[1992] | 1 | |
---|
[1403] | 2 | ! $Id: wake.F90 2078 2014-07-04 10:44:45Z fhourdin $ |
---|
[879] | 3 | |
---|
[1992] | 4 | SUBROUTINE wake(p, ph, pi, dtime, sigd_con, te0, qe0, omgb, dtdwn, dqdwn, & |
---|
| 5 | amdwn, amup, dta, dqa, wdtpbl, wdqpbl, udtpbl, udqpbl, deltatw, deltaqw, & |
---|
| 6 | dth, hw, sigmaw, wape, fip, gfl, dtls, dqls, ktopw, omgbdth, dp_omgb, & |
---|
| 7 | wdens, tu, qu, dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, spread, cstar, & |
---|
| 8 | d_deltat_gw, d_deltatw2, d_deltaqw2) |
---|
[1146] | 9 | |
---|
[974] | 10 | |
---|
[1992] | 11 | ! ************************************************************** |
---|
| 12 | ! * |
---|
| 13 | ! WAKE * |
---|
| 14 | ! retour a un Pupper fixe * |
---|
| 15 | ! * |
---|
| 16 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 17 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 18 | ! ************************************************************** |
---|
[974] | 19 | |
---|
[1992] | 20 | USE dimphy |
---|
[2078] | 21 | use mod_phys_lmdz_para |
---|
[1992] | 22 | IMPLICIT NONE |
---|
| 23 | ! ============================================================================ |
---|
[974] | 24 | |
---|
| 25 | |
---|
[1992] | 26 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 27 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 28 | ! le declenchement de nouvelles colonnes convectives. |
---|
[974] | 29 | |
---|
[1992] | 30 | ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed |
---|
| 31 | ! area |
---|
| 32 | ! deltaqw : ecart d'humidite wake-undisturbed area |
---|
| 33 | ! sigmaw : fraction d'aire occupee par la poche. |
---|
[974] | 34 | |
---|
[1992] | 35 | ! Variable de sortie : |
---|
[974] | 36 | |
---|
[1992] | 37 | ! wape : WAke Potential Energy |
---|
| 38 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 39 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 40 | ! dtls : large scale temperature tendency due to wake |
---|
| 41 | ! dqls : large scale humidity tendency due to wake |
---|
| 42 | ! hw : hauteur de la poche |
---|
| 43 | ! dp_omgb : vertical gradient of large scale omega |
---|
| 44 | ! wdens : densite de poches |
---|
| 45 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 46 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 47 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 48 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 49 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
| 50 | ! spread : spreading term in dt_wake and dq_wake |
---|
| 51 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 52 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 53 | ! sigmaw : updated wake fractional area. |
---|
| 54 | ! d_deltat_gw : delta T tendency due to GW |
---|
[974] | 55 | |
---|
[1992] | 56 | ! Variables d'entree : |
---|
[974] | 57 | |
---|
[1992] | 58 | ! aire : aire de la maille |
---|
| 59 | ! te0 : temperature dans l'environnement (K) |
---|
| 60 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 61 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 62 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 63 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 64 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 65 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 66 | ! amdwn: flux de masse total des descentes, par unite de |
---|
| 67 | ! surface de la maille (kg/m2/s) |
---|
| 68 | ! amup : flux de masse total des ascendances, par unite de |
---|
| 69 | ! surface de la maille (kg/m2/s) |
---|
| 70 | ! p : pressions aux milieux des couches (Pa) |
---|
| 71 | ! ph : pressions aux interfaces (Pa) |
---|
| 72 | ! pi : (p/p_0)**kapa (adim) |
---|
| 73 | ! dtime: increment temporel (s) |
---|
[974] | 74 | |
---|
[1992] | 75 | ! Variables internes : |
---|
[974] | 76 | |
---|
[1992] | 77 | ! rhow : masse volumique de la poche froide |
---|
| 78 | ! rho : environment density at P levels |
---|
| 79 | ! rhoh : environment density at Ph levels |
---|
| 80 | ! te : environment temperature | may change within |
---|
| 81 | ! qe : environment humidity | sub-time-stepping |
---|
| 82 | ! the : environment potential temperature |
---|
| 83 | ! thu : potential temperature in undisturbed area |
---|
| 84 | ! tu : temperature in undisturbed area |
---|
| 85 | ! qu : humidity in undisturbed area |
---|
| 86 | ! dp_omgb: vertical gradient og LS omega |
---|
| 87 | ! omgbw : wake average vertical omega |
---|
| 88 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 89 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 90 | ! dth : potential temperature diff. wake-undist. |
---|
| 91 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 92 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 93 | ! q1 : first humidity for vertical advection |
---|
| 94 | ! q2 : second humidity for vertical advection |
---|
| 95 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 96 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 97 | ! deltatw0 : deltatw initial |
---|
| 98 | ! deltaqw0 : deltaqw initial |
---|
| 99 | ! hw0 : hw initial |
---|
| 100 | ! sigmaw0: sigmaw initial |
---|
| 101 | ! amflux : horizontal mass flux through wake boundary |
---|
| 102 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
| 103 | ! unit length (2D), at the beginning of each time step |
---|
| 104 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 105 | ! Cgw : vitesse de propagation de onde de gravité |
---|
| 106 | ! LL : distance entre 2 poches |
---|
[974] | 107 | |
---|
[1992] | 108 | ! ------------------------------------------------------------------------- |
---|
| 109 | ! Déclaration de variables |
---|
| 110 | ! ------------------------------------------------------------------------- |
---|
[1146] | 111 | |
---|
[1992] | 112 | include "dimensions.h" |
---|
| 113 | include "YOMCST.h" |
---|
| 114 | include "cvthermo.h" |
---|
| 115 | include "iniprint.h" |
---|
[974] | 116 | |
---|
[1992] | 117 | ! Arguments en entree |
---|
| 118 | ! -------------------- |
---|
[974] | 119 | |
---|
[1992] | 120 | REAL, DIMENSION (klon, klev) :: p, pi |
---|
| 121 | REAL, DIMENSION (klon, klev+1) :: ph, omgb |
---|
| 122 | REAL dtime |
---|
| 123 | REAL, DIMENSION (klon, klev) :: te0, qe0 |
---|
| 124 | REAL, DIMENSION (klon, klev) :: dtdwn, dqdwn |
---|
| 125 | REAL, DIMENSION (klon, klev) :: wdtpbl, wdqpbl |
---|
| 126 | REAL, DIMENSION (klon, klev) :: udtpbl, udqpbl |
---|
| 127 | REAL, DIMENSION (klon, klev) :: amdwn, amup |
---|
| 128 | REAL, DIMENSION (klon, klev) :: dta, dqa |
---|
| 129 | REAL, DIMENSION (klon) :: sigd_con |
---|
[974] | 130 | |
---|
[1992] | 131 | ! Sorties |
---|
| 132 | ! -------- |
---|
[974] | 133 | |
---|
[1992] | 134 | REAL, DIMENSION (klon, klev) :: deltatw, deltaqw, dth |
---|
| 135 | REAL, DIMENSION (klon, klev) :: tu, qu |
---|
| 136 | REAL, DIMENSION (klon, klev) :: dtls, dqls |
---|
| 137 | REAL, DIMENSION (klon, klev) :: dtke, dqke |
---|
| 138 | REAL, DIMENSION (klon, klev) :: dtpbl, dqpbl |
---|
| 139 | REAL, DIMENSION (klon, klev) :: spread |
---|
| 140 | REAL, DIMENSION (klon, klev) :: d_deltatgw |
---|
| 141 | REAL, DIMENSION (klon, klev) :: d_deltatw2, d_deltaqw2 |
---|
| 142 | REAL, DIMENSION (klon, klev+1) :: omgbdth, omg |
---|
| 143 | REAL, DIMENSION (klon, klev) :: dp_omgb, dp_deltomg |
---|
| 144 | REAL, DIMENSION (klon, klev) :: d_deltat_gw |
---|
| 145 | REAL, DIMENSION (klon) :: hw, sigmaw, wape, fip, gfl, cstar |
---|
| 146 | REAL, DIMENSION (klon) :: wdens |
---|
| 147 | INTEGER, DIMENSION (klon) :: ktopw |
---|
[974] | 148 | |
---|
[1992] | 149 | ! Variables internes |
---|
| 150 | ! ------------------- |
---|
[974] | 151 | |
---|
[1992] | 152 | ! Variables à fixer |
---|
| 153 | REAL alon |
---|
[2078] | 154 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 155 | !$OMP THREADPRIVATE(first) |
---|
| 156 | REAL, SAVE :: stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol |
---|
| 157 | !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) |
---|
[1992] | 158 | REAL delta_t_min |
---|
| 159 | INTEGER nsub |
---|
| 160 | REAL dtimesub |
---|
| 161 | REAL sigmad, hwmin, wapecut |
---|
| 162 | REAL :: sigmaw_max |
---|
| 163 | REAL :: dens_rate |
---|
| 164 | REAL wdens0 |
---|
| 165 | ! IM 080208 |
---|
| 166 | LOGICAL, DIMENSION (klon) :: gwake |
---|
[974] | 167 | |
---|
[1992] | 168 | ! Variables de sauvegarde |
---|
| 169 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
| 170 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
| 171 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
| 172 | REAL, DIMENSION (klon) :: sigmaw0, sigmaw1 |
---|
[974] | 173 | |
---|
[1992] | 174 | ! Variables pour les GW |
---|
| 175 | REAL, DIMENSION (klon) :: ll |
---|
| 176 | REAL, DIMENSION (klon, klev) :: n2 |
---|
| 177 | REAL, DIMENSION (klon, klev) :: cgw |
---|
| 178 | REAL, DIMENSION (klon, klev) :: tgw |
---|
[1403] | 179 | |
---|
[1992] | 180 | ! Variables liées au calcul de hw |
---|
| 181 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
| 182 | REAL, DIMENSION (klon) :: sum_dth |
---|
| 183 | REAL, DIMENSION (klon) :: dthmin |
---|
| 184 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
| 185 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
[1403] | 186 | |
---|
[1992] | 187 | ! Sub-timestep tendencies and related variables |
---|
| 188 | REAL d_deltatw(klon, klev), d_deltaqw(klon, klev) |
---|
| 189 | REAL d_te(klon, klev), d_qe(klon, klev) |
---|
| 190 | REAL d_sigmaw(klon), alpha(klon) |
---|
| 191 | REAL q0_min(klon), q1_min(klon) |
---|
| 192 | LOGICAL wk_adv(klon), ok_qx_qw(klon) |
---|
| 193 | REAL epsilon |
---|
| 194 | DATA epsilon/1.E-15/ |
---|
[974] | 195 | |
---|
[1992] | 196 | ! Autres variables internes |
---|
| 197 | INTEGER isubstep, k, i |
---|
[974] | 198 | |
---|
[1992] | 199 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 200 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
| 201 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
| 202 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
| 203 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
| 204 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
[974] | 205 | |
---|
[1992] | 206 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
| 207 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
| 208 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
| 209 | REAL, DIMENSION (klon, klev) :: zh |
---|
| 210 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
| 211 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
[974] | 212 | |
---|
[1992] | 213 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
[974] | 214 | |
---|
[1992] | 215 | ! REAL, DIMENSION(klon,klev) :: d_deltatw, d_deltaqw |
---|
[974] | 216 | |
---|
[1992] | 217 | REAL, DIMENSION (klon, klev+1) :: omgbw |
---|
| 218 | REAL, DIMENSION (klon) :: pupper |
---|
| 219 | REAL, DIMENSION (klon) :: omgtop |
---|
| 220 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
| 221 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
| 222 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
[974] | 223 | |
---|
[1992] | 224 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
| 225 | REAL :: rrd1, rrd2 |
---|
| 226 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
| 227 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
| 228 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
| 229 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
[974] | 230 | |
---|
[1992] | 231 | REAL, DIMENSION (klon) :: ff, gg |
---|
| 232 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
[974] | 233 | |
---|
[1992] | 234 | REAL, DIMENSION (klon, klev) :: crep |
---|
[974] | 235 | |
---|
[1992] | 236 | REAL, DIMENSION (klon, klev) :: ppi |
---|
[974] | 237 | |
---|
[1992] | 238 | ! cc nrlmd |
---|
| 239 | REAL, DIMENSION (klon) :: death_rate, nat_rate |
---|
| 240 | REAL, DIMENSION (klon, klev) :: entr |
---|
| 241 | REAL, DIMENSION (klon, klev) :: detr |
---|
[974] | 242 | |
---|
[1992] | 243 | ! ------------------------------------------------------------------------- |
---|
| 244 | ! Initialisations |
---|
| 245 | ! ------------------------------------------------------------------------- |
---|
[974] | 246 | |
---|
[1992] | 247 | ! print*, 'wake initialisations' |
---|
[974] | 248 | |
---|
[1992] | 249 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 250 | ! ------------------------------------------------------------------------- |
---|
[974] | 251 | |
---|
[1992] | 252 | DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
| 253 | ! cc nrlmd |
---|
| 254 | DATA sigmaw_max/0.4/ |
---|
| 255 | DATA dens_rate/0.1/ |
---|
| 256 | ! cc |
---|
| 257 | ! Longueur de maille (en m) |
---|
| 258 | ! ------------------------------------------------------------------------- |
---|
[974] | 259 | |
---|
[1992] | 260 | ! ALON = 3.e5 |
---|
| 261 | alon = 1.E6 |
---|
[974] | 262 | |
---|
| 263 | |
---|
[1992] | 264 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
[974] | 265 | |
---|
[1992] | 266 | ! coefgw : Coefficient pour les ondes de gravité |
---|
| 267 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 268 | ! wdens : Densité de poche froide par maille |
---|
| 269 | ! ------------------------------------------------------------------------- |
---|
[974] | 270 | |
---|
[1992] | 271 | ! cc nrlmd coefgw=10 |
---|
| 272 | ! coefgw=1 |
---|
| 273 | ! wdens0 = 1.0/(alon**2) |
---|
| 274 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
| 275 | ! cc nrlmd stark = 0.50 |
---|
| 276 | ! CRtest |
---|
| 277 | ! cc nrlmd alpk=0.1 |
---|
| 278 | ! alpk = 1.0 |
---|
| 279 | ! alpk = 0.5 |
---|
| 280 | ! alpk = 0.05 |
---|
[1146] | 281 | |
---|
[2078] | 282 | if (first) then |
---|
[1992] | 283 | stark = 0.33 |
---|
| 284 | alpk = 0.25 |
---|
| 285 | wdens_ref = 8.E-12 |
---|
| 286 | coefgw = 4. |
---|
| 287 | crep_upper = 0.9 |
---|
| 288 | crep_sol = 1.0 |
---|
[974] | 289 | |
---|
[1992] | 290 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
[2078] | 291 | !$OMP MASTER |
---|
[1992] | 292 | OPEN (99, FILE='wake_param.data', STATUS='old', FORM='formatted', ERR=9999) |
---|
| 293 | READ (99, *, END=9998) stark |
---|
| 294 | READ (99, *, END=9998) alpk |
---|
| 295 | READ (99, *, END=9998) wdens_ref |
---|
| 296 | READ (99, *, END=9998) coefgw |
---|
| 297 | 9998 CONTINUE |
---|
| 298 | CLOSE (99) |
---|
| 299 | 9999 CONTINUE |
---|
[2078] | 300 | !$OMP END MASTER |
---|
| 301 | CALL bcast(stark) |
---|
| 302 | CALL bcast(alpk) |
---|
| 303 | CALL bcast(wdens_ref) |
---|
| 304 | CALL bcast(coefgw) |
---|
[974] | 305 | |
---|
[2078] | 306 | first=.false. |
---|
| 307 | endif |
---|
| 308 | |
---|
[1992] | 309 | ! Initialisation de toutes des densites a wdens_ref. |
---|
| 310 | ! Les densites peuvent evoluer si les poches debordent |
---|
| 311 | ! (voir au tout debut de la boucle sur les substeps) |
---|
| 312 | wdens = wdens_ref |
---|
[974] | 313 | |
---|
[1992] | 314 | ! print*,'stark',stark |
---|
| 315 | ! print*,'alpk',alpk |
---|
| 316 | ! print*,'wdens',wdens |
---|
| 317 | ! print*,'coefgw',coefgw |
---|
| 318 | ! cc |
---|
| 319 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 320 | ! ------------------------------------------------------------------------- |
---|
[974] | 321 | |
---|
[1992] | 322 | delta_t_min = 0.2 |
---|
[974] | 323 | |
---|
[1992] | 324 | ! 1. - Save initial values and initialize tendencies |
---|
| 325 | ! -------------------------------------------------- |
---|
[974] | 326 | |
---|
[1992] | 327 | DO k = 1, klev |
---|
| 328 | DO i = 1, klon |
---|
| 329 | ppi(i, k) = pi(i, k) |
---|
| 330 | deltatw0(i, k) = deltatw(i, k) |
---|
| 331 | deltaqw0(i, k) = deltaqw(i, k) |
---|
| 332 | te(i, k) = te0(i, k) |
---|
| 333 | qe(i, k) = qe0(i, k) |
---|
| 334 | dtls(i, k) = 0. |
---|
| 335 | dqls(i, k) = 0. |
---|
| 336 | d_deltat_gw(i, k) = 0. |
---|
| 337 | d_te(i, k) = 0. |
---|
| 338 | d_qe(i, k) = 0. |
---|
| 339 | d_deltatw(i, k) = 0. |
---|
| 340 | d_deltaqw(i, k) = 0. |
---|
| 341 | ! IM 060508 beg |
---|
| 342 | d_deltatw2(i, k) = 0. |
---|
| 343 | d_deltaqw2(i, k) = 0. |
---|
| 344 | ! IM 060508 end |
---|
| 345 | END DO |
---|
| 346 | END DO |
---|
| 347 | ! sigmaw1=sigmaw |
---|
| 348 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 349 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 350 | ! ENDIF |
---|
| 351 | DO i = 1, klon |
---|
| 352 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
| 353 | sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
| 354 | sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
| 355 | sigmaw0(i) = sigmaw(i) |
---|
| 356 | wape(i) = 0. |
---|
| 357 | wape2(i) = 0. |
---|
| 358 | d_sigmaw(i) = 0. |
---|
| 359 | ktopw(i) = 0 |
---|
| 360 | END DO |
---|
[974] | 361 | |
---|
| 362 | |
---|
[1992] | 363 | ! 2. - Prognostic part |
---|
| 364 | ! -------------------- |
---|
[974] | 365 | |
---|
| 366 | |
---|
[1992] | 367 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 368 | ! --------------------------------------------------------- |
---|
[974] | 369 | |
---|
[1992] | 370 | DO i = 1, klon |
---|
| 371 | z(i) = 0. |
---|
| 372 | ktop(i) = 0 |
---|
| 373 | kupper(i) = 0 |
---|
| 374 | sum_thu(i) = 0. |
---|
| 375 | sum_tu(i) = 0. |
---|
| 376 | sum_qu(i) = 0. |
---|
| 377 | sum_thvu(i) = 0. |
---|
| 378 | sum_dth(i) = 0. |
---|
| 379 | sum_dq(i) = 0. |
---|
| 380 | sum_rho(i) = 0. |
---|
| 381 | sum_dtdwn(i) = 0. |
---|
| 382 | sum_dqdwn(i) = 0. |
---|
[974] | 383 | |
---|
[1992] | 384 | av_thu(i) = 0. |
---|
| 385 | av_tu(i) = 0. |
---|
| 386 | av_qu(i) = 0. |
---|
| 387 | av_thvu(i) = 0. |
---|
| 388 | av_dth(i) = 0. |
---|
| 389 | av_dq(i) = 0. |
---|
| 390 | av_rho(i) = 0. |
---|
| 391 | av_dtdwn(i) = 0. |
---|
| 392 | av_dqdwn(i) = 0. |
---|
| 393 | END DO |
---|
[974] | 394 | |
---|
[1992] | 395 | ! Distance between wakes |
---|
| 396 | DO i = 1, klon |
---|
| 397 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
| 398 | END DO |
---|
| 399 | ! Potential temperatures and humidity |
---|
| 400 | ! ---------------------------------------------------------- |
---|
| 401 | DO k = 1, klev |
---|
| 402 | DO i = 1, klon |
---|
| 403 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
| 404 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 405 | ! write(*,*)'wake 2',rho(i,k) |
---|
| 406 | IF (k==1) THEN |
---|
| 407 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
| 408 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 409 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
| 410 | zhh(i, k) = 0 |
---|
| 411 | ELSE |
---|
| 412 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
| 413 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 414 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
| 415 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 416 | END IF |
---|
| 417 | ! write(*,*)'wake 7',ppi(i,k) |
---|
| 418 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 419 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 420 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 421 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 422 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
| 423 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 424 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 425 | END DO |
---|
| 426 | END DO |
---|
[1403] | 427 | |
---|
[1992] | 428 | DO k = 1, klev - 1 |
---|
| 429 | DO i = 1, klon |
---|
| 430 | IF (k==1) THEN |
---|
| 431 | n2(i, k) = 0 |
---|
| 432 | ELSE |
---|
| 433 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i, & |
---|
| 434 | k-1))/(p(i,k+1)-p(i,k-1))) |
---|
| 435 | END IF |
---|
| 436 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
[1403] | 437 | |
---|
[1992] | 438 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
| 439 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
| 440 | END DO |
---|
| 441 | END DO |
---|
[974] | 442 | |
---|
[1992] | 443 | DO i = 1, klon |
---|
| 444 | n2(i, klev) = 0 |
---|
| 445 | zh(i, klev) = 0 |
---|
| 446 | cgw(i, klev) = 0 |
---|
| 447 | tgw(i, klev) = 0 |
---|
| 448 | END DO |
---|
[974] | 449 | |
---|
[1992] | 450 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
| 451 | ! ----------------------------------------------------------------- |
---|
[974] | 452 | |
---|
[1992] | 453 | DO k = 1, klev |
---|
| 454 | DO i = 1, klon |
---|
| 455 | epaisseur1(i, k) = 0. |
---|
| 456 | epaisseur2(i, k) = 0. |
---|
| 457 | END DO |
---|
| 458 | END DO |
---|
[974] | 459 | |
---|
[1992] | 460 | DO i = 1, klon |
---|
| 461 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 462 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 463 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
| 464 | END DO |
---|
[974] | 465 | |
---|
[1992] | 466 | DO k = 2, klev |
---|
| 467 | DO i = 1, klon |
---|
| 468 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
| 469 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
| 470 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
| 471 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
| 472 | END DO |
---|
| 473 | END DO |
---|
[974] | 474 | |
---|
| 475 | |
---|
[1992] | 476 | ! Choose an integration bound well above wake top |
---|
| 477 | ! ----------------------------------------------------------------- |
---|
[974] | 478 | |
---|
[1992] | 479 | ! Pupper = 50000. ! melting level |
---|
| 480 | ! Pupper = 60000. |
---|
| 481 | ! Pupper = 80000. ! essais pour case_e |
---|
| 482 | DO i = 1, klon |
---|
| 483 | pupper(i) = 0.6*ph(i, 1) |
---|
| 484 | pupper(i) = max(pupper(i), 45000.) |
---|
| 485 | ! cc Pupper(i) = 60000. |
---|
| 486 | END DO |
---|
[1146] | 487 | |
---|
[1403] | 488 | |
---|
[1992] | 489 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 490 | ! -------------------------------------------------------- |
---|
[1403] | 491 | |
---|
[1992] | 492 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 493 | |
---|
| 494 | DO i = 1, klon |
---|
| 495 | ptop_provis(i) = ph(i, 1) |
---|
| 496 | END DO |
---|
| 497 | DO k = 2, klev |
---|
| 498 | DO i = 1, klon |
---|
| 499 | |
---|
| 500 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
| 501 | |
---|
| 502 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
| 503 | ptop_provis(i)==ph(i,1)) THEN |
---|
| 504 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 505 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 506 | END IF |
---|
| 507 | END DO |
---|
| 508 | END DO |
---|
| 509 | |
---|
| 510 | ! -2/ dth integral |
---|
| 511 | |
---|
| 512 | DO i = 1, klon |
---|
| 513 | sum_dth(i) = 0. |
---|
| 514 | dthmin(i) = -delta_t_min |
---|
| 515 | z(i) = 0. |
---|
| 516 | END DO |
---|
| 517 | |
---|
| 518 | DO k = 1, klev |
---|
| 519 | DO i = 1, klon |
---|
| 520 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 521 | IF (dz(i)>0) THEN |
---|
| 522 | z(i) = z(i) + dz(i) |
---|
| 523 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 524 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 525 | END IF |
---|
| 526 | END DO |
---|
| 527 | END DO |
---|
| 528 | |
---|
| 529 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 530 | |
---|
| 531 | DO i = 1, klon |
---|
| 532 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 533 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
| 534 | END DO |
---|
| 535 | |
---|
| 536 | ! -4/ now, get Ptop |
---|
| 537 | |
---|
| 538 | DO i = 1, klon |
---|
| 539 | z(i) = 0. |
---|
| 540 | ptop(i) = ph(i, 1) |
---|
| 541 | END DO |
---|
| 542 | |
---|
| 543 | DO k = 1, klev |
---|
| 544 | DO i = 1, klon |
---|
| 545 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
| 546 | IF (dz(i)>0) THEN |
---|
| 547 | z(i) = z(i) + dz(i) |
---|
| 548 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 549 | END IF |
---|
| 550 | END DO |
---|
| 551 | END DO |
---|
| 552 | |
---|
| 553 | |
---|
| 554 | ! -5/ Determination de ktop et kupper |
---|
| 555 | |
---|
| 556 | DO k = klev, 1, -1 |
---|
| 557 | DO i = 1, klon |
---|
| 558 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 559 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
| 560 | END DO |
---|
| 561 | END DO |
---|
| 562 | |
---|
| 563 | ! On evite kupper = 1 et kupper = klev |
---|
| 564 | DO i = 1, klon |
---|
| 565 | kupper(i) = max(kupper(i), 2) |
---|
| 566 | kupper(i) = min(kupper(i), klev-1) |
---|
| 567 | END DO |
---|
| 568 | |
---|
| 569 | |
---|
| 570 | ! -6/ Correct ktop and ptop |
---|
| 571 | |
---|
| 572 | DO i = 1, klon |
---|
| 573 | ptop_new(i) = ptop(i) |
---|
| 574 | END DO |
---|
| 575 | DO k = klev, 2, -1 |
---|
| 576 | DO i = 1, klon |
---|
| 577 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 578 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 579 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 580 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 581 | END IF |
---|
| 582 | END DO |
---|
| 583 | END DO |
---|
| 584 | |
---|
| 585 | DO i = 1, klon |
---|
| 586 | ptop(i) = ptop_new(i) |
---|
| 587 | END DO |
---|
| 588 | |
---|
| 589 | DO k = klev, 1, -1 |
---|
| 590 | DO i = 1, klon |
---|
| 591 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 592 | END DO |
---|
| 593 | END DO |
---|
| 594 | |
---|
| 595 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 596 | |
---|
| 597 | DO k = 1, klev |
---|
| 598 | DO i = 1, klon |
---|
| 599 | IF (k>=kupper(i)) THEN |
---|
| 600 | deltatw(i, k) = 0. |
---|
| 601 | deltaqw(i, k) = 0. |
---|
| 602 | END IF |
---|
| 603 | END DO |
---|
| 604 | END DO |
---|
| 605 | |
---|
| 606 | |
---|
| 607 | ! Vertical gradient of LS omega |
---|
| 608 | |
---|
| 609 | DO k = 1, klev |
---|
| 610 | DO i = 1, klon |
---|
| 611 | IF (k<=kupper(i)) THEN |
---|
| 612 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 613 | END IF |
---|
| 614 | END DO |
---|
| 615 | END DO |
---|
| 616 | |
---|
| 617 | ! Integrals (and wake top level number) |
---|
| 618 | ! -------------------------------------- |
---|
| 619 | |
---|
| 620 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 621 | |
---|
| 622 | DO i = 1, klon |
---|
| 623 | z(i) = 1. |
---|
| 624 | dz(i) = 1. |
---|
| 625 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
| 626 | sum_dth(i) = 0. |
---|
| 627 | END DO |
---|
| 628 | |
---|
| 629 | DO k = 1, klev |
---|
| 630 | DO i = 1, klon |
---|
| 631 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 632 | IF (dz(i)>0) THEN |
---|
| 633 | z(i) = z(i) + dz(i) |
---|
| 634 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 635 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 636 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 637 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
| 638 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 639 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 640 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 641 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 642 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 643 | END IF |
---|
| 644 | END DO |
---|
| 645 | END DO |
---|
| 646 | |
---|
| 647 | DO i = 1, klon |
---|
| 648 | hw0(i) = z(i) |
---|
| 649 | END DO |
---|
| 650 | |
---|
| 651 | |
---|
| 652 | ! 2.1 - WAPE and mean forcing computation |
---|
| 653 | ! --------------------------------------- |
---|
| 654 | |
---|
| 655 | ! --------------------------------------- |
---|
| 656 | |
---|
| 657 | ! Means |
---|
| 658 | |
---|
| 659 | DO i = 1, klon |
---|
| 660 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 661 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 662 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 663 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 664 | ! av_thve = sum_thve/hw0 |
---|
| 665 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 666 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 667 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 668 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 669 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 670 | |
---|
| 671 | wape(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i & |
---|
| 672 | )+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 673 | END DO |
---|
| 674 | |
---|
| 675 | ! 2.2 Prognostic variable update |
---|
| 676 | ! ------------------------------ |
---|
| 677 | |
---|
| 678 | ! Filter out bad wakes |
---|
| 679 | |
---|
| 680 | DO k = 1, klev |
---|
| 681 | DO i = 1, klon |
---|
| 682 | IF (wape(i)<0.) THEN |
---|
| 683 | deltatw(i, k) = 0. |
---|
| 684 | deltaqw(i, k) = 0. |
---|
| 685 | dth(i, k) = 0. |
---|
| 686 | END IF |
---|
| 687 | END DO |
---|
| 688 | END DO |
---|
| 689 | |
---|
| 690 | DO i = 1, klon |
---|
| 691 | IF (wape(i)<0.) THEN |
---|
| 692 | wape(i) = 0. |
---|
| 693 | cstar(i) = 0. |
---|
| 694 | hw(i) = hwmin |
---|
| 695 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 696 | fip(i) = 0. |
---|
| 697 | gwake(i) = .FALSE. |
---|
| 698 | ELSE |
---|
| 699 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 700 | gwake(i) = .TRUE. |
---|
| 701 | END IF |
---|
| 702 | END DO |
---|
| 703 | |
---|
| 704 | |
---|
| 705 | ! Check qx and qw positivity |
---|
| 706 | ! -------------------------- |
---|
| 707 | DO i = 1, klon |
---|
| 708 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), (qe(i, & |
---|
| 709 | 1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
| 710 | END DO |
---|
| 711 | DO k = 2, klev |
---|
| 712 | DO i = 1, klon |
---|
| 713 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), (qe(i, & |
---|
| 714 | k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
| 715 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
| 716 | q0_min(i) = q1_min(i) |
---|
| 717 | END IF |
---|
| 718 | END DO |
---|
| 719 | END DO |
---|
| 720 | |
---|
| 721 | DO i = 1, klon |
---|
| 722 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
| 723 | alpha(i) = 1. |
---|
| 724 | END DO |
---|
| 725 | |
---|
| 726 | ! C ----------------------------------------------------------------- |
---|
| 727 | ! Sub-time-stepping |
---|
| 728 | ! ----------------- |
---|
| 729 | |
---|
| 730 | nsub = 10 |
---|
| 731 | dtimesub = dtime/nsub |
---|
| 732 | |
---|
| 733 | ! ------------------------------------------------------------ |
---|
| 734 | DO isubstep = 1, nsub |
---|
| 735 | ! ------------------------------------------------------------ |
---|
| 736 | |
---|
| 737 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
| 738 | ! loop |
---|
| 739 | DO i = 1, klon |
---|
| 740 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
| 741 | END DO |
---|
| 742 | |
---|
| 743 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
| 744 | ! négatif de ktop à kupper -------- |
---|
| 745 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
| 746 | ! aurait un entrainement nul --- |
---|
| 747 | DO i = 1, klon |
---|
| 748 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
| 749 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
| 750 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
| 751 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 752 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 753 | wdens0 = (sigmaw(i)/(4.*3.14))*((1.-sigmaw(i))*omg(i,kupper(i)+1)/(( & |
---|
| 754 | ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
| 755 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
| 756 | wdens(i) = wdens0 |
---|
| 757 | END IF |
---|
| 758 | ! c print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
| 759 | ! c $ ,ph(i,1)-pupper(i)', |
---|
| 760 | ! c $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
| 761 | ! c $ ,ph(i,1)-pupper(i) |
---|
| 762 | END IF |
---|
| 763 | END DO |
---|
| 764 | |
---|
| 765 | ! cc nrlmd |
---|
| 766 | |
---|
| 767 | DO i = 1, klon |
---|
| 768 | IF (wk_adv(i)) THEN |
---|
[1403] | 769 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
[1992] | 770 | sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
| 771 | END IF |
---|
| 772 | END DO |
---|
| 773 | DO i = 1, klon |
---|
| 774 | IF (wk_adv(i)) THEN |
---|
| 775 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
| 776 | ! test sur sigmaw_max=0.4 |
---|
| 777 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
| 778 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
| 779 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
| 780 | ELSE |
---|
| 781 | death_rate(i) = 0. |
---|
| 782 | END IF |
---|
| 783 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
| 784 | dtimesub |
---|
| 785 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
| 786 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 787 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
| 788 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 789 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
[1403] | 790 | |
---|
[1992] | 791 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
| 792 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
| 793 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 794 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 795 | ! sigmaw =max(sigmaw,sigmad) |
---|
| 796 | END IF |
---|
| 797 | END DO |
---|
| 798 | |
---|
| 799 | |
---|
| 800 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 801 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
| 802 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on |
---|
| 803 | ! definit |
---|
| 804 | ! IM 060208 au niveau k=1..? |
---|
| 805 | DO k = 1, klev |
---|
| 806 | DO i = 1, klon |
---|
| 807 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 808 | dp_deltomg(i, k) = 0. |
---|
| 809 | END IF |
---|
| 810 | END DO |
---|
| 811 | END DO |
---|
| 812 | DO k = 1, klev + 1 |
---|
| 813 | DO i = 1, klon |
---|
| 814 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 815 | omg(i, k) = 0. |
---|
| 816 | END IF |
---|
| 817 | END DO |
---|
| 818 | END DO |
---|
| 819 | |
---|
| 820 | DO i = 1, klon |
---|
| 821 | IF (wk_adv(i)) THEN |
---|
| 822 | z(i) = 0. |
---|
| 823 | omg(i, 1) = 0. |
---|
| 824 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
| 825 | END IF |
---|
| 826 | END DO |
---|
| 827 | |
---|
| 828 | DO k = 2, klev |
---|
| 829 | DO i = 1, klon |
---|
| 830 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
[974] | 831 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
[1992] | 832 | z(i) = z(i) + dz(i) |
---|
| 833 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 834 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
| 835 | END IF |
---|
| 836 | END DO |
---|
| 837 | END DO |
---|
| 838 | |
---|
| 839 | DO i = 1, klon |
---|
| 840 | IF (wk_adv(i)) THEN |
---|
| 841 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
| 842 | ztop(i) = z(i) + dztop(i) |
---|
| 843 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
| 844 | END IF |
---|
| 845 | END DO |
---|
| 846 | |
---|
| 847 | ! ----------------- |
---|
| 848 | ! From m/s to Pa/s |
---|
| 849 | ! ----------------- |
---|
| 850 | |
---|
| 851 | DO i = 1, klon |
---|
| 852 | IF (wk_adv(i)) THEN |
---|
| 853 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
| 854 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
| 855 | END IF |
---|
| 856 | END DO |
---|
| 857 | |
---|
| 858 | DO k = 1, klev |
---|
| 859 | DO i = 1, klon |
---|
| 860 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 861 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
| 862 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 863 | END IF |
---|
| 864 | END DO |
---|
| 865 | END DO |
---|
| 866 | |
---|
| 867 | ! raccordement lineaire de omg de ptop a pupper |
---|
| 868 | |
---|
| 869 | DO i = 1, klon |
---|
| 870 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
| 871 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 872 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 873 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
| 874 | (ptop(i)-pupper(i)) |
---|
| 875 | END IF |
---|
| 876 | END DO |
---|
| 877 | |
---|
| 878 | ! c DO i=1,klon |
---|
| 879 | ! c print*,'Pente entre 0 et kupper (référence)' |
---|
| 880 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
| 881 | ! c print*,'Pente entre ktop et kupper' |
---|
| 882 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
| 883 | ! c ENDDO |
---|
| 884 | ! c |
---|
| 885 | DO k = 1, klev |
---|
| 886 | DO i = 1, klon |
---|
| 887 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
| 888 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
| 889 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
| 890 | END IF |
---|
| 891 | END DO |
---|
| 892 | END DO |
---|
| 893 | ! cc nrlmd |
---|
| 894 | ! c DO i=1,klon |
---|
| 895 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
| 896 | ! c END DO |
---|
| 897 | ! cc |
---|
| 898 | |
---|
| 899 | |
---|
| 900 | ! -- Compute wake average vertical velocity omgbw |
---|
| 901 | |
---|
| 902 | |
---|
| 903 | DO k = 1, klev + 1 |
---|
| 904 | DO i = 1, klon |
---|
[1146] | 905 | IF (wk_adv(i)) THEN |
---|
[1992] | 906 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
| 907 | END IF |
---|
| 908 | END DO |
---|
| 909 | END DO |
---|
| 910 | ! -- and its vertical gradient dp_omgbw |
---|
| 911 | |
---|
| 912 | DO k = 1, klev |
---|
| 913 | DO i = 1, klon |
---|
[1146] | 914 | IF (wk_adv(i)) THEN |
---|
[1992] | 915 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 916 | END IF |
---|
| 917 | END DO |
---|
| 918 | END DO |
---|
[974] | 919 | |
---|
[1992] | 920 | ! -- Upstream coefficients for omgb velocity |
---|
| 921 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 922 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 923 | DO k = 1, klev |
---|
| 924 | DO i = 1, klon |
---|
| 925 | IF (wk_adv(i)) THEN |
---|
| 926 | alpha_up(i, k) = 0. |
---|
| 927 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
| 928 | END IF |
---|
| 929 | END DO |
---|
| 930 | END DO |
---|
[974] | 931 | |
---|
[1992] | 932 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
[974] | 933 | |
---|
[1992] | 934 | DO i = 1, klon |
---|
| 935 | IF (wk_adv(i)) THEN |
---|
| 936 | rre1(i) = 1. - sigmaw(i) |
---|
| 937 | rre2(i) = sigmaw(i) |
---|
| 938 | END IF |
---|
| 939 | END DO |
---|
| 940 | rrd1 = -1. |
---|
| 941 | rrd2 = 1. |
---|
[974] | 942 | |
---|
[1992] | 943 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
[974] | 944 | |
---|
[1992] | 945 | DO k = 1, klev |
---|
| 946 | DO i = 1, klon |
---|
| 947 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 948 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 949 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
| 950 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
| 951 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
| 952 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
| 953 | END IF |
---|
| 954 | END DO |
---|
| 955 | END DO |
---|
[974] | 956 | |
---|
[1992] | 957 | DO i = 1, klon |
---|
| 958 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 959 | d_th1(i, 1) = 0. |
---|
| 960 | d_th2(i, 1) = 0. |
---|
| 961 | d_dth(i, 1) = 0. |
---|
| 962 | d_q1(i, 1) = 0. |
---|
| 963 | d_q2(i, 1) = 0. |
---|
| 964 | d_dq(i, 1) = 0. |
---|
| 965 | END IF |
---|
| 966 | END DO |
---|
[974] | 967 | |
---|
[1992] | 968 | DO k = 2, klev |
---|
| 969 | DO i = 1, klon |
---|
| 970 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 971 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
| 972 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
| 973 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
| 974 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
| 975 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
| 976 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
| 977 | END IF |
---|
| 978 | END DO |
---|
| 979 | END DO |
---|
[1146] | 980 | |
---|
[1992] | 981 | DO i = 1, klon |
---|
| 982 | IF (wk_adv(i)) THEN |
---|
| 983 | omgbdth(i, 1) = 0. |
---|
| 984 | omgbdq(i, 1) = 0. |
---|
| 985 | END IF |
---|
| 986 | END DO |
---|
[1277] | 987 | |
---|
[1992] | 988 | DO k = 2, klev |
---|
| 989 | DO i = 1, klon |
---|
| 990 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
| 991 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
| 992 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
| 993 | END IF |
---|
| 994 | END DO |
---|
| 995 | END DO |
---|
[1403] | 996 | |
---|
[1992] | 997 | ! ----------------------------------------------------------------- |
---|
| 998 | DO k = 1, klev |
---|
| 999 | DO i = 1, klon |
---|
| 1000 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
| 1001 | ! ----------------------------------------------------------------- |
---|
[974] | 1002 | |
---|
[1992] | 1003 | ! Compute redistribution (advective) term |
---|
[1403] | 1004 | |
---|
[1992] | 1005 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1006 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
| 1007 | i))*d_th2(i,k+1)-(1.-alpha_up(i,k))*omgbdth(i,k)-alpha_up(i,k+1)* & |
---|
| 1008 | omgbdth(i,k+1))*ppi(i, k) |
---|
| 1009 | ! print*,'d_deltatw=',d_deltatw(i,k) |
---|
[1403] | 1010 | |
---|
[1992] | 1011 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1012 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
| 1013 | i))*d_q2(i,k+1)-(1.-alpha_up(i,k))*omgbdq(i,k)-alpha_up(i,k+1)* & |
---|
| 1014 | omgbdq(i,k+1)) |
---|
| 1015 | ! print*,'d_deltaqw=',d_deltaqw(i,k) |
---|
[974] | 1016 | |
---|
[1992] | 1017 | ! and increment large scale tendencies |
---|
[974] | 1018 | |
---|
| 1019 | |
---|
| 1020 | |
---|
| 1021 | |
---|
[1992] | 1022 | ! C |
---|
| 1023 | ! ----------------------------------------------------------------- |
---|
| 1024 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
| 1025 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/(ph(i,k)-ph(i, & |
---|
| 1026 | k+1)) & ! cc nrlmd $ |
---|
| 1027 | ! -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*dp_deltomg(i,k) |
---|
| 1028 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/(ph(i, & |
---|
| 1029 | k)-ph(i,k+1)) & ! cc |
---|
| 1030 | )*ppi(i, k) |
---|
[974] | 1031 | |
---|
[1992] | 1032 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
| 1033 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/(ph(i,k)-ph(i, & |
---|
| 1034 | k+1)) & ! cc nrlmd $ |
---|
| 1035 | ! -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*dp_deltomg(i,k) |
---|
| 1036 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i, & |
---|
| 1037 | k+1))/(ph(i,k)-ph(i,k+1)) & ! cc |
---|
| 1038 | ) |
---|
| 1039 | ! cc nrlmd |
---|
| 1040 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
| 1041 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
| 1042 | k)/(ph(i,k)-ph(i,k+1))))*ppi(i, k) |
---|
[1403] | 1043 | |
---|
[1992] | 1044 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
| 1045 | k)/(ph(i,k)-ph(i,k+1)))) |
---|
[1403] | 1046 | |
---|
[1992] | 1047 | END IF |
---|
| 1048 | ! cc |
---|
| 1049 | END DO |
---|
| 1050 | END DO |
---|
| 1051 | ! ------------------------------------------------------------------ |
---|
[974] | 1052 | |
---|
[1992] | 1053 | ! Increment state variables |
---|
[974] | 1054 | |
---|
[1992] | 1055 | DO k = 1, klev |
---|
| 1056 | DO i = 1, klon |
---|
| 1057 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
| 1058 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1059 | ! cc |
---|
[974] | 1060 | |
---|
[1146] | 1061 | |
---|
[974] | 1062 | |
---|
[1992] | 1063 | ! Coefficient de répartition |
---|
[974] | 1064 | |
---|
[1992] | 1065 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
| 1066 | (ph(i,kupper(i))-ph(i,1)) |
---|
| 1067 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/(p(i,1)-ph(i & |
---|
| 1068 | ,kupper(i))) |
---|
[974] | 1069 | |
---|
| 1070 | |
---|
[1992] | 1071 | ! Reintroduce compensating subsidence term. |
---|
[1146] | 1072 | |
---|
[1992] | 1073 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 1074 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 1075 | ! . /(1-sigmaw) |
---|
| 1076 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 1077 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 1078 | ! . /(1-sigmaw) |
---|
[974] | 1079 | |
---|
[1992] | 1080 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 1081 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 1082 | ! . /(1-sigmaw) |
---|
| 1083 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 1084 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 1085 | ! . /(1-sigmaw) |
---|
[974] | 1086 | |
---|
[1992] | 1087 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
| 1088 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
| 1089 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
[974] | 1090 | |
---|
[1992] | 1091 | dtpbl(i, k) = (wdtpbl(i,k)/sigmaw(i)-udtpbl(i,k)/(1.-sigmaw(i))) |
---|
| 1092 | dqpbl(i, k) = (wdqpbl(i,k)/sigmaw(i)-udqpbl(i,k)/(1.-sigmaw(i))) |
---|
| 1093 | ! print*,'dtPBL= ',dtPBL(i,k),' dqPBL= ',dqPBL(i,k) |
---|
[1146] | 1094 | |
---|
[1992] | 1095 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
| 1096 | ! cc Définitions de entr, detr |
---|
| 1097 | detr(i, k) = 0. |
---|
[1146] | 1098 | |
---|
[1992] | 1099 | entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
| 1100 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
[1146] | 1101 | |
---|
[1992] | 1102 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
| 1103 | ! cc spread(i,k) = |
---|
| 1104 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
| 1105 | ! cc $ sigmaw(i) |
---|
[1146] | 1106 | |
---|
| 1107 | |
---|
[1992] | 1108 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
| 1109 | ! Jingmei |
---|
[1146] | 1110 | |
---|
[1992] | 1111 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
| 1112 | ! & Tgw(i,k),deltatw(i,k) |
---|
| 1113 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
| 1114 | dtimesub |
---|
| 1115 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
| 1116 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
[1403] | 1117 | |
---|
[1992] | 1118 | ! Sans GW |
---|
[1403] | 1119 | |
---|
[1992] | 1120 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
[974] | 1121 | |
---|
[1992] | 1122 | ! GW formule 1 |
---|
| 1123 | |
---|
| 1124 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 1125 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 1126 | |
---|
| 1127 | ! GW formule 2 |
---|
| 1128 | |
---|
| 1129 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
| 1130 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc |
---|
| 1131 | ! $ |
---|
| 1132 | ! -spread(i,k)*deltatw(i,k) |
---|
| 1133 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
| 1134 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
| 1135 | -tgw(i,k)*deltatw(i,k)) |
---|
| 1136 | ELSE |
---|
| 1137 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i, & |
---|
| 1138 | k)))*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc $ |
---|
| 1139 | ! -spread(i,k)*deltatw(i,k) |
---|
| 1140 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
| 1141 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
| 1142 | -tgw(i,k)*deltatw(i,k)) |
---|
| 1143 | END IF |
---|
| 1144 | |
---|
| 1145 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1146 | |
---|
| 1147 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
| 1148 | |
---|
| 1149 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k)+dqpbl(i,k) & ! cc $ |
---|
| 1150 | ! -spread(i,k)*deltaqw(i,k)) |
---|
| 1151 | -entr(i,k)*deltaqw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw(i)+detr( & |
---|
| 1152 | i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
| 1153 | ! cc |
---|
| 1154 | |
---|
| 1155 | ! cc nrlmd |
---|
| 1156 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
| 1157 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
| 1158 | ! cc |
---|
| 1159 | END IF |
---|
| 1160 | END DO |
---|
| 1161 | END DO |
---|
| 1162 | |
---|
| 1163 | |
---|
| 1164 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
| 1165 | |
---|
| 1166 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1167 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1168 | |
---|
| 1169 | ! cc nrlmd |
---|
| 1170 | ! c print*,'alpha' |
---|
| 1171 | ! c do i=1,klon |
---|
| 1172 | ! c print*,alpha(i) |
---|
| 1173 | ! c end do |
---|
| 1174 | ! cc |
---|
| 1175 | DO k = 1, klev |
---|
| 1176 | DO i = 1, klon |
---|
| 1177 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1178 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
| 1179 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
| 1180 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
| 1181 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
| 1182 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
| 1183 | END IF |
---|
| 1184 | END DO |
---|
| 1185 | END DO |
---|
| 1186 | DO i = 1, klon |
---|
| 1187 | IF (wk_adv(i)) THEN |
---|
| 1188 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
| 1189 | END IF |
---|
| 1190 | END DO |
---|
| 1191 | |
---|
| 1192 | ! Update large scale variables and wake variables |
---|
| 1193 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
| 1194 | ! IM 060208 DO k = 1,kupper(i) |
---|
| 1195 | DO k = 1, klev |
---|
| 1196 | DO i = 1, klon |
---|
| 1197 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1198 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
| 1199 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
| 1200 | ! cc nrlmd |
---|
| 1201 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
| 1202 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
| 1203 | ! cc |
---|
| 1204 | END IF |
---|
| 1205 | END DO |
---|
| 1206 | END DO |
---|
| 1207 | DO k = 1, klev |
---|
| 1208 | DO i = 1, klon |
---|
| 1209 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1210 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
| 1211 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
| 1212 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1213 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
| 1214 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
| 1215 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1216 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
| 1217 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
| 1218 | END IF |
---|
| 1219 | END DO |
---|
| 1220 | END DO |
---|
| 1221 | DO i = 1, klon |
---|
| 1222 | IF (wk_adv(i)) THEN |
---|
| 1223 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
| 1224 | END IF |
---|
| 1225 | END DO |
---|
| 1226 | |
---|
| 1227 | |
---|
| 1228 | ! Determine Ptop from buoyancy integral |
---|
| 1229 | ! --------------------------------------- |
---|
| 1230 | |
---|
| 1231 | ! - 1/ Pressure of the level where dth changes sign. |
---|
| 1232 | |
---|
| 1233 | DO i = 1, klon |
---|
| 1234 | IF (wk_adv(i)) THEN |
---|
| 1235 | ptop_provis(i) = ph(i, 1) |
---|
| 1236 | END IF |
---|
| 1237 | END DO |
---|
| 1238 | |
---|
| 1239 | DO k = 2, klev |
---|
| 1240 | DO i = 1, klon |
---|
| 1241 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
| 1242 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1243 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 1244 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1245 | END IF |
---|
| 1246 | END DO |
---|
| 1247 | END DO |
---|
| 1248 | |
---|
| 1249 | ! - 2/ dth integral |
---|
| 1250 | |
---|
| 1251 | DO i = 1, klon |
---|
| 1252 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1253 | sum_dth(i) = 0. |
---|
| 1254 | dthmin(i) = -delta_t_min |
---|
[974] | 1255 | z(i) = 0. |
---|
[1992] | 1256 | END IF |
---|
| 1257 | END DO |
---|
| 1258 | |
---|
| 1259 | DO k = 1, klev |
---|
| 1260 | DO i = 1, klon |
---|
| 1261 | IF (wk_adv(i)) THEN |
---|
| 1262 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1263 | IF (dz(i)>0) THEN |
---|
| 1264 | z(i) = z(i) + dz(i) |
---|
| 1265 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1266 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 1267 | END IF |
---|
| 1268 | END IF |
---|
| 1269 | END DO |
---|
| 1270 | END DO |
---|
| 1271 | |
---|
| 1272 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 1273 | |
---|
| 1274 | DO i = 1, klon |
---|
| 1275 | IF (wk_adv(i)) THEN |
---|
| 1276 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 1277 | hw(i) = amax1(hwmin, hw(i)) |
---|
| 1278 | END IF |
---|
| 1279 | END DO |
---|
| 1280 | |
---|
| 1281 | ! - 4/ now, get Ptop |
---|
| 1282 | |
---|
| 1283 | DO i = 1, klon |
---|
| 1284 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1285 | ktop(i) = 0 |
---|
| 1286 | z(i) = 0. |
---|
| 1287 | END IF |
---|
| 1288 | END DO |
---|
| 1289 | |
---|
| 1290 | DO k = 1, klev |
---|
| 1291 | DO i = 1, klon |
---|
| 1292 | IF (wk_adv(i)) THEN |
---|
| 1293 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
| 1294 | IF (dz(i)>0) THEN |
---|
| 1295 | z(i) = z(i) + dz(i) |
---|
| 1296 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 1297 | ktop(i) = k |
---|
| 1298 | END IF |
---|
| 1299 | END IF |
---|
| 1300 | END DO |
---|
| 1301 | END DO |
---|
| 1302 | |
---|
| 1303 | ! 4.5/Correct ktop and ptop |
---|
| 1304 | |
---|
| 1305 | DO i = 1, klon |
---|
| 1306 | IF (wk_adv(i)) THEN |
---|
| 1307 | ptop_new(i) = ptop(i) |
---|
| 1308 | END IF |
---|
| 1309 | END DO |
---|
| 1310 | |
---|
| 1311 | DO k = klev, 2, -1 |
---|
| 1312 | DO i = 1, klon |
---|
| 1313 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
| 1314 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 1315 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1316 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 1317 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1318 | END IF |
---|
| 1319 | END DO |
---|
| 1320 | END DO |
---|
| 1321 | |
---|
| 1322 | |
---|
| 1323 | DO i = 1, klon |
---|
| 1324 | IF (wk_adv(i)) THEN |
---|
| 1325 | ptop(i) = ptop_new(i) |
---|
| 1326 | END IF |
---|
| 1327 | END DO |
---|
| 1328 | |
---|
| 1329 | DO k = klev, 1, -1 |
---|
| 1330 | DO i = 1, klon |
---|
| 1331 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1332 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 1333 | END IF |
---|
| 1334 | END DO |
---|
| 1335 | END DO |
---|
| 1336 | |
---|
| 1337 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 1338 | |
---|
| 1339 | DO k = 1, klev |
---|
| 1340 | DO i = 1, klon |
---|
| 1341 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
| 1342 | deltatw(i, k) = 0. |
---|
| 1343 | deltaqw(i, k) = 0. |
---|
| 1344 | END IF |
---|
| 1345 | END DO |
---|
| 1346 | END DO |
---|
| 1347 | |
---|
| 1348 | |
---|
| 1349 | ! -------------Cstar computation--------------------------------- |
---|
| 1350 | DO i = 1, klon |
---|
| 1351 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1352 | sum_thu(i) = 0. |
---|
| 1353 | sum_tu(i) = 0. |
---|
| 1354 | sum_qu(i) = 0. |
---|
| 1355 | sum_thvu(i) = 0. |
---|
| 1356 | sum_dth(i) = 0. |
---|
| 1357 | sum_dq(i) = 0. |
---|
| 1358 | sum_rho(i) = 0. |
---|
| 1359 | sum_dtdwn(i) = 0. |
---|
| 1360 | sum_dqdwn(i) = 0. |
---|
| 1361 | |
---|
| 1362 | av_thu(i) = 0. |
---|
[1992] | 1363 | av_tu(i) = 0. |
---|
| 1364 | av_qu(i) = 0. |
---|
[974] | 1365 | av_thvu(i) = 0. |
---|
| 1366 | av_dth(i) = 0. |
---|
| 1367 | av_dq(i) = 0. |
---|
[1992] | 1368 | av_rho(i) = 0. |
---|
| 1369 | av_dtdwn(i) = 0. |
---|
[974] | 1370 | av_dqdwn(i) = 0. |
---|
[1992] | 1371 | END IF |
---|
| 1372 | END DO |
---|
[974] | 1373 | |
---|
[1992] | 1374 | ! Integrals (and wake top level number) |
---|
| 1375 | ! -------------------------------------- |
---|
[974] | 1376 | |
---|
[1992] | 1377 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
[974] | 1378 | |
---|
[1992] | 1379 | DO i = 1, klon |
---|
| 1380 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1381 | z(i) = 1. |
---|
| 1382 | dz(i) = 1. |
---|
[1992] | 1383 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
[974] | 1384 | sum_dth(i) = 0. |
---|
[1992] | 1385 | END IF |
---|
| 1386 | END DO |
---|
[974] | 1387 | |
---|
[1992] | 1388 | DO k = 1, klev |
---|
| 1389 | DO i = 1, klon |
---|
| 1390 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1391 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1392 | IF (dz(i)>0) THEN |
---|
| 1393 | z(i) = z(i) + dz(i) |
---|
| 1394 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1395 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1396 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 1397 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
| 1398 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1399 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1400 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1401 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1402 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 1403 | END IF |
---|
| 1404 | END IF |
---|
| 1405 | END DO |
---|
| 1406 | END DO |
---|
| 1407 | |
---|
| 1408 | DO i = 1, klon |
---|
| 1409 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1410 | hw0(i) = z(i) |
---|
[1992] | 1411 | END IF |
---|
| 1412 | END DO |
---|
[974] | 1413 | |
---|
| 1414 | |
---|
[1992] | 1415 | ! - WAPE and mean forcing computation |
---|
| 1416 | ! --------------------------------------- |
---|
| 1417 | |
---|
| 1418 | ! --------------------------------------- |
---|
| 1419 | |
---|
| 1420 | ! Means |
---|
| 1421 | |
---|
| 1422 | DO i = 1, klon |
---|
| 1423 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1424 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1425 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1426 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1427 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1428 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1429 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1430 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1431 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1432 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1433 | |
---|
[1992] | 1434 | wape(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
| 1435 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 1436 | END IF |
---|
| 1437 | END DO |
---|
[974] | 1438 | |
---|
[1992] | 1439 | ! Filter out bad wakes |
---|
[974] | 1440 | |
---|
[1992] | 1441 | DO k = 1, klev |
---|
| 1442 | DO i = 1, klon |
---|
| 1443 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1444 | IF (wape(i)<0.) THEN |
---|
| 1445 | deltatw(i, k) = 0. |
---|
| 1446 | deltaqw(i, k) = 0. |
---|
| 1447 | dth(i, k) = 0. |
---|
| 1448 | END IF |
---|
| 1449 | END IF |
---|
| 1450 | END DO |
---|
| 1451 | END DO |
---|
[974] | 1452 | |
---|
[1992] | 1453 | DO i = 1, klon |
---|
| 1454 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1455 | IF (wape(i)<0.) THEN |
---|
| 1456 | wape(i) = 0. |
---|
| 1457 | cstar(i) = 0. |
---|
| 1458 | hw(i) = hwmin |
---|
| 1459 | sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
| 1460 | fip(i) = 0. |
---|
| 1461 | gwake(i) = .FALSE. |
---|
| 1462 | ELSE |
---|
| 1463 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 1464 | gwake(i) = .TRUE. |
---|
| 1465 | END IF |
---|
| 1466 | END IF |
---|
| 1467 | END DO |
---|
| 1468 | |
---|
| 1469 | END DO ! end sub-timestep loop |
---|
| 1470 | |
---|
| 1471 | ! ----------------------------------------------------------------- |
---|
| 1472 | ! Get back to tendencies per second |
---|
| 1473 | |
---|
| 1474 | DO k = 1, klev |
---|
| 1475 | DO i = 1, klon |
---|
| 1476 | |
---|
| 1477 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
| 1478 | IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
| 1479 | ! cc |
---|
| 1480 | dtls(i, k) = dtls(i, k)/dtime |
---|
| 1481 | dqls(i, k) = dqls(i, k)/dtime |
---|
| 1482 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
| 1483 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
| 1484 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
| 1485 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
| 1486 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
| 1487 | END IF |
---|
| 1488 | END DO |
---|
| 1489 | END DO |
---|
| 1490 | |
---|
| 1491 | |
---|
| 1492 | ! ---------------------------------------------------------- |
---|
| 1493 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
| 1494 | ! filter out bad wakes. |
---|
| 1495 | ! ---------------------------------------------------------- |
---|
| 1496 | |
---|
| 1497 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 1498 | ! --------------------------------------------------------- |
---|
| 1499 | |
---|
| 1500 | DO i = 1, klon |
---|
| 1501 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
| 1502 | IF (ok_qx_qw(i)) THEN |
---|
| 1503 | ! cc |
---|
| 1504 | z(i) = 0. |
---|
| 1505 | sum_thu(i) = 0. |
---|
| 1506 | sum_tu(i) = 0. |
---|
| 1507 | sum_qu(i) = 0. |
---|
| 1508 | sum_thvu(i) = 0. |
---|
| 1509 | sum_dth(i) = 0. |
---|
| 1510 | sum_dq(i) = 0. |
---|
| 1511 | sum_rho(i) = 0. |
---|
| 1512 | sum_dtdwn(i) = 0. |
---|
| 1513 | sum_dqdwn(i) = 0. |
---|
| 1514 | |
---|
| 1515 | av_thu(i) = 0. |
---|
| 1516 | av_tu(i) = 0. |
---|
| 1517 | av_qu(i) = 0. |
---|
| 1518 | av_thvu(i) = 0. |
---|
| 1519 | av_dth(i) = 0. |
---|
| 1520 | av_dq(i) = 0. |
---|
| 1521 | av_rho(i) = 0. |
---|
| 1522 | av_dtdwn(i) = 0. |
---|
| 1523 | av_dqdwn(i) = 0. |
---|
| 1524 | END IF |
---|
| 1525 | END DO |
---|
| 1526 | ! Potential temperatures and humidity |
---|
| 1527 | ! ---------------------------------------------------------- |
---|
| 1528 | |
---|
| 1529 | DO k = 1, klev |
---|
| 1530 | DO i = 1, klon |
---|
| 1531 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1532 | IF (ok_qx_qw(i)) THEN |
---|
| 1533 | ! cc |
---|
| 1534 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 1535 | IF (k==1) THEN |
---|
| 1536 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 1537 | zhh(i, k) = 0 |
---|
| 1538 | ELSE |
---|
| 1539 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 1540 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 1541 | END IF |
---|
| 1542 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1543 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 1544 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 1545 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 1546 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 1547 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1548 | END IF |
---|
| 1549 | END DO |
---|
| 1550 | END DO |
---|
| 1551 | |
---|
| 1552 | ! Integrals (and wake top level number) |
---|
| 1553 | ! ----------------------------------------------------------- |
---|
| 1554 | |
---|
| 1555 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 1556 | |
---|
| 1557 | DO i = 1, klon |
---|
| 1558 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1559 | IF (ok_qx_qw(i)) THEN |
---|
| 1560 | ! cc |
---|
| 1561 | z(i) = 1. |
---|
| 1562 | dz(i) = 1. |
---|
| 1563 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
| 1564 | sum_dth(i) = 0. |
---|
| 1565 | END IF |
---|
| 1566 | END DO |
---|
| 1567 | |
---|
| 1568 | DO k = 1, klev |
---|
| 1569 | DO i = 1, klon |
---|
| 1570 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1571 | IF (ok_qx_qw(i)) THEN |
---|
| 1572 | ! cc |
---|
| 1573 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1574 | IF (dz(i)>0) THEN |
---|
| 1575 | z(i) = z(i) + dz(i) |
---|
| 1576 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1577 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1578 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 1579 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
| 1580 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1581 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1582 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1583 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1584 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 1585 | END IF |
---|
| 1586 | END IF |
---|
| 1587 | END DO |
---|
| 1588 | END DO |
---|
| 1589 | |
---|
| 1590 | DO i = 1, klon |
---|
| 1591 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1592 | IF (ok_qx_qw(i)) THEN |
---|
| 1593 | ! cc |
---|
| 1594 | hw0(i) = z(i) |
---|
| 1595 | END IF |
---|
| 1596 | END DO |
---|
| 1597 | |
---|
| 1598 | ! - WAPE and mean forcing computation |
---|
| 1599 | ! ------------------------------------------------------------- |
---|
| 1600 | |
---|
| 1601 | ! Means |
---|
| 1602 | |
---|
| 1603 | DO i = 1, klon |
---|
| 1604 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1605 | IF (ok_qx_qw(i)) THEN |
---|
| 1606 | ! cc |
---|
| 1607 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1608 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1609 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1610 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1611 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1612 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1613 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1614 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1615 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1616 | |
---|
| 1617 | wape2(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
| 1618 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 1619 | END IF |
---|
| 1620 | END DO |
---|
| 1621 | |
---|
| 1622 | ! Prognostic variable update |
---|
| 1623 | ! ------------------------------------------------------------ |
---|
| 1624 | |
---|
| 1625 | ! Filter out bad wakes |
---|
| 1626 | |
---|
| 1627 | DO k = 1, klev |
---|
| 1628 | DO i = 1, klon |
---|
| 1629 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
| 1630 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
| 1631 | ! cc |
---|
| 1632 | deltatw(i, k) = 0. |
---|
| 1633 | deltaqw(i, k) = 0. |
---|
| 1634 | dth(i, k) = 0. |
---|
| 1635 | END IF |
---|
| 1636 | END DO |
---|
| 1637 | END DO |
---|
| 1638 | |
---|
| 1639 | |
---|
| 1640 | DO i = 1, klon |
---|
| 1641 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1642 | IF (ok_qx_qw(i)) THEN |
---|
| 1643 | ! cc |
---|
| 1644 | IF (wape2(i)<0.) THEN |
---|
[974] | 1645 | wape2(i) = 0. |
---|
[1992] | 1646 | cstar2(i) = 0. |
---|
[974] | 1647 | hw(i) = hwmin |
---|
[1992] | 1648 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
[974] | 1649 | fip(i) = 0. |
---|
| 1650 | gwake(i) = .FALSE. |
---|
| 1651 | ELSE |
---|
[1992] | 1652 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 1653 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
[974] | 1654 | gwake(i) = .TRUE. |
---|
[1992] | 1655 | END IF |
---|
| 1656 | END IF |
---|
| 1657 | END DO |
---|
[974] | 1658 | |
---|
[1992] | 1659 | DO i = 1, klon |
---|
| 1660 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1661 | IF (ok_qx_qw(i)) THEN |
---|
| 1662 | ! cc |
---|
| 1663 | ktopw(i) = ktop(i) |
---|
| 1664 | END IF |
---|
| 1665 | END DO |
---|
[974] | 1666 | |
---|
[1992] | 1667 | DO i = 1, klon |
---|
| 1668 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1669 | IF (ok_qx_qw(i)) THEN |
---|
| 1670 | ! cc |
---|
| 1671 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
[1403] | 1672 | |
---|
[1992] | 1673 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 1674 | ! cc heff = 600. |
---|
| 1675 | ! Utilisation de la hauteur hw |
---|
| 1676 | ! c heff = 0.7*hw |
---|
| 1677 | heff(i) = hw(i) |
---|
[1403] | 1678 | |
---|
[1992] | 1679 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
| 1680 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
| 1681 | fip(i) = alpk*fip(i) |
---|
| 1682 | ! jyg2 |
---|
| 1683 | ELSE |
---|
| 1684 | fip(i) = 0. |
---|
| 1685 | END IF |
---|
| 1686 | END IF |
---|
| 1687 | END DO |
---|
[1146] | 1688 | |
---|
[1992] | 1689 | ! Limitation de sigmaw |
---|
| 1690 | |
---|
| 1691 | ! cc nrlmd |
---|
| 1692 | ! DO i=1,klon |
---|
| 1693 | ! IF (OK_qx_qw(i)) THEN |
---|
| 1694 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
| 1695 | ! ENDIF |
---|
| 1696 | ! ENDDO |
---|
| 1697 | ! cc |
---|
| 1698 | DO k = 1, klev |
---|
| 1699 | DO i = 1, klon |
---|
| 1700 | |
---|
| 1701 | ! cc nrlmd On maintient désormais constant sigmaw en régime |
---|
| 1702 | ! permanent |
---|
| 1703 | ! cc IF ((sigmaw(i).GT.sigmaw_max).or. |
---|
| 1704 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 1705 | .NOT. ok_qx_qw(i)) THEN |
---|
| 1706 | ! cc |
---|
| 1707 | dtls(i, k) = 0. |
---|
| 1708 | dqls(i, k) = 0. |
---|
| 1709 | deltatw(i, k) = 0. |
---|
| 1710 | deltaqw(i, k) = 0. |
---|
| 1711 | END IF |
---|
| 1712 | END DO |
---|
| 1713 | END DO |
---|
| 1714 | |
---|
| 1715 | ! cc nrlmd On maintient désormais constant sigmaw en régime permanent |
---|
| 1716 | DO i = 1, klon |
---|
| 1717 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 1718 | .NOT. ok_qx_qw(i)) THEN |
---|
| 1719 | wape(i) = 0. |
---|
| 1720 | cstar(i) = 0. |
---|
| 1721 | hw(i) = hwmin |
---|
| 1722 | sigmaw(i) = sigmad |
---|
| 1723 | fip(i) = 0. |
---|
| 1724 | ELSE |
---|
| 1725 | wape(i) = wape2(i) |
---|
| 1726 | cstar(i) = cstar2(i) |
---|
| 1727 | END IF |
---|
| 1728 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
| 1729 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
| 1730 | END DO |
---|
| 1731 | |
---|
| 1732 | |
---|
| 1733 | RETURN |
---|
| 1734 | END SUBROUTINE wake |
---|
| 1735 | |
---|
| 1736 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1737 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1738 | ! ------------------------------------------------------ |
---|
| 1739 | ! Dtermination du coefficient alpha tel que les tendances |
---|
| 1740 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
| 1741 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
| 1742 | ! ------------------------------------------------------ |
---|
| 1743 | |
---|
| 1744 | |
---|
| 1745 | ! Input |
---|
| 1746 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
| 1747 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
| 1748 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
| 1749 | LOGICAL wk_adv(nlon) |
---|
| 1750 | INTEGER nl, nlon |
---|
| 1751 | ! Output |
---|
| 1752 | REAL alpha(nlon) |
---|
| 1753 | ! Internal variables |
---|
| 1754 | REAL zeta(nlon, nl) |
---|
| 1755 | REAL alpha1(nlon) |
---|
| 1756 | REAL x, a, b, c, discrim |
---|
| 1757 | REAL epsilon |
---|
| 1758 | ! DATA epsilon/1.e-15/ |
---|
| 1759 | |
---|
| 1760 | DO k = 1, nl |
---|
| 1761 | DO i = 1, nlon |
---|
| 1762 | IF (wk_adv(i)) THEN |
---|
| 1763 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
| 1764 | zeta(i, k) = 0. |
---|
[1146] | 1765 | ELSE |
---|
[1992] | 1766 | zeta(i, k) = 1. |
---|
[1146] | 1767 | END IF |
---|
[1992] | 1768 | END IF |
---|
| 1769 | END DO |
---|
| 1770 | DO i = 1, nlon |
---|
| 1771 | IF (wk_adv(i)) THEN |
---|
| 1772 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
| 1773 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i)*(deltaqw(i,k)+ & |
---|
| 1774 | d_deltaqw(i,k)) |
---|
| 1775 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
| 1776 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
| 1777 | deltaqw(i, k)*d_sigmaw(i) |
---|
| 1778 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
| 1779 | discrim = b*b - 4.*a*c |
---|
| 1780 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
| 1781 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
| 1782 | alpha1(i) = 1. |
---|
[1146] | 1783 | ELSE |
---|
[1992] | 1784 | IF (x>=0.) THEN |
---|
| 1785 | alpha1(i) = 1. |
---|
| 1786 | ELSE |
---|
| 1787 | IF (a>0.) THEN |
---|
| 1788 | alpha1(i) = 0.9*min((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
| 1789 | ))/(2.*a)) |
---|
| 1790 | ELSE IF (a==0.) THEN |
---|
| 1791 | alpha1(i) = 0.9*(-c/b) |
---|
| 1792 | ELSE |
---|
| 1793 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
| 1794 | alpha1(i) = 0.9*max((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
| 1795 | ))/(2.*a)) |
---|
| 1796 | END IF |
---|
| 1797 | END IF |
---|
| 1798 | END IF |
---|
| 1799 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
| 1800 | END IF |
---|
| 1801 | END DO |
---|
| 1802 | END DO |
---|
[1146] | 1803 | |
---|
[1992] | 1804 | RETURN |
---|
| 1805 | END SUBROUTINE wake_vec_modulation |
---|
[974] | 1806 | |
---|
[1992] | 1807 | SUBROUTINE wake_scal(p, ph, ppi, dtime, sigd_con, te0, qe0, omgb, dtdwn, & |
---|
| 1808 | dqdwn, amdwn, amup, dta, dqa, wdtpbl, wdqpbl, udtpbl, udqpbl, deltatw, & |
---|
| 1809 | deltaqw, dth, hw, sigmaw, wape, fip, gfl, dtls, dqls, ktopw, omgbdth, & |
---|
| 1810 | dp_omgb, wdens, tu, qu, dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, & |
---|
| 1811 | spread, cstar, d_deltat_gw, d_deltatw2, d_deltaqw2) |
---|
[879] | 1812 | |
---|
[1992] | 1813 | ! ************************************************************** |
---|
| 1814 | ! * |
---|
| 1815 | ! WAKE * |
---|
| 1816 | ! retour a un Pupper fixe * |
---|
| 1817 | ! * |
---|
| 1818 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 1819 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 1820 | ! ************************************************************** |
---|
[879] | 1821 | |
---|
[1992] | 1822 | USE dimphy |
---|
| 1823 | IMPLICIT NONE |
---|
| 1824 | ! ============================================================================ |
---|
[879] | 1825 | |
---|
| 1826 | |
---|
[1992] | 1827 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 1828 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 1829 | ! le declenchement de nouvelles colonnes convectives. |
---|
[879] | 1830 | |
---|
[1992] | 1831 | ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed |
---|
| 1832 | ! area |
---|
| 1833 | ! deltaqw : ecart d'humidite wake-undisturbed area |
---|
| 1834 | ! sigmaw : fraction d'aire occupee par la poche. |
---|
[879] | 1835 | |
---|
[1992] | 1836 | ! Variable de sortie : |
---|
[879] | 1837 | |
---|
[1992] | 1838 | ! wape : WAke Potential Energy |
---|
| 1839 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 1840 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 1841 | ! dtls : large scale temperature tendency due to wake |
---|
| 1842 | ! dqls : large scale humidity tendency due to wake |
---|
| 1843 | ! hw : hauteur de la poche |
---|
| 1844 | ! dp_omgb : vertical gradient of large scale omega |
---|
| 1845 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 1846 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 1847 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 1848 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 1849 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
| 1850 | ! spread : spreading term in dt_wake and dq_wake |
---|
| 1851 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 1852 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 1853 | ! sigmaw : updated wake fractional area. |
---|
| 1854 | ! d_deltat_gw : delta T tendency due to GW |
---|
[879] | 1855 | |
---|
[1992] | 1856 | ! Variables d'entree : |
---|
[879] | 1857 | |
---|
[1992] | 1858 | ! aire : aire de la maille |
---|
| 1859 | ! te0 : temperature dans l'environnement (K) |
---|
| 1860 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 1861 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 1862 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 1863 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 1864 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 1865 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 1866 | ! amdwn: flux de masse total des descentes, par unite de |
---|
| 1867 | ! surface de la maille (kg/m2/s) |
---|
| 1868 | ! amup : flux de masse total des ascendances, par unite de |
---|
| 1869 | ! surface de la maille (kg/m2/s) |
---|
| 1870 | ! p : pressions aux milieux des couches (Pa) |
---|
| 1871 | ! ph : pressions aux interfaces (Pa) |
---|
| 1872 | ! ppi : (p/p_0)**kapa (adim) |
---|
| 1873 | ! dtime: increment temporel (s) |
---|
[879] | 1874 | |
---|
[1992] | 1875 | ! Variables internes : |
---|
[879] | 1876 | |
---|
[1992] | 1877 | ! rhow : masse volumique de la poche froide |
---|
| 1878 | ! rho : environment density at P levels |
---|
| 1879 | ! rhoh : environment density at Ph levels |
---|
| 1880 | ! te : environment temperature | may change within |
---|
| 1881 | ! qe : environment humidity | sub-time-stepping |
---|
| 1882 | ! the : environment potential temperature |
---|
| 1883 | ! thu : potential temperature in undisturbed area |
---|
| 1884 | ! tu : temperature in undisturbed area |
---|
| 1885 | ! qu : humidity in undisturbed area |
---|
| 1886 | ! dp_omgb: vertical gradient og LS omega |
---|
| 1887 | ! omgbw : wake average vertical omega |
---|
| 1888 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 1889 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 1890 | ! dth : potential temperature diff. wake-undist. |
---|
| 1891 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 1892 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 1893 | ! q1 : first humidity for vertical advection |
---|
| 1894 | ! q2 : second humidity for vertical advection |
---|
| 1895 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 1896 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 1897 | ! deltatw0 : deltatw initial |
---|
| 1898 | ! deltaqw0 : deltaqw initial |
---|
| 1899 | ! hw0 : hw initial |
---|
| 1900 | ! sigmaw0: sigmaw initial |
---|
| 1901 | ! amflux : horizontal mass flux through wake boundary |
---|
| 1902 | ! wdens : number of wakes per unit area (3D) or per |
---|
| 1903 | ! unit length (2D) |
---|
| 1904 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 1905 | ! Cgw : vitesse de propagation de onde de gravité |
---|
| 1906 | ! LL : distance entre 2 poches |
---|
[879] | 1907 | |
---|
[1992] | 1908 | ! ------------------------------------------------------------------------- |
---|
| 1909 | ! Déclaration de variables |
---|
| 1910 | ! ------------------------------------------------------------------------- |
---|
[879] | 1911 | |
---|
[1992] | 1912 | include "dimensions.h" |
---|
| 1913 | ! ccc include "dimphy.h" |
---|
| 1914 | include "YOMCST.h" |
---|
| 1915 | include "cvthermo.h" |
---|
| 1916 | include "iniprint.h" |
---|
[879] | 1917 | |
---|
[1992] | 1918 | ! Arguments en entree |
---|
| 1919 | ! -------------------- |
---|
[879] | 1920 | |
---|
[1992] | 1921 | REAL p(klev), ph(klev+1), ppi(klev) |
---|
| 1922 | REAL dtime |
---|
| 1923 | REAL te0(klev), qe0(klev) |
---|
| 1924 | REAL omgb(klev+1) |
---|
| 1925 | REAL dtdwn(klev), dqdwn(klev) |
---|
| 1926 | REAL wdtpbl(klev), wdqpbl(klev) |
---|
| 1927 | REAL udtpbl(klev), udqpbl(klev) |
---|
| 1928 | REAL amdwn(klev), amup(klev) |
---|
| 1929 | REAL dta(klev), dqa(klev) |
---|
| 1930 | REAL sigd_con |
---|
[879] | 1931 | |
---|
[1992] | 1932 | ! Sorties |
---|
| 1933 | ! -------- |
---|
[879] | 1934 | |
---|
[1992] | 1935 | REAL deltatw(klev), deltaqw(klev), dth(klev) |
---|
| 1936 | REAL tu(klev), qu(klev) |
---|
| 1937 | REAL dtls(klev), dqls(klev) |
---|
| 1938 | REAL dtke(klev), dqke(klev) |
---|
| 1939 | REAL dtpbl(klev), dqpbl(klev) |
---|
| 1940 | REAL spread(klev) |
---|
| 1941 | REAL d_deltatgw(klev) |
---|
| 1942 | REAL d_deltatw2(klev), d_deltaqw2(klev) |
---|
| 1943 | REAL omgbdth(klev+1), omg(klev+1) |
---|
| 1944 | REAL dp_omgb(klev), dp_deltomg(klev) |
---|
| 1945 | REAL d_deltat_gw(klev) |
---|
| 1946 | REAL hw, sigmaw, wape, fip, gfl, cstar |
---|
| 1947 | INTEGER ktopw |
---|
[879] | 1948 | |
---|
[1992] | 1949 | ! Variables internes |
---|
| 1950 | ! ------------------- |
---|
[879] | 1951 | |
---|
[1992] | 1952 | ! Variables à fixer |
---|
| 1953 | REAL alon |
---|
| 1954 | REAL coefgw |
---|
| 1955 | REAL wdens0, wdens |
---|
| 1956 | REAL stark |
---|
| 1957 | REAL alpk |
---|
| 1958 | REAL delta_t_min |
---|
| 1959 | REAL pupper |
---|
| 1960 | INTEGER nsub |
---|
| 1961 | REAL dtimesub |
---|
| 1962 | REAL sigmad, hwmin |
---|
[879] | 1963 | |
---|
[1992] | 1964 | ! Variables de sauvegarde |
---|
| 1965 | REAL deltatw0(klev) |
---|
| 1966 | REAL deltaqw0(klev) |
---|
| 1967 | REAL te(klev), qe(klev) |
---|
| 1968 | REAL sigmaw0, sigmaw1 |
---|
[879] | 1969 | |
---|
[1992] | 1970 | ! Variables pour les GW |
---|
| 1971 | REAL ll |
---|
| 1972 | REAL n2(klev) |
---|
| 1973 | REAL cgw(klev) |
---|
| 1974 | REAL tgw(klev) |
---|
[879] | 1975 | |
---|
[1992] | 1976 | ! Variables liées au calcul de hw |
---|
| 1977 | REAL ptop_provis, ptop, ptop_new |
---|
| 1978 | REAL sum_dth |
---|
| 1979 | REAL dthmin |
---|
| 1980 | REAL z, dz, hw0 |
---|
| 1981 | INTEGER ktop, kupper |
---|
[879] | 1982 | |
---|
[1992] | 1983 | ! Autres variables internes |
---|
| 1984 | INTEGER isubstep, k |
---|
[879] | 1985 | |
---|
[1992] | 1986 | REAL sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 1987 | REAL sum_dq, sum_rho |
---|
| 1988 | REAL sum_dtdwn, sum_dqdwn |
---|
| 1989 | REAL av_thu, av_tu, av_qu, av_thvu |
---|
| 1990 | REAL av_dth, av_dq, av_rho |
---|
| 1991 | REAL av_dtdwn, av_dqdwn |
---|
[879] | 1992 | |
---|
[1992] | 1993 | REAL rho(klev), rhoh(klev+1), rhow(klev) |
---|
| 1994 | REAL rhow_moyen(klev) |
---|
| 1995 | REAL zh(klev), zhh(klev+1) |
---|
| 1996 | REAL epaisseur1(klev), epaisseur2(klev) |
---|
[879] | 1997 | |
---|
[1992] | 1998 | REAL the(klev), thu(klev) |
---|
[879] | 1999 | |
---|
[1992] | 2000 | REAL d_deltatw(klev), d_deltaqw(klev) |
---|
[879] | 2001 | |
---|
[1992] | 2002 | REAL omgbw(klev+1), omgtop |
---|
| 2003 | REAL dp_omgbw(klev) |
---|
| 2004 | REAL ztop, dztop |
---|
| 2005 | REAL alpha_up(klev) |
---|
[879] | 2006 | |
---|
[1992] | 2007 | REAL rre1, rre2, rrd1, rrd2 |
---|
| 2008 | REAL th1(klev), th2(klev), q1(klev), q2(klev) |
---|
| 2009 | REAL d_th1(klev), d_th2(klev), d_dth(klev) |
---|
| 2010 | REAL d_q1(klev), d_q2(klev), d_dq(klev) |
---|
| 2011 | REAL omgbdq(klev) |
---|
[879] | 2012 | |
---|
[1992] | 2013 | REAL ff, gg |
---|
| 2014 | REAL wape2, cstar2, heff |
---|
[879] | 2015 | |
---|
[1992] | 2016 | REAL crep(klev) |
---|
| 2017 | REAL crep_upper, crep_sol |
---|
[879] | 2018 | |
---|
[1992] | 2019 | ! ------------------------------------------------------------------------- |
---|
| 2020 | ! Initialisations |
---|
| 2021 | ! ------------------------------------------------------------------------- |
---|
[879] | 2022 | |
---|
[1992] | 2023 | ! print*, 'wake initialisations' |
---|
[879] | 2024 | |
---|
[1992] | 2025 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 2026 | ! ------------------------------------------------------------------------- |
---|
[879] | 2027 | |
---|
[1992] | 2028 | DATA sigmad, hwmin/.02, 10./ |
---|
[879] | 2029 | |
---|
[1992] | 2030 | ! Longueur de maille (en m) |
---|
| 2031 | ! ------------------------------------------------------------------------- |
---|
[879] | 2032 | |
---|
[1992] | 2033 | ! ALON = 3.e5 |
---|
| 2034 | alon = 1.E6 |
---|
[879] | 2035 | |
---|
| 2036 | |
---|
[1992] | 2037 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
[879] | 2038 | |
---|
[1992] | 2039 | ! coefgw : Coefficient pour les ondes de gravité |
---|
| 2040 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 2041 | ! wdens : Densité de poche froide par maille |
---|
| 2042 | ! ------------------------------------------------------------------------- |
---|
[879] | 2043 | |
---|
[1992] | 2044 | coefgw = 10 |
---|
| 2045 | ! coefgw=1 |
---|
| 2046 | ! wdens0 = 1.0/(alon**2) |
---|
| 2047 | wdens = 1.0/(alon**2) |
---|
| 2048 | stark = 0.50 |
---|
| 2049 | ! CRtest |
---|
| 2050 | alpk = 0.1 |
---|
| 2051 | ! alpk = 1.0 |
---|
| 2052 | ! alpk = 0.5 |
---|
| 2053 | ! alpk = 0.05 |
---|
| 2054 | crep_upper = 0.9 |
---|
| 2055 | crep_sol = 1.0 |
---|
[879] | 2056 | |
---|
| 2057 | |
---|
[1992] | 2058 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 2059 | ! ------------------------------------------------------------------------- |
---|
[879] | 2060 | |
---|
[1992] | 2061 | delta_t_min = 0.2 |
---|
[879] | 2062 | |
---|
| 2063 | |
---|
[1992] | 2064 | ! 1. - Save initial values and initialize tendencies |
---|
| 2065 | ! -------------------------------------------------- |
---|
[879] | 2066 | |
---|
[1992] | 2067 | DO k = 1, klev |
---|
| 2068 | deltatw0(k) = deltatw(k) |
---|
| 2069 | deltaqw0(k) = deltaqw(k) |
---|
| 2070 | te(k) = te0(k) |
---|
| 2071 | qe(k) = qe0(k) |
---|
| 2072 | dtls(k) = 0. |
---|
| 2073 | dqls(k) = 0. |
---|
| 2074 | d_deltat_gw(k) = 0. |
---|
| 2075 | d_deltatw2(k) = 0. |
---|
| 2076 | d_deltaqw2(k) = 0. |
---|
| 2077 | END DO |
---|
| 2078 | ! sigmaw1=sigmaw |
---|
| 2079 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 2080 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 2081 | ! ENDIF |
---|
| 2082 | sigmaw = max(sigmaw, sigd_con) |
---|
| 2083 | sigmaw = max(sigmaw, sigmad) |
---|
| 2084 | sigmaw = min(sigmaw, 0.99) |
---|
| 2085 | sigmaw0 = sigmaw |
---|
| 2086 | ! wdens=wdens0/(10.*sigmaw) |
---|
| 2087 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 2088 | ! print*, 'sigmaw1,sigd1', sigmaw, sigd_con |
---|
| 2089 | ! ENDIF |
---|
[879] | 2090 | |
---|
[1992] | 2091 | ! 2. - Prognostic part |
---|
| 2092 | ! ========================================================= |
---|
[879] | 2093 | |
---|
[1992] | 2094 | ! print *, 'prognostic wake computation' |
---|
[879] | 2095 | |
---|
| 2096 | |
---|
[1992] | 2097 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 2098 | ! --------------------------------------------------------- |
---|
[879] | 2099 | |
---|
[1992] | 2100 | z = 0. |
---|
| 2101 | ktop = 0 |
---|
| 2102 | kupper = 0 |
---|
| 2103 | sum_thu = 0. |
---|
| 2104 | sum_tu = 0. |
---|
| 2105 | sum_qu = 0. |
---|
| 2106 | sum_thvu = 0. |
---|
| 2107 | sum_dth = 0. |
---|
| 2108 | sum_dq = 0. |
---|
| 2109 | sum_rho = 0. |
---|
| 2110 | sum_dtdwn = 0. |
---|
| 2111 | sum_dqdwn = 0. |
---|
[879] | 2112 | |
---|
[1992] | 2113 | av_thu = 0. |
---|
| 2114 | av_tu = 0. |
---|
| 2115 | av_qu = 0. |
---|
| 2116 | av_thvu = 0. |
---|
| 2117 | av_dth = 0. |
---|
| 2118 | av_dq = 0. |
---|
| 2119 | av_rho = 0. |
---|
| 2120 | av_dtdwn = 0. |
---|
| 2121 | av_dqdwn = 0. |
---|
[879] | 2122 | |
---|
[1992] | 2123 | ! Potential temperatures and humidity |
---|
| 2124 | ! ---------------------------------------------------------- |
---|
[879] | 2125 | |
---|
[1992] | 2126 | DO k = 1, klev |
---|
| 2127 | rho(k) = p(k)/(rd*te(k)) |
---|
| 2128 | IF (k==1) THEN |
---|
| 2129 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
| 2130 | zhh(k) = 0 |
---|
| 2131 | ELSE |
---|
| 2132 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
| 2133 | zhh(k) = (ph(k)-ph(k-1))/(-rhoh(k)*rg) + zhh(k-1) |
---|
| 2134 | END IF |
---|
| 2135 | the(k) = te(k)/ppi(k) |
---|
| 2136 | thu(k) = (te(k)-deltatw(k)*sigmaw)/ppi(k) |
---|
| 2137 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
| 2138 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
| 2139 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
| 2140 | dth(k) = deltatw(k)/ppi(k) |
---|
| 2141 | ll = (1-sqrt(sigmaw))/sqrt(wdens) |
---|
| 2142 | END DO |
---|
[879] | 2143 | |
---|
[1992] | 2144 | DO k = 1, klev - 1 |
---|
| 2145 | IF (k==1) THEN |
---|
| 2146 | n2(k) = 0 |
---|
| 2147 | ELSE |
---|
| 2148 | n2(k) = max(0., -rg**2/the(k)*rho(k)*(the(k+1)-the(k-1))/(p(k+ & |
---|
| 2149 | 1)-p(k-1))) |
---|
| 2150 | END IF |
---|
| 2151 | zh(k) = (zhh(k)+zhh(k+1))/2 |
---|
[879] | 2152 | |
---|
[1992] | 2153 | cgw(k) = sqrt(n2(k))*zh(k) |
---|
| 2154 | tgw(k) = coefgw*cgw(k)/ll |
---|
| 2155 | END DO |
---|
[879] | 2156 | |
---|
[1992] | 2157 | n2(klev) = 0 |
---|
| 2158 | zh(klev) = 0 |
---|
| 2159 | cgw(klev) = 0 |
---|
| 2160 | tgw(klev) = 0 |
---|
[879] | 2161 | |
---|
[1992] | 2162 | ! Calcul de la masse volumique moyenne de la colonne |
---|
| 2163 | ! ----------------------------------------------------------------- |
---|
[879] | 2164 | |
---|
[1992] | 2165 | DO k = 1, klev |
---|
| 2166 | epaisseur1(k) = 0. |
---|
| 2167 | epaisseur2(k) = 0. |
---|
| 2168 | END DO |
---|
[879] | 2169 | |
---|
[1992] | 2170 | epaisseur1(1) = -(ph(2)-ph(1))/(rho(1)*rg) + 1. |
---|
| 2171 | epaisseur2(1) = -(ph(2)-ph(1))/(rho(1)*rg) + 1. |
---|
| 2172 | rhow_moyen(1) = rhow(1) |
---|
[879] | 2173 | |
---|
[1992] | 2174 | DO k = 2, klev |
---|
| 2175 | epaisseur1(k) = -(ph(k+1)-ph(k))/(rho(k)*rg) + 1. |
---|
| 2176 | epaisseur2(k) = epaisseur2(k-1) + epaisseur1(k) |
---|
| 2177 | rhow_moyen(k) = (rhow_moyen(k-1)*epaisseur2(k-1)+rhow(k)*epaisseur1(k))/ & |
---|
| 2178 | epaisseur2(k) |
---|
| 2179 | END DO |
---|
[879] | 2180 | |
---|
| 2181 | |
---|
[1992] | 2182 | ! Choose an integration bound well above wake top |
---|
| 2183 | ! ----------------------------------------------------------------- |
---|
[879] | 2184 | |
---|
[1992] | 2185 | ! Pupper = 50000. ! melting level |
---|
| 2186 | pupper = 60000. |
---|
| 2187 | ! Pupper = 70000. |
---|
[879] | 2188 | |
---|
| 2189 | |
---|
[1992] | 2190 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 2191 | ! ----------------------------------------------------------------- |
---|
[879] | 2192 | |
---|
[1992] | 2193 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
[879] | 2194 | |
---|
[1992] | 2195 | ptop_provis = ph(1) |
---|
| 2196 | DO k = 2, klev |
---|
| 2197 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
| 2198 | ptop_provis = ((dth(k)+delta_t_min)*p(k-1)-(dth(k- & |
---|
| 2199 | 1)+delta_t_min)*p(k))/(dth(k)-dth(k-1)) |
---|
| 2200 | GO TO 25 |
---|
| 2201 | END IF |
---|
| 2202 | END DO |
---|
| 2203 | 25 CONTINUE |
---|
[879] | 2204 | |
---|
[1992] | 2205 | ! -2/ dth integral |
---|
[879] | 2206 | |
---|
[1992] | 2207 | sum_dth = 0. |
---|
| 2208 | dthmin = -delta_t_min |
---|
| 2209 | z = 0. |
---|
[879] | 2210 | |
---|
[1992] | 2211 | DO k = 1, klev |
---|
| 2212 | dz = -(max(ph(k+1),ptop_provis)-ph(k))/(rho(k)*rg) |
---|
| 2213 | IF (dz<=0) GO TO 40 |
---|
| 2214 | z = z + dz |
---|
| 2215 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2216 | dthmin = min(dthmin, dth(k)) |
---|
| 2217 | END DO |
---|
| 2218 | 40 CONTINUE |
---|
[879] | 2219 | |
---|
[1992] | 2220 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
[879] | 2221 | |
---|
[1992] | 2222 | hw0 = 2.*sum_dth/min(dthmin, -0.5) |
---|
| 2223 | hw0 = max(hwmin, hw0) |
---|
[879] | 2224 | |
---|
[1992] | 2225 | ! -4/ now, get Ptop |
---|
[879] | 2226 | |
---|
[1992] | 2227 | z = 0. |
---|
| 2228 | ptop = ph(1) |
---|
[879] | 2229 | |
---|
[1992] | 2230 | DO k = 1, klev |
---|
| 2231 | dz = min(-(ph(k+1)-ph(k))/(rho(k)*rg), hw0-z) |
---|
| 2232 | IF (dz<=0) GO TO 45 |
---|
| 2233 | z = z + dz |
---|
| 2234 | ptop = ph(k) - rho(k)*rg*dz |
---|
| 2235 | END DO |
---|
| 2236 | 45 CONTINUE |
---|
[879] | 2237 | |
---|
| 2238 | |
---|
[1992] | 2239 | ! -5/ Determination de ktop et kupper |
---|
[879] | 2240 | |
---|
[1992] | 2241 | DO k = klev, 1, -1 |
---|
| 2242 | IF (ph(k+1)<ptop) ktop = k |
---|
| 2243 | IF (ph(k+1)<pupper) kupper = k |
---|
| 2244 | END DO |
---|
[879] | 2245 | |
---|
[1992] | 2246 | ! -6/ Correct ktop and ptop |
---|
[879] | 2247 | |
---|
[1992] | 2248 | ptop_new = ptop |
---|
| 2249 | DO k = ktop, 2, -1 |
---|
| 2250 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
| 2251 | ptop_new = ((dth(k)+delta_t_min)*p(k-1)-(dth(k-1)+delta_t_min)*p(k))/ & |
---|
| 2252 | (dth(k)-dth(k-1)) |
---|
| 2253 | GO TO 225 |
---|
| 2254 | END IF |
---|
| 2255 | END DO |
---|
| 2256 | 225 CONTINUE |
---|
[879] | 2257 | |
---|
[1992] | 2258 | ptop = ptop_new |
---|
[879] | 2259 | |
---|
[1992] | 2260 | DO k = klev, 1, -1 |
---|
| 2261 | IF (ph(k+1)<ptop) ktop = k |
---|
| 2262 | END DO |
---|
[879] | 2263 | |
---|
[1992] | 2264 | ! Set deltatw & deltaqw to 0 above kupper |
---|
| 2265 | ! ----------------------------------------------------------- |
---|
[879] | 2266 | |
---|
[1992] | 2267 | DO k = kupper, klev |
---|
| 2268 | deltatw(k) = 0. |
---|
| 2269 | deltaqw(k) = 0. |
---|
| 2270 | END DO |
---|
[879] | 2271 | |
---|
| 2272 | |
---|
[1992] | 2273 | ! Vertical gradient of LS omega |
---|
| 2274 | ! ------------------------------------------------------------ |
---|
[879] | 2275 | |
---|
[1992] | 2276 | DO k = 1, kupper |
---|
| 2277 | dp_omgb(k) = (omgb(k+1)-omgb(k))/(ph(k+1)-ph(k)) |
---|
| 2278 | END DO |
---|
[879] | 2279 | |
---|
| 2280 | |
---|
[1992] | 2281 | ! Integrals (and wake top level number) |
---|
| 2282 | ! ----------------------------------------------------------- |
---|
[879] | 2283 | |
---|
[1992] | 2284 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
[879] | 2285 | |
---|
[1992] | 2286 | z = 1. |
---|
| 2287 | dz = 1. |
---|
| 2288 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
| 2289 | sum_dth = 0. |
---|
[879] | 2290 | |
---|
[1992] | 2291 | DO k = 1, klev |
---|
| 2292 | dz = -(max(ph(k+1),ptop)-ph(k))/(rho(k)*rg) |
---|
| 2293 | IF (dz<=0) GO TO 50 |
---|
| 2294 | z = z + dz |
---|
| 2295 | sum_thu = sum_thu + thu(k)*dz |
---|
| 2296 | sum_tu = sum_tu + tu(k)*dz |
---|
| 2297 | sum_qu = sum_qu + qu(k)*dz |
---|
| 2298 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
| 2299 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2300 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
| 2301 | sum_rho = sum_rho + rhow(k)*dz |
---|
| 2302 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
| 2303 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
| 2304 | END DO |
---|
| 2305 | 50 CONTINUE |
---|
[879] | 2306 | |
---|
[1992] | 2307 | hw0 = z |
---|
[879] | 2308 | |
---|
[1992] | 2309 | ! 2.1 - WAPE and mean forcing computation |
---|
| 2310 | ! ------------------------------------------------------------- |
---|
[879] | 2311 | |
---|
[1992] | 2312 | ! Means |
---|
[879] | 2313 | |
---|
[1992] | 2314 | av_thu = sum_thu/hw0 |
---|
| 2315 | av_tu = sum_tu/hw0 |
---|
| 2316 | av_qu = sum_qu/hw0 |
---|
| 2317 | av_thvu = sum_thvu/hw0 |
---|
| 2318 | ! av_thve = sum_thve/hw0 |
---|
| 2319 | av_dth = sum_dth/hw0 |
---|
| 2320 | av_dq = sum_dq/hw0 |
---|
| 2321 | av_rho = sum_rho/hw0 |
---|
| 2322 | av_dtdwn = sum_dtdwn/hw0 |
---|
| 2323 | av_dqdwn = sum_dqdwn/hw0 |
---|
[879] | 2324 | |
---|
[1992] | 2325 | wape = -rg*hw0*(av_dth+eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq))/ & |
---|
| 2326 | av_thvu |
---|
[879] | 2327 | |
---|
[1992] | 2328 | ! 2.2 Prognostic variable update |
---|
| 2329 | ! ------------------------------------------------------------ |
---|
[879] | 2330 | |
---|
[1992] | 2331 | ! Filter out bad wakes |
---|
[879] | 2332 | |
---|
[1992] | 2333 | IF (wape<0.) THEN |
---|
| 2334 | IF (prt_level>=10) PRINT *, 'wape<0' |
---|
| 2335 | wape = 0. |
---|
| 2336 | hw = hwmin |
---|
| 2337 | sigmaw = max(sigmad, sigd_con) |
---|
| 2338 | fip = 0. |
---|
| 2339 | DO k = 1, klev |
---|
| 2340 | deltatw(k) = 0. |
---|
| 2341 | deltaqw(k) = 0. |
---|
| 2342 | dth(k) = 0. |
---|
| 2343 | END DO |
---|
| 2344 | ELSE |
---|
| 2345 | IF (prt_level>=10) PRINT *, 'wape>0' |
---|
| 2346 | cstar = stark*sqrt(2.*wape) |
---|
| 2347 | END IF |
---|
[879] | 2348 | |
---|
[1992] | 2349 | ! ------------------------------------------------------------------ |
---|
| 2350 | ! Sub-time-stepping |
---|
| 2351 | ! ------------------------------------------------------------------ |
---|
[879] | 2352 | |
---|
[1992] | 2353 | ! nsub=36 |
---|
| 2354 | nsub = 10 |
---|
| 2355 | dtimesub = dtime/nsub |
---|
[879] | 2356 | |
---|
[1992] | 2357 | ! ------------------------------------------------------------ |
---|
| 2358 | DO isubstep = 1, nsub |
---|
| 2359 | ! ------------------------------------------------------------ |
---|
[879] | 2360 | |
---|
[1992] | 2361 | ! print*,'---------------','substep=',isubstep,'-------------' |
---|
[879] | 2362 | |
---|
[1992] | 2363 | ! Evolution of sigmaw |
---|
[879] | 2364 | |
---|
| 2365 | |
---|
[1992] | 2366 | gfl = 2.*sqrt(3.14*wdens*sigmaw) |
---|
[879] | 2367 | |
---|
[1992] | 2368 | sigmaw = sigmaw + gfl*cstar*dtimesub |
---|
| 2369 | sigmaw = min(sigmaw, 0.99) !!!!!!!! |
---|
| 2370 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 2371 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 2372 | ! sigmaw =max(sigmaw,sigmad) |
---|
[879] | 2373 | |
---|
[1992] | 2374 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
[879] | 2375 | |
---|
[1992] | 2376 | z = 0. |
---|
| 2377 | dp_deltomg(1:klev) = 0. |
---|
| 2378 | omg(1:klev+1) = 0. |
---|
[879] | 2379 | |
---|
[1992] | 2380 | omg(1) = 0. |
---|
| 2381 | dp_deltomg(1) = -(gfl*cstar)/(sigmaw*(1-sigmaw)) |
---|
[879] | 2382 | |
---|
[1992] | 2383 | DO k = 2, ktop |
---|
| 2384 | dz = -(ph(k)-ph(k-1))/(rho(k-1)*rg) |
---|
| 2385 | z = z + dz |
---|
| 2386 | dp_deltomg(k) = dp_deltomg(1) |
---|
| 2387 | omg(k) = dp_deltomg(1)*z |
---|
| 2388 | END DO |
---|
[879] | 2389 | |
---|
[1992] | 2390 | dztop = -(ptop-ph(ktop))/(rho(ktop)*rg) |
---|
| 2391 | ztop = z + dztop |
---|
| 2392 | omgtop = dp_deltomg(1)*ztop |
---|
[879] | 2393 | |
---|
| 2394 | |
---|
[1992] | 2395 | ! Conversion de la vitesse verticale de m/s a Pa/s |
---|
[879] | 2396 | |
---|
[1992] | 2397 | omgtop = -rho(ktop)*rg*omgtop |
---|
| 2398 | dp_deltomg(1) = omgtop/(ptop-ph(1)) |
---|
[879] | 2399 | |
---|
[1992] | 2400 | DO k = 1, ktop |
---|
| 2401 | omg(k) = -rho(k)*rg*omg(k) |
---|
| 2402 | dp_deltomg(k) = dp_deltomg(1) |
---|
| 2403 | END DO |
---|
[879] | 2404 | |
---|
[1992] | 2405 | ! raccordement lineaire de omg de ptop a pupper |
---|
[879] | 2406 | |
---|
[1992] | 2407 | IF (kupper>ktop) THEN |
---|
| 2408 | omg(kupper+1) = -rg*amdwn(kupper+1)/sigmaw + rg*amup(kupper+1)/(1.- & |
---|
| 2409 | sigmaw) |
---|
| 2410 | dp_deltomg(kupper) = (omgtop-omg(kupper+1))/(ptop-pupper) |
---|
| 2411 | DO k = ktop + 1, kupper |
---|
| 2412 | dp_deltomg(k) = dp_deltomg(kupper) |
---|
| 2413 | omg(k) = omgtop + (ph(k)-ptop)*dp_deltomg(kupper) |
---|
| 2414 | END DO |
---|
| 2415 | END IF |
---|
[879] | 2416 | |
---|
[1992] | 2417 | ! Compute wake average vertical velocity omgbw |
---|
[879] | 2418 | |
---|
[1992] | 2419 | DO k = 1, klev + 1 |
---|
| 2420 | omgbw(k) = omgb(k) + (1.-sigmaw)*omg(k) |
---|
| 2421 | END DO |
---|
[879] | 2422 | |
---|
[1992] | 2423 | ! and its vertical gradient dp_omgbw |
---|
[879] | 2424 | |
---|
[1992] | 2425 | DO k = 1, klev |
---|
| 2426 | dp_omgbw(k) = (omgbw(k+1)-omgbw(k))/(ph(k+1)-ph(k)) |
---|
| 2427 | END DO |
---|
[879] | 2428 | |
---|
| 2429 | |
---|
[1992] | 2430 | ! Upstream coefficients for omgb velocity |
---|
| 2431 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 2432 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
[879] | 2433 | |
---|
[1992] | 2434 | DO k = 1, klev |
---|
| 2435 | alpha_up(k) = 0. |
---|
| 2436 | IF (omgb(k)>0.) alpha_up(k) = 1. |
---|
| 2437 | END DO |
---|
[879] | 2438 | |
---|
[1992] | 2439 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
[879] | 2440 | |
---|
[1992] | 2441 | rre1 = 1. - sigmaw |
---|
| 2442 | rre2 = sigmaw |
---|
| 2443 | rrd1 = -1. |
---|
| 2444 | rrd2 = 1. |
---|
[879] | 2445 | |
---|
[1992] | 2446 | ! Get [Th1,Th2], dth and [q1,q2] |
---|
[879] | 2447 | |
---|
[1992] | 2448 | DO k = 1, kupper + 1 |
---|
| 2449 | dth(k) = deltatw(k)/ppi(k) |
---|
| 2450 | th1(k) = the(k) - sigmaw*dth(k) ! undisturbed area |
---|
| 2451 | th2(k) = the(k) + (1.-sigmaw)*dth(k) ! wake |
---|
| 2452 | q1(k) = qe(k) - sigmaw*deltaqw(k) ! undisturbed area |
---|
| 2453 | q2(k) = qe(k) + (1.-sigmaw)*deltaqw(k) ! wake |
---|
| 2454 | END DO |
---|
[879] | 2455 | |
---|
[1992] | 2456 | d_th1(1) = 0. |
---|
| 2457 | d_th2(1) = 0. |
---|
| 2458 | d_dth(1) = 0. |
---|
| 2459 | d_q1(1) = 0. |
---|
| 2460 | d_q2(1) = 0. |
---|
| 2461 | d_dq(1) = 0. |
---|
[879] | 2462 | |
---|
[1992] | 2463 | DO k = 2, kupper + 1 ! loop on interfaces |
---|
| 2464 | d_th1(k) = th1(k-1) - th1(k) |
---|
| 2465 | d_th2(k) = th2(k-1) - th2(k) |
---|
| 2466 | d_dth(k) = dth(k-1) - dth(k) |
---|
| 2467 | d_q1(k) = q1(k-1) - q1(k) |
---|
| 2468 | d_q2(k) = q2(k-1) - q2(k) |
---|
| 2469 | d_dq(k) = deltaqw(k-1) - deltaqw(k) |
---|
| 2470 | END DO |
---|
[879] | 2471 | |
---|
[1992] | 2472 | omgbdth(1) = 0. |
---|
| 2473 | omgbdq(1) = 0. |
---|
[879] | 2474 | |
---|
[1992] | 2475 | DO k = 2, kupper + 1 ! loop on interfaces |
---|
| 2476 | omgbdth(k) = omgb(k)*(dth(k-1)-dth(k)) |
---|
| 2477 | omgbdq(k) = omgb(k)*(deltaqw(k-1)-deltaqw(k)) |
---|
| 2478 | END DO |
---|
[879] | 2479 | |
---|
| 2480 | |
---|
[1992] | 2481 | ! ----------------------------------------------------------------- |
---|
| 2482 | DO k = 1, kupper - 1 |
---|
| 2483 | ! ----------------------------------------------------------------- |
---|
[879] | 2484 | |
---|
[1992] | 2485 | ! Compute redistribution (advective) term |
---|
[879] | 2486 | |
---|
[1992] | 2487 | d_deltatw(k) = dtimesub/(ph(k)-ph(k+1))*(rrd1*omg(k)*sigmaw*d_th1(k)- & |
---|
| 2488 | rrd2*omg(k+1)*(1.-sigmaw)*d_th2(k+1)-(1.-alpha_up( & |
---|
| 2489 | k))*omgbdth(k)-alpha_up(k+1)*omgbdth(k+1))*ppi(k) |
---|
| 2490 | ! print*,'d_deltatw=',d_deltatw(k) |
---|
[879] | 2491 | |
---|
[1992] | 2492 | d_deltaqw(k) = dtimesub/(ph(k)-ph(k+1))*(rrd1*omg(k)*sigmaw*d_q1(k)- & |
---|
| 2493 | rrd2*omg(k+1)*(1.-sigmaw)*d_q2(k+1)-(1.-alpha_up( & |
---|
| 2494 | k))*omgbdq(k)-alpha_up(k+1)*omgbdq(k+1)) |
---|
| 2495 | ! print*,'d_deltaqw=',d_deltaqw(k) |
---|
[879] | 2496 | |
---|
[1992] | 2497 | ! and increment large scale tendencies |
---|
[879] | 2498 | |
---|
[1992] | 2499 | dtls(k) = dtls(k) + dtimesub*((rre1*omg(k)*sigmaw*d_th1(k)-rre2*omg(k+ & |
---|
| 2500 | 1)*(1.-sigmaw)*d_th2(k+1))/(ph(k)-ph(k+1))-sigmaw*(1.-sigmaw)*dth(k)* & |
---|
| 2501 | dp_deltomg(k))*ppi(k) |
---|
| 2502 | ! print*,'dtls=',dtls(k) |
---|
[879] | 2503 | |
---|
[1992] | 2504 | dqls(k) = dqls(k) + dtimesub*((rre1*omg(k)*sigmaw*d_q1(k)-rre2*omg(k+ & |
---|
| 2505 | 1)*(1.-sigmaw)*d_q2(k+1))/(ph(k)-ph(k+1))-sigmaw*(1.-sigmaw)*deltaqw( & |
---|
| 2506 | k)*dp_deltomg(k)) |
---|
| 2507 | ! print*,'dqls=',dqls(k) |
---|
[879] | 2508 | |
---|
[1992] | 2509 | ! ------------------------------------------------------------------- |
---|
| 2510 | END DO |
---|
| 2511 | ! ------------------------------------------------------------------ |
---|
| 2512 | |
---|
| 2513 | ! Increment state variables |
---|
| 2514 | |
---|
| 2515 | DO k = 1, kupper - 1 |
---|
| 2516 | |
---|
| 2517 | ! Coefficient de répartition |
---|
| 2518 | |
---|
| 2519 | crep(k) = crep_sol*(ph(kupper)-ph(k))/(ph(kupper)-ph(1)) |
---|
| 2520 | crep(k) = crep(k) + crep_upper*(ph(1)-ph(k))/(p(1)-ph(kupper)) |
---|
| 2521 | |
---|
| 2522 | |
---|
| 2523 | ! Reintroduce compensating subsidence term. |
---|
| 2524 | |
---|
| 2525 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 2526 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 2527 | ! . /(1-sigmaw) |
---|
| 2528 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 2529 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 2530 | ! . /(1-sigmaw) |
---|
| 2531 | |
---|
| 2532 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 2533 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 2534 | ! . /(1-sigmaw) |
---|
| 2535 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 2536 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 2537 | ! . /(1-sigmaw) |
---|
| 2538 | |
---|
| 2539 | dtke(k) = (dtdwn(k)/sigmaw-dta(k)/(1.-sigmaw)) |
---|
| 2540 | dqke(k) = (dqdwn(k)/sigmaw-dqa(k)/(1.-sigmaw)) |
---|
| 2541 | ! print*,'dtKE=',dtKE(k) |
---|
| 2542 | ! print*,'dqKE=',dqKE(k) |
---|
| 2543 | |
---|
| 2544 | dtpbl(k) = (wdtpbl(k)/sigmaw-udtpbl(k)/(1.-sigmaw)) |
---|
| 2545 | dqpbl(k) = (wdqpbl(k)/sigmaw-udqpbl(k)/(1.-sigmaw)) |
---|
| 2546 | |
---|
| 2547 | spread(k) = (1.-sigmaw)*dp_deltomg(k) + gfl*cstar/sigmaw |
---|
| 2548 | ! print*,'spread=',spread(k) |
---|
| 2549 | |
---|
| 2550 | |
---|
| 2551 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
| 2552 | ! Jingmei |
---|
| 2553 | |
---|
| 2554 | d_deltat_gw(k) = d_deltat_gw(k) - tgw(k)*deltatw(k)*dtimesub |
---|
| 2555 | ! print*,'d_delta_gw=',d_deltat_gw(k) |
---|
| 2556 | ff = d_deltatw(k)/dtimesub |
---|
| 2557 | |
---|
| 2558 | ! Sans GW |
---|
| 2559 | |
---|
| 2560 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
| 2561 | |
---|
| 2562 | ! GW formule 1 |
---|
| 2563 | |
---|
| 2564 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 2565 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 2566 | |
---|
| 2567 | ! GW formule 2 |
---|
| 2568 | |
---|
| 2569 | IF (dtimesub*tgw(k)<1.E-10) THEN |
---|
| 2570 | deltatw(k) = deltatw(k) + dtimesub*(ff+dtke(k)+dtpbl(k)-spread(k)* & |
---|
| 2571 | deltatw(k)-tgw(k)*deltatw(k)) |
---|
| 2572 | ELSE |
---|
| 2573 | deltatw(k) = deltatw(k) + 1/tgw(k)*(1-exp(-dtimesub*tgw(k)))*(ff+dtke & |
---|
| 2574 | (k)+dtpbl(k)-spread(k)*deltatw(k)-tgw(k)*deltatw(k)) |
---|
| 2575 | END IF |
---|
| 2576 | |
---|
| 2577 | dth(k) = deltatw(k)/ppi(k) |
---|
| 2578 | |
---|
| 2579 | gg = d_deltaqw(k)/dtimesub |
---|
| 2580 | |
---|
| 2581 | deltaqw(k) = deltaqw(k) + dtimesub*(gg+dqke(k)+dqpbl(k)-spread(k)* & |
---|
| 2582 | deltaqw(k)) |
---|
| 2583 | |
---|
| 2584 | d_deltatw2(k) = d_deltatw2(k) + d_deltatw(k) |
---|
| 2585 | d_deltaqw2(k) = d_deltaqw2(k) + d_deltaqw(k) |
---|
| 2586 | END DO |
---|
| 2587 | |
---|
| 2588 | ! And update large scale variables |
---|
| 2589 | |
---|
| 2590 | DO k = 1, kupper |
---|
| 2591 | te(k) = te0(k) + dtls(k) |
---|
| 2592 | qe(k) = qe0(k) + dqls(k) |
---|
| 2593 | the(k) = te(k)/ppi(k) |
---|
| 2594 | END DO |
---|
| 2595 | |
---|
| 2596 | ! Determine Ptop from buoyancy integral |
---|
| 2597 | ! ---------------------------------------------------------------------- |
---|
| 2598 | |
---|
| 2599 | ! -1/ Pressure of the level where dth changes sign. |
---|
| 2600 | |
---|
| 2601 | ptop_provis = ph(1) |
---|
| 2602 | |
---|
| 2603 | DO k = 2, klev |
---|
| 2604 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
| 2605 | ptop_provis = ((dth(k)+delta_t_min)*p(k-1)-(dth(k- & |
---|
| 2606 | 1)+delta_t_min)*p(k))/(dth(k)-dth(k-1)) |
---|
[879] | 2607 | GO TO 65 |
---|
[1992] | 2608 | END IF |
---|
| 2609 | END DO |
---|
| 2610 | 65 CONTINUE |
---|
[879] | 2611 | |
---|
[1992] | 2612 | ! -2/ dth integral |
---|
[879] | 2613 | |
---|
[1992] | 2614 | sum_dth = 0. |
---|
| 2615 | dthmin = -delta_t_min |
---|
| 2616 | z = 0. |
---|
[879] | 2617 | |
---|
[1992] | 2618 | DO k = 1, klev |
---|
| 2619 | dz = -(max(ph(k+1),ptop_provis)-ph(k))/(rho(k)*rg) |
---|
| 2620 | IF (dz<=0) GO TO 70 |
---|
| 2621 | z = z + dz |
---|
| 2622 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2623 | dthmin = min(dthmin, dth(k)) |
---|
| 2624 | END DO |
---|
| 2625 | 70 CONTINUE |
---|
[879] | 2626 | |
---|
[1992] | 2627 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
[879] | 2628 | |
---|
[1992] | 2629 | hw = 2.*sum_dth/min(dthmin, -0.5) |
---|
| 2630 | hw = max(hwmin, hw) |
---|
[879] | 2631 | |
---|
[1992] | 2632 | ! -4/ now, get Ptop |
---|
[879] | 2633 | |
---|
[1992] | 2634 | ktop = 0 |
---|
| 2635 | z = 0. |
---|
[879] | 2636 | |
---|
[1992] | 2637 | DO k = 1, klev |
---|
| 2638 | dz = min(-(ph(k+1)-ph(k))/(rho(k)*rg), hw-z) |
---|
| 2639 | IF (dz<=0) GO TO 75 |
---|
| 2640 | z = z + dz |
---|
| 2641 | ptop = ph(k) - rho(k)*rg*dz |
---|
| 2642 | ktop = k |
---|
| 2643 | END DO |
---|
| 2644 | 75 CONTINUE |
---|
[879] | 2645 | |
---|
[1992] | 2646 | ! -5/Correct ktop and ptop |
---|
[879] | 2647 | |
---|
[1992] | 2648 | ptop_new = ptop |
---|
[879] | 2649 | |
---|
[1992] | 2650 | DO k = ktop, 2, -1 |
---|
| 2651 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
| 2652 | ptop_new = ((dth(k)+delta_t_min)*p(k-1)-(dth(k-1)+delta_t_min)*p(k))/ & |
---|
| 2653 | (dth(k)-dth(k-1)) |
---|
| 2654 | GO TO 275 |
---|
| 2655 | END IF |
---|
| 2656 | END DO |
---|
| 2657 | 275 CONTINUE |
---|
[879] | 2658 | |
---|
[1992] | 2659 | ptop = ptop_new |
---|
[879] | 2660 | |
---|
[1992] | 2661 | DO k = klev, 1, -1 |
---|
| 2662 | IF (ph(k+1)<ptop) ktop = k |
---|
| 2663 | END DO |
---|
[879] | 2664 | |
---|
[1992] | 2665 | ! -6/ Set deltatw & deltaqw to 0 above kupper |
---|
[879] | 2666 | |
---|
[1992] | 2667 | DO k = kupper, klev |
---|
| 2668 | deltatw(k) = 0. |
---|
| 2669 | deltaqw(k) = 0. |
---|
| 2670 | END DO |
---|
[879] | 2671 | |
---|
[1992] | 2672 | ! ------------------------------------------------------------------ |
---|
| 2673 | END DO ! end sub-timestep loop |
---|
| 2674 | ! ----------------------------------------------------------------- |
---|
[879] | 2675 | |
---|
[1992] | 2676 | ! Get back to tendencies per second |
---|
[879] | 2677 | |
---|
[1992] | 2678 | DO k = 1, kupper - 1 |
---|
| 2679 | dtls(k) = dtls(k)/dtime |
---|
| 2680 | dqls(k) = dqls(k)/dtime |
---|
| 2681 | d_deltatw2(k) = d_deltatw2(k)/dtime |
---|
| 2682 | d_deltaqw2(k) = d_deltaqw2(k)/dtime |
---|
| 2683 | d_deltat_gw(k) = d_deltat_gw(k)/dtime |
---|
| 2684 | END DO |
---|
[879] | 2685 | |
---|
[1992] | 2686 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 2687 | ! --------------------------------------------------------- |
---|
[879] | 2688 | |
---|
[1992] | 2689 | z = 0. |
---|
| 2690 | sum_thu = 0. |
---|
| 2691 | sum_tu = 0. |
---|
| 2692 | sum_qu = 0. |
---|
| 2693 | sum_thvu = 0. |
---|
| 2694 | sum_dth = 0. |
---|
| 2695 | sum_dq = 0. |
---|
| 2696 | sum_rho = 0. |
---|
| 2697 | sum_dtdwn = 0. |
---|
| 2698 | sum_dqdwn = 0. |
---|
[879] | 2699 | |
---|
[1992] | 2700 | av_thu = 0. |
---|
| 2701 | av_tu = 0. |
---|
| 2702 | av_qu = 0. |
---|
| 2703 | av_thvu = 0. |
---|
| 2704 | av_dth = 0. |
---|
| 2705 | av_dq = 0. |
---|
| 2706 | av_rho = 0. |
---|
| 2707 | av_dtdwn = 0. |
---|
| 2708 | av_dqdwn = 0. |
---|
[879] | 2709 | |
---|
[1992] | 2710 | ! Potential temperatures and humidity |
---|
| 2711 | ! ---------------------------------------------------------- |
---|
[879] | 2712 | |
---|
[1992] | 2713 | DO k = 1, klev |
---|
| 2714 | rho(k) = p(k)/(rd*te(k)) |
---|
| 2715 | IF (k==1) THEN |
---|
| 2716 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
| 2717 | zhh(k) = 0 |
---|
| 2718 | ELSE |
---|
| 2719 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
| 2720 | zhh(k) = (ph(k)-ph(k-1))/(-rhoh(k)*rg) + zhh(k-1) |
---|
| 2721 | END IF |
---|
| 2722 | the(k) = te(k)/ppi(k) |
---|
| 2723 | thu(k) = (te(k)-deltatw(k)*sigmaw)/ppi(k) |
---|
| 2724 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
| 2725 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
| 2726 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
| 2727 | dth(k) = deltatw(k)/ppi(k) |
---|
[879] | 2728 | |
---|
[1992] | 2729 | END DO |
---|
[879] | 2730 | |
---|
[1992] | 2731 | ! Integrals (and wake top level number) |
---|
| 2732 | ! ----------------------------------------------------------- |
---|
[879] | 2733 | |
---|
[1992] | 2734 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
[879] | 2735 | |
---|
[1992] | 2736 | z = 1. |
---|
| 2737 | dz = 1. |
---|
| 2738 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
| 2739 | sum_dth = 0. |
---|
[879] | 2740 | |
---|
[1992] | 2741 | DO k = 1, klev |
---|
| 2742 | dz = -(max(ph(k+1),ptop)-ph(k))/(rho(k)*rg) |
---|
[879] | 2743 | |
---|
[1992] | 2744 | IF (dz<=0) GO TO 51 |
---|
| 2745 | z = z + dz |
---|
| 2746 | sum_thu = sum_thu + thu(k)*dz |
---|
| 2747 | sum_tu = sum_tu + tu(k)*dz |
---|
| 2748 | sum_qu = sum_qu + qu(k)*dz |
---|
| 2749 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
| 2750 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2751 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
| 2752 | sum_rho = sum_rho + rhow(k)*dz |
---|
| 2753 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
| 2754 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
| 2755 | END DO |
---|
| 2756 | 51 CONTINUE |
---|
[879] | 2757 | |
---|
[1992] | 2758 | hw0 = z |
---|
[879] | 2759 | |
---|
[1992] | 2760 | ! 2.1 - WAPE and mean forcing computation |
---|
| 2761 | ! ------------------------------------------------------------- |
---|
[879] | 2762 | |
---|
[1992] | 2763 | ! Means |
---|
[879] | 2764 | |
---|
[1992] | 2765 | av_thu = sum_thu/hw0 |
---|
| 2766 | av_tu = sum_tu/hw0 |
---|
| 2767 | av_qu = sum_qu/hw0 |
---|
| 2768 | av_thvu = sum_thvu/hw0 |
---|
| 2769 | av_dth = sum_dth/hw0 |
---|
| 2770 | av_dq = sum_dq/hw0 |
---|
| 2771 | av_rho = sum_rho/hw0 |
---|
| 2772 | av_dtdwn = sum_dtdwn/hw0 |
---|
| 2773 | av_dqdwn = sum_dqdwn/hw0 |
---|
[879] | 2774 | |
---|
[1992] | 2775 | wape2 = -rg*hw0*(av_dth+eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq))/ & |
---|
| 2776 | av_thvu |
---|
[879] | 2777 | |
---|
| 2778 | |
---|
[1992] | 2779 | ! 2.2 Prognostic variable update |
---|
| 2780 | ! ------------------------------------------------------------ |
---|
[879] | 2781 | |
---|
[1992] | 2782 | ! Filter out bad wakes |
---|
[879] | 2783 | |
---|
[1992] | 2784 | IF (wape2<0.) THEN |
---|
| 2785 | IF (prt_level>=10) PRINT *, 'wape2<0' |
---|
| 2786 | wape2 = 0. |
---|
| 2787 | hw = hwmin |
---|
| 2788 | sigmaw = max(sigmad, sigd_con) |
---|
| 2789 | fip = 0. |
---|
| 2790 | DO k = 1, klev |
---|
| 2791 | deltatw(k) = 0. |
---|
| 2792 | deltaqw(k) = 0. |
---|
| 2793 | dth(k) = 0. |
---|
| 2794 | END DO |
---|
| 2795 | ELSE |
---|
| 2796 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 2797 | cstar2 = stark*sqrt(2.*wape2) |
---|
[879] | 2798 | |
---|
[1992] | 2799 | END IF |
---|
[879] | 2800 | |
---|
[1992] | 2801 | ktopw = ktop |
---|
[879] | 2802 | |
---|
[1992] | 2803 | IF (ktopw>0) THEN |
---|
[879] | 2804 | |
---|
[1992] | 2805 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 2806 | ! cc heff = 600. |
---|
| 2807 | ! Utilisation de la hauteur hw |
---|
| 2808 | ! c heff = 0.7*hw |
---|
| 2809 | heff = hw |
---|
[879] | 2810 | |
---|
[1992] | 2811 | fip = 0.5*rho(ktopw)*cstar2**3*heff*2*sqrt(sigmaw*wdens*3.14) |
---|
| 2812 | fip = alpk*fip |
---|
| 2813 | ! jyg2 |
---|
| 2814 | ELSE |
---|
| 2815 | fip = 0. |
---|
| 2816 | END IF |
---|
[879] | 2817 | |
---|
| 2818 | |
---|
[1992] | 2819 | ! Limitation de sigmaw |
---|
[879] | 2820 | |
---|
[1992] | 2821 | ! sécurité : si le wake occuppe plus de 90 % de la surface de la maille, |
---|
| 2822 | ! alors il disparait en se mélangeant à la partie undisturbed |
---|
[879] | 2823 | |
---|
[1992] | 2824 | ! correction NICOLAS . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
| 2825 | IF ((sigmaw>0.9) .OR. ((wape>=wape2) .AND. (wape2<= & |
---|
| 2826 | 1.0)) .OR. (ktopw<=2)) THEN |
---|
| 2827 | ! IM cf NR/JYG 251108 . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
| 2828 | ! IF (sigmaw.GT.0.9) THEN |
---|
| 2829 | DO k = 1, klev |
---|
| 2830 | dtls(k) = 0. |
---|
| 2831 | dqls(k) = 0. |
---|
| 2832 | deltatw(k) = 0. |
---|
| 2833 | deltaqw(k) = 0. |
---|
| 2834 | END DO |
---|
| 2835 | wape = 0. |
---|
| 2836 | hw = hwmin |
---|
| 2837 | sigmaw = sigmad |
---|
| 2838 | fip = 0. |
---|
| 2839 | END IF |
---|
[879] | 2840 | |
---|
[1992] | 2841 | RETURN |
---|
| 2842 | END SUBROUTINE wake_scal |
---|
[879] | 2843 | |
---|
[1992] | 2844 | |
---|
| 2845 | |
---|