |
---|
46 | ! hw : hauteur de la poche |
---|
47 | ! dp_omgb : vertical gradient of large scale omega |
---|
48 | ! wdens : densite de poches |
---|
49 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
50 | ! dtKE : differential heating (wake - unpertubed) |
---|
51 | ! dqKE : differential moistening (wake - unpertubed) |
---|
52 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
53 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
54 | ! spread : spreading term in dt_wake and dq_wake |
---|
55 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
56 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
57 | ! sigmaw : updated wake fractional area. |
---|
58 | ! d_deltat_gw : delta T tendency due to GW |
---|
59 | |
---|
60 | ! Variables d'entree : |
---|
61 | |
---|
62 | ! aire : aire de la maille |
---|
63 | ! te0 : temperature dans l'environnement (K) |
---|
64 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
65 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
66 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
67 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
68 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
69 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
70 | ! amdwn: flux de masse total des descentes, par unite de |
---|
71 | ! surface de la maille (kg/m2/s) |
---|
72 | ! amup : flux de masse total des ascendances, par unite de |
---|
73 | ! surface de la maille (kg/m2/s) |
---|
74 | ! p : pressions aux milieux des couches (Pa) |
---|
75 | ! ph : pressions aux interfaces (Pa) |
---|
76 | ! pi : (p/p_0)**kapa (adim) |
---|
77 | ! dtime: increment temporel (s) |
---|
78 | |
---|
79 | ! Variables internes : |
---|
80 | |
---|
81 | ! rhow : masse volumique de la poche froide |
---|
82 | ! rho : environment density at P levels |
---|
83 | ! rhoh : environment density at Ph levels |
---|
84 | ! te : environment temperature | may change within |
---|
85 | ! qe : environment humidity | sub-time-stepping |
---|
86 | ! the : environment potential temperature |
---|
87 | ! thu : potential temperature in undisturbed area |
---|
88 | ! tu : temperature in undisturbed area |
---|
89 | ! qu : humidity in undisturbed area |
---|
90 | ! dp_omgb: vertical gradient og LS omega |
---|
91 | ! omgbw : wake average vertical omega |
---|
92 | ! dp_omgbw: vertical gradient of omgbw |
---|
93 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
94 | ! dth : potential temperature diff. wake-undist. |
---|
95 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
96 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
97 | ! q1 : first humidity for vertical advection |
---|
98 | ! q2 : second humidity for vertical advection |
---|
99 | ! d_deltatw : terme de redistribution pour deltatw |
---|
100 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
101 | ! deltatw0 : deltatw initial |
---|
102 | ! deltaqw0 : deltaqw initial |
---|
103 | ! hw0 : hw initial |
---|
104 | ! sigmaw0: sigmaw initial |
---|
105 | ! amflux : horizontal mass flux through wake boundary |
---|
106 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
107 | ! unit length (2D), at the beginning of each time step |
---|
108 | ! Tgw : 1 sur la période de onde de gravité |
---|
109 | ! Cgw : vitesse de propagation de onde de gravité |
---|
110 | ! LL : distance entre 2 poches |
---|
111 | |
---|
112 | ! ------------------------------------------------------------------------- |
---|
113 | ! Déclaration de variables |
---|
114 | ! ------------------------------------------------------------------------- |
---|
115 | |
---|
116 | include "YOMCST.h" |
---|
117 | include "cvthermo.h" |
---|
118 | |
---|
119 | ! Arguments en entree |
---|
120 | ! -------------------- |
---|
121 | |
---|
122 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
---|
123 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph, omgb |
---|
124 | REAL, INTENT(IN) :: dtime |
---|
125 | REAL, DIMENSION (klon, klev), INTENT(IN) :: te0, qe0 |
---|
126 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
---|
127 | REAL, DIMENSION (klon, klev), INTENT(IN) :: wdtpbl, wdqpbl, udtpbl, udqpbl ! UNUSED |
---|
128 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
---|
129 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
---|
130 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
---|
131 | |
---|
132 | ! |
---|
133 | ! Input/Output |
---|
134 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
---|
135 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
---|
136 | |
---|
137 | ! Sorties |
---|
138 | ! -------- |
---|
139 | |
---|
140 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
---|
141 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
---|
142 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
---|
143 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
---|
144 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtpbl, dqpbl |
---|
145 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: spread |
---|
146 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
---|
147 | REAL, DIMENSION (klon, klev+1), INTENT(OUT) :: omgbdth, omg |
---|
148 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
---|
149 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
---|
150 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
---|
151 | REAL, DIMENSION (klon), INTENT(OUT) :: wdens |
---|
152 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
---|
153 | |
---|
154 | ! Variables internes |
---|
155 | ! ------------------- |
---|
156 | |
---|
157 | ! Variables à fixer |
---|
158 | REAL alon |
---|
159 | LOGICAL, SAVE :: first = .TRUE. |
---|
160 | !$OMP THREADPRIVATE(first) |
---|
161 | REAL, SAVE :: stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol |
---|
162 | !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) |
---|
163 | REAL delta_t_min |
---|
164 | INTEGER nsub |
---|
165 | REAL dtimesub |
---|
166 | REAL sigmad, hwmin, wapecut |
---|
167 | REAL :: sigmaw_max |
---|
168 | REAL :: dens_rate |
---|
169 | REAL wdens0 |
---|
170 | ! IM 080208 |
---|
171 | LOGICAL, DIMENSION (klon) :: gwake |
---|
172 | |
---|
173 | ! Variables de sauvegarde |
---|
174 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
175 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
176 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
177 | REAL, DIMENSION (klon) :: sigmaw0, sigmaw1 |
---|
178 | |
---|
179 | ! Variables pour les GW |
---|
180 | REAL, DIMENSION (klon) :: ll |
---|
181 | REAL, DIMENSION (klon, klev) :: n2 |
---|
182 | REAL, DIMENSION (klon, klev) :: cgw |
---|
183 | REAL, DIMENSION (klon, klev) :: tgw |
---|
184 | |
---|
185 | ! Variables liées au calcul de hw |
---|
186 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
187 | REAL, DIMENSION (klon) :: sum_dth |
---|
188 | REAL, DIMENSION (klon) :: dthmin |
---|
189 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
190 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
191 | |
---|
192 | ! Sub-timestep tendencies and related variables |
---|
193 | REAL d_deltatw(klon, klev), d_deltaqw(klon, klev) |
---|
194 | REAL d_te(klon, klev), d_qe(klon, klev) |
---|
195 | REAL d_sigmaw(klon), alpha(klon) |
---|
196 | REAL q0_min(klon), q1_min(klon) |
---|
197 | LOGICAL wk_adv(klon), ok_qx_qw(klon) |
---|
198 | REAL epsilon |
---|
199 | DATA epsilon/1.E-15/ |
---|
200 | |
---|
201 | ! Autres variables internes |
---|
202 | INTEGER isubstep, k, i |
---|
203 | |
---|
204 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
205 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
206 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
207 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
208 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
209 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
210 | |
---|
211 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
212 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
213 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
214 | REAL, DIMENSION (klon, klev) :: zh |
---|
215 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
216 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
217 | |
---|
218 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
219 | |
---|
220 | ! REAL, DIMENSION(klon,klev) :: d_deltatw, d_deltaqw |
---|
221 | |
---|
222 | REAL, DIMENSION (klon, klev+1) :: omgbw |
---|
223 | REAL, DIMENSION (klon) :: pupper |
---|
224 | REAL, DIMENSION (klon) :: omgtop |
---|
225 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
226 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
227 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
228 | |
---|
229 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
230 | REAL :: rrd1, rrd2 |
---|
231 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
232 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
233 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
234 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
235 | |
---|
236 | REAL, DIMENSION (klon) :: ff, gg |
---|
237 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
238 | |
---|
239 | REAL, DIMENSION (klon, klev) :: crep |
---|
240 | |
---|
241 | REAL, DIMENSION (klon, klev) :: ppi |
---|
242 | |
---|
243 | ! cc nrlmd |
---|
244 | REAL, DIMENSION (klon) :: death_rate, nat_rate |
---|
245 | REAL, DIMENSION (klon, klev) :: entr |
---|
246 | REAL, DIMENSION (klon, klev) :: detr |
---|
247 | |
---|
248 | ! ------------------------------------------------------------------------- |
---|
249 | ! Initialisations |
---|
250 | ! ------------------------------------------------------------------------- |
---|
251 | |
---|
252 | ! print*, 'wake initialisations' |
---|
253 | |
---|
254 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
255 | ! ------------------------------------------------------------------------- |
---|
256 | |
---|
257 | DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
258 | ! cc nrlmd |
---|
259 | DATA sigmaw_max/0.4/ |
---|
260 | DATA dens_rate/0.1/ |
---|
261 | ! cc |
---|
262 | ! Longueur de maille (en m) |
---|
263 | ! ------------------------------------------------------------------------- |
---|
264 | |
---|
265 | ! ALON = 3.e5 |
---|
266 | alon = 1.E6 |
---|
267 | |
---|
268 | |
---|
269 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
270 | |
---|
271 | ! coefgw : Coefficient pour les ondes de gravité |
---|
272 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
273 | ! wdens : Densité de poche froide par maille |
---|
274 | ! ------------------------------------------------------------------------- |
---|
275 | |
---|
276 | ! cc nrlmd coefgw=10 |
---|
277 | ! coefgw=1 |
---|
278 | ! wdens0 = 1.0/(alon**2) |
---|
279 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
280 | ! cc nrlmd stark = 0.50 |
---|
281 | ! CRtest |
---|
282 | ! cc nrlmd alpk=0.1 |
---|
283 | ! alpk = 1.0 |
---|
284 | ! alpk = 0.5 |
---|
285 | ! alpk = 0.05 |
---|
286 | |
---|
287 | if (first) then |
---|
288 | stark = 0.33 |
---|
289 | alpk = 0.25 |
---|
290 | wdens_ref = 8.E-12 |
---|
291 | coefgw = 4. |
---|
292 | crep_upper = 0.9 |
---|
293 | crep_sol = 1.0 |
---|
294 | |
---|
295 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
296 | !$OMP MASTER |
---|
297 | OPEN (99, FILE='wake_param.data', STATUS='old', FORM='formatted', ERR=9999) |
---|
298 | READ (99, *, END=9998) stark |
---|
299 | READ (99, *, END=9998) alpk |
---|
300 | READ (99, *, END=9998) wdens_ref |
---|
301 | READ (99, *, END=9998) coefgw |
---|
302 | 9998 CONTINUE |
---|
303 | CLOSE (99) |
---|
304 | 9999 CONTINUE |
---|
305 | !$OMP END MASTER |
---|
306 | CALL bcast(stark) |
---|
307 | CALL bcast(alpk) |
---|
308 | CALL bcast(wdens_ref) |
---|
309 | CALL bcast(coefgw) |
---|
310 | |
---|
311 | first=.false. |
---|
312 | endif |
---|
313 | |
---|
314 | ! Initialisation de toutes des densites a wdens_ref. |
---|
315 | ! Les densites peuvent evoluer si les poches debordent |
---|
316 | ! (voir au tout debut de la boucle sur les substeps) |
---|
317 | wdens = wdens_ref |
---|
318 | |
---|
319 | ! print*,'stark',stark |
---|
320 | ! print*,'alpk',alpk |
---|
321 | ! print*,'wdens',wdens |
---|
322 | ! print*,'coefgw',coefgw |
---|
323 | ! cc |
---|
324 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
325 | ! ------------------------------------------------------------------------- |
---|
326 | |
---|
327 | delta_t_min = 0.2 |
---|
328 | |
---|
329 | ! 1. - Save initial values and initialize tendencies |
---|
330 | ! -------------------------------------------------- |
---|
331 | |
---|
332 | DO k = 1, klev |
---|
333 | DO i = 1, klon |
---|
334 | ppi(i, k) = pi(i, k) |
---|
335 | deltatw0(i, k) = deltatw(i, k) |
---|
336 | deltaqw0(i, k) = deltaqw(i, k) |
---|
337 | te(i, k) = te0(i, k) |
---|
338 | qe(i, k) = qe0(i, k) |
---|
339 | dtls(i, k) = 0. |
---|
340 | dqls(i, k) = 0. |
---|
341 | d_deltat_gw(i, k) = 0. |
---|
342 | d_te(i, k) = 0. |
---|
343 | d_qe(i, k) = 0. |
---|
344 | d_deltatw(i, k) = 0. |
---|
345 | d_deltaqw(i, k) = 0. |
---|
346 | ! IM 060508 beg |
---|
347 | d_deltatw2(i, k) = 0. |
---|
348 | d_deltaqw2(i, k) = 0. |
---|
349 | ! IM 060508 end |
---|
350 | END DO |
---|
351 | END DO |
---|
352 | ! sigmaw1=sigmaw |
---|
353 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
354 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
355 | ! ENDIF |
---|
356 | DO i = 1, klon |
---|
357 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
358 | sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
359 | sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
360 | sigmaw0(i) = sigmaw(i) |
---|
361 | wape(i) = 0. |
---|
362 | wape2(i) = 0. |
---|
363 | d_sigmaw(i) = 0. |
---|
364 | ktopw(i) = 0 |
---|
365 | END DO |
---|
366 | |
---|
367 | |
---|
368 | ! 2. - Prognostic part |
---|
369 | ! -------------------- |
---|
370 | |
---|
371 | |
---|
372 | ! 2.1 - Undisturbed area and Wake integrals |
---|
373 | ! --------------------------------------------------------- |
---|
374 | |
---|
375 | DO i = 1, klon |
---|
376 | z(i) = 0. |
---|
377 | ktop(i) = 0 |
---|
378 | kupper(i) = 0 |
---|
379 | sum_thu(i) = 0. |
---|
380 | sum_tu(i) = 0. |
---|
381 | sum_qu(i) = 0. |
---|
382 | sum_thvu(i) = 0. |
---|
383 | sum_dth(i) = 0. |
---|
384 | sum_dq(i) = 0. |
---|
385 | sum_rho(i) = 0. |
---|
386 | sum_dtdwn(i) = 0. |
---|
387 | sum_dqdwn(i) = 0. |
---|
388 | |
---|
389 | av_thu(i) = 0. |
---|
390 | av_tu(i) = 0. |
---|
391 | av_qu(i) = 0. |
---|
392 | av_thvu(i) = 0. |
---|
393 | av_dth(i) = 0. |
---|
394 | av_dq(i) = 0. |
---|
395 | av_rho(i) = 0. |
---|
396 | av_dtdwn(i) = 0. |
---|
397 | av_dqdwn(i) = 0. |
---|
398 | END DO |
---|
399 | |
---|
400 | ! Distance between wakes |
---|
401 | DO i = 1, klon |
---|
402 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
403 | END DO |
---|
404 | ! Potential temperatures and humidity |
---|
405 | ! ---------------------------------------------------------- |
---|
406 | DO k = 1, klev |
---|
407 | DO i = 1, klon |
---|
408 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
409 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
410 | ! write(*,*)'wake 2',rho(i,k) |
---|
411 | IF (k==1) THEN |
---|
412 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
413 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
414 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
415 | zhh(i, k) = 0 |
---|
416 | ELSE |
---|
417 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
418 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
419 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
420 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
421 | END IF |
---|
422 | ! write(*,*)'wake 7',ppi(i,k) |
---|
423 | the(i, k) = te(i, k)/ppi(i, k) |
---|
424 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
425 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
426 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
427 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
428 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
429 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
430 | END DO |
---|
431 | END DO |
---|
432 | |
---|
433 | DO k = 1, klev - 1 |
---|
434 | DO i = 1, klon |
---|
435 | IF (k==1) THEN |
---|
436 | n2(i, k) = 0 |
---|
437 | ELSE |
---|
438 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i, & |
---|
439 | k-1))/(p(i,k+1)-p(i,k-1))) |
---|
440 | END IF |
---|
441 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
442 | |
---|
443 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
444 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
445 | END DO |
---|
446 | END DO |
---|
447 | |
---|
448 | DO i = 1, klon |
---|
449 | n2(i, klev) = 0 |
---|
450 | zh(i, klev) = 0 |
---|
451 | cgw(i, klev) = 0 |
---|
452 | tgw(i, klev) = 0 |
---|
453 | END DO |
---|
454 | |
---|
455 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
456 | ! ----------------------------------------------------------------- |
---|
457 | |
---|
458 | DO k = 1, klev |
---|
459 | DO i = 1, klon |
---|
460 | epaisseur1(i, k) = 0. |
---|
461 | epaisseur2(i, k) = 0. |
---|
462 | END DO |
---|
463 | END DO |
---|
464 | |
---|
465 | DO i = 1, klon |
---|
466 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
467 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
468 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
469 | END DO |
---|
470 | |
---|
471 | DO k = 2, klev |
---|
472 | DO i = 1, klon |
---|
473 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
474 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
475 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
476 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
477 | END DO |
---|
478 | END DO |
---|
479 | |
---|
480 | |
---|
481 | ! Choose an integration bound well above wake top |
---|
482 | ! ----------------------------------------------------------------- |
---|
483 | |
---|
484 | ! Pupper = 50000. ! melting level |
---|
485 | ! Pupper = 60000. |
---|
486 | ! Pupper = 80000. ! essais pour case_e |
---|
487 | DO i = 1, klon |
---|
488 | pupper(i) = 0.6*ph(i, 1) |
---|
489 | pupper(i) = max(pupper(i), 45000.) |
---|
490 | ! cc Pupper(i) = 60000. |
---|
491 | END DO |
---|
492 | |
---|
493 | |
---|
494 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
495 | ! -------------------------------------------------------- |
---|
496 | |
---|
497 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
498 | |
---|
499 | DO i = 1, klon |
---|
500 | ptop_provis(i) = ph(i, 1) |
---|
501 | END DO |
---|
502 | DO k = 2, klev |
---|
503 | DO i = 1, klon |
---|
504 | |
---|
505 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
506 | |
---|
507 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
508 | ptop_provis(i)==ph(i,1)) THEN |
---|
509 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
510 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
511 | END IF |
---|
512 | END DO |
---|
513 | END DO |
---|
514 | |
---|
515 | ! -2/ dth integral |
---|
516 | |
---|
517 | DO i = 1, klon |
---|
518 | sum_dth(i) = 0. |
---|
519 | dthmin(i) = -delta_t_min |
---|
520 | z(i) = 0. |
---|
521 | END DO |
---|
522 | |
---|
523 | DO k = 1, klev |
---|
524 | DO i = 1, klon |
---|
525 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
526 | IF (dz(i)>0) THEN |
---|
527 | z(i) = z(i) + dz(i) |
---|
528 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
529 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
530 | END IF |
---|
531 | END DO |
---|
532 | END DO |
---|
533 | |
---|
534 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
535 | |
---|
536 | DO i = 1, klon |
---|
537 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
538 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
539 | END DO |
---|
540 | |
---|
541 | ! -4/ now, get Ptop |
---|
542 | |
---|
543 | DO i = 1, klon |
---|
544 | z(i) = 0. |
---|
545 | ptop(i) = ph(i, 1) |
---|
546 | END DO |
---|
547 | |
---|
548 | DO k = 1, klev |
---|
549 | DO i = 1, klon |
---|
550 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
551 | IF (dz(i)>0) THEN |
---|
552 | z(i) = z(i) + dz(i) |
---|
553 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
554 | END IF |
---|
555 | END DO |
---|
556 | END DO |
---|
557 | |
---|
558 | |
---|
559 | ! -5/ Determination de ktop et kupper |
---|
560 | |
---|
561 | DO k = klev, 1, -1 |
---|
562 | DO i = 1, klon |
---|
563 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
564 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
565 | END DO |
---|
566 | END DO |
---|
567 | |
---|
568 | ! On evite kupper = 1 et kupper = klev |
---|
569 | DO i = 1, klon |
---|
570 | kupper(i) = max(kupper(i), 2) |
---|
571 | kupper(i) = min(kupper(i), klev-1) |
---|
572 | END DO |
---|
573 | |
---|
574 | |
---|
575 | ! -6/ Correct ktop and ptop |
---|
576 | |
---|
577 | DO i = 1, klon |
---|
578 | ptop_new(i) = ptop(i) |
---|
579 | END DO |
---|
580 | DO k = klev, 2, -1 |
---|
581 | DO i = 1, klon |
---|
582 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
583 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
584 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
585 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
586 | END IF |
---|
587 | END DO |
---|
588 | END DO |
---|
589 | |
---|
590 | DO i = 1, klon |
---|
591 | ptop(i) = ptop_new(i) |
---|
592 | END DO |
---|
593 | |
---|
594 | DO k = klev, 1, -1 |
---|
595 | DO i = 1, klon |
---|
596 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
597 | END DO |
---|
598 | END DO |
---|
599 | |
---|
600 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
601 | |
---|
602 | DO k = 1, klev |
---|
603 | DO i = 1, klon |
---|
604 | IF (k>=kupper(i)) THEN |
---|
605 | deltatw(i, k) = 0. |
---|
606 | deltaqw(i, k) = 0. |
---|
607 | END IF |
---|
608 | END DO |
---|
609 | END DO |
---|
610 | |
---|
611 | |
---|
612 | ! Vertical gradient of LS omega |
---|
613 | |
---|
614 | DO k = 1, klev |
---|
615 | DO i = 1, klon |
---|
616 | IF (k<=kupper(i)) THEN |
---|
617 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
618 | END IF |
---|
619 | END DO |
---|
620 | END DO |
---|
621 | |
---|
622 | ! Integrals (and wake top level number) |
---|
623 | ! -------------------------------------- |
---|
624 | |
---|
625 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
626 | |
---|
627 | DO i = 1, klon |
---|
628 | z(i) = 1. |
---|
629 | dz(i) = 1. |
---|
630 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
631 | sum_dth(i) = 0. |
---|
632 | END DO |
---|
633 | |
---|
634 | DO k = 1, klev |
---|
635 | DO i = 1, klon |
---|
636 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
637 | IF (dz(i)>0) THEN |
---|
638 | z(i) = z(i) + dz(i) |
---|
639 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
640 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
641 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
642 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
643 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
644 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
645 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
646 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
647 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
648 | END IF |
---|
649 | END DO |
---|
650 | END DO |
---|
651 | |
---|
652 | DO i = 1, klon |
---|
653 | hw0(i) = z(i) |
---|
654 | END DO |
---|
655 | |
---|
656 | |
---|
657 | ! 2.1 - WAPE and mean forcing computation |
---|
658 | ! --------------------------------------- |
---|
659 | |
---|
660 | ! --------------------------------------- |
---|
661 | |
---|
662 | ! Means |
---|
663 | |
---|
664 | DO i = 1, klon |
---|
665 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
666 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
667 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
668 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
669 | ! av_thve = sum_thve/hw0 |
---|
670 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
671 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
672 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
673 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
674 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
675 | |
---|
676 | wape(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i & |
---|
677 | )+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
678 | END DO |
---|
679 | |
---|
680 | ! 2.2 Prognostic variable update |
---|
681 | ! ------------------------------ |
---|
682 | |
---|
683 | ! Filter out bad wakes |
---|
684 | |
---|
685 | DO k = 1, klev |
---|
686 | DO i = 1, klon |
---|
687 | IF (wape(i)<0.) THEN |
---|
688 | deltatw(i, k) = 0. |
---|
689 | deltaqw(i, k) = 0. |
---|
690 | dth(i, k) = 0. |
---|
691 | END IF |
---|
692 | END DO |
---|
693 | END DO |
---|
694 | |
---|
695 | DO i = 1, klon |
---|
696 | IF (wape(i)<0.) THEN |
---|
697 | wape(i) = 0. |
---|
698 | cstar(i) = 0. |
---|
699 | hw(i) = hwmin |
---|
700 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
701 | fip(i) = 0. |
---|
702 | gwake(i) = .FALSE. |
---|
703 | ELSE |
---|
704 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
705 | gwake(i) = .TRUE. |
---|
706 | END IF |
---|
707 | END DO |
---|
708 | |
---|
709 | |
---|
710 | ! Check qx and qw positivity |
---|
711 | ! -------------------------- |
---|
712 | DO i = 1, klon |
---|
713 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), (qe(i, & |
---|
714 | 1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
715 | END DO |
---|
716 | DO k = 2, klev |
---|
717 | DO i = 1, klon |
---|
718 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), (qe(i, & |
---|
719 | k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
720 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
721 | q0_min(i) = q1_min(i) |
---|
722 | END IF |
---|
723 | END DO |
---|
724 | END DO |
---|
725 | |
---|
726 | DO i = 1, klon |
---|
727 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
728 | alpha(i) = 1. |
---|
729 | END DO |
---|
730 | |
---|
731 | ! C ----------------------------------------------------------------- |
---|
732 | ! Sub-time-stepping |
---|
733 | ! ----------------- |
---|
734 | |
---|
735 | nsub = 10 |
---|
736 | dtimesub = dtime/nsub |
---|
737 | |
---|
738 | ! ------------------------------------------------------------ |
---|
739 | DO isubstep = 1, nsub |
---|
740 | ! ------------------------------------------------------------ |
---|
741 | |
---|
742 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
743 | ! loop |
---|
744 | DO i = 1, klon |
---|
745 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
746 | END DO |
---|
747 | |
---|
748 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
749 | ! négatif de ktop à kupper -------- |
---|
750 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
751 | ! aurait un entrainement nul --- |
---|
752 | DO i = 1, klon |
---|
753 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
754 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
755 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
756 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
757 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
758 | wdens0 = (sigmaw(i)/(4.*3.14))*((1.-sigmaw(i))*omg(i,kupper(i)+1)/(( & |
---|
759 | ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
760 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
761 | wdens(i) = wdens0 |
---|
762 | END IF |
---|
763 | ! c print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
764 | ! c $ ,ph(i,1)-pupper(i)', |
---|
765 | ! c $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
766 | ! c $ ,ph(i,1)-pupper(i) |
---|
767 | END IF |
---|
768 | END DO |
---|
769 | |
---|
770 | ! cc nrlmd |
---|
771 | |
---|
772 | DO i = 1, klon |
---|
773 | IF (wk_adv(i)) THEN |
---|
774 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
775 | sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
776 | END IF |
---|
777 | END DO |
---|
778 | DO i = 1, klon |
---|
779 | IF (wk_adv(i)) THEN |
---|
780 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
781 | ! test sur sigmaw_max=0.4 |
---|
782 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
783 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
784 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
785 | ELSE |
---|
786 | death_rate(i) = 0. |
---|
787 | END IF |
---|
788 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
789 | dtimesub |
---|
790 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
791 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
792 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
793 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
794 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
795 | |
---|
796 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
797 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
798 | ! wdens = wdens0/(10.*sigmaw) |
---|
799 | ! sigmaw =max(sigmaw,sigd_con) |
---|
800 | ! sigmaw =max(sigmaw,sigmad) |
---|
801 | END IF |
---|
802 | END DO |
---|
803 | |
---|
804 | |
---|
805 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
806 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
807 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on |
---|
808 | ! definit |
---|
809 | ! IM 060208 au niveau k=1..? |
---|
810 | DO k = 1, klev |
---|
811 | DO i = 1, klon |
---|
812 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
813 | dp_deltomg(i, k) = 0. |
---|
814 | END IF |
---|
815 | END DO |
---|
816 | END DO |
---|
817 | DO k = 1, klev + 1 |
---|
818 | DO i = 1, klon |
---|
819 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
820 | omg(i, k) = 0. |
---|
821 | END IF |
---|
822 | END DO |
---|
823 | END DO |
---|
824 | |
---|
825 | DO i = 1, klon |
---|
826 | IF (wk_adv(i)) THEN |
---|
827 | z(i) = 0. |
---|
828 | omg(i, 1) = 0. |
---|
829 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
830 | END IF |
---|
831 | END DO |
---|
832 | |
---|
833 | DO k = 2, klev |
---|
834 | DO i = 1, klon |
---|
835 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
836 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
837 | z(i) = z(i) + dz(i) |
---|
838 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
839 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
840 | END IF |
---|
841 | END DO |
---|
842 | END DO |
---|
843 | |
---|
844 | DO i = 1, klon |
---|
845 | IF (wk_adv(i)) THEN |
---|
846 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
847 | ztop(i) = z(i) + dztop(i) |
---|
848 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
849 | END IF |
---|
850 | END DO |
---|
851 | |
---|
852 | ! ----------------- |
---|
853 | ! From m/s to Pa/s |
---|
854 | ! ----------------- |
---|
855 | |
---|
856 | DO i = 1, klon |
---|
857 | IF (wk_adv(i)) THEN |
---|
858 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
859 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
860 | END IF |
---|
861 | END DO |
---|
862 | |
---|
863 | DO k = 1, klev |
---|
864 | DO i = 1, klon |
---|
865 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
866 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
867 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
868 | END IF |
---|
869 | END DO |
---|
870 | END DO |
---|
871 | |
---|
872 | ! raccordement lineaire de omg de ptop a pupper |
---|
873 | |
---|
874 | DO i = 1, klon |
---|
875 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
876 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
877 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
878 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
879 | (ptop(i)-pupper(i)) |
---|
880 | END IF |
---|
881 | END DO |
---|
882 | |
---|
883 | ! c DO i=1,klon |
---|
884 | ! c print*,'Pente entre 0 et kupper (référence)' |
---|
885 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
886 | ! c print*,'Pente entre ktop et kupper' |
---|
887 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
888 | ! c ENDDO |
---|
889 | ! c |
---|
890 | DO k = 1, klev |
---|
891 | DO i = 1, klon |
---|
892 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
893 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
894 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
895 | END IF |
---|
896 | END DO |
---|
897 | END DO |
---|
898 | ! cc nrlmd |
---|
899 | ! c DO i=1,klon |
---|
900 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
901 | ! c END DO |
---|
902 | ! cc |
---|
903 | |
---|
904 | |
---|
905 | ! -- Compute wake average vertical velocity omgbw |
---|
906 | |
---|
907 | |
---|
908 | DO k = 1, klev + 1 |
---|
909 | DO i = 1, klon |
---|
910 | IF (wk_adv(i)) THEN |
---|
911 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
912 | END IF |
---|
913 | END DO |
---|
914 | END DO |
---|
915 | ! -- and its vertical gradient dp_omgbw |
---|
916 | |
---|
917 | DO k = 1, klev |
---|
918 | DO i = 1, klon |
---|
919 | IF (wk_adv(i)) THEN |
---|
920 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
921 | END IF |
---|
922 | END DO |
---|
923 | END DO |
---|
924 | |
---|
925 | ! -- Upstream coefficients for omgb velocity |
---|
926 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
927 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
928 | DO k = 1, klev |
---|
929 | DO i = 1, klon |
---|
930 | IF (wk_adv(i)) THEN |
---|
931 | alpha_up(i, k) = 0. |
---|
932 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
933 | END IF |
---|
934 | END DO |
---|
935 | END DO |
---|
936 | |
---|
937 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
938 | |
---|
939 | DO i = 1, klon |
---|
940 | IF (wk_adv(i)) THEN |
---|
941 | rre1(i) = 1. - sigmaw(i) |
---|
942 | rre2(i) = sigmaw(i) |
---|
943 | END IF |
---|
944 | END DO |
---|
945 | rrd1 = -1. |
---|
946 | rrd2 = 1. |
---|
947 | |
---|
948 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
949 | |
---|
950 | DO k = 1, klev |
---|
951 | DO i = 1, klon |
---|
952 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
953 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
954 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
955 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
956 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
957 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
958 | END IF |
---|
959 | END DO |
---|
960 | END DO |
---|
961 | |
---|
962 | DO i = 1, klon |
---|
963 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
964 | d_th1(i, 1) = 0. |
---|
965 | d_th2(i, 1) = 0. |
---|
966 | d_dth(i, 1) = 0. |
---|
967 | d_q1(i, 1) = 0. |
---|
968 | d_q2(i, 1) = 0. |
---|
969 | d_dq(i, 1) = 0. |
---|
970 | END IF |
---|
971 | END DO |
---|
972 | |
---|
973 | DO k = 2, klev |
---|
974 | DO i = 1, klon |
---|
975 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
976 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
977 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
978 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
979 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
980 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
981 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
982 | END IF |
---|
983 | END DO |
---|
984 | END DO |
---|
985 | |
---|
986 | DO i = 1, klon |
---|
987 | IF (wk_adv(i)) THEN |
---|
988 | omgbdth(i, 1) = 0. |
---|
989 | omgbdq(i, 1) = 0. |
---|
990 | END IF |
---|
991 | END DO |
---|
992 | |
---|
993 | DO k = 2, klev |
---|
994 | DO i = 1, klon |
---|
995 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
996 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
997 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
998 | END IF |
---|
999 | END DO |
---|
1000 | END DO |
---|
1001 | |
---|
1002 | ! ----------------------------------------------------------------- |
---|
1003 | DO k = 1, klev |
---|
1004 | DO i = 1, klon |
---|
1005 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
1006 | ! ----------------------------------------------------------------- |
---|
1007 | |
---|
1008 | ! Compute redistribution (advective) term |
---|
1009 | |
---|
1010 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
1011 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
1012 | i))*d_th2(i,k+1)-(1.-alpha_up(i,k))*omgbdth(i,k)-alpha_up(i,k+1)* & |
---|
1013 | omgbdth(i,k+1))*ppi(i, k) |
---|
1014 | ! print*,'d_deltatw=',d_deltatw(i,k) |
---|
1015 | |
---|
1016 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
1017 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
1018 | i))*d_q2(i,k+1)-(1.-alpha_up(i,k))*omgbdq(i,k)-alpha_up(i,k+1)* & |
---|
1019 | omgbdq(i,k+1)) |
---|
1020 | ! print*,'d_deltaqw=',d_deltaqw(i,k) |
---|
1021 | |
---|
1022 | ! and increment large scale tendencies |
---|
1023 | |
---|
1024 | |
---|
1025 | |
---|
1026 | |
---|
1027 | ! C |
---|
1028 | ! ----------------------------------------------------------------- |
---|
1029 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
1030 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/(ph(i,k)-ph(i, & |
---|
1031 | k+1)) & ! cc nrlmd $ |
---|
1032 | ! -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*dp_deltomg(i,k) |
---|
1033 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/(ph(i, & |
---|
1034 | k)-ph(i,k+1)) & ! cc |
---|
1035 | )*ppi(i, k) |
---|
1036 | |
---|
1037 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
1038 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/(ph(i,k)-ph(i, & |
---|
1039 | k+1)) & ! cc nrlmd $ |
---|
1040 | ! -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*dp_deltomg(i,k) |
---|
1041 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i, & |
---|
1042 | k+1))/(ph(i,k)-ph(i,k+1)) & ! cc |
---|
1043 | ) |
---|
1044 | ! cc nrlmd |
---|
1045 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
1046 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
1047 | k)/(ph(i,k)-ph(i,k+1))))*ppi(i, k) |
---|
1048 | |
---|
1049 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
1050 | k)/(ph(i,k)-ph(i,k+1)))) |
---|
1051 | |
---|
1052 | END IF |
---|
1053 | ! cc |
---|
1054 | END DO |
---|
1055 | END DO |
---|
1056 | ! ------------------------------------------------------------------ |
---|
1057 | |
---|
1058 | ! Increment state variables |
---|
1059 | |
---|
1060 | DO k = 1, klev |
---|
1061 | DO i = 1, klon |
---|
1062 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
1063 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1064 | ! cc |
---|
1065 | |
---|
1066 | |
---|
1067 | |
---|
1068 | ! Coefficient de répartition |
---|
1069 | |
---|
1070 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
1071 | (ph(i,kupper(i))-ph(i,1)) |
---|
1072 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/(p(i,1)-ph(i & |
---|
1073 | ,kupper(i))) |
---|
1074 | |
---|
1075 | |
---|
1076 | ! Reintroduce compensating subsidence term. |
---|
1077 | |
---|
1078 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
1079 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
1080 | ! . /(1-sigmaw) |
---|
1081 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
1082 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
1083 | ! . /(1-sigmaw) |
---|
1084 | |
---|
1085 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
1086 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
1087 | ! . /(1-sigmaw) |
---|
1088 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
1089 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
1090 | ! . /(1-sigmaw) |
---|
1091 | |
---|
1092 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
1093 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
1094 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
1095 | |
---|
1096 | !jyg< |
---|
1097 | !! |
---|
1098 | !!--------------------------------------------------------------- |
---|
1099 | !! The change of delta_T due to PBL (vertical diffusion plus thermal plumes) |
---|
1100 | !! is accounted for by the PBL and the Thermals schemes. It is now set to zero |
---|
1101 | !! within the Wake scheme. |
---|
1102 | !!--------------------------------------------------------------- |
---|
1103 | dtPBL(i,k) = 0. |
---|
1104 | dqPBL(i,k) = 0. |
---|
1105 | ! |
---|
1106 | !! dtPBL(i,k)=wdtPBL(i,k) - udtPBL(i,k) |
---|
1107 | !! dqPBL(i,k)=wdqPBL(i,k) - udqPBL(i,k) |
---|
1108 | ! |
---|
1109 | !! dtpbl(i, k) = (wdtpbl(i,k)/sigmaw(i)-udtpbl(i,k)/(1.-sigmaw(i))) |
---|
1110 | !! dqpbl(i, k) = (wdqpbl(i,k)/sigmaw(i)-udqpbl(i,k)/(1.-sigmaw(i))) |
---|
1111 | ! print*,'dtPBL= ',dtPBL(i,k),' dqPBL= ',dqPBL(i,k) |
---|
1112 | !>jyg |
---|
1113 | ! |
---|
1114 | |
---|
1115 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
1116 | ! cc Définitions de entr, detr |
---|
1117 | detr(i, k) = 0. |
---|
1118 | |
---|
1119 | entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
1120 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
1121 | |
---|
1122 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
1123 | ! cc spread(i,k) = |
---|
1124 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
1125 | ! cc $ sigmaw(i) |
---|
1126 | |
---|
1127 | |
---|
1128 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
1129 | ! Jingmei |
---|
1130 | |
---|
1131 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
1132 | ! & Tgw(i,k),deltatw(i,k) |
---|
1133 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
1134 | dtimesub |
---|
1135 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
1136 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
1137 | |
---|
1138 | ! Sans GW |
---|
1139 | |
---|
1140 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
1141 | |
---|
1142 | ! GW formule 1 |
---|
1143 | |
---|
1144 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
1145 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
1146 | |
---|
1147 | ! GW formule 2 |
---|
1148 | |
---|
1149 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
1150 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc |
---|
1151 | ! $ |
---|
1152 | ! -spread(i,k)*deltatw(i,k) |
---|
1153 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
1154 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
1155 | -tgw(i,k)*deltatw(i,k)) |
---|
1156 | ELSE |
---|
1157 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i, & |
---|
1158 | k)))*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc $ |
---|
1159 | ! -spread(i,k)*deltatw(i,k) |
---|
1160 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
1161 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
1162 | -tgw(i,k)*deltatw(i,k)) |
---|
1163 | END IF |
---|
1164 | |
---|
1165 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1166 | |
---|
1167 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
1168 | |
---|
1169 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k)+dqpbl(i,k) & ! cc $ |
---|
1170 | ! -spread(i,k)*deltaqw(i,k)) |
---|
1171 | -entr(i,k)*deltaqw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw(i)+detr( & |
---|
1172 | i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
1173 | ! cc |
---|
1174 | |
---|
1175 | ! cc nrlmd |
---|
1176 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
1177 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
1178 | ! cc |
---|
1179 | END IF |
---|
1180 | END DO |
---|
1181 | END DO |
---|
1182 | |
---|
1183 | |
---|
1184 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
1185 | |
---|
1186 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
1187 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
1188 | |
---|
1189 | ! cc nrlmd |
---|
1190 | ! c print*,'alpha' |
---|
1191 | ! c do i=1,klon |
---|
1192 | ! c print*,alpha(i) |
---|
1193 | ! c end do |
---|
1194 | ! cc |
---|
1195 | DO k = 1, klev |
---|
1196 | DO i = 1, klon |
---|
1197 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1198 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
1199 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
1200 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
1201 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
1202 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
1203 | END IF |
---|
1204 | END DO |
---|
1205 | END DO |
---|
1206 | DO i = 1, klon |
---|
1207 | IF (wk_adv(i)) THEN |
---|
1208 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
1209 | END IF |
---|
1210 | END DO |
---|
1211 | |
---|
1212 | ! Update large scale variables and wake variables |
---|
1213 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
1214 | ! IM 060208 DO k = 1,kupper(i) |
---|
1215 | DO k = 1, klev |
---|
1216 | DO i = 1, klon |
---|
1217 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1218 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
1219 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
1220 | ! cc nrlmd |
---|
1221 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
1222 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
1223 | ! cc |
---|
1224 | END IF |
---|
1225 | END DO |
---|
1226 | END DO |
---|
1227 | DO k = 1, klev |
---|
1228 | DO i = 1, klon |
---|
1229 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1230 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
1231 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
1232 | the(i, k) = te(i, k)/ppi(i, k) |
---|
1233 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
1234 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
1235 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1236 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
1237 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
1238 | END IF |
---|
1239 | END DO |
---|
1240 | END DO |
---|
1241 | DO i = 1, klon |
---|
1242 | IF (wk_adv(i)) THEN |
---|
1243 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
1244 | END IF |
---|
1245 | END DO |
---|
1246 | |
---|
1247 | |
---|
1248 | ! Determine Ptop from buoyancy integral |
---|
1249 | ! --------------------------------------- |
---|
1250 | |
---|
1251 | ! - 1/ Pressure of the level where dth changes sign. |
---|
1252 | |
---|
1253 | DO i = 1, klon |
---|
1254 | IF (wk_adv(i)) THEN |
---|
1255 | ptop_provis(i) = ph(i, 1) |
---|
1256 | END IF |
---|
1257 | END DO |
---|
1258 | |
---|
1259 | DO k = 2, klev |
---|
1260 | DO i = 1, klon |
---|
1261 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
1262 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
1263 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
1264 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
1265 | END IF |
---|
1266 | END DO |
---|
1267 | END DO |
---|
1268 | |
---|
1269 | ! - 2/ dth integral |
---|
1270 | |
---|
1271 | DO i = 1, klon |
---|
1272 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1273 | sum_dth(i) = 0. |
---|
1274 | dthmin(i) = -delta_t_min |
---|
1275 | z(i) = 0. |
---|
1276 | END IF |
---|
1277 | END DO |
---|
1278 | |
---|
1279 | DO k = 1, klev |
---|
1280 | DO i = 1, klon |
---|
1281 | IF (wk_adv(i)) THEN |
---|
1282 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
1283 | IF (dz(i)>0) THEN |
---|
1284 | z(i) = z(i) + dz(i) |
---|
1285 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1286 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
1287 | END IF |
---|
1288 | END IF |
---|
1289 | END DO |
---|
1290 | END DO |
---|
1291 | |
---|
1292 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
1293 | |
---|
1294 | DO i = 1, klon |
---|
1295 | IF (wk_adv(i)) THEN |
---|
1296 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
1297 | hw(i) = amax1(hwmin, hw(i)) |
---|
1298 | END IF |
---|
1299 | END DO |
---|
1300 | |
---|
1301 | ! - 4/ now, get Ptop |
---|
1302 | |
---|
1303 | DO i = 1, klon |
---|
1304 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1305 | ktop(i) = 0 |
---|
1306 | z(i) = 0. |
---|
1307 | END IF |
---|
1308 | END DO |
---|
1309 | |
---|
1310 | DO k = 1, klev |
---|
1311 | DO i = 1, klon |
---|
1312 | IF (wk_adv(i)) THEN |
---|
1313 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
1314 | IF (dz(i)>0) THEN |
---|
1315 | z(i) = z(i) + dz(i) |
---|
1316 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
1317 | ktop(i) = k |
---|
1318 | END IF |
---|
1319 | END IF |
---|
1320 | END DO |
---|
1321 | END DO |
---|
1322 | |
---|
1323 | ! 4.5/Correct ktop and ptop |
---|
1324 | |
---|
1325 | DO i = 1, klon |
---|
1326 | IF (wk_adv(i)) THEN |
---|
1327 | ptop_new(i) = ptop(i) |
---|
1328 | END IF |
---|
1329 | END DO |
---|
1330 | |
---|
1331 | DO k = klev, 2, -1 |
---|
1332 | DO i = 1, klon |
---|
1333 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
1334 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
1335 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
1336 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
1337 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
1338 | END IF |
---|
1339 | END DO |
---|
1340 | END DO |
---|
1341 | |
---|
1342 | |
---|
1343 | DO i = 1, klon |
---|
1344 | IF (wk_adv(i)) THEN |
---|
1345 | ptop(i) = ptop_new(i) |
---|
1346 | END IF |
---|
1347 | END DO |
---|
1348 | |
---|
1349 | DO k = klev, 1, -1 |
---|
1350 | DO i = 1, klon |
---|
1351 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1352 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
1353 | END IF |
---|
1354 | END DO |
---|
1355 | END DO |
---|
1356 | |
---|
1357 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
1358 | |
---|
1359 | DO k = 1, klev |
---|
1360 | DO i = 1, klon |
---|
1361 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
1362 | deltatw(i, k) = 0. |
---|
1363 | deltaqw(i, k) = 0. |
---|
1364 | END IF |
---|
1365 | END DO |
---|
1366 | END DO |
---|
1367 | |
---|
1368 | |
---|
1369 | ! -------------Cstar computation--------------------------------- |
---|
1370 | DO i = 1, klon |
---|
1371 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1372 | sum_thu(i) = 0. |
---|
1373 | sum_tu(i) = 0. |
---|
1374 | sum_qu(i) = 0. |
---|
1375 | sum_thvu(i) = 0. |
---|
1376 | sum_dth(i) = 0. |
---|
1377 | sum_dq(i) = 0. |
---|
1378 | sum_rho(i) = 0. |
---|
1379 | sum_dtdwn(i) = 0. |
---|
1380 | sum_dqdwn(i) = 0. |
---|
1381 | |
---|
1382 | av_thu(i) = 0. |
---|
1383 | av_tu(i) = 0. |
---|
1384 | av_qu(i) = 0. |
---|
1385 | av_thvu(i) = 0. |
---|
1386 | av_dth(i) = 0. |
---|
1387 | av_dq(i) = 0. |
---|
1388 | av_rho(i) = 0. |
---|
1389 | av_dtdwn(i) = 0. |
---|
1390 | av_dqdwn(i) = 0. |
---|
1391 | END IF |
---|
1392 | END DO |
---|
1393 | |
---|
1394 | ! Integrals (and wake top level number) |
---|
1395 | ! -------------------------------------- |
---|
1396 | |
---|
1397 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1398 | |
---|
1399 | DO i = 1, klon |
---|
1400 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1401 | z(i) = 1. |
---|
1402 | dz(i) = 1. |
---|
1403 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
1404 | sum_dth(i) = 0. |
---|
1405 | END IF |
---|
1406 | END DO |
---|
1407 | |
---|
1408 | DO k = 1, klev |
---|
1409 | DO i = 1, klon |
---|
1410 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1411 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
1412 | IF (dz(i)>0) THEN |
---|
1413 | z(i) = z(i) + dz(i) |
---|
1414 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
1415 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
1416 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
1417 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
1418 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1419 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
1420 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
1421 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
1422 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
1423 | END IF |
---|
1424 | END IF |
---|
1425 | END DO |
---|
1426 | END DO |
---|
1427 | |
---|
1428 | DO i = 1, klon |
---|
1429 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1430 | hw0(i) = z(i) |
---|
1431 | END IF |
---|
1432 | END DO |
---|
1433 | |
---|
1434 | |
---|
1435 | ! - WAPE and mean forcing computation |
---|
1436 | ! --------------------------------------- |
---|
1437 | |
---|
1438 | ! --------------------------------------- |
---|
1439 | |
---|
1440 | ! Means |
---|
1441 | |
---|
1442 | DO i = 1, klon |
---|
1443 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1444 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
1445 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
1446 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
1447 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
1448 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
1449 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
1450 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
1451 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
1452 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
1453 | |
---|
1454 | wape(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
1455 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
1456 | END IF |
---|
1457 | END DO |
---|
1458 | |
---|
1459 | ! Filter out bad wakes |
---|
1460 | |
---|
1461 | DO k = 1, klev |
---|
1462 | DO i = 1, klon |
---|
1463 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1464 | IF (wape(i)<0.) THEN |
---|
1465 | deltatw(i, k) = 0. |
---|
1466 | deltaqw(i, k) = 0. |
---|
1467 | dth(i, k) = 0. |
---|
1468 | END IF |
---|
1469 | END IF |
---|
1470 | END DO |
---|
1471 | END DO |
---|
1472 | |
---|
1473 | DO i = 1, klon |
---|
1474 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1475 | IF (wape(i)<0.) THEN |
---|
1476 | wape(i) = 0. |
---|
1477 | cstar(i) = 0. |
---|
1478 | hw(i) = hwmin |
---|
1479 | sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
1480 | fip(i) = 0. |
---|
1481 | gwake(i) = .FALSE. |
---|
1482 | ELSE |
---|
1483 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
1484 | gwake(i) = .TRUE. |
---|
1485 | END IF |
---|
1486 | END IF |
---|
1487 | END DO |
---|
1488 | |
---|
1489 | END DO ! end sub-timestep loop |
---|
1490 | |
---|
1491 | ! ----------------------------------------------------------------- |
---|
1492 | ! Get back to tendencies per second |
---|
1493 | |
---|
1494 | DO k = 1, klev |
---|
1495 | DO i = 1, klon |
---|
1496 | |
---|
1497 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
1498 | IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
1499 | ! cc |
---|
1500 | dtls(i, k) = dtls(i, k)/dtime |
---|
1501 | dqls(i, k) = dqls(i, k)/dtime |
---|
1502 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
1503 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
1504 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
1505 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
1506 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
1507 | END IF |
---|
1508 | END DO |
---|
1509 | END DO |
---|
1510 | |
---|
1511 | |
---|
1512 | ! ---------------------------------------------------------- |
---|
1513 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
1514 | ! filter out bad wakes. |
---|
1515 | ! ---------------------------------------------------------- |
---|
1516 | |
---|
1517 | ! 2.1 - Undisturbed area and Wake integrals |
---|
1518 | ! --------------------------------------------------------- |
---|
1519 | |
---|
1520 | DO i = 1, klon |
---|
1521 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
1522 | IF (ok_qx_qw(i)) THEN |
---|
1523 | ! cc |
---|
1524 | z(i) = 0. |
---|
1525 | sum_thu(i) = 0. |
---|
1526 | sum_tu(i) = 0. |
---|
1527 | sum_qu(i) = 0. |
---|
1528 | sum_thvu(i) = 0. |
---|
1529 | sum_dth(i) = 0. |
---|
1530 | sum_dq(i) = 0. |
---|
1531 | sum_rho(i) = 0. |
---|
1532 | sum_dtdwn(i) = 0. |
---|
1533 | sum_dqdwn(i) = 0. |
---|
1534 | |
---|
1535 | av_thu(i) = 0. |
---|
1536 | av_tu(i) = 0. |
---|
1537 | av_qu(i) = 0. |
---|
1538 | av_thvu(i) = 0. |
---|
1539 | av_dth(i) = 0. |
---|
1540 | av_dq(i) = 0. |
---|
1541 | av_rho(i) = 0. |
---|
1542 | av_dtdwn(i) = 0. |
---|
1543 | av_dqdwn(i) = 0. |
---|
1544 | END IF |
---|
1545 | END DO |
---|
1546 | ! Potential temperatures and humidity |
---|
1547 | ! ---------------------------------------------------------- |
---|
1548 | |
---|
1549 | DO k = 1, klev |
---|
1550 | DO i = 1, klon |
---|
1551 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1552 | IF (ok_qx_qw(i)) THEN |
---|
1553 | ! cc |
---|
1554 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
1555 | IF (k==1) THEN |
---|
1556 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
1557 | zhh(i, k) = 0 |
---|
1558 | ELSE |
---|
1559 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
1560 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
1561 | END IF |
---|
1562 | the(i, k) = te(i, k)/ppi(i, k) |
---|
1563 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
1564 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
1565 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
1566 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
1567 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1568 | END IF |
---|
1569 | END DO |
---|
1570 | END DO |
---|
1571 | |
---|
1572 | ! Integrals (and wake top level number) |
---|
1573 | ! ----------------------------------------------------------- |
---|
1574 | |
---|
1575 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1576 | |
---|
1577 | DO i = 1, klon |
---|
1578 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1579 | IF (ok_qx_qw(i)) THEN |
---|
1580 | ! cc |
---|
1581 | z(i) = 1. |
---|
1582 | dz(i) = 1. |
---|
1583 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
1584 | sum_dth(i) = 0. |
---|
1585 | END IF |
---|
1586 | END DO |
---|
1587 | |
---|
1588 | DO k = 1, klev |
---|
1589 | DO i = 1, klon |
---|
1590 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1591 | IF (ok_qx_qw(i)) THEN |
---|
1592 | ! cc |
---|
1593 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
1594 | IF (dz(i)>0) THEN |
---|
1595 | z(i) = z(i) + dz(i) |
---|
1596 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
1597 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
1598 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
1599 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
1600 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1601 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
1602 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
1603 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
1604 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
1605 | END IF |
---|
1606 | END IF |
---|
1607 | END DO |
---|
1608 | END DO |
---|
1609 | |
---|
1610 | DO i = 1, klon |
---|
1611 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1612 | IF (ok_qx_qw(i)) THEN |
---|
1613 | ! cc |
---|
1614 | hw0(i) = z(i) |
---|
1615 | END IF |
---|
1616 | END DO |
---|
1617 | |
---|
1618 | ! - WAPE and mean forcing computation |
---|
1619 | ! ------------------------------------------------------------- |
---|
1620 | |
---|
1621 | ! Means |
---|
1622 | |
---|
1623 | DO i = 1, klon |
---|
1624 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1625 | IF (ok_qx_qw(i)) THEN |
---|
1626 | ! cc |
---|
1627 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
1628 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
1629 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
1630 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
1631 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
1632 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
1633 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
1634 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
1635 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
1636 | |
---|
1637 | wape2(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
1638 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
1639 | END IF |
---|
1640 | END DO |
---|
1641 | |
---|
1642 | ! Prognostic variable update |
---|
1643 | ! ------------------------------------------------------------ |
---|
1644 | |
---|
1645 | ! Filter out bad wakes |
---|
1646 | |
---|
1647 | DO k = 1, klev |
---|
1648 | DO i = 1, klon |
---|
1649 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
1650 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
1651 | ! cc |
---|
1652 | deltatw(i, k) = 0. |
---|
1653 | deltaqw(i, k) = 0. |
---|
1654 | dth(i, k) = 0. |
---|
1655 | END IF |
---|
1656 | END DO |
---|
1657 | END DO |
---|
1658 | |
---|
1659 | |
---|
1660 | DO i = 1, klon |
---|
1661 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1662 | IF (ok_qx_qw(i)) THEN |
---|
1663 | ! cc |
---|
1664 | IF (wape2(i)<0.) THEN |
---|
1665 | wape2(i) = 0. |
---|
1666 | cstar2(i) = 0. |
---|
1667 | hw(i) = hwmin |
---|
1668 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
1669 | fip(i) = 0. |
---|
1670 | gwake(i) = .FALSE. |
---|
1671 | ELSE |
---|
1672 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
1673 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
1674 | gwake(i) = .TRUE. |
---|
1675 | END IF |
---|
1676 | END IF |
---|
1677 | END DO |
---|
1678 | |
---|
1679 | DO i = 1, klon |
---|
1680 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1681 | IF (ok_qx_qw(i)) THEN |
---|
1682 | ! cc |
---|
1683 | ktopw(i) = ktop(i) |
---|
1684 | END IF |
---|
1685 | END DO |
---|
1686 | |
---|
1687 | DO i = 1, klon |
---|
1688 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1689 | IF (ok_qx_qw(i)) THEN |
---|
1690 | ! cc |
---|
1691 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
1692 | |
---|
1693 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
1694 | ! cc heff = 600. |
---|
1695 | ! Utilisation de la hauteur hw |
---|
1696 | ! c heff = 0.7*hw |
---|
1697 | heff(i) = hw(i) |
---|
1698 | |
---|
1699 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
1700 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
1701 | fip(i) = alpk*fip(i) |
---|
1702 | ! jyg2 |
---|
1703 | ELSE |
---|
1704 | fip(i) = 0. |
---|
1705 | END IF |
---|
1706 | END IF |
---|
1707 | END DO |
---|
1708 | |
---|
1709 | ! Limitation de sigmaw |
---|
1710 | |
---|
1711 | ! cc nrlmd |
---|
1712 | ! DO i=1,klon |
---|
1713 | ! IF (OK_qx_qw(i)) THEN |
---|
1714 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
1715 | ! ENDIF |
---|
1716 | ! ENDDO |
---|
1717 | ! cc |
---|
1718 | DO k = 1, klev |
---|
1719 | DO i = 1, klon |
---|
1720 | |
---|
1721 | ! cc nrlmd On maintient désormais constant sigmaw en régime |
---|
1722 | ! permanent |
---|
1723 | ! cc IF ((sigmaw(i).GT.sigmaw_max).or. |
---|
1724 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
1725 | .NOT. ok_qx_qw(i)) THEN |
---|
1726 | ! cc |
---|
1727 | dtls(i, k) = 0. |
---|
1728 | dqls(i, k) = 0. |
---|
1729 | deltatw(i, k) = 0. |
---|
1730 | deltaqw(i, k) = 0. |
---|
1731 | END IF |
---|
1732 | END DO |
---|
1733 | END DO |
---|
1734 | |
---|
1735 | ! cc nrlmd On maintient désormais constant sigmaw en régime permanent |
---|
1736 | DO i = 1, klon |
---|
1737 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
1738 | .NOT. ok_qx_qw(i)) THEN |
---|
1739 | wape(i) = 0. |
---|
1740 | cstar(i) = 0. |
---|
1741 | !!jyg Outside subroutine "Wake" hw and sigmaw are zero when there are no wakes |
---|
1742 | !! hw(i) = hwmin !jyg |
---|
1743 | !! sigmaw(i) = sigmad !jyg |
---|
1744 | hw(i) = 0. !jyg |
---|
1745 | sigmaw(i) = 0. !jyg |
---|
1746 | fip(i) = 0. |
---|
1747 | ELSE |
---|
1748 | wape(i) = wape2(i) |
---|
1749 | cstar(i) = cstar2(i) |
---|
1750 | END IF |
---|
1751 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
1752 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
1753 | END DO |
---|
1754 | |
---|
1755 | |
---|
1756 | RETURN |
---|
1757 | END SUBROUTINE wake |
---|
1758 | |
---|
1759 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
1760 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
1761 | ! ------------------------------------------------------ |
---|
1762 | ! Dtermination du coefficient alpha tel que les tendances |
---|
1763 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
1764 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
1765 | ! ------------------------------------------------------ |
---|
1766 | IMPLICIT NONE |
---|
1767 | |
---|
1768 | ! Input |
---|
1769 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
1770 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
1771 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
1772 | LOGICAL wk_adv(nlon) |
---|
1773 | INTEGER nl, nlon |
---|
1774 | ! Output |
---|
1775 | REAL alpha(nlon) |
---|
1776 | ! Internal variables |
---|
1777 | REAL zeta(nlon, nl) |
---|
1778 | REAL alpha1(nlon) |
---|
1779 | REAL x, a, b, c, discrim |
---|
1780 | REAL epsilon |
---|
1781 | ! DATA epsilon/1.e-15/ |
---|
1782 | INTEGER i,k |
---|
1783 | |
---|
1784 | DO k = 1, nl |
---|
1785 | DO i = 1, nlon |
---|
1786 | IF (wk_adv(i)) THEN |
---|
1787 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
1788 | zeta(i, k) = 0. |
---|
1789 | ELSE |
---|
1790 | zeta(i, k) = 1. |
---|
1791 | END IF |
---|
1792 | END IF |
---|
1793 | END DO |
---|
1794 | DO i = 1, nlon |
---|
1795 | IF (wk_adv(i)) THEN |
---|
1796 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
1797 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i)*(deltaqw(i,k)+ & |
---|
1798 | d_deltaqw(i,k)) |
---|
1799 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
1800 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
1801 | deltaqw(i, k)*d_sigmaw(i) |
---|
1802 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
1803 | discrim = b*b - 4.*a*c |
---|
1804 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
1805 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
1806 | alpha1(i) = 1. |
---|
1807 | ELSE |
---|
1808 | IF (x>=0.) THEN |
---|
1809 | alpha1(i) = 1. |
---|
1810 | ELSE |
---|
1811 | IF (a>0.) THEN |
---|
1812 | alpha1(i) = 0.9*min((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
1813 | ))/(2.*a)) |
---|
1814 | ELSE IF (a==0.) THEN |
---|
1815 | alpha1(i) = 0.9*(-c/b) |
---|
1816 | ELSE |
---|
1817 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
1818 | alpha1(i) = 0.9*max((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
1819 | ))/(2.*a)) |
---|
1820 | END IF |
---|
1821 | END IF |
---|
1822 | END IF |
---|
1823 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
1824 | END IF |
---|
1825 | END DO |
---|
1826 | END DO |
---|
1827 | |
---|
1828 | RETURN |
---|
1829 | END SUBROUTINE wake_vec_modulation |
---|
1830 | |
---|
1831 | |
---|