1 | SUBROUTINE thermcell_2002(ngrid, nlay, ptimestep, iflag_thermals, pplay, & |
---|
2 | pplev, pphi, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, & |
---|
3 | fraca, wa_moy, r_aspect, l_mix, w2di, tho) |
---|
4 | |
---|
5 | USE dimphy |
---|
6 | USE write_field_phy |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | ! ======================================================================= |
---|
10 | |
---|
11 | ! Calcul du transport verticale dans la couche limite en presence |
---|
12 | ! de "thermiques" explicitement representes |
---|
13 | |
---|
14 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
15 | |
---|
16 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
17 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
18 | ! mélange |
---|
19 | |
---|
20 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
21 | ! en compte: |
---|
22 | ! 1. un flux de masse montant |
---|
23 | ! 2. un flux de masse descendant |
---|
24 | ! 3. un entrainement |
---|
25 | ! 4. un detrainement |
---|
26 | |
---|
27 | ! ======================================================================= |
---|
28 | |
---|
29 | ! ----------------------------------------------------------------------- |
---|
30 | ! declarations: |
---|
31 | ! ------------- |
---|
32 | |
---|
33 | include "YOMCST.h" |
---|
34 | |
---|
35 | ! arguments: |
---|
36 | ! ---------- |
---|
37 | |
---|
38 | INTEGER ngrid, nlay, w2di, iflag_thermals |
---|
39 | REAL tho |
---|
40 | REAL ptimestep, l_mix, r_aspect |
---|
41 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
42 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
43 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
44 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
45 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
46 | REAL pphi(ngrid, nlay) |
---|
47 | REAL fraca(ngrid, nlay+1), zw2(ngrid, nlay+1) |
---|
48 | |
---|
49 | INTEGER, SAVE :: idetr = 3, lev_out = 1 |
---|
50 | !$OMP THREADPRIVATE(idetr,lev_out) |
---|
51 | |
---|
52 | ! local: |
---|
53 | ! ------ |
---|
54 | |
---|
55 | INTEGER, SAVE :: dvdq = 0, flagdq = 0, dqimpl = 1 |
---|
56 | LOGICAL, SAVE :: debut = .TRUE. |
---|
57 | !$OMP THREADPRIVATE(dvdq,flagdq,debut,dqimpl) |
---|
58 | |
---|
59 | INTEGER ig, k, l, lmax(klon, klev+1), lmaxa(klon), lmix(klon) |
---|
60 | REAL zmax(klon), zw, zz, ztva(klon, klev), zzz |
---|
61 | |
---|
62 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
63 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
64 | REAL ztv(klon, klev) |
---|
65 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
66 | REAL wh(klon, klev+1) |
---|
67 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
68 | REAL zla(klon, klev+1) |
---|
69 | REAL zwa(klon, klev+1) |
---|
70 | REAL zld(klon, klev+1) |
---|
71 | REAL zwd(klon, klev+1) |
---|
72 | REAL zsortie(klon, klev) |
---|
73 | REAL zva(klon, klev) |
---|
74 | REAL zua(klon, klev) |
---|
75 | REAL zoa(klon, klev) |
---|
76 | |
---|
77 | REAL zha(klon, klev) |
---|
78 | REAL wa_moy(klon, klev+1) |
---|
79 | REAL fracc(klon, klev+1) |
---|
80 | REAL zf, zf2 |
---|
81 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
82 | ! common/comtherm/thetath2,wth2 |
---|
83 | |
---|
84 | REAL count_time |
---|
85 | |
---|
86 | LOGICAL sorties |
---|
87 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
88 | REAL zpspsk(klon, klev) |
---|
89 | |
---|
90 | REAL wmax(klon, klev), wmaxa(klon) |
---|
91 | |
---|
92 | REAL wa(klon, klev, klev+1) |
---|
93 | REAL wd(klon, klev+1) |
---|
94 | REAL larg_part(klon, klev, klev+1) |
---|
95 | REAL fracd(klon, klev+1) |
---|
96 | REAL xxx(klon, klev+1) |
---|
97 | REAL larg_cons(klon, klev+1) |
---|
98 | REAL larg_detr(klon, klev+1) |
---|
99 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
100 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
101 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
102 | REAL fmc(klon, klev+1) |
---|
103 | |
---|
104 | CHARACTER (LEN=2) :: str2 |
---|
105 | CHARACTER (LEN=10) :: str10 |
---|
106 | |
---|
107 | CHARACTER (LEN=20) :: modname = 'thermcell2002' |
---|
108 | CHARACTER (LEN=80) :: abort_message |
---|
109 | |
---|
110 | LOGICAL vtest(klon), down |
---|
111 | |
---|
112 | EXTERNAL scopy |
---|
113 | |
---|
114 | INTEGER ncorrec, ll |
---|
115 | SAVE ncorrec |
---|
116 | DATA ncorrec/0/ |
---|
117 | !$OMP THREADPRIVATE(ncorrec) |
---|
118 | |
---|
119 | |
---|
120 | ! ----------------------------------------------------------------------- |
---|
121 | ! initialisation: |
---|
122 | ! --------------- |
---|
123 | |
---|
124 | sorties = .TRUE. |
---|
125 | IF (ngrid/=klon) THEN |
---|
126 | PRINT * |
---|
127 | PRINT *, 'STOP dans convadj' |
---|
128 | PRINT *, 'ngrid =', ngrid |
---|
129 | PRINT *, 'klon =', klon |
---|
130 | END IF |
---|
131 | |
---|
132 | ! ----------------------------------------------------------------------- |
---|
133 | ! incrementation eventuelle de tendances precedentes: |
---|
134 | ! --------------------------------------------------- |
---|
135 | |
---|
136 | ! print*,'0 OK convect8' |
---|
137 | |
---|
138 | DO l = 1, nlay |
---|
139 | DO ig = 1, ngrid |
---|
140 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
141 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
142 | zu(ig, l) = pu(ig, l) |
---|
143 | zv(ig, l) = pv(ig, l) |
---|
144 | zo(ig, l) = po(ig, l) |
---|
145 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
146 | END DO |
---|
147 | END DO |
---|
148 | |
---|
149 | ! print*,'1 OK convect8' |
---|
150 | ! -------------------- |
---|
151 | |
---|
152 | |
---|
153 | ! + + + + + + + + + + + |
---|
154 | |
---|
155 | |
---|
156 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
157 | ! wh,wt,wo ... |
---|
158 | |
---|
159 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
160 | |
---|
161 | |
---|
162 | ! -------------------- zlev(1) |
---|
163 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
164 | |
---|
165 | |
---|
166 | |
---|
167 | ! ----------------------------------------------------------------------- |
---|
168 | ! Calcul des altitudes des couches |
---|
169 | ! ----------------------------------------------------------------------- |
---|
170 | |
---|
171 | IF (debut) THEN |
---|
172 | flagdq = (iflag_thermals-1000)/100 |
---|
173 | dvdq = (iflag_thermals-(1000+flagdq*100))/10 |
---|
174 | IF (flagdq==2) dqimpl = -1 |
---|
175 | IF (flagdq==3) dqimpl = 1 |
---|
176 | debut = .FALSE. |
---|
177 | END IF |
---|
178 | PRINT *, 'TH flag th ', iflag_thermals, flagdq, dvdq, dqimpl |
---|
179 | |
---|
180 | DO l = 2, nlay |
---|
181 | DO ig = 1, ngrid |
---|
182 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
183 | END DO |
---|
184 | END DO |
---|
185 | DO ig = 1, ngrid |
---|
186 | zlev(ig, 1) = 0. |
---|
187 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
188 | END DO |
---|
189 | DO l = 1, nlay |
---|
190 | DO ig = 1, ngrid |
---|
191 | zlay(ig, l) = pphi(ig, l)/rg |
---|
192 | END DO |
---|
193 | END DO |
---|
194 | |
---|
195 | ! print*,'2 OK convect8' |
---|
196 | ! ----------------------------------------------------------------------- |
---|
197 | ! Calcul des densites |
---|
198 | ! ----------------------------------------------------------------------- |
---|
199 | |
---|
200 | DO l = 1, nlay |
---|
201 | DO ig = 1, ngrid |
---|
202 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
203 | END DO |
---|
204 | END DO |
---|
205 | |
---|
206 | DO l = 2, nlay |
---|
207 | DO ig = 1, ngrid |
---|
208 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
209 | END DO |
---|
210 | END DO |
---|
211 | |
---|
212 | DO k = 1, nlay |
---|
213 | DO l = 1, nlay + 1 |
---|
214 | DO ig = 1, ngrid |
---|
215 | wa(ig, k, l) = 0. |
---|
216 | END DO |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | |
---|
220 | ! print*,'3 OK convect8' |
---|
221 | ! ------------------------------------------------------------------ |
---|
222 | ! Calcul de w2, quarre de w a partir de la cape |
---|
223 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
224 | |
---|
225 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
226 | ! w2 est stoke dans wa |
---|
227 | |
---|
228 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
229 | ! independants par couches que pour calculer l'entrainement |
---|
230 | ! a la base et la hauteur max de l'ascendance. |
---|
231 | |
---|
232 | ! Indicages: |
---|
233 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
234 | ! une vitesse wa(k,l). |
---|
235 | |
---|
236 | ! -------------------- |
---|
237 | |
---|
238 | ! + + + + + + + + + + |
---|
239 | |
---|
240 | ! wa(k,l) ---- -------------------- l |
---|
241 | ! /\ |
---|
242 | ! /||\ + + + + + + + + + + |
---|
243 | ! || |
---|
244 | ! || -------------------- |
---|
245 | ! || |
---|
246 | ! || + + + + + + + + + + |
---|
247 | ! || |
---|
248 | ! || -------------------- |
---|
249 | ! ||__ |
---|
250 | ! |___ + + + + + + + + + + k |
---|
251 | |
---|
252 | ! -------------------- |
---|
253 | |
---|
254 | |
---|
255 | |
---|
256 | ! ------------------------------------------------------------------ |
---|
257 | |
---|
258 | |
---|
259 | DO k = 1, nlay - 1 |
---|
260 | DO ig = 1, ngrid |
---|
261 | wa(ig, k, k) = 0. |
---|
262 | wa(ig, k, k+1) = 2.*rg*(ztv(ig,k)-ztv(ig,k+1))/ztv(ig, k+1)* & |
---|
263 | (zlev(ig,k+1)-zlev(ig,k)) |
---|
264 | END DO |
---|
265 | DO l = k + 1, nlay - 1 |
---|
266 | DO ig = 1, ngrid |
---|
267 | wa(ig, k, l+1) = wa(ig, k, l) + 2.*rg*(ztv(ig,k)-ztv(ig,l))/ztv(ig, l & |
---|
268 | )*(zlev(ig,l+1)-zlev(ig,l)) |
---|
269 | END DO |
---|
270 | END DO |
---|
271 | DO ig = 1, ngrid |
---|
272 | wa(ig, k, nlay+1) = 0. |
---|
273 | END DO |
---|
274 | END DO |
---|
275 | |
---|
276 | ! print*,'4 OK convect8' |
---|
277 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
278 | DO k = 1, nlay - 1 |
---|
279 | DO ig = 1, ngrid |
---|
280 | lmax(ig, k) = k |
---|
281 | END DO |
---|
282 | DO l = nlay, k + 1, -1 |
---|
283 | DO ig = 1, ngrid |
---|
284 | IF (wa(ig,k,l)<=1.E-10) lmax(ig, k) = l - 1 |
---|
285 | END DO |
---|
286 | END DO |
---|
287 | END DO |
---|
288 | |
---|
289 | ! print*,'5 OK convect8' |
---|
290 | ! Calcule du w max du thermique |
---|
291 | DO k = 1, nlay |
---|
292 | DO ig = 1, ngrid |
---|
293 | wmax(ig, k) = 0. |
---|
294 | END DO |
---|
295 | END DO |
---|
296 | |
---|
297 | DO k = 1, nlay - 1 |
---|
298 | DO l = k, nlay |
---|
299 | DO ig = 1, ngrid |
---|
300 | IF (l<=lmax(ig,k)) THEN |
---|
301 | wa(ig, k, l) = sqrt(wa(ig,k,l)) |
---|
302 | wmax(ig, k) = max(wmax(ig,k), wa(ig,k,l)) |
---|
303 | ELSE |
---|
304 | wa(ig, k, l) = 0. |
---|
305 | END IF |
---|
306 | END DO |
---|
307 | END DO |
---|
308 | END DO |
---|
309 | |
---|
310 | DO k = 1, nlay - 1 |
---|
311 | DO ig = 1, ngrid |
---|
312 | pu_therm(ig, k) = sqrt(wmax(ig,k)) |
---|
313 | pv_therm(ig, k) = sqrt(wmax(ig,k)) |
---|
314 | END DO |
---|
315 | END DO |
---|
316 | |
---|
317 | ! print*,'6 OK convect8' |
---|
318 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
319 | DO ig = 1, ngrid |
---|
320 | zmax(ig) = 500. |
---|
321 | END DO |
---|
322 | ! print*,'LMAX LMAX LMAX ' |
---|
323 | DO k = 1, nlay - 1 |
---|
324 | DO ig = 1, ngrid |
---|
325 | zmax(ig) = max(zmax(ig), zlev(ig,lmax(ig,k))-zlev(ig,k)) |
---|
326 | END DO |
---|
327 | ! print*,k,lmax(1,k) |
---|
328 | END DO |
---|
329 | ! print*,'ZMAX ZMAX ZMAX ',zmax |
---|
330 | ! call dump2d(iim,jjm-1,zmax(2:ngrid-1),'ZMAX ') |
---|
331 | |
---|
332 | ! print*,'OKl336' |
---|
333 | ! Calcul de l'entrainement. |
---|
334 | ! Le rapport d'aspect relie la largeur de l'ascendance a l'epaisseur |
---|
335 | ! de la couche d'alimentation en partant du principe que la vitesse |
---|
336 | ! maximum dans l'ascendance est la vitesse d'entrainement horizontale. |
---|
337 | DO k = 1, nlay |
---|
338 | DO ig = 1, ngrid |
---|
339 | zzz = rho(ig, k)*wmax(ig, k)*(zlev(ig,k+1)-zlev(ig,k))/ & |
---|
340 | (zmax(ig)*r_aspect) |
---|
341 | IF (w2di==2) THEN |
---|
342 | entr(ig, k) = entr(ig, k) + ptimestep*(zzz-entr(ig,k))/tho |
---|
343 | ELSE |
---|
344 | entr(ig, k) = zzz |
---|
345 | END IF |
---|
346 | ztva(ig, k) = ztv(ig, k) |
---|
347 | END DO |
---|
348 | END DO |
---|
349 | |
---|
350 | |
---|
351 | ! print*,'7 OK convect8' |
---|
352 | DO k = 1, klev + 1 |
---|
353 | DO ig = 1, ngrid |
---|
354 | zw2(ig, k) = 0. |
---|
355 | fmc(ig, k) = 0. |
---|
356 | larg_cons(ig, k) = 0. |
---|
357 | larg_detr(ig, k) = 0. |
---|
358 | wa_moy(ig, k) = 0. |
---|
359 | END DO |
---|
360 | END DO |
---|
361 | |
---|
362 | ! print*,'8 OK convect8' |
---|
363 | DO ig = 1, ngrid |
---|
364 | lmaxa(ig) = 1 |
---|
365 | lmix(ig) = 1 |
---|
366 | wmaxa(ig) = 0. |
---|
367 | END DO |
---|
368 | |
---|
369 | |
---|
370 | ! print*,'OKl372' |
---|
371 | DO l = 1, nlay - 2 |
---|
372 | DO ig = 1, ngrid |
---|
373 | ! if (zw2(ig,l).lt.1.e-10.and.ztv(ig,l).gt.ztv(ig,l+1)) then |
---|
374 | ! print*,'COUCOU ',l,zw2(ig,l),ztv(ig,l),ztv(ig,l+1) |
---|
375 | IF (zw2(ig,l)<1.E-10 .AND. ztv(ig,l)>ztv(ig,l+1) .AND. & |
---|
376 | entr(ig,l)>1.E-10) THEN |
---|
377 | ! print*,'COUCOU cas 1' |
---|
378 | ! Initialisation de l'ascendance |
---|
379 | ! lmix(ig)=1 |
---|
380 | ztva(ig, l) = ztv(ig, l) |
---|
381 | fmc(ig, l) = 0. |
---|
382 | fmc(ig, l+1) = entr(ig, l) |
---|
383 | zw2(ig, l) = 0. |
---|
384 | ! if (.not.ztv(ig,l+1).gt.150.) then |
---|
385 | ! print*,'ig,l+1,ztv(ig,l+1)' |
---|
386 | ! print*, ig,l+1,ztv(ig,l+1) |
---|
387 | ! endif |
---|
388 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
389 | (zlev(ig,l+1)-zlev(ig,l)) |
---|
390 | larg_detr(ig, l) = 0. |
---|
391 | ELSE IF (zw2(ig,l)>=1.E-10 .AND. fmc(ig,l)+entr(ig,l)>1.E-10) THEN |
---|
392 | ! Incrementation... |
---|
393 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
394 | ! if (.not.fmc(ig,l+1).gt.1.e-15) then |
---|
395 | ! print*,'ig,l+1,fmc(ig,l+1)' |
---|
396 | ! print*, ig,l+1,fmc(ig,l+1) |
---|
397 | ! print*,'Fmc ',(fmc(ig,ll),ll=1,klev+1) |
---|
398 | ! print*,'W2 ',(zw2(ig,ll),ll=1,klev+1) |
---|
399 | ! print*,'Tv ',(ztv(ig,ll),ll=1,klev) |
---|
400 | ! print*,'Entr ',(entr(ig,ll),ll=1,klev) |
---|
401 | ! endif |
---|
402 | ztva(ig, l) = (fmc(ig,l)*ztva(ig,l-1)+entr(ig,l)*ztv(ig,l))/ & |
---|
403 | fmc(ig, l+1) |
---|
404 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
405 | ! consideree commence avec une vitesse nulle). |
---|
406 | zw2(ig, l+1) = zw2(ig, l)*(fmc(ig,l)/fmc(ig,l+1))**2 + & |
---|
407 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
408 | END IF |
---|
409 | IF (zw2(ig,l+1)<0.) THEN |
---|
410 | zw2(ig, l+1) = 0. |
---|
411 | lmaxa(ig) = l |
---|
412 | ELSE |
---|
413 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
414 | END IF |
---|
415 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
416 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
417 | lmix(ig) = l + 1 |
---|
418 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
419 | END IF |
---|
420 | ! print*,'COUCOU cas 2 LMIX=',lmix(ig),wa_moy(ig,l+1),wmaxa(ig) |
---|
421 | END DO |
---|
422 | END DO |
---|
423 | |
---|
424 | ! print*,'9 OK convect8' |
---|
425 | ! print*,'WA1 ',wa_moy |
---|
426 | |
---|
427 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
428 | |
---|
429 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
430 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
431 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
432 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
433 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
434 | |
---|
435 | ! print*,'OKl439' |
---|
436 | DO l = 2, nlay |
---|
437 | DO ig = 1, ngrid |
---|
438 | IF (l<=lmaxa(ig)) THEN |
---|
439 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
440 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
441 | END IF |
---|
442 | END DO |
---|
443 | END DO |
---|
444 | |
---|
445 | DO l = 2, nlay |
---|
446 | DO ig = 1, ngrid |
---|
447 | IF (l<=lmaxa(ig)) THEN |
---|
448 | ! if (idetr.eq.0) then |
---|
449 | ! cette option est finalement en dur. |
---|
450 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
451 | ! else if (idetr.eq.1) then |
---|
452 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
453 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
454 | ! else if (idetr.eq.2) then |
---|
455 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
456 | ! s *sqrt(wa_moy(ig,l)) |
---|
457 | ! else if (idetr.eq.4) then |
---|
458 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
459 | ! s *wa_moy(ig,l) |
---|
460 | ! endif |
---|
461 | END IF |
---|
462 | END DO |
---|
463 | END DO |
---|
464 | |
---|
465 | ! print*,'10 OK convect8' |
---|
466 | ! print*,'WA2 ',wa_moy |
---|
467 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
468 | ! compte de l'epluchage du thermique. |
---|
469 | |
---|
470 | DO l = 2, nlay |
---|
471 | DO ig = 1, ngrid |
---|
472 | IF (larg_cons(ig,l)>1.) THEN |
---|
473 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
474 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
475 | IF (l>lmix(ig)) THEN |
---|
476 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
477 | IF (idetr==0) THEN |
---|
478 | fraca(ig, l) = fraca(ig, lmix(ig)) |
---|
479 | ELSE IF (idetr==1) THEN |
---|
480 | fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l) |
---|
481 | ELSE IF (idetr==2) THEN |
---|
482 | fraca(ig, l) = fraca(ig, lmix(ig))*(1.-(1.-xxx(ig,l))**2) |
---|
483 | ELSE |
---|
484 | fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l)**2 |
---|
485 | END IF |
---|
486 | END IF |
---|
487 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
488 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
489 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
490 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
491 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
492 | ELSE |
---|
493 | ! wa_moy(ig,l)=0. |
---|
494 | fraca(ig, l) = 0. |
---|
495 | fracc(ig, l) = 0. |
---|
496 | fracd(ig, l) = 1. |
---|
497 | END IF |
---|
498 | END DO |
---|
499 | END DO |
---|
500 | |
---|
501 | ! print*,'11 OK convect8' |
---|
502 | ! print*,'Ea3 ',wa_moy |
---|
503 | ! ------------------------------------------------------------------ |
---|
504 | ! Calcul de fracd, wd |
---|
505 | ! somme wa - wd = 0 |
---|
506 | ! ------------------------------------------------------------------ |
---|
507 | |
---|
508 | |
---|
509 | DO ig = 1, ngrid |
---|
510 | fm(ig, 1) = 0. |
---|
511 | fm(ig, nlay+1) = 0. |
---|
512 | END DO |
---|
513 | |
---|
514 | DO l = 2, nlay |
---|
515 | DO ig = 1, ngrid |
---|
516 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
517 | END DO |
---|
518 | DO ig = 1, ngrid |
---|
519 | IF (fracd(ig,l)<0.1) THEN |
---|
520 | abort_message = 'fracd trop petit' |
---|
521 | CALL abort_physic(modname, abort_message, 1) |
---|
522 | ELSE |
---|
523 | ! vitesse descendante "diagnostique" |
---|
524 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
525 | END IF |
---|
526 | END DO |
---|
527 | END DO |
---|
528 | |
---|
529 | DO l = 1, nlay |
---|
530 | DO ig = 1, ngrid |
---|
531 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
532 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
533 | END DO |
---|
534 | END DO |
---|
535 | |
---|
536 | ! print*,'12 OK convect8' |
---|
537 | ! print*,'WA4 ',wa_moy |
---|
538 | ! c------------------------------------------------------------------ |
---|
539 | ! calcul du transport vertical |
---|
540 | ! ------------------------------------------------------------------ |
---|
541 | |
---|
542 | GO TO 4444 |
---|
543 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
544 | DO l = 2, nlay - 1 |
---|
545 | DO ig = 1, ngrid |
---|
546 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
547 | ig,l+1)) THEN |
---|
548 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
549 | ! s ,fm(ig,l+1)*ptimestep |
---|
550 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
551 | END IF |
---|
552 | END DO |
---|
553 | END DO |
---|
554 | |
---|
555 | DO l = 1, nlay |
---|
556 | DO ig = 1, ngrid |
---|
557 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
558 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
559 | ! s ,entr(ig,l)*ptimestep |
---|
560 | ! s ,' M=',masse(ig,l) |
---|
561 | END IF |
---|
562 | END DO |
---|
563 | END DO |
---|
564 | |
---|
565 | DO l = 1, nlay |
---|
566 | DO ig = 1, ngrid |
---|
567 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
568 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
569 | ! s ,' FM=',fm(ig,l) |
---|
570 | END IF |
---|
571 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
572 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
573 | ! s ,' M=',masse(ig,l) |
---|
574 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
575 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
576 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
577 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
578 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
579 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
580 | END IF |
---|
581 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
582 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
583 | ! s ,' E=',entr(ig,l) |
---|
584 | END IF |
---|
585 | END DO |
---|
586 | END DO |
---|
587 | |
---|
588 | 4444 CONTINUE |
---|
589 | ! print*,'OK 444 ' |
---|
590 | |
---|
591 | IF (w2di==1) THEN |
---|
592 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
593 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
594 | ELSE |
---|
595 | fm0 = fm |
---|
596 | entr0 = entr |
---|
597 | END IF |
---|
598 | |
---|
599 | IF (flagdq==0) THEN |
---|
600 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
601 | zha) |
---|
602 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
603 | zoa) |
---|
604 | PRINT *, 'THERMALS OPT 1' |
---|
605 | ELSE IF (flagdq==1) THEN |
---|
606 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
607 | zdhadj, zha) |
---|
608 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
609 | pdoadj, zoa) |
---|
610 | PRINT *, 'THERMALS OPT 2' |
---|
611 | ELSE |
---|
612 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zh, & |
---|
613 | zdhadj, zha, lev_out) |
---|
614 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zo, & |
---|
615 | pdoadj, zoa, lev_out) |
---|
616 | PRINT *, 'THERMALS OPT 3', dqimpl |
---|
617 | END IF |
---|
618 | |
---|
619 | PRINT *, 'TH VENT ', dvdq |
---|
620 | IF (dvdq==0) THEN |
---|
621 | ! print*,'TH VENT OK ',dvdq |
---|
622 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
623 | zua) |
---|
624 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
625 | zva) |
---|
626 | ELSE IF (dvdq==1) THEN |
---|
627 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
628 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
629 | ELSE IF (dvdq==2) THEN |
---|
630 | CALL thermcell_dv2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, & |
---|
631 | zmax, zu, zv, pduadj, pdvadj, zua, zva, lev_out) |
---|
632 | ELSE IF (dvdq==3) THEN |
---|
633 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zu, & |
---|
634 | pduadj, zua, lev_out) |
---|
635 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zv, & |
---|
636 | pdvadj, zva, lev_out) |
---|
637 | END IF |
---|
638 | |
---|
639 | ! CALL writefield_phy('duadj',pduadj,klev) |
---|
640 | |
---|
641 | DO l = 1, nlay |
---|
642 | DO ig = 1, ngrid |
---|
643 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
644 | zf2 = zf/(1.-zf) |
---|
645 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
646 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
647 | END DO |
---|
648 | END DO |
---|
649 | |
---|
650 | |
---|
651 | |
---|
652 | ! print*,'13 OK convect8' |
---|
653 | ! print*,'WA5 ',wa_moy |
---|
654 | DO l = 1, nlay |
---|
655 | DO ig = 1, ngrid |
---|
656 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
657 | END DO |
---|
658 | END DO |
---|
659 | |
---|
660 | |
---|
661 | ! do l=1,nlay |
---|
662 | ! do ig=1,ngrid |
---|
663 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
664 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
665 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
666 | ! endif |
---|
667 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
668 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
669 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
670 | ! endif |
---|
671 | ! enddo |
---|
672 | ! enddo |
---|
673 | |
---|
674 | ! print*,'14 OK convect8' |
---|
675 | ! ------------------------------------------------------------------ |
---|
676 | ! Calculs pour les sorties |
---|
677 | ! ------------------------------------------------------------------ |
---|
678 | |
---|
679 | IF (sorties) THEN |
---|
680 | DO l = 1, nlay |
---|
681 | DO ig = 1, ngrid |
---|
682 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
683 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
684 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
685 | (1.-fracd(ig,l)) |
---|
686 | END DO |
---|
687 | END DO |
---|
688 | |
---|
689 | DO l = 1, nlay |
---|
690 | DO ig = 1, ngrid |
---|
691 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
692 | IF (detr(ig,l)<0.) THEN |
---|
693 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
694 | detr(ig, l) = 0. |
---|
695 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
696 | END IF |
---|
697 | END DO |
---|
698 | END DO |
---|
699 | END IF |
---|
700 | |
---|
701 | ! print*,'15 OK convect8' |
---|
702 | |
---|
703 | |
---|
704 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
705 | |
---|
706 | ! print*,'19 OK convect8' |
---|
707 | RETURN |
---|
708 | END SUBROUTINE thermcell_2002 |
---|
709 | |
---|
710 | SUBROUTINE thermcell_cld(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
711 | debut, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, zqla, & |
---|
712 | lmax, zmax_sec, wmax_sec, zw_sec, lmix_sec, ratqscth, ratqsdiff & ! s |
---|
713 | ! ,pu_therm,pv_therm |
---|
714 | , r_aspect, l_mix, w2di, tho) |
---|
715 | |
---|
716 | USE dimphy |
---|
717 | IMPLICIT NONE |
---|
718 | |
---|
719 | ! ======================================================================= |
---|
720 | |
---|
721 | ! Calcul du transport verticale dans la couche limite en presence |
---|
722 | ! de "thermiques" explicitement representes |
---|
723 | |
---|
724 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
725 | |
---|
726 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
727 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
728 | ! mélange |
---|
729 | |
---|
730 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
731 | ! en compte: |
---|
732 | ! 1. un flux de masse montant |
---|
733 | ! 2. un flux de masse descendant |
---|
734 | ! 3. un entrainement |
---|
735 | ! 4. un detrainement |
---|
736 | |
---|
737 | ! ======================================================================= |
---|
738 | |
---|
739 | ! ----------------------------------------------------------------------- |
---|
740 | ! declarations: |
---|
741 | ! ------------- |
---|
742 | |
---|
743 | include "YOMCST.h" |
---|
744 | include "YOETHF.h" |
---|
745 | include "FCTTRE.h" |
---|
746 | |
---|
747 | ! arguments: |
---|
748 | ! ---------- |
---|
749 | |
---|
750 | INTEGER ngrid, nlay, w2di |
---|
751 | REAL tho |
---|
752 | REAL ptimestep, l_mix, r_aspect |
---|
753 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
754 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
755 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
756 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
757 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
758 | REAL pphi(ngrid, nlay) |
---|
759 | |
---|
760 | INTEGER idetr |
---|
761 | SAVE idetr |
---|
762 | DATA idetr/3/ |
---|
763 | !$OMP THREADPRIVATE(idetr) |
---|
764 | |
---|
765 | ! local: |
---|
766 | ! ------ |
---|
767 | |
---|
768 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
769 | REAL zsortie1d(klon) |
---|
770 | ! CR: on remplace lmax(klon,klev+1) |
---|
771 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
772 | REAL linter(klon) |
---|
773 | REAL zmix(klon), fracazmix(klon) |
---|
774 | REAL alpha |
---|
775 | SAVE alpha |
---|
776 | DATA alpha/1./ |
---|
777 | !$OMP THREADPRIVATE(alpha) |
---|
778 | |
---|
779 | ! RC |
---|
780 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
781 | REAL zmax_sec(klon) |
---|
782 | REAL zmax_sec2(klon) |
---|
783 | REAL zw_sec(klon, klev+1) |
---|
784 | INTEGER lmix_sec(klon) |
---|
785 | REAL w_est(klon, klev+1) |
---|
786 | ! on garde le zmax du pas de temps precedent |
---|
787 | ! real zmax0(klon) |
---|
788 | ! save zmax0 |
---|
789 | ! real zmix0(klon) |
---|
790 | ! save zmix0 |
---|
791 | REAL, SAVE, ALLOCATABLE :: zmax0(:), zmix0(:) |
---|
792 | !$OMP THREADPRIVATE(zmax0, zmix0) |
---|
793 | |
---|
794 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
795 | REAL deltaz(klon, klev) |
---|
796 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
797 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
798 | REAL ztv(klon, klev) |
---|
799 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
800 | REAL zl(klon, klev) |
---|
801 | REAL wh(klon, klev+1) |
---|
802 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
803 | REAL zla(klon, klev+1) |
---|
804 | REAL zwa(klon, klev+1) |
---|
805 | REAL zld(klon, klev+1) |
---|
806 | REAL zwd(klon, klev+1) |
---|
807 | REAL zsortie(klon, klev) |
---|
808 | REAL zva(klon, klev) |
---|
809 | REAL zua(klon, klev) |
---|
810 | REAL zoa(klon, klev) |
---|
811 | |
---|
812 | REAL zta(klon, klev) |
---|
813 | REAL zha(klon, klev) |
---|
814 | REAL wa_moy(klon, klev+1) |
---|
815 | REAL fraca(klon, klev+1) |
---|
816 | REAL fracc(klon, klev+1) |
---|
817 | REAL zf, zf2 |
---|
818 | REAL thetath2(klon, klev), wth2(klon, klev), wth3(klon, klev) |
---|
819 | REAL q2(klon, klev) |
---|
820 | REAL dtheta(klon, klev) |
---|
821 | ! common/comtherm/thetath2,wth2 |
---|
822 | |
---|
823 | REAL ratqscth(klon, klev) |
---|
824 | REAL sum |
---|
825 | REAL sumdiff |
---|
826 | REAL ratqsdiff(klon, klev) |
---|
827 | REAL count_time |
---|
828 | INTEGER ialt |
---|
829 | |
---|
830 | LOGICAL sorties |
---|
831 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
832 | REAL zpspsk(klon, klev) |
---|
833 | |
---|
834 | ! real wmax(klon,klev),wmaxa(klon) |
---|
835 | REAL wmax(klon), wmaxa(klon) |
---|
836 | REAL wmax_sec(klon) |
---|
837 | REAL wmax_sec2(klon) |
---|
838 | REAL wa(klon, klev, klev+1) |
---|
839 | REAL wd(klon, klev+1) |
---|
840 | REAL larg_part(klon, klev, klev+1) |
---|
841 | REAL fracd(klon, klev+1) |
---|
842 | REAL xxx(klon, klev+1) |
---|
843 | REAL larg_cons(klon, klev+1) |
---|
844 | REAL larg_detr(klon, klev+1) |
---|
845 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
846 | REAL massetot(klon, klev) |
---|
847 | REAL detr0(klon, klev) |
---|
848 | REAL alim0(klon, klev) |
---|
849 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
850 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
851 | REAL fmc(klon, klev+1) |
---|
852 | |
---|
853 | REAL zcor, zdelta, zcvm5, qlbef |
---|
854 | REAL tbef(klon), qsatbef(klon) |
---|
855 | REAL dqsat_dt, dt, num, denom |
---|
856 | REAL reps, rlvcp, ddt0 |
---|
857 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
858 | ! CR niveau de condensation |
---|
859 | REAL nivcon(klon) |
---|
860 | REAL zcon(klon) |
---|
861 | REAL zqsat(klon, klev) |
---|
862 | REAL zqsatth(klon, klev) |
---|
863 | PARAMETER (ddt0=.01) |
---|
864 | |
---|
865 | |
---|
866 | ! CR:nouvelles variables |
---|
867 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
868 | REAL detr_star(klon, klev) |
---|
869 | REAL alim_star_tot(klon), alim_star2(klon) |
---|
870 | REAL entr_star_tot(klon) |
---|
871 | REAL detr_star_tot(klon) |
---|
872 | REAL alim_star(klon, klev) |
---|
873 | REAL alim(klon, klev) |
---|
874 | REAL nu(klon, klev) |
---|
875 | REAL nu_e(klon, klev) |
---|
876 | REAL nu_min |
---|
877 | REAL nu_max |
---|
878 | REAL nu_r |
---|
879 | REAL f(klon) |
---|
880 | ! real f(klon), f0(klon) |
---|
881 | ! save f0 |
---|
882 | REAL, SAVE, ALLOCATABLE :: f0(:) |
---|
883 | !$OMP THREADPRIVATE(f0) |
---|
884 | |
---|
885 | REAL f_old |
---|
886 | REAL zlevinter(klon) |
---|
887 | LOGICAL, SAVE :: first = .TRUE. |
---|
888 | !$OMP THREADPRIVATE(first) |
---|
889 | ! data first /.false./ |
---|
890 | ! save first |
---|
891 | LOGICAL nuage |
---|
892 | ! save nuage |
---|
893 | LOGICAL boucle |
---|
894 | LOGICAL therm |
---|
895 | LOGICAL debut |
---|
896 | LOGICAL rale |
---|
897 | INTEGER test(klon) |
---|
898 | INTEGER signe_zw2 |
---|
899 | ! RC |
---|
900 | |
---|
901 | CHARACTER *2 str2 |
---|
902 | CHARACTER *10 str10 |
---|
903 | |
---|
904 | CHARACTER (LEN=20) :: modname = 'thermcell_cld' |
---|
905 | CHARACTER (LEN=80) :: abort_message |
---|
906 | |
---|
907 | LOGICAL vtest(klon), down |
---|
908 | LOGICAL zsat(klon) |
---|
909 | |
---|
910 | EXTERNAL scopy |
---|
911 | |
---|
912 | INTEGER ncorrec, ll |
---|
913 | SAVE ncorrec |
---|
914 | DATA ncorrec/0/ |
---|
915 | !$OMP THREADPRIVATE(ncorrec) |
---|
916 | |
---|
917 | |
---|
918 | |
---|
919 | ! ----------------------------------------------------------------------- |
---|
920 | ! initialisation: |
---|
921 | ! --------------- |
---|
922 | |
---|
923 | IF (first) THEN |
---|
924 | ALLOCATE (zmix0(klon)) |
---|
925 | ALLOCATE (zmax0(klon)) |
---|
926 | ALLOCATE (f0(klon)) |
---|
927 | first = .FALSE. |
---|
928 | END IF |
---|
929 | |
---|
930 | sorties = .FALSE. |
---|
931 | ! print*,'NOUVEAU DETR PLUIE ' |
---|
932 | IF (ngrid/=klon) THEN |
---|
933 | PRINT * |
---|
934 | PRINT *, 'STOP dans convadj' |
---|
935 | PRINT *, 'ngrid =', ngrid |
---|
936 | PRINT *, 'klon =', klon |
---|
937 | END IF |
---|
938 | |
---|
939 | ! Initialisation |
---|
940 | rlvcp = rlvtt/rcpd |
---|
941 | reps = rd/rv |
---|
942 | ! initialisations de zqsat |
---|
943 | DO ll = 1, nlay |
---|
944 | DO ig = 1, ngrid |
---|
945 | zqsat(ig, ll) = 0. |
---|
946 | zqsatth(ig, ll) = 0. |
---|
947 | END DO |
---|
948 | END DO |
---|
949 | |
---|
950 | ! on met le first a true pour le premier passage de la journée |
---|
951 | DO ig = 1, klon |
---|
952 | test(ig) = 0 |
---|
953 | END DO |
---|
954 | IF (debut) THEN |
---|
955 | DO ig = 1, klon |
---|
956 | test(ig) = 1 |
---|
957 | f0(ig) = 0. |
---|
958 | zmax0(ig) = 0. |
---|
959 | END DO |
---|
960 | END IF |
---|
961 | DO ig = 1, klon |
---|
962 | IF ((.NOT. debut) .AND. (f0(ig)<1.E-10)) THEN |
---|
963 | test(ig) = 1 |
---|
964 | END IF |
---|
965 | END DO |
---|
966 | ! do ig=1,klon |
---|
967 | ! print*,'test(ig)',test(ig),zmax0(ig) |
---|
968 | ! enddo |
---|
969 | nuage = .FALSE. |
---|
970 | ! ----------------------------------------------------------------------- |
---|
971 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
972 | ! --------------------------------------------------- |
---|
973 | |
---|
974 | ! Pr Tprec=Tl calcul de qsat |
---|
975 | ! Si qsat>qT T=Tl, q=qT |
---|
976 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
977 | ! On cherche DDT < DDT0 |
---|
978 | |
---|
979 | ! defaut |
---|
980 | DO ll = 1, nlay |
---|
981 | DO ig = 1, ngrid |
---|
982 | zo(ig, ll) = po(ig, ll) |
---|
983 | zl(ig, ll) = 0. |
---|
984 | zh(ig, ll) = pt(ig, ll) |
---|
985 | END DO |
---|
986 | END DO |
---|
987 | DO ig = 1, ngrid |
---|
988 | zsat(ig) = .FALSE. |
---|
989 | END DO |
---|
990 | |
---|
991 | |
---|
992 | DO ll = 1, nlay |
---|
993 | ! les points insatures sont definitifs |
---|
994 | DO ig = 1, ngrid |
---|
995 | tbef(ig) = pt(ig, ll) |
---|
996 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
997 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
998 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
999 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1000 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
1001 | zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>1.E-10) |
---|
1002 | END DO |
---|
1003 | |
---|
1004 | DO ig = 1, ngrid |
---|
1005 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
1006 | qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
---|
1007 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
1008 | dt = 0.5*rlvcp*qlbef |
---|
1009 | ! write(18,*),'DT0=',DT |
---|
1010 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
1011 | DO WHILE (abs(dt)>ddt0) |
---|
1012 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
1013 | tbef(ig) = tbef(ig) + dt |
---|
1014 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1015 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
1016 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1017 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1018 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
1019 | ! on veut le signe de qlbef |
---|
1020 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
1021 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1022 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
1023 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1024 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
1025 | num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
---|
1026 | denom = 1. + rlvcp*dqsat_dt |
---|
1027 | IF (denom<1.E-10) THEN |
---|
1028 | PRINT *, 'pb denom' |
---|
1029 | END IF |
---|
1030 | dt = num/denom |
---|
1031 | END DO |
---|
1032 | ! on ecrit de maniere conservative (sat ou non) |
---|
1033 | zl(ig, ll) = max(0., qlbef) |
---|
1034 | ! T = Tl +Lv/Cp ql |
---|
1035 | zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
---|
1036 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
1037 | END IF |
---|
1038 | ! on ecrit zqsat |
---|
1039 | zqsat(ig, ll) = qsatbef(ig) |
---|
1040 | END DO |
---|
1041 | END DO |
---|
1042 | ! AM fin |
---|
1043 | |
---|
1044 | ! ----------------------------------------------------------------------- |
---|
1045 | ! incrementation eventuelle de tendances precedentes: |
---|
1046 | ! --------------------------------------------------- |
---|
1047 | |
---|
1048 | ! print*,'0 OK convect8' |
---|
1049 | |
---|
1050 | DO l = 1, nlay |
---|
1051 | DO ig = 1, ngrid |
---|
1052 | zpspsk(ig, l) = (pplay(ig,l)/100000.)**rkappa |
---|
1053 | ! zpspsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**RKAPPA |
---|
1054 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
1055 | zu(ig, l) = pu(ig, l) |
---|
1056 | zv(ig, l) = pv(ig, l) |
---|
1057 | ! zo(ig,l)=po(ig,l) |
---|
1058 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
1059 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
1060 | ! theta ! |
---|
1061 | |
---|
1062 | ! T-> Theta |
---|
1063 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
1064 | ! AM Theta_v |
---|
1065 | ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
---|
1066 | ! AM Thetal |
---|
1067 | zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
1068 | |
---|
1069 | END DO |
---|
1070 | END DO |
---|
1071 | |
---|
1072 | ! print*,'1 OK convect8' |
---|
1073 | ! -------------------- |
---|
1074 | |
---|
1075 | |
---|
1076 | ! + + + + + + + + + + + |
---|
1077 | |
---|
1078 | |
---|
1079 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
1080 | ! wh,wt,wo ... |
---|
1081 | |
---|
1082 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
1083 | |
---|
1084 | |
---|
1085 | ! -------------------- zlev(1) |
---|
1086 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
1087 | |
---|
1088 | |
---|
1089 | |
---|
1090 | ! ----------------------------------------------------------------------- |
---|
1091 | ! Calcul des altitudes des couches |
---|
1092 | ! ----------------------------------------------------------------------- |
---|
1093 | |
---|
1094 | DO l = 2, nlay |
---|
1095 | DO ig = 1, ngrid |
---|
1096 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
1097 | END DO |
---|
1098 | END DO |
---|
1099 | DO ig = 1, ngrid |
---|
1100 | zlev(ig, 1) = 0. |
---|
1101 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
1102 | END DO |
---|
1103 | DO l = 1, nlay |
---|
1104 | DO ig = 1, ngrid |
---|
1105 | zlay(ig, l) = pphi(ig, l)/rg |
---|
1106 | END DO |
---|
1107 | END DO |
---|
1108 | ! calcul de deltaz |
---|
1109 | DO l = 1, nlay |
---|
1110 | DO ig = 1, ngrid |
---|
1111 | deltaz(ig, l) = zlev(ig, l+1) - zlev(ig, l) |
---|
1112 | END DO |
---|
1113 | END DO |
---|
1114 | |
---|
1115 | ! print*,'2 OK convect8' |
---|
1116 | ! ----------------------------------------------------------------------- |
---|
1117 | ! Calcul des densites |
---|
1118 | ! ----------------------------------------------------------------------- |
---|
1119 | |
---|
1120 | DO l = 1, nlay |
---|
1121 | DO ig = 1, ngrid |
---|
1122 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
1123 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
---|
1124 | END DO |
---|
1125 | END DO |
---|
1126 | |
---|
1127 | DO l = 2, nlay |
---|
1128 | DO ig = 1, ngrid |
---|
1129 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
1130 | END DO |
---|
1131 | END DO |
---|
1132 | |
---|
1133 | DO k = 1, nlay |
---|
1134 | DO l = 1, nlay + 1 |
---|
1135 | DO ig = 1, ngrid |
---|
1136 | wa(ig, k, l) = 0. |
---|
1137 | END DO |
---|
1138 | END DO |
---|
1139 | END DO |
---|
1140 | ! Cr:ajout:calcul de la masse |
---|
1141 | DO l = 1, nlay |
---|
1142 | DO ig = 1, ngrid |
---|
1143 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
1144 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
1145 | END DO |
---|
1146 | END DO |
---|
1147 | ! print*,'3 OK convect8' |
---|
1148 | ! ------------------------------------------------------------------ |
---|
1149 | ! Calcul de w2, quarre de w a partir de la cape |
---|
1150 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
1151 | |
---|
1152 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
1153 | ! w2 est stoke dans wa |
---|
1154 | |
---|
1155 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
1156 | ! independants par couches que pour calculer l'entrainement |
---|
1157 | ! a la base et la hauteur max de l'ascendance. |
---|
1158 | |
---|
1159 | ! Indicages: |
---|
1160 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
1161 | ! une vitesse wa(k,l). |
---|
1162 | |
---|
1163 | ! -------------------- |
---|
1164 | |
---|
1165 | ! + + + + + + + + + + |
---|
1166 | |
---|
1167 | ! wa(k,l) ---- -------------------- l |
---|
1168 | ! /\ |
---|
1169 | ! /||\ + + + + + + + + + + |
---|
1170 | ! || |
---|
1171 | ! || -------------------- |
---|
1172 | ! || |
---|
1173 | ! || + + + + + + + + + + |
---|
1174 | ! || |
---|
1175 | ! || -------------------- |
---|
1176 | ! ||__ |
---|
1177 | ! |___ + + + + + + + + + + k |
---|
1178 | |
---|
1179 | ! -------------------- |
---|
1180 | |
---|
1181 | |
---|
1182 | |
---|
1183 | ! ------------------------------------------------------------------ |
---|
1184 | |
---|
1185 | ! CR: ponderation entrainement des couches instables |
---|
1186 | ! def des alim_star tels que alim=f*alim_star |
---|
1187 | DO l = 1, klev |
---|
1188 | DO ig = 1, ngrid |
---|
1189 | alim_star(ig, l) = 0. |
---|
1190 | alim(ig, l) = 0. |
---|
1191 | END DO |
---|
1192 | END DO |
---|
1193 | ! determination de la longueur de la couche d entrainement |
---|
1194 | DO ig = 1, ngrid |
---|
1195 | lentr(ig) = 1 |
---|
1196 | END DO |
---|
1197 | |
---|
1198 | ! on ne considere que les premieres couches instables |
---|
1199 | therm = .FALSE. |
---|
1200 | DO k = nlay - 2, 1, -1 |
---|
1201 | DO ig = 1, ngrid |
---|
1202 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
1203 | lentr(ig) = k + 1 |
---|
1204 | therm = .TRUE. |
---|
1205 | END IF |
---|
1206 | END DO |
---|
1207 | END DO |
---|
1208 | |
---|
1209 | ! determination du lmin: couche d ou provient le thermique |
---|
1210 | DO ig = 1, ngrid |
---|
1211 | lmin(ig) = 1 |
---|
1212 | END DO |
---|
1213 | DO ig = 1, ngrid |
---|
1214 | DO l = nlay, 2, -1 |
---|
1215 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
1216 | lmin(ig) = l - 1 |
---|
1217 | END IF |
---|
1218 | END DO |
---|
1219 | END DO |
---|
1220 | |
---|
1221 | ! definition de l'entrainement des couches |
---|
1222 | DO l = 1, klev - 1 |
---|
1223 | DO ig = 1, ngrid |
---|
1224 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
1225 | ! def possibles pour alim_star: zdthetadz, dthetadz, zdtheta |
---|
1226 | alim_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
---|
1227 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
1228 | *sqrt(zlev(ig,l+1)) |
---|
1229 | ! alim_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
1230 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
1231 | END IF |
---|
1232 | END DO |
---|
1233 | END DO |
---|
1234 | |
---|
1235 | ! pas de thermique si couche 1 stable |
---|
1236 | DO ig = 1, ngrid |
---|
1237 | ! if (lmin(ig).gt.1) then |
---|
1238 | ! CRnouveau test |
---|
1239 | IF (alim_star(ig,1)<1.E-10) THEN |
---|
1240 | DO l = 1, klev |
---|
1241 | alim_star(ig, l) = 0. |
---|
1242 | END DO |
---|
1243 | END IF |
---|
1244 | END DO |
---|
1245 | ! calcul de l entrainement total |
---|
1246 | DO ig = 1, ngrid |
---|
1247 | alim_star_tot(ig) = 0. |
---|
1248 | entr_star_tot(ig) = 0. |
---|
1249 | detr_star_tot(ig) = 0. |
---|
1250 | END DO |
---|
1251 | DO ig = 1, ngrid |
---|
1252 | DO k = 1, klev |
---|
1253 | alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig, k) |
---|
1254 | END DO |
---|
1255 | END DO |
---|
1256 | |
---|
1257 | ! Calcul entrainement normalise |
---|
1258 | DO ig = 1, ngrid |
---|
1259 | IF (alim_star_tot(ig)>1.E-10) THEN |
---|
1260 | ! do l=1,lentr(ig) |
---|
1261 | DO l = 1, klev |
---|
1262 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
1263 | alim_star(ig, l) = alim_star(ig, l)/alim_star_tot(ig) |
---|
1264 | END DO |
---|
1265 | END IF |
---|
1266 | END DO |
---|
1267 | |
---|
1268 | ! print*,'fin calcul alim_star' |
---|
1269 | |
---|
1270 | ! AM:initialisations |
---|
1271 | DO k = 1, nlay |
---|
1272 | DO ig = 1, ngrid |
---|
1273 | ztva(ig, k) = ztv(ig, k) |
---|
1274 | ztla(ig, k) = zthl(ig, k) |
---|
1275 | zqla(ig, k) = 0. |
---|
1276 | zqta(ig, k) = po(ig, k) |
---|
1277 | zsat(ig) = .FALSE. |
---|
1278 | END DO |
---|
1279 | END DO |
---|
1280 | DO k = 1, klev |
---|
1281 | DO ig = 1, ngrid |
---|
1282 | detr_star(ig, k) = 0. |
---|
1283 | entr_star(ig, k) = 0. |
---|
1284 | detr(ig, k) = 0. |
---|
1285 | entr(ig, k) = 0. |
---|
1286 | END DO |
---|
1287 | END DO |
---|
1288 | ! print*,'7 OK convect8' |
---|
1289 | DO k = 1, klev + 1 |
---|
1290 | DO ig = 1, ngrid |
---|
1291 | zw2(ig, k) = 0. |
---|
1292 | fmc(ig, k) = 0. |
---|
1293 | ! CR |
---|
1294 | f_star(ig, k) = 0. |
---|
1295 | ! RC |
---|
1296 | larg_cons(ig, k) = 0. |
---|
1297 | larg_detr(ig, k) = 0. |
---|
1298 | wa_moy(ig, k) = 0. |
---|
1299 | END DO |
---|
1300 | END DO |
---|
1301 | |
---|
1302 | ! n print*,'8 OK convect8' |
---|
1303 | DO ig = 1, ngrid |
---|
1304 | linter(ig) = 1. |
---|
1305 | lmaxa(ig) = 1 |
---|
1306 | lmix(ig) = 1 |
---|
1307 | wmaxa(ig) = 0. |
---|
1308 | END DO |
---|
1309 | |
---|
1310 | nu_min = l_mix |
---|
1311 | nu_max = 1000. |
---|
1312 | ! do ig=1,ngrid |
---|
1313 | ! nu_max=wmax_sec(ig) |
---|
1314 | ! enddo |
---|
1315 | DO ig = 1, ngrid |
---|
1316 | DO k = 1, klev |
---|
1317 | nu(ig, k) = 0. |
---|
1318 | nu_e(ig, k) = 0. |
---|
1319 | END DO |
---|
1320 | END DO |
---|
1321 | ! Calcul de l'excès de température du à la diffusion turbulente |
---|
1322 | DO ig = 1, ngrid |
---|
1323 | DO l = 1, klev |
---|
1324 | dtheta(ig, l) = 0. |
---|
1325 | END DO |
---|
1326 | END DO |
---|
1327 | DO ig = 1, ngrid |
---|
1328 | DO l = 1, lentr(ig) - 1 |
---|
1329 | dtheta(ig, l) = sqrt(10.*0.4*zlev(ig,l+1)**2*1.*((ztv(ig,l+1)- & |
---|
1330 | ztv(ig,l))/(zlev(ig,l+1)-zlev(ig,l)))**2) |
---|
1331 | END DO |
---|
1332 | END DO |
---|
1333 | ! do l=1,nlay-2 |
---|
1334 | DO l = 1, klev - 1 |
---|
1335 | DO ig = 1, ngrid |
---|
1336 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
---|
1337 | zw2(ig,l)<1E-10) THEN |
---|
1338 | ! AM |
---|
1339 | ! test:on rajoute un excès de T dans couche alim |
---|
1340 | ! ztla(ig,l)=zthl(ig,l)+dtheta(ig,l) |
---|
1341 | ztla(ig, l) = zthl(ig, l) |
---|
1342 | ! test: on rajoute un excès de q dans la couche alim |
---|
1343 | ! zqta(ig,l)=po(ig,l)+0.001 |
---|
1344 | zqta(ig, l) = po(ig, l) |
---|
1345 | zqla(ig, l) = zl(ig, l) |
---|
1346 | ! AM |
---|
1347 | f_star(ig, l+1) = alim_star(ig, l) |
---|
1348 | ! test:calcul de dteta |
---|
1349 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
1350 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
1351 | w_est(ig, l+1) = zw2(ig, l+1) |
---|
1352 | larg_detr(ig, l) = 0. |
---|
1353 | ! print*,'coucou boucle 1' |
---|
1354 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
---|
1355 | l))>1.E-10) THEN |
---|
1356 | ! print*,'coucou boucle 2' |
---|
1357 | ! estimation du detrainement a partir de la geometrie du pas |
---|
1358 | ! precedent |
---|
1359 | IF ((test(ig)==1) .OR. ((.NOT. debut) .AND. (f0(ig)<1.E-10))) THEN |
---|
1360 | detr_star(ig, l) = 0. |
---|
1361 | entr_star(ig, l) = 0. |
---|
1362 | ! print*,'coucou test(ig)',test(ig),f0(ig),zmax0(ig) |
---|
1363 | ELSE |
---|
1364 | ! print*,'coucou debut detr' |
---|
1365 | ! tests sur la definition du detr |
---|
1366 | IF (zqla(ig,l-1)>1.E-10) THEN |
---|
1367 | nuage = .TRUE. |
---|
1368 | END IF |
---|
1369 | |
---|
1370 | w_est(ig, l+1) = zw2(ig, l)*((f_star(ig,l))**2)/(f_star(ig,l)+ & |
---|
1371 | alim_star(ig,l))**2 + 2.*rg*(ztva(ig,l-1)-ztv(ig,l))/ztv(ig, l)*( & |
---|
1372 | zlev(ig,l+1)-zlev(ig,l)) |
---|
1373 | IF (w_est(ig,l+1)<0.) THEN |
---|
1374 | w_est(ig, l+1) = zw2(ig, l) |
---|
1375 | END IF |
---|
1376 | IF (l>2) THEN |
---|
1377 | IF ((w_est(ig,l+1)>w_est(ig,l)) .AND. (zlev(ig, & |
---|
1378 | l+1)<zmax_sec(ig)) .AND. (zqla(ig,l-1)<1.E-10)) THEN |
---|
1379 | detr_star(ig, l) = max(0., (rhobarz(ig, & |
---|
1380 | l+1)*sqrt(w_est(ig,l+1))*sqrt(nu(ig,l)* & |
---|
1381 | zlev(ig,l+1))-rhobarz(ig,l)*sqrt(w_est(ig,l))*sqrt(nu(ig,l)* & |
---|
1382 | zlev(ig,l)))/(r_aspect*zmax_sec(ig))) |
---|
1383 | ELSE IF ((zlev(ig,l+1)<zmax_sec(ig)) .AND. (zqla(ig, & |
---|
1384 | l-1)<1.E-10)) THEN |
---|
1385 | detr_star(ig, l) = -f0(ig)*f_star(ig, lmix(ig))/(rhobarz(ig, & |
---|
1386 | lmix(ig))*wmaxa(ig))*(rhobarz(ig,l+1)*sqrt(w_est(ig, & |
---|
1387 | l+1))*((zmax_sec(ig)-zlev(ig,l+1))/((zmax_sec(ig)-zlev(ig, & |
---|
1388 | lmix(ig)))))**2.-rhobarz(ig,l)*sqrt(w_est(ig, & |
---|
1389 | l))*((zmax_sec(ig)-zlev(ig,l))/((zmax_sec(ig)-zlev(ig,lmix(ig & |
---|
1390 | )))))**2.) |
---|
1391 | ELSE |
---|
1392 | detr_star(ig, l) = 0.002*f0(ig)*f_star(ig, l)* & |
---|
1393 | (zlev(ig,l+1)-zlev(ig,l)) |
---|
1394 | |
---|
1395 | END IF |
---|
1396 | ELSE |
---|
1397 | detr_star(ig, l) = 0. |
---|
1398 | END IF |
---|
1399 | |
---|
1400 | detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
---|
1401 | IF (nuage) THEN |
---|
1402 | entr_star(ig, l) = 0.4*detr_star(ig, l) |
---|
1403 | ELSE |
---|
1404 | entr_star(ig, l) = 0.4*detr_star(ig, l) |
---|
1405 | END IF |
---|
1406 | |
---|
1407 | IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
---|
1408 | detr_star(ig, l) = f_star(ig, l) |
---|
1409 | ! entr_star(ig,l)=0. |
---|
1410 | END IF |
---|
1411 | |
---|
1412 | IF ((l<lentr(ig))) THEN |
---|
1413 | entr_star(ig, l) = 0. |
---|
1414 | ! detr_star(ig,l)=0. |
---|
1415 | END IF |
---|
1416 | |
---|
1417 | ! print*,'ok detr_star' |
---|
1418 | END IF |
---|
1419 | ! prise en compte du detrainement dans le calcul du flux |
---|
1420 | f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
1421 | entr_star(ig, l) - detr_star(ig, l) |
---|
1422 | ! test |
---|
1423 | ! if (f_star(ig,l+1).lt.0.) then |
---|
1424 | ! f_star(ig,l+1)=0. |
---|
1425 | ! entr_star(ig,l)=0. |
---|
1426 | ! detr_star(ig,l)=f_star(ig,l)+alim_star(ig,l) |
---|
1427 | ! endif |
---|
1428 | ! test sur le signe de f_star |
---|
1429 | IF (f_star(ig,l+1)>1.E-10) THEN |
---|
1430 | ! then |
---|
1431 | ! test |
---|
1432 | ! if (((f_star(ig,l+1)+detr_star(ig,l)).gt.1.e-10)) then |
---|
1433 | ! AM on melange Tl et qt du thermique |
---|
1434 | ! on rajoute un excès de T dans la couche alim |
---|
1435 | ! if (l.lt.lentr(ig)) then |
---|
1436 | ! ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ |
---|
1437 | ! s |
---|
1438 | ! (alim_star(ig,l)+entr_star(ig,l))*(zthl(ig,l)+dtheta(ig,l))) |
---|
1439 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1440 | ! else |
---|
1441 | ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+(alim_star(ig, & |
---|
1442 | l)+entr_star(ig,l))*zthl(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1443 | ! s /(f_star(ig,l+1)) |
---|
1444 | ! endif |
---|
1445 | ! on rajoute un excès de q dans la couche alim |
---|
1446 | ! if (l.lt.lentr(ig)) then |
---|
1447 | ! zqta(ig,l)=(f_star(ig,l)*zqta(ig,l-1)+ |
---|
1448 | ! s (alim_star(ig,l)+entr_star(ig,l))*(po(ig,l)+0.001)) |
---|
1449 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1450 | ! else |
---|
1451 | zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+(alim_star(ig, & |
---|
1452 | l)+entr_star(ig,l))*po(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1453 | ! s /(f_star(ig,l+1)) |
---|
1454 | ! endif |
---|
1455 | ! AM on en deduit thetav et ql du thermique |
---|
1456 | ! CR test |
---|
1457 | ! Tbef(ig)=ztla(ig,l)*zpspsk(ig,l) |
---|
1458 | tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
---|
1459 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1460 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
1461 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1462 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1463 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
1464 | zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>1.E-10) |
---|
1465 | |
---|
1466 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
1467 | qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
1468 | dt = 0.5*rlvcp*qlbef |
---|
1469 | ! write(17,*)'DT0=',DT |
---|
1470 | DO WHILE (abs(dt)>ddt0) |
---|
1471 | ! print*,'aie' |
---|
1472 | tbef(ig) = tbef(ig) + dt |
---|
1473 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1474 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
1475 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1476 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1477 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
1478 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
1479 | |
---|
1480 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1481 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
1482 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1483 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
1484 | num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
---|
1485 | denom = 1. + rlvcp*dqsat_dt |
---|
1486 | IF (denom<1.E-10) THEN |
---|
1487 | PRINT *, 'pb denom' |
---|
1488 | END IF |
---|
1489 | dt = num/denom |
---|
1490 | ! write(17,*)'DT=',DT |
---|
1491 | END DO |
---|
1492 | zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
1493 | zqla(ig, l) = max(0., qlbef) |
---|
1494 | ! zqla(ig,l)=0. |
---|
1495 | END IF |
---|
1496 | ! zqla(ig,l) = max(0.,zqta(ig,l)-qsatbef(ig)) |
---|
1497 | |
---|
1498 | ! on ecrit de maniere conservative (sat ou non) |
---|
1499 | ! T = Tl +Lv/Cp ql |
---|
1500 | ! CR rq utilisation de humidite specifique ou rapport de melange? |
---|
1501 | ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
---|
1502 | ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
---|
1503 | ! on rajoute le calcul de zha pour diagnostiques (temp potentielle) |
---|
1504 | zha(ig, l) = ztva(ig, l) |
---|
1505 | ! if (l.lt.lentr(ig)) then |
---|
1506 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
1507 | ! s -zqla(ig,l))-zqla(ig,l)) + 0.1 |
---|
1508 | ! else |
---|
1509 | ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig, & |
---|
1510 | l))-zqla(ig,l)) |
---|
1511 | ! endif |
---|
1512 | ! ztva(ig,l) = ztla(ig,l)*zpspsk(ig,l)+RLvCp*zqla(ig,l) |
---|
1513 | ! s /(1.-retv*zqla(ig,l)) |
---|
1514 | ! ztva(ig,l) = ztva(ig,l)/zpspsk(ig,l) |
---|
1515 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
1516 | ! s /(1.-retv*zqta(ig,l)) |
---|
1517 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
1518 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
1519 | ! write(13,*)zqla(ig,l),zqla(ig,l)/(1.-retv*zqla(ig,l)) |
---|
1520 | ! on ecrit zqsat |
---|
1521 | zqsatth(ig, l) = qsatbef(ig) |
---|
1522 | ! enddo |
---|
1523 | ! DO ig=1,ngrid |
---|
1524 | ! if (zw2(ig,l).ge.1.e-10.and. |
---|
1525 | ! s f_star(ig,l)+entr_star(ig,l).gt.1.e-10) then |
---|
1526 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
1527 | ! consideree commence avec une vitesse nulle). |
---|
1528 | |
---|
1529 | ! if (f_star(ig,l+1).gt.1.e-10) then |
---|
1530 | zw2(ig, l+1) = zw2(ig, l)* & ! s |
---|
1531 | ! ((f_star(ig,l)-detr_star(ig,l))**2) |
---|
1532 | ! s /f_star(ig,l+1)**2+ |
---|
1533 | ((f_star(ig,l))**2)/(f_star(ig,l+1)+detr_star(ig,l))**2 + & ! s |
---|
1534 | ! /(f_star(ig,l+1))**2+ |
---|
1535 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
1536 | ! s *(f_star(ig,l)/f_star(ig,l+1))**2 |
---|
1537 | |
---|
1538 | END IF |
---|
1539 | END IF |
---|
1540 | |
---|
1541 | IF (zw2(ig,l+1)<0.) THEN |
---|
1542 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
1543 | ig,l)) |
---|
1544 | zw2(ig, l+1) = 0. |
---|
1545 | ! print*,'linter=',linter(ig) |
---|
1546 | ! else if ((zw2(ig,l+1).lt.1.e-10).and.(zw2(ig,l+1).ge.0.)) then |
---|
1547 | ! linter(ig)=l+1 |
---|
1548 | ! print*,'linter=l',zw2(ig,l),zw2(ig,l+1) |
---|
1549 | ELSE |
---|
1550 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
1551 | ! wa_moy(ig,l+1)=zw2(ig,l+1) |
---|
1552 | END IF |
---|
1553 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
1554 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
1555 | lmix(ig) = l + 1 |
---|
1556 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
1557 | END IF |
---|
1558 | END DO |
---|
1559 | END DO |
---|
1560 | PRINT *, 'fin calcul zw2' |
---|
1561 | |
---|
1562 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
1563 | DO ig = 1, ngrid |
---|
1564 | lmax(ig) = lentr(ig) |
---|
1565 | END DO |
---|
1566 | DO ig = 1, ngrid |
---|
1567 | DO l = nlay, lentr(ig) + 1, -1 |
---|
1568 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
1569 | lmax(ig) = l - 1 |
---|
1570 | END IF |
---|
1571 | END DO |
---|
1572 | END DO |
---|
1573 | ! pas de thermique si couche 1 stable |
---|
1574 | DO ig = 1, ngrid |
---|
1575 | IF (lmin(ig)>1) THEN |
---|
1576 | lmax(ig) = 1 |
---|
1577 | lmin(ig) = 1 |
---|
1578 | lentr(ig) = 1 |
---|
1579 | END IF |
---|
1580 | END DO |
---|
1581 | |
---|
1582 | ! Determination de zw2 max |
---|
1583 | DO ig = 1, ngrid |
---|
1584 | wmax(ig) = 0. |
---|
1585 | END DO |
---|
1586 | |
---|
1587 | DO l = 1, nlay |
---|
1588 | DO ig = 1, ngrid |
---|
1589 | IF (l<=lmax(ig)) THEN |
---|
1590 | IF (zw2(ig,l)<0.) THEN |
---|
1591 | PRINT *, 'pb2 zw2<0' |
---|
1592 | END IF |
---|
1593 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
1594 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
1595 | ELSE |
---|
1596 | zw2(ig, l) = 0. |
---|
1597 | END IF |
---|
1598 | END DO |
---|
1599 | END DO |
---|
1600 | |
---|
1601 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
1602 | DO ig = 1, ngrid |
---|
1603 | zmax(ig) = 0. |
---|
1604 | zlevinter(ig) = zlev(ig, 1) |
---|
1605 | END DO |
---|
1606 | DO ig = 1, ngrid |
---|
1607 | ! calcul de zlevinter |
---|
1608 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
1609 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
1610 | ! pour le cas ou on prend tjs lmin=1 |
---|
1611 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
1612 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
---|
1613 | zmax0(ig) = zmax(ig) |
---|
1614 | WRITE (11, *) 'ig,lmax,linter', ig, lmax(ig), linter(ig) |
---|
1615 | WRITE (12, *) 'ig,zlevinter,zmax', ig, zmax(ig), zlevinter(ig) |
---|
1616 | END DO |
---|
1617 | |
---|
1618 | ! Calcul de zmax_sec et wmax_sec |
---|
1619 | CALL fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, f0, & |
---|
1620 | zpspsk, alim, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, zmax_sec2, & |
---|
1621 | wmax_sec2) |
---|
1622 | |
---|
1623 | PRINT *, 'avant fermeture' |
---|
1624 | ! Fermeture,determination de f |
---|
1625 | ! en lmax f=d-e |
---|
1626 | DO ig = 1, ngrid |
---|
1627 | ! entr_star(ig,lmax(ig))=0. |
---|
1628 | ! f_star(ig,lmax(ig)+1)=0. |
---|
1629 | ! detr_star(ig,lmax(ig))=f_star(ig,lmax(ig))+entr_star(ig,lmax(ig)) |
---|
1630 | ! s +alim_star(ig,lmax(ig)) |
---|
1631 | END DO |
---|
1632 | |
---|
1633 | DO ig = 1, ngrid |
---|
1634 | alim_star2(ig) = 0. |
---|
1635 | END DO |
---|
1636 | ! calcul de entr_star_tot |
---|
1637 | DO ig = 1, ngrid |
---|
1638 | DO k = 1, lmix(ig) |
---|
1639 | entr_star_tot(ig) = entr_star_tot(ig) & ! s |
---|
1640 | ! +entr_star(ig,k) |
---|
1641 | +alim_star(ig, k) |
---|
1642 | ! s -detr_star(ig,k) |
---|
1643 | detr_star_tot(ig) = detr_star_tot(ig) & ! s |
---|
1644 | ! +alim_star(ig,k) |
---|
1645 | -detr_star(ig, k) + entr_star(ig, k) |
---|
1646 | END DO |
---|
1647 | END DO |
---|
1648 | |
---|
1649 | DO ig = 1, ngrid |
---|
1650 | IF (alim_star_tot(ig)<1.E-10) THEN |
---|
1651 | f(ig) = 0. |
---|
1652 | ELSE |
---|
1653 | ! do k=lmin(ig),lentr(ig) |
---|
1654 | DO k = 1, lentr(ig) |
---|
1655 | alim_star2(ig) = alim_star2(ig) + alim_star(ig, k)**2/(rho(ig,k)*( & |
---|
1656 | zlev(ig,k+1)-zlev(ig,k))) |
---|
1657 | END DO |
---|
1658 | IF ((zmax_sec(ig)>1.E-10) .AND. (1==1)) THEN |
---|
1659 | f(ig) = wmax_sec(ig)/(max(500.,zmax_sec(ig))*r_aspect*alim_star2(ig)) |
---|
1660 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax_sec(ig))*wmax_sec & |
---|
1661 | (ig)) |
---|
1662 | ELSE |
---|
1663 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*alim_star2(ig)) |
---|
1664 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax(ig))*wmax(ig)) |
---|
1665 | END IF |
---|
1666 | END IF |
---|
1667 | f0(ig) = f(ig) |
---|
1668 | END DO |
---|
1669 | PRINT *, 'apres fermeture' |
---|
1670 | ! Calcul de l'entrainement |
---|
1671 | DO ig = 1, ngrid |
---|
1672 | DO k = 1, klev |
---|
1673 | alim(ig, k) = f(ig)*alim_star(ig, k) |
---|
1674 | END DO |
---|
1675 | END DO |
---|
1676 | ! CR:test pour entrainer moins que la masse |
---|
1677 | ! do ig=1,ngrid |
---|
1678 | ! do l=1,lentr(ig) |
---|
1679 | ! if ((alim(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
---|
1680 | ! alim(ig,l+1)=alim(ig,l+1)+alim(ig,l) |
---|
1681 | ! s -0.9*masse(ig,l)/ptimestep |
---|
1682 | ! alim(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
1683 | ! endif |
---|
1684 | ! enddo |
---|
1685 | ! enddo |
---|
1686 | ! calcul du détrainement |
---|
1687 | DO ig = 1, klon |
---|
1688 | DO k = 1, klev |
---|
1689 | detr(ig, k) = f(ig)*detr_star(ig, k) |
---|
1690 | IF (detr(ig,k)<0.) THEN |
---|
1691 | ! print*,'detr1<0!!!' |
---|
1692 | END IF |
---|
1693 | END DO |
---|
1694 | DO k = 1, klev |
---|
1695 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
1696 | IF (entr(ig,k)<0.) THEN |
---|
1697 | ! print*,'entr1<0!!!' |
---|
1698 | END IF |
---|
1699 | END DO |
---|
1700 | END DO |
---|
1701 | |
---|
1702 | ! do ig=1,ngrid |
---|
1703 | ! do l=1,klev |
---|
1704 | ! if (((detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep).gt. |
---|
1705 | ! s (masse(ig,l))) then |
---|
1706 | ! print*,'d2+e2+a2>m2','ig=',ig,'l=',l,'lmax(ig)=',lmax(ig),'d+e+a=' |
---|
1707 | ! s,(detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep,'m=',masse(ig,l) |
---|
1708 | ! endif |
---|
1709 | ! enddo |
---|
1710 | ! enddo |
---|
1711 | ! Calcul des flux |
---|
1712 | |
---|
1713 | DO ig = 1, ngrid |
---|
1714 | DO l = 1, lmax(ig) |
---|
1715 | ! do l=1,klev |
---|
1716 | ! fmc(ig,l+1)=f(ig)*f_star(ig,l+1) |
---|
1717 | fmc(ig, l+1) = fmc(ig, l) + alim(ig, l) + entr(ig, l) - detr(ig, l) |
---|
1718 | ! print*,'??!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
1719 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
1720 | ! s 'f+1=',fmc(ig,l+1) |
---|
1721 | IF (fmc(ig,l+1)<0.) THEN |
---|
1722 | PRINT *, 'fmc1<0', l + 1, lmax(ig), fmc(ig, l+1) |
---|
1723 | fmc(ig, l+1) = fmc(ig, l) |
---|
1724 | detr(ig, l) = alim(ig, l) + entr(ig, l) |
---|
1725 | ! fmc(ig,l+1)=0. |
---|
1726 | ! print*,'fmc1<0',l+1,lmax(ig),fmc(ig,l+1) |
---|
1727 | END IF |
---|
1728 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
---|
1729 | ! f_old=fmc(ig,l+1) |
---|
1730 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
1731 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l+1) |
---|
1732 | ! endif |
---|
1733 | |
---|
1734 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
---|
1735 | ! f_old=fmc(ig,l+1) |
---|
1736 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
1737 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l) |
---|
1738 | ! endif |
---|
1739 | ! rajout du test sur alpha croissant |
---|
1740 | ! if test |
---|
1741 | ! if (1.eq.0) then |
---|
1742 | |
---|
1743 | IF (l==klev) THEN |
---|
1744 | PRINT *, 'THERMCELL PB ig=', ig, ' l=', l |
---|
1745 | abort_message = 'THERMCELL PB' |
---|
1746 | CALL abort_physic(modname, abort_message, 1) |
---|
1747 | END IF |
---|
1748 | ! if ((zw2(ig,l+1).gt.1.e-10).and.(zw2(ig,l).gt.1.e-10).and. |
---|
1749 | ! s (l.ge.lentr(ig)).and. |
---|
1750 | IF ((zw2(ig,l+1)>1.E-10) .AND. (zw2(ig,l)>1.E-10) .AND. (l>=lentr(ig))) & |
---|
1751 | THEN |
---|
1752 | IF (((fmc(ig,l+1)/(rhobarz(ig,l+1)*zw2(ig,l+1)))>(fmc(ig,l)/ & |
---|
1753 | (rhobarz(ig,l)*zw2(ig,l))))) THEN |
---|
1754 | f_old = fmc(ig, l+1) |
---|
1755 | fmc(ig, l+1) = fmc(ig, l)*rhobarz(ig, l+1)*zw2(ig, l+1)/ & |
---|
1756 | (rhobarz(ig,l)*zw2(ig,l)) |
---|
1757 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
1758 | ! detr(ig,l)=(fmc(ig,l+1)-fmc(ig,l))/(0.4-1.) |
---|
1759 | ! entr(ig,l)=0.4*detr(ig,l) |
---|
1760 | ! entr(ig,l)=fmc(ig,l+1)-fmc(ig,l)+detr(ig,l) |
---|
1761 | END IF |
---|
1762 | END IF |
---|
1763 | IF ((fmc(ig,l+1)>fmc(ig,l)) .AND. (l>lentr(ig))) THEN |
---|
1764 | f_old = fmc(ig, l+1) |
---|
1765 | fmc(ig, l+1) = fmc(ig, l) |
---|
1766 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
1767 | END IF |
---|
1768 | IF (detr(ig,l)>fmc(ig,l)) THEN |
---|
1769 | detr(ig, l) = fmc(ig, l) |
---|
1770 | entr(ig, l) = fmc(ig, l+1) - alim(ig, l) |
---|
1771 | END IF |
---|
1772 | IF (fmc(ig,l+1)<0.) THEN |
---|
1773 | detr(ig, l) = detr(ig, l) + fmc(ig, l+1) |
---|
1774 | fmc(ig, l+1) = 0. |
---|
1775 | PRINT *, 'fmc2<0', l + 1, lmax(ig) |
---|
1776 | END IF |
---|
1777 | |
---|
1778 | ! test pour ne pas avoir f=0 et d=e/=0 |
---|
1779 | ! if (fmc(ig,l+1).lt.1.e-10) then |
---|
1780 | ! detr(ig,l+1)=0. |
---|
1781 | ! entr(ig,l+1)=0. |
---|
1782 | ! zqla(ig,l+1)=0. |
---|
1783 | ! zw2(ig,l+1)=0. |
---|
1784 | ! lmax(ig)=l+1 |
---|
1785 | ! zmax(ig)=zlev(ig,lmax(ig)) |
---|
1786 | ! endif |
---|
1787 | IF (zw2(ig,l+1)>1.E-10) THEN |
---|
1788 | IF ((((fmc(ig,l+1))/(rhobarz(ig,l+1)*zw2(ig,l+1)))>1.)) THEN |
---|
1789 | f_old = fmc(ig, l+1) |
---|
1790 | fmc(ig, l+1) = rhobarz(ig, l+1)*zw2(ig, l+1) |
---|
1791 | zw2(ig, l+1) = 0. |
---|
1792 | zqla(ig, l+1) = 0. |
---|
1793 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
1794 | lmax(ig) = l + 1 |
---|
1795 | zmax(ig) = zlev(ig, lmax(ig)) |
---|
1796 | PRINT *, 'alpha>1', l + 1, lmax(ig) |
---|
1797 | END IF |
---|
1798 | END IF |
---|
1799 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
1800 | ! endif test |
---|
1801 | ! endif |
---|
1802 | END DO |
---|
1803 | END DO |
---|
1804 | DO ig = 1, ngrid |
---|
1805 | ! if (fmc(ig,lmax(ig)+1).ne.0.) then |
---|
1806 | fmc(ig, lmax(ig)+1) = 0. |
---|
1807 | entr(ig, lmax(ig)) = 0. |
---|
1808 | detr(ig, lmax(ig)) = fmc(ig, lmax(ig)) + entr(ig, lmax(ig)) + & |
---|
1809 | alim(ig, lmax(ig)) |
---|
1810 | ! endif |
---|
1811 | END DO |
---|
1812 | ! test sur le signe de fmc |
---|
1813 | DO ig = 1, ngrid |
---|
1814 | DO l = 1, klev + 1 |
---|
1815 | IF (fmc(ig,l)<0.) THEN |
---|
1816 | PRINT *, 'fm1<0!!!', 'ig=', ig, 'l=', l, 'a=', alim(ig, l-1), 'e=', & |
---|
1817 | entr(ig, l-1), 'f=', fmc(ig, l-1), 'd=', detr(ig, l-1), 'f+1=', & |
---|
1818 | fmc(ig, l) |
---|
1819 | END IF |
---|
1820 | END DO |
---|
1821 | END DO |
---|
1822 | ! test de verification |
---|
1823 | DO ig = 1, ngrid |
---|
1824 | DO l = 1, lmax(ig) |
---|
1825 | IF ((abs(fmc(ig,l+1)-fmc(ig,l)-alim(ig,l)-entr(ig,l)+ & |
---|
1826 | detr(ig,l)))>1.E-4) THEN |
---|
1827 | ! print*,'pbcm!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
1828 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
1829 | ! s 'f+1=',fmc(ig,l+1) |
---|
1830 | END IF |
---|
1831 | IF (detr(ig,l)<0.) THEN |
---|
1832 | PRINT *, 'detrdemi<0!!!' |
---|
1833 | END IF |
---|
1834 | END DO |
---|
1835 | END DO |
---|
1836 | |
---|
1837 | ! RC |
---|
1838 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
1839 | DO ig = 1, ngrid |
---|
1840 | IF (lmix(ig)>1.) THEN |
---|
1841 | ! test |
---|
1842 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
1843 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
1844 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
1845 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
1846 | |
---|
1847 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
1848 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
1849 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
1850 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
1851 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
1852 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
1853 | ELSE |
---|
1854 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
1855 | PRINT *, 'pb zmix' |
---|
1856 | END IF |
---|
1857 | ELSE |
---|
1858 | zmix(ig) = 0. |
---|
1859 | END IF |
---|
1860 | ! test |
---|
1861 | IF ((zmax(ig)-zmix(ig))<=0.) THEN |
---|
1862 | zmix(ig) = 0.9*zmax(ig) |
---|
1863 | ! print*,'pb zmix>zmax' |
---|
1864 | END IF |
---|
1865 | END DO |
---|
1866 | DO ig = 1, klon |
---|
1867 | zmix0(ig) = zmix(ig) |
---|
1868 | END DO |
---|
1869 | |
---|
1870 | ! calcul du nouveau lmix correspondant |
---|
1871 | DO ig = 1, ngrid |
---|
1872 | DO l = 1, klev |
---|
1873 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
1874 | lmix(ig) = l |
---|
1875 | END IF |
---|
1876 | END DO |
---|
1877 | END DO |
---|
1878 | |
---|
1879 | ! ne devrait pas arriver!!!!! |
---|
1880 | DO ig = 1, ngrid |
---|
1881 | DO l = 1, klev |
---|
1882 | IF (detr(ig,l)>(fmc(ig,l)+alim(ig,l))+entr(ig,l)) THEN |
---|
1883 | PRINT *, 'detr2>fmc2!!!', 'ig=', ig, 'l=', l, 'd=', detr(ig, l), & |
---|
1884 | 'f=', fmc(ig, l), 'lmax=', lmax(ig) |
---|
1885 | ! detr(ig,l)=fmc(ig,l)+alim(ig,l)+entr(ig,l) |
---|
1886 | ! entr(ig,l)=0. |
---|
1887 | ! fmc(ig,l+1)=0. |
---|
1888 | ! zw2(ig,l+1)=0. |
---|
1889 | ! zqla(ig,l+1)=0. |
---|
1890 | PRINT *, 'pb!fm=0 et f_star>0', l, lmax(ig) |
---|
1891 | ! lmax(ig)=l |
---|
1892 | END IF |
---|
1893 | END DO |
---|
1894 | END DO |
---|
1895 | DO ig = 1, ngrid |
---|
1896 | DO l = lmax(ig) + 1, klev + 1 |
---|
1897 | ! fmc(ig,l)=0. |
---|
1898 | ! detr(ig,l)=0. |
---|
1899 | ! entr(ig,l)=0. |
---|
1900 | ! zw2(ig,l)=0. |
---|
1901 | ! zqla(ig,l)=0. |
---|
1902 | END DO |
---|
1903 | END DO |
---|
1904 | |
---|
1905 | ! Calcul du detrainement lors du premier passage |
---|
1906 | ! print*,'9 OK convect8' |
---|
1907 | ! print*,'WA1 ',wa_moy |
---|
1908 | |
---|
1909 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
1910 | |
---|
1911 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
1912 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
1913 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
1914 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
1915 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
1916 | |
---|
1917 | DO l = 2, nlay |
---|
1918 | DO ig = 1, ngrid |
---|
1919 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
1920 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
1921 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
1922 | END IF |
---|
1923 | END DO |
---|
1924 | END DO |
---|
1925 | |
---|
1926 | DO l = 2, nlay |
---|
1927 | DO ig = 1, ngrid |
---|
1928 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
1929 | ! if (idetr.eq.0) then |
---|
1930 | ! cette option est finalement en dur. |
---|
1931 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
1932 | PRINT *, 'pb l_mix*zlev<0' |
---|
1933 | END IF |
---|
1934 | ! CR: test: nouvelle def de lambda |
---|
1935 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1936 | IF (zw2(ig,l)>1.E-10) THEN |
---|
1937 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
1938 | ELSE |
---|
1939 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
1940 | END IF |
---|
1941 | ! else if (idetr.eq.1) then |
---|
1942 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
1943 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
1944 | ! else if (idetr.eq.2) then |
---|
1945 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1946 | ! s *sqrt(wa_moy(ig,l)) |
---|
1947 | ! else if (idetr.eq.4) then |
---|
1948 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1949 | ! s *wa_moy(ig,l) |
---|
1950 | ! endif |
---|
1951 | END IF |
---|
1952 | END DO |
---|
1953 | END DO |
---|
1954 | |
---|
1955 | ! print*,'10 OK convect8' |
---|
1956 | ! print*,'WA2 ',wa_moy |
---|
1957 | ! cal1cul de la fraction de la maille concernée par l'ascendance en tenant |
---|
1958 | ! compte de l'epluchage du thermique. |
---|
1959 | |
---|
1960 | |
---|
1961 | DO l = 2, nlay |
---|
1962 | DO ig = 1, ngrid |
---|
1963 | IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
---|
1964 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
1965 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
1966 | ! test |
---|
1967 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
1968 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
1969 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
1970 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
1971 | ELSE |
---|
1972 | ! wa_moy(ig,l)=0. |
---|
1973 | fraca(ig, l) = 0. |
---|
1974 | fracc(ig, l) = 0. |
---|
1975 | fracd(ig, l) = 1. |
---|
1976 | END IF |
---|
1977 | END DO |
---|
1978 | END DO |
---|
1979 | ! CR: calcul de fracazmix |
---|
1980 | DO ig = 1, ngrid |
---|
1981 | IF (test(ig)==1) THEN |
---|
1982 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
1983 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
1984 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca( & |
---|
1985 | ig,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
1986 | END IF |
---|
1987 | END DO |
---|
1988 | |
---|
1989 | DO l = 2, nlay |
---|
1990 | DO ig = 1, ngrid |
---|
1991 | IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
---|
1992 | IF (l>lmix(ig)) THEN |
---|
1993 | ! test |
---|
1994 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
1995 | ! print*,'pb xxx' |
---|
1996 | xxx(ig, l) = (lmax(ig)+1.-l)/(lmax(ig)+1.-lmix(ig)) |
---|
1997 | ELSE |
---|
1998 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
1999 | END IF |
---|
2000 | IF (idetr==0) THEN |
---|
2001 | fraca(ig, l) = fracazmix(ig) |
---|
2002 | ELSE IF (idetr==1) THEN |
---|
2003 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
2004 | ELSE IF (idetr==2) THEN |
---|
2005 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
2006 | ELSE |
---|
2007 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
2008 | END IF |
---|
2009 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
2010 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
2011 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
2012 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
2013 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
2014 | END IF |
---|
2015 | END IF |
---|
2016 | END DO |
---|
2017 | END DO |
---|
2018 | |
---|
2019 | PRINT *, 'fin calcul fraca' |
---|
2020 | ! print*,'11 OK convect8' |
---|
2021 | ! print*,'Ea3 ',wa_moy |
---|
2022 | ! ------------------------------------------------------------------ |
---|
2023 | ! Calcul de fracd, wd |
---|
2024 | ! somme wa - wd = 0 |
---|
2025 | ! ------------------------------------------------------------------ |
---|
2026 | |
---|
2027 | |
---|
2028 | DO ig = 1, ngrid |
---|
2029 | fm(ig, 1) = 0. |
---|
2030 | fm(ig, nlay+1) = 0. |
---|
2031 | END DO |
---|
2032 | |
---|
2033 | DO l = 2, nlay |
---|
2034 | DO ig = 1, ngrid |
---|
2035 | IF (test(ig)==1) THEN |
---|
2036 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
2037 | ! CR:test |
---|
2038 | IF (alim(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) & |
---|
2039 | THEN |
---|
2040 | fm(ig, l) = fm(ig, l-1) |
---|
2041 | ! write(1,*)'ajustement fm, l',l |
---|
2042 | END IF |
---|
2043 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
2044 | ! RC |
---|
2045 | END IF |
---|
2046 | END DO |
---|
2047 | DO ig = 1, ngrid |
---|
2048 | IF (fracd(ig,l)<0.1 .AND. (test(ig)==1)) THEN |
---|
2049 | abort_message = 'fracd trop petit' |
---|
2050 | CALL abort_physic(modname, abort_message, 1) |
---|
2051 | ELSE |
---|
2052 | ! vitesse descendante "diagnostique" |
---|
2053 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
2054 | END IF |
---|
2055 | END DO |
---|
2056 | END DO |
---|
2057 | |
---|
2058 | DO l = 1, nlay + 1 |
---|
2059 | DO ig = 1, ngrid |
---|
2060 | IF (test(ig)==0) THEN |
---|
2061 | fm(ig, l) = fmc(ig, l) |
---|
2062 | END IF |
---|
2063 | END DO |
---|
2064 | END DO |
---|
2065 | |
---|
2066 | ! fin du first |
---|
2067 | DO l = 1, nlay |
---|
2068 | DO ig = 1, ngrid |
---|
2069 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
2070 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
2071 | END DO |
---|
2072 | END DO |
---|
2073 | |
---|
2074 | ! print*,'12 OK convect8' |
---|
2075 | ! print*,'WA4 ',wa_moy |
---|
2076 | ! c------------------------------------------------------------------ |
---|
2077 | ! calcul du transport vertical |
---|
2078 | ! ------------------------------------------------------------------ |
---|
2079 | |
---|
2080 | GO TO 4444 |
---|
2081 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
2082 | DO l = 2, nlay - 1 |
---|
2083 | DO ig = 1, ngrid |
---|
2084 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
2085 | ig,l+1)) THEN |
---|
2086 | PRINT *, 'WARN!!! FM>M ig=', ig, ' l=', l, ' FM=', & |
---|
2087 | fm(ig, l+1)*ptimestep, ' M=', masse(ig, l), masse(ig, l+1) |
---|
2088 | END IF |
---|
2089 | END DO |
---|
2090 | END DO |
---|
2091 | |
---|
2092 | DO l = 1, nlay |
---|
2093 | DO ig = 1, ngrid |
---|
2094 | IF ((alim(ig,l)+entr(ig,l))*ptimestep>masse(ig,l)) THEN |
---|
2095 | PRINT *, 'WARN!!! E>M ig=', ig, ' l=', l, ' E==', & |
---|
2096 | (entr(ig,l)+alim(ig,l))*ptimestep, ' M=', masse(ig, l) |
---|
2097 | END IF |
---|
2098 | END DO |
---|
2099 | END DO |
---|
2100 | |
---|
2101 | DO l = 1, nlay |
---|
2102 | DO ig = 1, ngrid |
---|
2103 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
2104 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
2105 | ! s ,' FM=',fm(ig,l) |
---|
2106 | END IF |
---|
2107 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
2108 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
2109 | ! s ,' M=',masse(ig,l) |
---|
2110 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
2111 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
2112 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
2113 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
2114 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
2115 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
2116 | END IF |
---|
2117 | IF (.NOT. alim(ig,l)>=0. .OR. .NOT. alim(ig,l)<=10.) THEN |
---|
2118 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
2119 | ! s ,' E=',entr(ig,l) |
---|
2120 | END IF |
---|
2121 | END DO |
---|
2122 | END DO |
---|
2123 | |
---|
2124 | 4444 CONTINUE |
---|
2125 | |
---|
2126 | ! CR:redefinition du entr |
---|
2127 | ! CR:test:on ne change pas la def du entr mais la def du fm |
---|
2128 | DO l = 1, nlay |
---|
2129 | DO ig = 1, ngrid |
---|
2130 | IF (test(ig)==1) THEN |
---|
2131 | detr(ig, l) = fm(ig, l) + alim(ig, l) - fm(ig, l+1) |
---|
2132 | IF (detr(ig,l)<0.) THEN |
---|
2133 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
2134 | fm(ig, l+1) = fm(ig, l) + alim(ig, l) |
---|
2135 | detr(ig, l) = 0. |
---|
2136 | ! write(11,*)'l,ig,entr',l,ig,entr(ig,l) |
---|
2137 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
2138 | END IF |
---|
2139 | END IF |
---|
2140 | END DO |
---|
2141 | END DO |
---|
2142 | ! RC |
---|
2143 | |
---|
2144 | IF (w2di==1) THEN |
---|
2145 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
2146 | entr0 = entr0 + ptimestep*(alim+entr-entr0)/tho |
---|
2147 | ELSE |
---|
2148 | fm0 = fm |
---|
2149 | entr0 = alim + entr |
---|
2150 | detr0 = detr |
---|
2151 | alim0 = alim |
---|
2152 | ! zoa=zqta |
---|
2153 | ! entr0=alim |
---|
2154 | END IF |
---|
2155 | |
---|
2156 | IF (1==1) THEN |
---|
2157 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
2158 | ! . ,zh,zdhadj,zha) |
---|
2159 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
2160 | ! . ,zo,pdoadj,zoa) |
---|
2161 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
2162 | zdthladj, zta) |
---|
2163 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
2164 | zoa) |
---|
2165 | ELSE |
---|
2166 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
2167 | zdhadj, zha) |
---|
2168 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
2169 | pdoadj, zoa) |
---|
2170 | END IF |
---|
2171 | |
---|
2172 | IF (1==0) THEN |
---|
2173 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
2174 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
2175 | ELSE |
---|
2176 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
2177 | zua) |
---|
2178 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
2179 | zva) |
---|
2180 | END IF |
---|
2181 | |
---|
2182 | ! Calcul des moments |
---|
2183 | ! do l=1,nlay |
---|
2184 | ! do ig=1,ngrid |
---|
2185 | ! zf=0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
2186 | ! zf2=zf/(1.-zf) |
---|
2187 | ! thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
2188 | ! wth2(ig,l)=zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
2189 | ! enddo |
---|
2190 | ! enddo |
---|
2191 | |
---|
2192 | |
---|
2193 | |
---|
2194 | |
---|
2195 | |
---|
2196 | |
---|
2197 | ! print*,'13 OK convect8' |
---|
2198 | ! print*,'WA5 ',wa_moy |
---|
2199 | DO l = 1, nlay |
---|
2200 | DO ig = 1, ngrid |
---|
2201 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
2202 | pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
---|
2203 | END DO |
---|
2204 | END DO |
---|
2205 | |
---|
2206 | |
---|
2207 | ! do l=1,nlay |
---|
2208 | ! do ig=1,ngrid |
---|
2209 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
2210 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
2211 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
2212 | ! endif |
---|
2213 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
2214 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
2215 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
2216 | ! endif |
---|
2217 | ! enddo |
---|
2218 | ! enddo |
---|
2219 | |
---|
2220 | ! print*,'14 OK convect8' |
---|
2221 | ! ------------------------------------------------------------------ |
---|
2222 | ! Calculs pour les sorties |
---|
2223 | ! ------------------------------------------------------------------ |
---|
2224 | ! calcul de fraca pour les sorties |
---|
2225 | DO l = 2, klev |
---|
2226 | DO ig = 1, klon |
---|
2227 | IF (zw2(ig,l)>1.E-10) THEN |
---|
2228 | fraca(ig, l) = fm(ig, l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
2229 | ELSE |
---|
2230 | fraca(ig, l) = 0. |
---|
2231 | END IF |
---|
2232 | END DO |
---|
2233 | END DO |
---|
2234 | IF (sorties) THEN |
---|
2235 | DO l = 1, nlay |
---|
2236 | DO ig = 1, ngrid |
---|
2237 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
2238 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
2239 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
2240 | (1.-fracd(ig,l)) |
---|
2241 | END DO |
---|
2242 | END DO |
---|
2243 | ! CR calcul du niveau de condensation |
---|
2244 | ! initialisation |
---|
2245 | DO ig = 1, ngrid |
---|
2246 | nivcon(ig) = 0. |
---|
2247 | zcon(ig) = 0. |
---|
2248 | END DO |
---|
2249 | DO k = nlay, 1, -1 |
---|
2250 | DO ig = 1, ngrid |
---|
2251 | IF (zqla(ig,k)>1E-10) THEN |
---|
2252 | nivcon(ig) = k |
---|
2253 | zcon(ig) = zlev(ig, k) |
---|
2254 | END IF |
---|
2255 | ! if (zcon(ig).gt.1.e-10) then |
---|
2256 | ! nuage=.true. |
---|
2257 | ! else |
---|
2258 | ! nuage=.false. |
---|
2259 | ! endif |
---|
2260 | END DO |
---|
2261 | END DO |
---|
2262 | |
---|
2263 | DO l = 1, nlay |
---|
2264 | DO ig = 1, ngrid |
---|
2265 | zf = fraca(ig, l) |
---|
2266 | zf2 = zf/(1.-zf) |
---|
2267 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
2268 | wth2(ig, l) = zf2*(zw2(ig,l))**2 |
---|
2269 | ! print*,'wth2=',wth2(ig,l) |
---|
2270 | wth3(ig, l) = zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l))*zw2(ig, l)* & |
---|
2271 | zw2(ig, l)*zw2(ig, l) |
---|
2272 | q2(ig, l) = zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
2273 | ! test: on calcul q2/po=ratqsc |
---|
2274 | ! if (nuage) then |
---|
2275 | ratqscth(ig, l) = sqrt(q2(ig,l))/(po(ig,l)*1000.) |
---|
2276 | ! else |
---|
2277 | ! ratqscth(ig,l)=0. |
---|
2278 | ! endif |
---|
2279 | END DO |
---|
2280 | END DO |
---|
2281 | ! calcul du ratqscdiff |
---|
2282 | sum = 0. |
---|
2283 | sumdiff = 0. |
---|
2284 | ratqsdiff(:, :) = 0. |
---|
2285 | DO ig = 1, ngrid |
---|
2286 | DO l = 1, lentr(ig) |
---|
2287 | sum = sum + alim_star(ig, l)*zqta(ig, l)*1000. |
---|
2288 | END DO |
---|
2289 | END DO |
---|
2290 | DO ig = 1, ngrid |
---|
2291 | DO l = 1, lentr(ig) |
---|
2292 | zf = fraca(ig, l) |
---|
2293 | zf2 = zf/(1.-zf) |
---|
2294 | sumdiff = sumdiff + alim_star(ig, l)*(zqta(ig,l)*1000.-sum)**2 |
---|
2295 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
2296 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
2297 | END DO |
---|
2298 | END DO |
---|
2299 | DO l = 1, klev |
---|
2300 | DO ig = 1, ngrid |
---|
2301 | ratqsdiff(ig, l) = sqrt(sumdiff)/(po(ig,l)*1000.) |
---|
2302 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
2303 | END DO |
---|
2304 | END DO |
---|
2305 | |
---|
2306 | END IF |
---|
2307 | |
---|
2308 | ! print*,'19 OK convect8' |
---|
2309 | RETURN |
---|
2310 | END SUBROUTINE thermcell_cld |
---|
2311 | |
---|
2312 | SUBROUTINE thermcell_eau(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, & |
---|
2313 | pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
2314 | ! ,pu_therm,pv_therm |
---|
2315 | , r_aspect, l_mix, w2di, tho) |
---|
2316 | |
---|
2317 | USE dimphy |
---|
2318 | IMPLICIT NONE |
---|
2319 | |
---|
2320 | ! ======================================================================= |
---|
2321 | |
---|
2322 | ! Calcul du transport verticale dans la couche limite en presence |
---|
2323 | ! de "thermiques" explicitement representes |
---|
2324 | |
---|
2325 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
2326 | |
---|
2327 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
2328 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
2329 | ! mélange |
---|
2330 | |
---|
2331 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
2332 | ! en compte: |
---|
2333 | ! 1. un flux de masse montant |
---|
2334 | ! 2. un flux de masse descendant |
---|
2335 | ! 3. un entrainement |
---|
2336 | ! 4. un detrainement |
---|
2337 | |
---|
2338 | ! ======================================================================= |
---|
2339 | |
---|
2340 | ! ----------------------------------------------------------------------- |
---|
2341 | ! declarations: |
---|
2342 | ! ------------- |
---|
2343 | |
---|
2344 | include "YOMCST.h" |
---|
2345 | include "YOETHF.h" |
---|
2346 | include "FCTTRE.h" |
---|
2347 | |
---|
2348 | ! arguments: |
---|
2349 | ! ---------- |
---|
2350 | |
---|
2351 | INTEGER ngrid, nlay, w2di |
---|
2352 | REAL tho |
---|
2353 | REAL ptimestep, l_mix, r_aspect |
---|
2354 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
2355 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
2356 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
2357 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
2358 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
2359 | REAL pphi(ngrid, nlay) |
---|
2360 | |
---|
2361 | INTEGER idetr |
---|
2362 | SAVE idetr |
---|
2363 | DATA idetr/3/ |
---|
2364 | !$OMP THREADPRIVATE(idetr) |
---|
2365 | |
---|
2366 | ! local: |
---|
2367 | ! ------ |
---|
2368 | |
---|
2369 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
2370 | REAL zsortie1d(klon) |
---|
2371 | ! CR: on remplace lmax(klon,klev+1) |
---|
2372 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
2373 | REAL linter(klon) |
---|
2374 | REAL zmix(klon), fracazmix(klon) |
---|
2375 | ! RC |
---|
2376 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
2377 | |
---|
2378 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
2379 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
2380 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
2381 | REAL ztv(klon, klev) |
---|
2382 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
2383 | REAL zl(klon, klev) |
---|
2384 | REAL wh(klon, klev+1) |
---|
2385 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
2386 | REAL zla(klon, klev+1) |
---|
2387 | REAL zwa(klon, klev+1) |
---|
2388 | REAL zld(klon, klev+1) |
---|
2389 | REAL zwd(klon, klev+1) |
---|
2390 | REAL zsortie(klon, klev) |
---|
2391 | REAL zva(klon, klev) |
---|
2392 | REAL zua(klon, klev) |
---|
2393 | REAL zoa(klon, klev) |
---|
2394 | |
---|
2395 | REAL zta(klon, klev) |
---|
2396 | REAL zha(klon, klev) |
---|
2397 | REAL wa_moy(klon, klev+1) |
---|
2398 | REAL fraca(klon, klev+1) |
---|
2399 | REAL fracc(klon, klev+1) |
---|
2400 | REAL zf, zf2 |
---|
2401 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
2402 | ! common/comtherm/thetath2,wth2 |
---|
2403 | |
---|
2404 | REAL count_time |
---|
2405 | INTEGER ialt |
---|
2406 | |
---|
2407 | LOGICAL sorties |
---|
2408 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
2409 | REAL zpspsk(klon, klev) |
---|
2410 | |
---|
2411 | ! real wmax(klon,klev),wmaxa(klon) |
---|
2412 | REAL wmax(klon), wmaxa(klon) |
---|
2413 | REAL wa(klon, klev, klev+1) |
---|
2414 | REAL wd(klon, klev+1) |
---|
2415 | REAL larg_part(klon, klev, klev+1) |
---|
2416 | REAL fracd(klon, klev+1) |
---|
2417 | REAL xxx(klon, klev+1) |
---|
2418 | REAL larg_cons(klon, klev+1) |
---|
2419 | REAL larg_detr(klon, klev+1) |
---|
2420 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
2421 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
2422 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
2423 | REAL fmc(klon, klev+1) |
---|
2424 | |
---|
2425 | REAL zcor, zdelta, zcvm5, qlbef |
---|
2426 | REAL tbef(klon), qsatbef(klon) |
---|
2427 | REAL dqsat_dt, dt, num, denom |
---|
2428 | REAL reps, rlvcp, ddt0 |
---|
2429 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
2430 | |
---|
2431 | PARAMETER (ddt0=.01) |
---|
2432 | |
---|
2433 | ! CR:nouvelles variables |
---|
2434 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
2435 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
2436 | REAL f(klon), f0(klon) |
---|
2437 | REAL zlevinter(klon) |
---|
2438 | LOGICAL first |
---|
2439 | DATA first/.FALSE./ |
---|
2440 | SAVE first |
---|
2441 | !$OMP THREADPRIVATE(first) |
---|
2442 | |
---|
2443 | ! RC |
---|
2444 | |
---|
2445 | CHARACTER *2 str2 |
---|
2446 | CHARACTER *10 str10 |
---|
2447 | |
---|
2448 | CHARACTER (LEN=20) :: modname = 'thermcell_eau' |
---|
2449 | CHARACTER (LEN=80) :: abort_message |
---|
2450 | |
---|
2451 | LOGICAL vtest(klon), down |
---|
2452 | LOGICAL zsat(klon) |
---|
2453 | |
---|
2454 | EXTERNAL scopy |
---|
2455 | |
---|
2456 | INTEGER ncorrec, ll |
---|
2457 | SAVE ncorrec |
---|
2458 | DATA ncorrec/0/ |
---|
2459 | !$OMP THREADPRIVATE(ncorrec) |
---|
2460 | |
---|
2461 | |
---|
2462 | |
---|
2463 | ! ----------------------------------------------------------------------- |
---|
2464 | ! initialisation: |
---|
2465 | ! --------------- |
---|
2466 | |
---|
2467 | sorties = .TRUE. |
---|
2468 | IF (ngrid/=klon) THEN |
---|
2469 | PRINT * |
---|
2470 | PRINT *, 'STOP dans convadj' |
---|
2471 | PRINT *, 'ngrid =', ngrid |
---|
2472 | PRINT *, 'klon =', klon |
---|
2473 | END IF |
---|
2474 | |
---|
2475 | ! Initialisation |
---|
2476 | rlvcp = rlvtt/rcpd |
---|
2477 | reps = rd/rv |
---|
2478 | |
---|
2479 | ! ----------------------------------------------------------------------- |
---|
2480 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
2481 | ! --------------------------------------------------- |
---|
2482 | |
---|
2483 | ! Pr Tprec=Tl calcul de qsat |
---|
2484 | ! Si qsat>qT T=Tl, q=qT |
---|
2485 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
2486 | ! On cherche DDT < DDT0 |
---|
2487 | |
---|
2488 | ! defaut |
---|
2489 | DO ll = 1, nlay |
---|
2490 | DO ig = 1, ngrid |
---|
2491 | zo(ig, ll) = po(ig, ll) |
---|
2492 | zl(ig, ll) = 0. |
---|
2493 | zh(ig, ll) = pt(ig, ll) |
---|
2494 | END DO |
---|
2495 | END DO |
---|
2496 | DO ig = 1, ngrid |
---|
2497 | zsat(ig) = .FALSE. |
---|
2498 | END DO |
---|
2499 | |
---|
2500 | |
---|
2501 | DO ll = 1, nlay |
---|
2502 | ! les points insatures sont definitifs |
---|
2503 | DO ig = 1, ngrid |
---|
2504 | tbef(ig) = pt(ig, ll) |
---|
2505 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2506 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
2507 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2508 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2509 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
2510 | zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>0.00001) |
---|
2511 | END DO |
---|
2512 | |
---|
2513 | DO ig = 1, ngrid |
---|
2514 | IF (zsat(ig)) THEN |
---|
2515 | qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
---|
2516 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
2517 | dt = 0.5*rlvcp*qlbef |
---|
2518 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
2519 | DO WHILE (dt>ddt0) |
---|
2520 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
2521 | tbef(ig) = tbef(ig) + dt |
---|
2522 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2523 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
2524 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2525 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2526 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
2527 | ! on veut le signe de qlbef |
---|
2528 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
2529 | ! dqsat_dT |
---|
2530 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2531 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
2532 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2533 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
2534 | num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
---|
2535 | denom = 1. + rlvcp*dqsat_dt |
---|
2536 | dt = num/denom |
---|
2537 | END DO |
---|
2538 | ! on ecrit de maniere conservative (sat ou non) |
---|
2539 | zl(ig, ll) = max(0., qlbef) |
---|
2540 | ! T = Tl +Lv/Cp ql |
---|
2541 | zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
---|
2542 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
2543 | END IF |
---|
2544 | END DO |
---|
2545 | END DO |
---|
2546 | ! AM fin |
---|
2547 | |
---|
2548 | ! ----------------------------------------------------------------------- |
---|
2549 | ! incrementation eventuelle de tendances precedentes: |
---|
2550 | ! --------------------------------------------------- |
---|
2551 | |
---|
2552 | ! print*,'0 OK convect8' |
---|
2553 | |
---|
2554 | DO l = 1, nlay |
---|
2555 | DO ig = 1, ngrid |
---|
2556 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
2557 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
2558 | zu(ig, l) = pu(ig, l) |
---|
2559 | zv(ig, l) = pv(ig, l) |
---|
2560 | ! zo(ig,l)=po(ig,l) |
---|
2561 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
2562 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
2563 | ! theta ! |
---|
2564 | |
---|
2565 | ! T-> Theta |
---|
2566 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
2567 | ! AM Theta_v |
---|
2568 | ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
---|
2569 | ! AM Thetal |
---|
2570 | zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
2571 | |
---|
2572 | END DO |
---|
2573 | END DO |
---|
2574 | |
---|
2575 | ! print*,'1 OK convect8' |
---|
2576 | ! -------------------- |
---|
2577 | |
---|
2578 | |
---|
2579 | ! + + + + + + + + + + + |
---|
2580 | |
---|
2581 | |
---|
2582 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
2583 | ! wh,wt,wo ... |
---|
2584 | |
---|
2585 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
2586 | |
---|
2587 | |
---|
2588 | ! -------------------- zlev(1) |
---|
2589 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
2590 | |
---|
2591 | |
---|
2592 | |
---|
2593 | ! ----------------------------------------------------------------------- |
---|
2594 | ! Calcul des altitudes des couches |
---|
2595 | ! ----------------------------------------------------------------------- |
---|
2596 | |
---|
2597 | DO l = 2, nlay |
---|
2598 | DO ig = 1, ngrid |
---|
2599 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
2600 | END DO |
---|
2601 | END DO |
---|
2602 | DO ig = 1, ngrid |
---|
2603 | zlev(ig, 1) = 0. |
---|
2604 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
2605 | END DO |
---|
2606 | DO l = 1, nlay |
---|
2607 | DO ig = 1, ngrid |
---|
2608 | zlay(ig, l) = pphi(ig, l)/rg |
---|
2609 | END DO |
---|
2610 | END DO |
---|
2611 | |
---|
2612 | ! print*,'2 OK convect8' |
---|
2613 | ! ----------------------------------------------------------------------- |
---|
2614 | ! Calcul des densites |
---|
2615 | ! ----------------------------------------------------------------------- |
---|
2616 | |
---|
2617 | DO l = 1, nlay |
---|
2618 | DO ig = 1, ngrid |
---|
2619 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
2620 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
---|
2621 | END DO |
---|
2622 | END DO |
---|
2623 | |
---|
2624 | DO l = 2, nlay |
---|
2625 | DO ig = 1, ngrid |
---|
2626 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
2627 | END DO |
---|
2628 | END DO |
---|
2629 | |
---|
2630 | DO k = 1, nlay |
---|
2631 | DO l = 1, nlay + 1 |
---|
2632 | DO ig = 1, ngrid |
---|
2633 | wa(ig, k, l) = 0. |
---|
2634 | END DO |
---|
2635 | END DO |
---|
2636 | END DO |
---|
2637 | |
---|
2638 | ! print*,'3 OK convect8' |
---|
2639 | ! ------------------------------------------------------------------ |
---|
2640 | ! Calcul de w2, quarre de w a partir de la cape |
---|
2641 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
2642 | |
---|
2643 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
2644 | ! w2 est stoke dans wa |
---|
2645 | |
---|
2646 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
2647 | ! independants par couches que pour calculer l'entrainement |
---|
2648 | ! a la base et la hauteur max de l'ascendance. |
---|
2649 | |
---|
2650 | ! Indicages: |
---|
2651 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
2652 | ! une vitesse wa(k,l). |
---|
2653 | |
---|
2654 | ! -------------------- |
---|
2655 | |
---|
2656 | ! + + + + + + + + + + |
---|
2657 | |
---|
2658 | ! wa(k,l) ---- -------------------- l |
---|
2659 | ! /\ |
---|
2660 | ! /||\ + + + + + + + + + + |
---|
2661 | ! || |
---|
2662 | ! || -------------------- |
---|
2663 | ! || |
---|
2664 | ! || + + + + + + + + + + |
---|
2665 | ! || |
---|
2666 | ! || -------------------- |
---|
2667 | ! ||__ |
---|
2668 | ! |___ + + + + + + + + + + k |
---|
2669 | |
---|
2670 | ! -------------------- |
---|
2671 | |
---|
2672 | |
---|
2673 | |
---|
2674 | ! ------------------------------------------------------------------ |
---|
2675 | |
---|
2676 | ! CR: ponderation entrainement des couches instables |
---|
2677 | ! def des entr_star tels que entr=f*entr_star |
---|
2678 | DO l = 1, klev |
---|
2679 | DO ig = 1, ngrid |
---|
2680 | entr_star(ig, l) = 0. |
---|
2681 | END DO |
---|
2682 | END DO |
---|
2683 | ! determination de la longueur de la couche d entrainement |
---|
2684 | DO ig = 1, ngrid |
---|
2685 | lentr(ig) = 1 |
---|
2686 | END DO |
---|
2687 | |
---|
2688 | ! on ne considere que les premieres couches instables |
---|
2689 | DO k = nlay - 1, 1, -1 |
---|
2690 | DO ig = 1, ngrid |
---|
2691 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<ztv(ig,k+2)) THEN |
---|
2692 | lentr(ig) = k |
---|
2693 | END IF |
---|
2694 | END DO |
---|
2695 | END DO |
---|
2696 | |
---|
2697 | ! determination du lmin: couche d ou provient le thermique |
---|
2698 | DO ig = 1, ngrid |
---|
2699 | lmin(ig) = 1 |
---|
2700 | END DO |
---|
2701 | DO ig = 1, ngrid |
---|
2702 | DO l = nlay, 2, -1 |
---|
2703 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
2704 | lmin(ig) = l - 1 |
---|
2705 | END IF |
---|
2706 | END DO |
---|
2707 | END DO |
---|
2708 | |
---|
2709 | ! definition de l'entrainement des couches |
---|
2710 | DO l = 1, klev - 1 |
---|
2711 | DO ig = 1, ngrid |
---|
2712 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
2713 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
---|
2714 | END IF |
---|
2715 | END DO |
---|
2716 | END DO |
---|
2717 | ! pas de thermique si couche 1 stable |
---|
2718 | DO ig = 1, ngrid |
---|
2719 | IF (lmin(ig)>1) THEN |
---|
2720 | DO l = 1, klev |
---|
2721 | entr_star(ig, l) = 0. |
---|
2722 | END DO |
---|
2723 | END IF |
---|
2724 | END DO |
---|
2725 | ! calcul de l entrainement total |
---|
2726 | DO ig = 1, ngrid |
---|
2727 | entr_star_tot(ig) = 0. |
---|
2728 | END DO |
---|
2729 | DO ig = 1, ngrid |
---|
2730 | DO k = 1, klev |
---|
2731 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
2732 | END DO |
---|
2733 | END DO |
---|
2734 | |
---|
2735 | DO k = 1, klev |
---|
2736 | DO ig = 1, ngrid |
---|
2737 | ztva(ig, k) = ztv(ig, k) |
---|
2738 | END DO |
---|
2739 | END DO |
---|
2740 | ! RC |
---|
2741 | ! AM:initialisations |
---|
2742 | DO k = 1, nlay |
---|
2743 | DO ig = 1, ngrid |
---|
2744 | ztva(ig, k) = ztv(ig, k) |
---|
2745 | ztla(ig, k) = zthl(ig, k) |
---|
2746 | zqla(ig, k) = 0. |
---|
2747 | zqta(ig, k) = po(ig, k) |
---|
2748 | zsat(ig) = .FALSE. |
---|
2749 | END DO |
---|
2750 | END DO |
---|
2751 | |
---|
2752 | ! print*,'7 OK convect8' |
---|
2753 | DO k = 1, klev + 1 |
---|
2754 | DO ig = 1, ngrid |
---|
2755 | zw2(ig, k) = 0. |
---|
2756 | fmc(ig, k) = 0. |
---|
2757 | ! CR |
---|
2758 | f_star(ig, k) = 0. |
---|
2759 | ! RC |
---|
2760 | larg_cons(ig, k) = 0. |
---|
2761 | larg_detr(ig, k) = 0. |
---|
2762 | wa_moy(ig, k) = 0. |
---|
2763 | END DO |
---|
2764 | END DO |
---|
2765 | |
---|
2766 | ! print*,'8 OK convect8' |
---|
2767 | DO ig = 1, ngrid |
---|
2768 | linter(ig) = 1. |
---|
2769 | lmaxa(ig) = 1 |
---|
2770 | lmix(ig) = 1 |
---|
2771 | wmaxa(ig) = 0. |
---|
2772 | END DO |
---|
2773 | |
---|
2774 | ! CR: |
---|
2775 | DO l = 1, nlay - 2 |
---|
2776 | DO ig = 1, ngrid |
---|
2777 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
2778 | zw2(ig,l)<1E-10) THEN |
---|
2779 | ! AM |
---|
2780 | ztla(ig, l) = zthl(ig, l) |
---|
2781 | zqta(ig, l) = po(ig, l) |
---|
2782 | zqla(ig, l) = zl(ig, l) |
---|
2783 | ! AM |
---|
2784 | f_star(ig, l+1) = entr_star(ig, l) |
---|
2785 | ! test:calcul de dteta |
---|
2786 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
2787 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
2788 | larg_detr(ig, l) = 0. |
---|
2789 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
2790 | l)>1.E-10)) THEN |
---|
2791 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
2792 | |
---|
2793 | ! AM on melange Tl et qt du thermique |
---|
2794 | ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+entr_star(ig,l)*zthl(ig,l))/ & |
---|
2795 | f_star(ig, l+1) |
---|
2796 | zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+entr_star(ig,l)*po(ig,l))/ & |
---|
2797 | f_star(ig, l+1) |
---|
2798 | |
---|
2799 | ! ztva(ig,l)=(f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l) |
---|
2800 | ! s *ztv(ig,l))/f_star(ig,l+1) |
---|
2801 | |
---|
2802 | ! AM on en deduit thetav et ql du thermique |
---|
2803 | tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
---|
2804 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2805 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
2806 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2807 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2808 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
2809 | zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>0.00001) |
---|
2810 | END IF |
---|
2811 | END DO |
---|
2812 | DO ig = 1, ngrid |
---|
2813 | IF (zsat(ig)) THEN |
---|
2814 | qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
2815 | dt = 0.5*rlvcp*qlbef |
---|
2816 | DO WHILE (dt>ddt0) |
---|
2817 | tbef(ig) = tbef(ig) + dt |
---|
2818 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2819 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
2820 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2821 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2822 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
2823 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
2824 | |
---|
2825 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2826 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
2827 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2828 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
2829 | num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
---|
2830 | denom = 1. + rlvcp*dqsat_dt |
---|
2831 | dt = num/denom |
---|
2832 | END DO |
---|
2833 | zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
2834 | END IF |
---|
2835 | ! on ecrit de maniere conservative (sat ou non) |
---|
2836 | ! T = Tl +Lv/Cp ql |
---|
2837 | ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
---|
2838 | ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
---|
2839 | ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig,l))-zqla(ig,l)) |
---|
2840 | |
---|
2841 | END DO |
---|
2842 | DO ig = 1, ngrid |
---|
2843 | IF (zw2(ig,l)>=1.E-10 .AND. f_star(ig,l)+entr_star(ig,l)>1.E-10) THEN |
---|
2844 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
2845 | ! consideree commence avec une vitesse nulle). |
---|
2846 | |
---|
2847 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
2848 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
2849 | END IF |
---|
2850 | ! determination de zmax continu par interpolation lineaire |
---|
2851 | IF (zw2(ig,l+1)<0.) THEN |
---|
2852 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
2853 | ig,l)) |
---|
2854 | zw2(ig, l+1) = 0. |
---|
2855 | lmaxa(ig) = l |
---|
2856 | ELSE |
---|
2857 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
2858 | END IF |
---|
2859 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
2860 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
2861 | lmix(ig) = l + 1 |
---|
2862 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
2863 | END IF |
---|
2864 | END DO |
---|
2865 | END DO |
---|
2866 | |
---|
2867 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
2868 | DO ig = 1, ngrid |
---|
2869 | lmax(ig) = lentr(ig) |
---|
2870 | END DO |
---|
2871 | DO ig = 1, ngrid |
---|
2872 | DO l = nlay, lentr(ig) + 1, -1 |
---|
2873 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
2874 | lmax(ig) = l - 1 |
---|
2875 | END IF |
---|
2876 | END DO |
---|
2877 | END DO |
---|
2878 | ! pas de thermique si couche 1 stable |
---|
2879 | DO ig = 1, ngrid |
---|
2880 | IF (lmin(ig)>1) THEN |
---|
2881 | lmax(ig) = 1 |
---|
2882 | lmin(ig) = 1 |
---|
2883 | END IF |
---|
2884 | END DO |
---|
2885 | |
---|
2886 | ! Determination de zw2 max |
---|
2887 | DO ig = 1, ngrid |
---|
2888 | wmax(ig) = 0. |
---|
2889 | END DO |
---|
2890 | |
---|
2891 | DO l = 1, nlay |
---|
2892 | DO ig = 1, ngrid |
---|
2893 | IF (l<=lmax(ig)) THEN |
---|
2894 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
2895 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
2896 | ELSE |
---|
2897 | zw2(ig, l) = 0. |
---|
2898 | END IF |
---|
2899 | END DO |
---|
2900 | END DO |
---|
2901 | |
---|
2902 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
2903 | DO ig = 1, ngrid |
---|
2904 | zmax(ig) = 500. |
---|
2905 | zlevinter(ig) = zlev(ig, 1) |
---|
2906 | END DO |
---|
2907 | DO ig = 1, ngrid |
---|
2908 | ! calcul de zlevinter |
---|
2909 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
2910 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
2911 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
2912 | END DO |
---|
2913 | |
---|
2914 | ! Fermeture,determination de f |
---|
2915 | DO ig = 1, ngrid |
---|
2916 | entr_star2(ig) = 0. |
---|
2917 | END DO |
---|
2918 | DO ig = 1, ngrid |
---|
2919 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
2920 | f(ig) = 0. |
---|
2921 | ELSE |
---|
2922 | DO k = lmin(ig), lentr(ig) |
---|
2923 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
2924 | zlev(ig,k+1)-zlev(ig,k))) |
---|
2925 | END DO |
---|
2926 | ! Nouvelle fermeture |
---|
2927 | f(ig) = wmax(ig)/(zmax(ig)*r_aspect*entr_star2(ig))*entr_star_tot(ig) |
---|
2928 | ! test |
---|
2929 | IF (first) THEN |
---|
2930 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
---|
2931 | END IF |
---|
2932 | END IF |
---|
2933 | f0(ig) = f(ig) |
---|
2934 | first = .TRUE. |
---|
2935 | END DO |
---|
2936 | |
---|
2937 | ! Calcul de l'entrainement |
---|
2938 | DO k = 1, klev |
---|
2939 | DO ig = 1, ngrid |
---|
2940 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
2941 | END DO |
---|
2942 | END DO |
---|
2943 | ! Calcul des flux |
---|
2944 | DO ig = 1, ngrid |
---|
2945 | DO l = 1, lmax(ig) - 1 |
---|
2946 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
2947 | END DO |
---|
2948 | END DO |
---|
2949 | |
---|
2950 | ! RC |
---|
2951 | |
---|
2952 | |
---|
2953 | ! print*,'9 OK convect8' |
---|
2954 | ! print*,'WA1 ',wa_moy |
---|
2955 | |
---|
2956 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
2957 | |
---|
2958 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
2959 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
2960 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
2961 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
2962 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
2963 | |
---|
2964 | DO l = 2, nlay |
---|
2965 | DO ig = 1, ngrid |
---|
2966 | IF (l<=lmaxa(ig)) THEN |
---|
2967 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
2968 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
2969 | END IF |
---|
2970 | END DO |
---|
2971 | END DO |
---|
2972 | |
---|
2973 | DO l = 2, nlay |
---|
2974 | DO ig = 1, ngrid |
---|
2975 | IF (l<=lmaxa(ig)) THEN |
---|
2976 | ! if (idetr.eq.0) then |
---|
2977 | ! cette option est finalement en dur. |
---|
2978 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
2979 | ! else if (idetr.eq.1) then |
---|
2980 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
2981 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
2982 | ! else if (idetr.eq.2) then |
---|
2983 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
2984 | ! s *sqrt(wa_moy(ig,l)) |
---|
2985 | ! else if (idetr.eq.4) then |
---|
2986 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
2987 | ! s *wa_moy(ig,l) |
---|
2988 | ! endif |
---|
2989 | END IF |
---|
2990 | END DO |
---|
2991 | END DO |
---|
2992 | |
---|
2993 | ! print*,'10 OK convect8' |
---|
2994 | ! print*,'WA2 ',wa_moy |
---|
2995 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
2996 | ! compte de l'epluchage du thermique. |
---|
2997 | |
---|
2998 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
2999 | DO ig = 1, ngrid |
---|
3000 | IF (lmix(ig)>1.) THEN |
---|
3001 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig))) & |
---|
3002 | **2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
3003 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
3004 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
3005 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))-zw2(ig,lmix(ig)+1))*((zlev( & |
---|
3006 | ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
3007 | ELSE |
---|
3008 | zmix(ig) = 0. |
---|
3009 | END IF |
---|
3010 | END DO |
---|
3011 | |
---|
3012 | ! calcul du nouveau lmix correspondant |
---|
3013 | DO ig = 1, ngrid |
---|
3014 | DO l = 1, klev |
---|
3015 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
3016 | lmix(ig) = l |
---|
3017 | END IF |
---|
3018 | END DO |
---|
3019 | END DO |
---|
3020 | |
---|
3021 | DO l = 2, nlay |
---|
3022 | DO ig = 1, ngrid |
---|
3023 | IF (larg_cons(ig,l)>1.) THEN |
---|
3024 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
3025 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
3026 | ! test |
---|
3027 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
3028 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
3029 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3030 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
3031 | ELSE |
---|
3032 | ! wa_moy(ig,l)=0. |
---|
3033 | fraca(ig, l) = 0. |
---|
3034 | fracc(ig, l) = 0. |
---|
3035 | fracd(ig, l) = 1. |
---|
3036 | END IF |
---|
3037 | END DO |
---|
3038 | END DO |
---|
3039 | ! CR: calcul de fracazmix |
---|
3040 | DO ig = 1, ngrid |
---|
3041 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
3042 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
3043 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
3044 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
3045 | END DO |
---|
3046 | |
---|
3047 | DO l = 2, nlay |
---|
3048 | DO ig = 1, ngrid |
---|
3049 | IF (larg_cons(ig,l)>1.) THEN |
---|
3050 | IF (l>lmix(ig)) THEN |
---|
3051 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
3052 | IF (idetr==0) THEN |
---|
3053 | fraca(ig, l) = fracazmix(ig) |
---|
3054 | ELSE IF (idetr==1) THEN |
---|
3055 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
3056 | ELSE IF (idetr==2) THEN |
---|
3057 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
3058 | ELSE |
---|
3059 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
3060 | END IF |
---|
3061 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
3062 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
3063 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
3064 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3065 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
3066 | END IF |
---|
3067 | END IF |
---|
3068 | END DO |
---|
3069 | END DO |
---|
3070 | |
---|
3071 | ! print*,'11 OK convect8' |
---|
3072 | ! print*,'Ea3 ',wa_moy |
---|
3073 | ! ------------------------------------------------------------------ |
---|
3074 | ! Calcul de fracd, wd |
---|
3075 | ! somme wa - wd = 0 |
---|
3076 | ! ------------------------------------------------------------------ |
---|
3077 | |
---|
3078 | |
---|
3079 | DO ig = 1, ngrid |
---|
3080 | fm(ig, 1) = 0. |
---|
3081 | fm(ig, nlay+1) = 0. |
---|
3082 | END DO |
---|
3083 | |
---|
3084 | DO l = 2, nlay |
---|
3085 | DO ig = 1, ngrid |
---|
3086 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
3087 | ! CR:test |
---|
3088 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
3089 | fm(ig, l) = fm(ig, l-1) |
---|
3090 | ! write(1,*)'ajustement fm, l',l |
---|
3091 | END IF |
---|
3092 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
3093 | ! RC |
---|
3094 | END DO |
---|
3095 | DO ig = 1, ngrid |
---|
3096 | IF (fracd(ig,l)<0.1) THEN |
---|
3097 | abort_message = 'fracd trop petit' |
---|
3098 | CALL abort_physic(modname, abort_message, 1) |
---|
3099 | ELSE |
---|
3100 | ! vitesse descendante "diagnostique" |
---|
3101 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
3102 | END IF |
---|
3103 | END DO |
---|
3104 | END DO |
---|
3105 | |
---|
3106 | DO l = 1, nlay |
---|
3107 | DO ig = 1, ngrid |
---|
3108 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3109 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
3110 | END DO |
---|
3111 | END DO |
---|
3112 | |
---|
3113 | ! print*,'12 OK convect8' |
---|
3114 | ! print*,'WA4 ',wa_moy |
---|
3115 | ! c------------------------------------------------------------------ |
---|
3116 | ! calcul du transport vertical |
---|
3117 | ! ------------------------------------------------------------------ |
---|
3118 | |
---|
3119 | GO TO 4444 |
---|
3120 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
3121 | DO l = 2, nlay - 1 |
---|
3122 | DO ig = 1, ngrid |
---|
3123 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
3124 | ig,l+1)) THEN |
---|
3125 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
3126 | ! s ,fm(ig,l+1)*ptimestep |
---|
3127 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
3128 | END IF |
---|
3129 | END DO |
---|
3130 | END DO |
---|
3131 | |
---|
3132 | DO l = 1, nlay |
---|
3133 | DO ig = 1, ngrid |
---|
3134 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
3135 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
3136 | ! s ,entr(ig,l)*ptimestep |
---|
3137 | ! s ,' M=',masse(ig,l) |
---|
3138 | END IF |
---|
3139 | END DO |
---|
3140 | END DO |
---|
3141 | |
---|
3142 | DO l = 1, nlay |
---|
3143 | DO ig = 1, ngrid |
---|
3144 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
3145 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
3146 | ! s ,' FM=',fm(ig,l) |
---|
3147 | END IF |
---|
3148 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
3149 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
3150 | ! s ,' M=',masse(ig,l) |
---|
3151 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
3152 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
3153 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
3154 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
3155 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
3156 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
3157 | END IF |
---|
3158 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
3159 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
3160 | ! s ,' E=',entr(ig,l) |
---|
3161 | END IF |
---|
3162 | END DO |
---|
3163 | END DO |
---|
3164 | |
---|
3165 | 4444 CONTINUE |
---|
3166 | |
---|
3167 | IF (w2di==1) THEN |
---|
3168 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
3169 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
3170 | ELSE |
---|
3171 | fm0 = fm |
---|
3172 | entr0 = entr |
---|
3173 | END IF |
---|
3174 | |
---|
3175 | IF (1==1) THEN |
---|
3176 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
3177 | ! . ,zh,zdhadj,zha) |
---|
3178 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
3179 | ! . ,zo,pdoadj,zoa) |
---|
3180 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
3181 | zdthladj, zta) |
---|
3182 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
3183 | zoa) |
---|
3184 | ELSE |
---|
3185 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
3186 | zdhadj, zha) |
---|
3187 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
3188 | pdoadj, zoa) |
---|
3189 | END IF |
---|
3190 | |
---|
3191 | IF (1==0) THEN |
---|
3192 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
3193 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
3194 | ELSE |
---|
3195 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
3196 | zua) |
---|
3197 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
3198 | zva) |
---|
3199 | END IF |
---|
3200 | |
---|
3201 | DO l = 1, nlay |
---|
3202 | DO ig = 1, ngrid |
---|
3203 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
3204 | zf2 = zf/(1.-zf) |
---|
3205 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
3206 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
3207 | END DO |
---|
3208 | END DO |
---|
3209 | |
---|
3210 | |
---|
3211 | |
---|
3212 | ! print*,'13 OK convect8' |
---|
3213 | ! print*,'WA5 ',wa_moy |
---|
3214 | DO l = 1, nlay |
---|
3215 | DO ig = 1, ngrid |
---|
3216 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
3217 | pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
---|
3218 | END DO |
---|
3219 | END DO |
---|
3220 | |
---|
3221 | |
---|
3222 | ! do l=1,nlay |
---|
3223 | ! do ig=1,ngrid |
---|
3224 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
3225 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
3226 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
3227 | ! endif |
---|
3228 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
3229 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
3230 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
3231 | ! endif |
---|
3232 | ! enddo |
---|
3233 | ! enddo |
---|
3234 | |
---|
3235 | ! print*,'14 OK convect8' |
---|
3236 | ! ------------------------------------------------------------------ |
---|
3237 | ! Calculs pour les sorties |
---|
3238 | ! ------------------------------------------------------------------ |
---|
3239 | |
---|
3240 | RETURN |
---|
3241 | END SUBROUTINE thermcell_eau |
---|
3242 | |
---|
3243 | SUBROUTINE thermcell(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, pt, & |
---|
3244 | po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
3245 | ! ,pu_therm,pv_therm |
---|
3246 | , r_aspect, l_mix, w2di, tho) |
---|
3247 | |
---|
3248 | USE dimphy |
---|
3249 | IMPLICIT NONE |
---|
3250 | |
---|
3251 | ! ======================================================================= |
---|
3252 | |
---|
3253 | ! Calcul du transport verticale dans la couche limite en presence |
---|
3254 | ! de "thermiques" explicitement representes |
---|
3255 | |
---|
3256 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
3257 | |
---|
3258 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
3259 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
3260 | ! mélange |
---|
3261 | |
---|
3262 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
3263 | ! en compte: |
---|
3264 | ! 1. un flux de masse montant |
---|
3265 | ! 2. un flux de masse descendant |
---|
3266 | ! 3. un entrainement |
---|
3267 | ! 4. un detrainement |
---|
3268 | |
---|
3269 | ! ======================================================================= |
---|
3270 | |
---|
3271 | ! ----------------------------------------------------------------------- |
---|
3272 | ! declarations: |
---|
3273 | ! ------------- |
---|
3274 | |
---|
3275 | include "YOMCST.h" |
---|
3276 | |
---|
3277 | ! arguments: |
---|
3278 | ! ---------- |
---|
3279 | |
---|
3280 | INTEGER ngrid, nlay, w2di |
---|
3281 | REAL tho |
---|
3282 | REAL ptimestep, l_mix, r_aspect |
---|
3283 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
3284 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
3285 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
3286 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
3287 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
3288 | REAL pphi(ngrid, nlay) |
---|
3289 | |
---|
3290 | INTEGER idetr |
---|
3291 | SAVE idetr |
---|
3292 | DATA idetr/3/ |
---|
3293 | !$OMP THREADPRIVATE(idetr) |
---|
3294 | |
---|
3295 | ! local: |
---|
3296 | ! ------ |
---|
3297 | |
---|
3298 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
3299 | REAL zsortie1d(klon) |
---|
3300 | ! CR: on remplace lmax(klon,klev+1) |
---|
3301 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
3302 | REAL linter(klon) |
---|
3303 | REAL zmix(klon), fracazmix(klon) |
---|
3304 | ! RC |
---|
3305 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
3306 | |
---|
3307 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
3308 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
3309 | REAL ztv(klon, klev) |
---|
3310 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
3311 | REAL wh(klon, klev+1) |
---|
3312 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
3313 | REAL zla(klon, klev+1) |
---|
3314 | REAL zwa(klon, klev+1) |
---|
3315 | REAL zld(klon, klev+1) |
---|
3316 | REAL zwd(klon, klev+1) |
---|
3317 | REAL zsortie(klon, klev) |
---|
3318 | REAL zva(klon, klev) |
---|
3319 | REAL zua(klon, klev) |
---|
3320 | REAL zoa(klon, klev) |
---|
3321 | |
---|
3322 | REAL zha(klon, klev) |
---|
3323 | REAL wa_moy(klon, klev+1) |
---|
3324 | REAL fraca(klon, klev+1) |
---|
3325 | REAL fracc(klon, klev+1) |
---|
3326 | REAL zf, zf2 |
---|
3327 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
3328 | ! common/comtherm/thetath2,wth2 |
---|
3329 | |
---|
3330 | REAL count_time |
---|
3331 | INTEGER ialt |
---|
3332 | |
---|
3333 | LOGICAL sorties |
---|
3334 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
3335 | REAL zpspsk(klon, klev) |
---|
3336 | |
---|
3337 | ! real wmax(klon,klev),wmaxa(klon) |
---|
3338 | REAL wmax(klon), wmaxa(klon) |
---|
3339 | REAL wa(klon, klev, klev+1) |
---|
3340 | REAL wd(klon, klev+1) |
---|
3341 | REAL larg_part(klon, klev, klev+1) |
---|
3342 | REAL fracd(klon, klev+1) |
---|
3343 | REAL xxx(klon, klev+1) |
---|
3344 | REAL larg_cons(klon, klev+1) |
---|
3345 | REAL larg_detr(klon, klev+1) |
---|
3346 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
3347 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
3348 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
3349 | REAL fmc(klon, klev+1) |
---|
3350 | |
---|
3351 | ! CR:nouvelles variables |
---|
3352 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
3353 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
3354 | REAL f(klon), f0(klon) |
---|
3355 | REAL zlevinter(klon) |
---|
3356 | LOGICAL first |
---|
3357 | DATA first/.FALSE./ |
---|
3358 | SAVE first |
---|
3359 | !$OMP THREADPRIVATE(first) |
---|
3360 | ! RC |
---|
3361 | |
---|
3362 | CHARACTER *2 str2 |
---|
3363 | CHARACTER *10 str10 |
---|
3364 | |
---|
3365 | CHARACTER (LEN=20) :: modname = 'thermcell' |
---|
3366 | CHARACTER (LEN=80) :: abort_message |
---|
3367 | |
---|
3368 | LOGICAL vtest(klon), down |
---|
3369 | |
---|
3370 | EXTERNAL scopy |
---|
3371 | |
---|
3372 | INTEGER ncorrec, ll |
---|
3373 | SAVE ncorrec |
---|
3374 | DATA ncorrec/0/ |
---|
3375 | !$OMP THREADPRIVATE(ncorrec) |
---|
3376 | |
---|
3377 | |
---|
3378 | ! ----------------------------------------------------------------------- |
---|
3379 | ! initialisation: |
---|
3380 | ! --------------- |
---|
3381 | |
---|
3382 | sorties = .TRUE. |
---|
3383 | IF (ngrid/=klon) THEN |
---|
3384 | PRINT * |
---|
3385 | PRINT *, 'STOP dans convadj' |
---|
3386 | PRINT *, 'ngrid =', ngrid |
---|
3387 | PRINT *, 'klon =', klon |
---|
3388 | END IF |
---|
3389 | |
---|
3390 | ! ----------------------------------------------------------------------- |
---|
3391 | ! incrementation eventuelle de tendances precedentes: |
---|
3392 | ! --------------------------------------------------- |
---|
3393 | |
---|
3394 | ! print*,'0 OK convect8' |
---|
3395 | |
---|
3396 | DO l = 1, nlay |
---|
3397 | DO ig = 1, ngrid |
---|
3398 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
3399 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
3400 | zu(ig, l) = pu(ig, l) |
---|
3401 | zv(ig, l) = pv(ig, l) |
---|
3402 | zo(ig, l) = po(ig, l) |
---|
3403 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
3404 | END DO |
---|
3405 | END DO |
---|
3406 | |
---|
3407 | ! print*,'1 OK convect8' |
---|
3408 | ! -------------------- |
---|
3409 | |
---|
3410 | |
---|
3411 | ! + + + + + + + + + + + |
---|
3412 | |
---|
3413 | |
---|
3414 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
3415 | ! wh,wt,wo ... |
---|
3416 | |
---|
3417 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
3418 | |
---|
3419 | |
---|
3420 | ! -------------------- zlev(1) |
---|
3421 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
3422 | |
---|
3423 | |
---|
3424 | |
---|
3425 | ! ----------------------------------------------------------------------- |
---|
3426 | ! Calcul des altitudes des couches |
---|
3427 | ! ----------------------------------------------------------------------- |
---|
3428 | |
---|
3429 | DO l = 2, nlay |
---|
3430 | DO ig = 1, ngrid |
---|
3431 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
3432 | END DO |
---|
3433 | END DO |
---|
3434 | DO ig = 1, ngrid |
---|
3435 | zlev(ig, 1) = 0. |
---|
3436 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
3437 | END DO |
---|
3438 | DO l = 1, nlay |
---|
3439 | DO ig = 1, ngrid |
---|
3440 | zlay(ig, l) = pphi(ig, l)/rg |
---|
3441 | END DO |
---|
3442 | END DO |
---|
3443 | |
---|
3444 | ! print*,'2 OK convect8' |
---|
3445 | ! ----------------------------------------------------------------------- |
---|
3446 | ! Calcul des densites |
---|
3447 | ! ----------------------------------------------------------------------- |
---|
3448 | |
---|
3449 | DO l = 1, nlay |
---|
3450 | DO ig = 1, ngrid |
---|
3451 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
3452 | END DO |
---|
3453 | END DO |
---|
3454 | |
---|
3455 | DO l = 2, nlay |
---|
3456 | DO ig = 1, ngrid |
---|
3457 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
3458 | END DO |
---|
3459 | END DO |
---|
3460 | |
---|
3461 | DO k = 1, nlay |
---|
3462 | DO l = 1, nlay + 1 |
---|
3463 | DO ig = 1, ngrid |
---|
3464 | wa(ig, k, l) = 0. |
---|
3465 | END DO |
---|
3466 | END DO |
---|
3467 | END DO |
---|
3468 | |
---|
3469 | ! print*,'3 OK convect8' |
---|
3470 | ! ------------------------------------------------------------------ |
---|
3471 | ! Calcul de w2, quarre de w a partir de la cape |
---|
3472 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
3473 | |
---|
3474 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
3475 | ! w2 est stoke dans wa |
---|
3476 | |
---|
3477 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
3478 | ! independants par couches que pour calculer l'entrainement |
---|
3479 | ! a la base et la hauteur max de l'ascendance. |
---|
3480 | |
---|
3481 | ! Indicages: |
---|
3482 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
3483 | ! une vitesse wa(k,l). |
---|
3484 | |
---|
3485 | ! -------------------- |
---|
3486 | |
---|
3487 | ! + + + + + + + + + + |
---|
3488 | |
---|
3489 | ! wa(k,l) ---- -------------------- l |
---|
3490 | ! /\ |
---|
3491 | ! /||\ + + + + + + + + + + |
---|
3492 | ! || |
---|
3493 | ! || -------------------- |
---|
3494 | ! || |
---|
3495 | ! || + + + + + + + + + + |
---|
3496 | ! || |
---|
3497 | ! || -------------------- |
---|
3498 | ! ||__ |
---|
3499 | ! |___ + + + + + + + + + + k |
---|
3500 | |
---|
3501 | ! -------------------- |
---|
3502 | |
---|
3503 | |
---|
3504 | |
---|
3505 | ! ------------------------------------------------------------------ |
---|
3506 | |
---|
3507 | ! CR: ponderation entrainement des couches instables |
---|
3508 | ! def des entr_star tels que entr=f*entr_star |
---|
3509 | DO l = 1, klev |
---|
3510 | DO ig = 1, ngrid |
---|
3511 | entr_star(ig, l) = 0. |
---|
3512 | END DO |
---|
3513 | END DO |
---|
3514 | ! determination de la longueur de la couche d entrainement |
---|
3515 | DO ig = 1, ngrid |
---|
3516 | lentr(ig) = 1 |
---|
3517 | END DO |
---|
3518 | |
---|
3519 | ! on ne considere que les premieres couches instables |
---|
3520 | DO k = nlay - 2, 1, -1 |
---|
3521 | DO ig = 1, ngrid |
---|
3522 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
3523 | lentr(ig) = k |
---|
3524 | END IF |
---|
3525 | END DO |
---|
3526 | END DO |
---|
3527 | |
---|
3528 | ! determination du lmin: couche d ou provient le thermique |
---|
3529 | DO ig = 1, ngrid |
---|
3530 | lmin(ig) = 1 |
---|
3531 | END DO |
---|
3532 | DO ig = 1, ngrid |
---|
3533 | DO l = nlay, 2, -1 |
---|
3534 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
3535 | lmin(ig) = l - 1 |
---|
3536 | END IF |
---|
3537 | END DO |
---|
3538 | END DO |
---|
3539 | |
---|
3540 | ! definition de l'entrainement des couches |
---|
3541 | DO l = 1, klev - 1 |
---|
3542 | DO ig = 1, ngrid |
---|
3543 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
3544 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3545 | END IF |
---|
3546 | END DO |
---|
3547 | END DO |
---|
3548 | ! pas de thermique si couches 1->5 stables |
---|
3549 | DO ig = 1, ngrid |
---|
3550 | IF (lmin(ig)>5) THEN |
---|
3551 | DO l = 1, klev |
---|
3552 | entr_star(ig, l) = 0. |
---|
3553 | END DO |
---|
3554 | END IF |
---|
3555 | END DO |
---|
3556 | ! calcul de l entrainement total |
---|
3557 | DO ig = 1, ngrid |
---|
3558 | entr_star_tot(ig) = 0. |
---|
3559 | END DO |
---|
3560 | DO ig = 1, ngrid |
---|
3561 | DO k = 1, klev |
---|
3562 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
3563 | END DO |
---|
3564 | END DO |
---|
3565 | |
---|
3566 | PRINT *, 'fin calcul entr_star' |
---|
3567 | DO k = 1, klev |
---|
3568 | DO ig = 1, ngrid |
---|
3569 | ztva(ig, k) = ztv(ig, k) |
---|
3570 | END DO |
---|
3571 | END DO |
---|
3572 | ! RC |
---|
3573 | ! print*,'7 OK convect8' |
---|
3574 | DO k = 1, klev + 1 |
---|
3575 | DO ig = 1, ngrid |
---|
3576 | zw2(ig, k) = 0. |
---|
3577 | fmc(ig, k) = 0. |
---|
3578 | ! CR |
---|
3579 | f_star(ig, k) = 0. |
---|
3580 | ! RC |
---|
3581 | larg_cons(ig, k) = 0. |
---|
3582 | larg_detr(ig, k) = 0. |
---|
3583 | wa_moy(ig, k) = 0. |
---|
3584 | END DO |
---|
3585 | END DO |
---|
3586 | |
---|
3587 | ! print*,'8 OK convect8' |
---|
3588 | DO ig = 1, ngrid |
---|
3589 | linter(ig) = 1. |
---|
3590 | lmaxa(ig) = 1 |
---|
3591 | lmix(ig) = 1 |
---|
3592 | wmaxa(ig) = 0. |
---|
3593 | END DO |
---|
3594 | |
---|
3595 | ! CR: |
---|
3596 | DO l = 1, nlay - 2 |
---|
3597 | DO ig = 1, ngrid |
---|
3598 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
3599 | zw2(ig,l)<1E-10) THEN |
---|
3600 | f_star(ig, l+1) = entr_star(ig, l) |
---|
3601 | ! test:calcul de dteta |
---|
3602 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
3603 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
3604 | larg_detr(ig, l) = 0. |
---|
3605 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
3606 | l)>1.E-10)) THEN |
---|
3607 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
3608 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
3609 | f_star(ig, l+1) |
---|
3610 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
3611 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3612 | END IF |
---|
3613 | ! determination de zmax continu par interpolation lineaire |
---|
3614 | IF (zw2(ig,l+1)<0.) THEN |
---|
3615 | ! test |
---|
3616 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
3617 | PRINT *, 'pb linter' |
---|
3618 | END IF |
---|
3619 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
3620 | ig,l)) |
---|
3621 | zw2(ig, l+1) = 0. |
---|
3622 | lmaxa(ig) = l |
---|
3623 | ELSE |
---|
3624 | IF (zw2(ig,l+1)<0.) THEN |
---|
3625 | PRINT *, 'pb1 zw2<0' |
---|
3626 | END IF |
---|
3627 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
3628 | END IF |
---|
3629 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
3630 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
3631 | lmix(ig) = l + 1 |
---|
3632 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
3633 | END IF |
---|
3634 | END DO |
---|
3635 | END DO |
---|
3636 | PRINT *, 'fin calcul zw2' |
---|
3637 | |
---|
3638 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
3639 | DO ig = 1, ngrid |
---|
3640 | lmax(ig) = lentr(ig) |
---|
3641 | END DO |
---|
3642 | DO ig = 1, ngrid |
---|
3643 | DO l = nlay, lentr(ig) + 1, -1 |
---|
3644 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
3645 | lmax(ig) = l - 1 |
---|
3646 | END IF |
---|
3647 | END DO |
---|
3648 | END DO |
---|
3649 | ! pas de thermique si couches 1->5 stables |
---|
3650 | DO ig = 1, ngrid |
---|
3651 | IF (lmin(ig)>5) THEN |
---|
3652 | lmax(ig) = 1 |
---|
3653 | lmin(ig) = 1 |
---|
3654 | END IF |
---|
3655 | END DO |
---|
3656 | |
---|
3657 | ! Determination de zw2 max |
---|
3658 | DO ig = 1, ngrid |
---|
3659 | wmax(ig) = 0. |
---|
3660 | END DO |
---|
3661 | |
---|
3662 | DO l = 1, nlay |
---|
3663 | DO ig = 1, ngrid |
---|
3664 | IF (l<=lmax(ig)) THEN |
---|
3665 | IF (zw2(ig,l)<0.) THEN |
---|
3666 | PRINT *, 'pb2 zw2<0' |
---|
3667 | END IF |
---|
3668 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
3669 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
3670 | ELSE |
---|
3671 | zw2(ig, l) = 0. |
---|
3672 | END IF |
---|
3673 | END DO |
---|
3674 | END DO |
---|
3675 | |
---|
3676 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
3677 | DO ig = 1, ngrid |
---|
3678 | zmax(ig) = 0. |
---|
3679 | zlevinter(ig) = zlev(ig, 1) |
---|
3680 | END DO |
---|
3681 | DO ig = 1, ngrid |
---|
3682 | ! calcul de zlevinter |
---|
3683 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
3684 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
3685 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
3686 | END DO |
---|
3687 | |
---|
3688 | PRINT *, 'avant fermeture' |
---|
3689 | ! Fermeture,determination de f |
---|
3690 | DO ig = 1, ngrid |
---|
3691 | entr_star2(ig) = 0. |
---|
3692 | END DO |
---|
3693 | DO ig = 1, ngrid |
---|
3694 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
3695 | f(ig) = 0. |
---|
3696 | ELSE |
---|
3697 | DO k = lmin(ig), lentr(ig) |
---|
3698 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
3699 | zlev(ig,k+1)-zlev(ig,k))) |
---|
3700 | END DO |
---|
3701 | ! Nouvelle fermeture |
---|
3702 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
---|
3703 | entr_star_tot(ig) |
---|
3704 | ! test |
---|
3705 | ! if (first) then |
---|
3706 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
3707 | ! s *wmax(ig)) |
---|
3708 | ! endif |
---|
3709 | END IF |
---|
3710 | ! f0(ig)=f(ig) |
---|
3711 | ! first=.true. |
---|
3712 | END DO |
---|
3713 | PRINT *, 'apres fermeture' |
---|
3714 | |
---|
3715 | ! Calcul de l'entrainement |
---|
3716 | DO k = 1, klev |
---|
3717 | DO ig = 1, ngrid |
---|
3718 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
3719 | END DO |
---|
3720 | END DO |
---|
3721 | ! Calcul des flux |
---|
3722 | DO ig = 1, ngrid |
---|
3723 | DO l = 1, lmax(ig) - 1 |
---|
3724 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
3725 | END DO |
---|
3726 | END DO |
---|
3727 | |
---|
3728 | ! RC |
---|
3729 | |
---|
3730 | |
---|
3731 | ! print*,'9 OK convect8' |
---|
3732 | ! print*,'WA1 ',wa_moy |
---|
3733 | |
---|
3734 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
3735 | |
---|
3736 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
3737 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
3738 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
3739 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
3740 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
3741 | |
---|
3742 | DO l = 2, nlay |
---|
3743 | DO ig = 1, ngrid |
---|
3744 | IF (l<=lmaxa(ig)) THEN |
---|
3745 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
3746 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
3747 | END IF |
---|
3748 | END DO |
---|
3749 | END DO |
---|
3750 | |
---|
3751 | DO l = 2, nlay |
---|
3752 | DO ig = 1, ngrid |
---|
3753 | IF (l<=lmaxa(ig)) THEN |
---|
3754 | ! if (idetr.eq.0) then |
---|
3755 | ! cette option est finalement en dur. |
---|
3756 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
3757 | PRINT *, 'pb l_mix*zlev<0' |
---|
3758 | END IF |
---|
3759 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
3760 | ! else if (idetr.eq.1) then |
---|
3761 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
3762 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
3763 | ! else if (idetr.eq.2) then |
---|
3764 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
3765 | ! s *sqrt(wa_moy(ig,l)) |
---|
3766 | ! else if (idetr.eq.4) then |
---|
3767 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
3768 | ! s *wa_moy(ig,l) |
---|
3769 | ! endif |
---|
3770 | END IF |
---|
3771 | END DO |
---|
3772 | END DO |
---|
3773 | |
---|
3774 | ! print*,'10 OK convect8' |
---|
3775 | ! print*,'WA2 ',wa_moy |
---|
3776 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
3777 | ! compte de l'epluchage du thermique. |
---|
3778 | |
---|
3779 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
3780 | DO ig = 1, ngrid |
---|
3781 | IF (lmix(ig)>1.) THEN |
---|
3782 | ! test |
---|
3783 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
3784 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
3785 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
3786 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
3787 | |
---|
3788 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
3789 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
3790 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
3791 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
3792 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
3793 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
3794 | ELSE |
---|
3795 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
3796 | PRINT *, 'pb zmix' |
---|
3797 | END IF |
---|
3798 | ELSE |
---|
3799 | zmix(ig) = 0. |
---|
3800 | END IF |
---|
3801 | ! test |
---|
3802 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
3803 | zmix(ig) = 0.99*zmax(ig) |
---|
3804 | ! print*,'pb zmix>zmax' |
---|
3805 | END IF |
---|
3806 | END DO |
---|
3807 | |
---|
3808 | ! calcul du nouveau lmix correspondant |
---|
3809 | DO ig = 1, ngrid |
---|
3810 | DO l = 1, klev |
---|
3811 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
3812 | lmix(ig) = l |
---|
3813 | END IF |
---|
3814 | END DO |
---|
3815 | END DO |
---|
3816 | |
---|
3817 | DO l = 2, nlay |
---|
3818 | DO ig = 1, ngrid |
---|
3819 | IF (larg_cons(ig,l)>1.) THEN |
---|
3820 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
3821 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
3822 | ! test |
---|
3823 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
3824 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
3825 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3826 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
3827 | ELSE |
---|
3828 | ! wa_moy(ig,l)=0. |
---|
3829 | fraca(ig, l) = 0. |
---|
3830 | fracc(ig, l) = 0. |
---|
3831 | fracd(ig, l) = 1. |
---|
3832 | END IF |
---|
3833 | END DO |
---|
3834 | END DO |
---|
3835 | ! CR: calcul de fracazmix |
---|
3836 | DO ig = 1, ngrid |
---|
3837 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
3838 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
3839 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
3840 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
3841 | END DO |
---|
3842 | |
---|
3843 | DO l = 2, nlay |
---|
3844 | DO ig = 1, ngrid |
---|
3845 | IF (larg_cons(ig,l)>1.) THEN |
---|
3846 | IF (l>lmix(ig)) THEN |
---|
3847 | ! test |
---|
3848 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
3849 | ! print*,'pb xxx' |
---|
3850 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
3851 | ELSE |
---|
3852 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
3853 | END IF |
---|
3854 | IF (idetr==0) THEN |
---|
3855 | fraca(ig, l) = fracazmix(ig) |
---|
3856 | ELSE IF (idetr==1) THEN |
---|
3857 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
3858 | ELSE IF (idetr==2) THEN |
---|
3859 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
3860 | ELSE |
---|
3861 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
3862 | END IF |
---|
3863 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
3864 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
3865 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
3866 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3867 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
3868 | END IF |
---|
3869 | END IF |
---|
3870 | END DO |
---|
3871 | END DO |
---|
3872 | |
---|
3873 | PRINT *, 'fin calcul fraca' |
---|
3874 | ! print*,'11 OK convect8' |
---|
3875 | ! print*,'Ea3 ',wa_moy |
---|
3876 | ! ------------------------------------------------------------------ |
---|
3877 | ! Calcul de fracd, wd |
---|
3878 | ! somme wa - wd = 0 |
---|
3879 | ! ------------------------------------------------------------------ |
---|
3880 | |
---|
3881 | |
---|
3882 | DO ig = 1, ngrid |
---|
3883 | fm(ig, 1) = 0. |
---|
3884 | fm(ig, nlay+1) = 0. |
---|
3885 | END DO |
---|
3886 | |
---|
3887 | DO l = 2, nlay |
---|
3888 | DO ig = 1, ngrid |
---|
3889 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
3890 | ! CR:test |
---|
3891 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
3892 | fm(ig, l) = fm(ig, l-1) |
---|
3893 | ! write(1,*)'ajustement fm, l',l |
---|
3894 | END IF |
---|
3895 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
3896 | ! RC |
---|
3897 | END DO |
---|
3898 | DO ig = 1, ngrid |
---|
3899 | IF (fracd(ig,l)<0.1) THEN |
---|
3900 | abort_message = 'fracd trop petit' |
---|
3901 | CALL abort_physic(modname, abort_message, 1) |
---|
3902 | ELSE |
---|
3903 | ! vitesse descendante "diagnostique" |
---|
3904 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
3905 | END IF |
---|
3906 | END DO |
---|
3907 | END DO |
---|
3908 | |
---|
3909 | DO l = 1, nlay |
---|
3910 | DO ig = 1, ngrid |
---|
3911 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3912 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
3913 | END DO |
---|
3914 | END DO |
---|
3915 | |
---|
3916 | ! print*,'12 OK convect8' |
---|
3917 | ! print*,'WA4 ',wa_moy |
---|
3918 | ! c------------------------------------------------------------------ |
---|
3919 | ! calcul du transport vertical |
---|
3920 | ! ------------------------------------------------------------------ |
---|
3921 | |
---|
3922 | GO TO 4444 |
---|
3923 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
3924 | DO l = 2, nlay - 1 |
---|
3925 | DO ig = 1, ngrid |
---|
3926 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
3927 | ig,l+1)) THEN |
---|
3928 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
3929 | ! s ,fm(ig,l+1)*ptimestep |
---|
3930 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
3931 | END IF |
---|
3932 | END DO |
---|
3933 | END DO |
---|
3934 | |
---|
3935 | DO l = 1, nlay |
---|
3936 | DO ig = 1, ngrid |
---|
3937 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
3938 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
3939 | ! s ,entr(ig,l)*ptimestep |
---|
3940 | ! s ,' M=',masse(ig,l) |
---|
3941 | END IF |
---|
3942 | END DO |
---|
3943 | END DO |
---|
3944 | |
---|
3945 | DO l = 1, nlay |
---|
3946 | DO ig = 1, ngrid |
---|
3947 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
3948 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
3949 | ! s ,' FM=',fm(ig,l) |
---|
3950 | END IF |
---|
3951 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
3952 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
3953 | ! s ,' M=',masse(ig,l) |
---|
3954 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
3955 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
3956 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
3957 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
3958 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
3959 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
3960 | END IF |
---|
3961 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
3962 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
3963 | ! s ,' E=',entr(ig,l) |
---|
3964 | END IF |
---|
3965 | END DO |
---|
3966 | END DO |
---|
3967 | |
---|
3968 | 4444 CONTINUE |
---|
3969 | |
---|
3970 | ! CR:redefinition du entr |
---|
3971 | DO l = 1, nlay |
---|
3972 | DO ig = 1, ngrid |
---|
3973 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
3974 | IF (detr(ig,l)<0.) THEN |
---|
3975 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
3976 | detr(ig, l) = 0. |
---|
3977 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
3978 | END IF |
---|
3979 | END DO |
---|
3980 | END DO |
---|
3981 | ! RC |
---|
3982 | IF (w2di==1) THEN |
---|
3983 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
3984 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
3985 | ELSE |
---|
3986 | fm0 = fm |
---|
3987 | entr0 = entr |
---|
3988 | END IF |
---|
3989 | |
---|
3990 | IF (1==1) THEN |
---|
3991 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
3992 | zha) |
---|
3993 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
3994 | zoa) |
---|
3995 | ELSE |
---|
3996 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
3997 | zdhadj, zha) |
---|
3998 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
3999 | pdoadj, zoa) |
---|
4000 | END IF |
---|
4001 | |
---|
4002 | IF (1==0) THEN |
---|
4003 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
4004 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
4005 | ELSE |
---|
4006 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
4007 | zua) |
---|
4008 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
4009 | zva) |
---|
4010 | END IF |
---|
4011 | |
---|
4012 | DO l = 1, nlay |
---|
4013 | DO ig = 1, ngrid |
---|
4014 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
4015 | zf2 = zf/(1.-zf) |
---|
4016 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
4017 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
4018 | END DO |
---|
4019 | END DO |
---|
4020 | |
---|
4021 | |
---|
4022 | |
---|
4023 | ! print*,'13 OK convect8' |
---|
4024 | ! print*,'WA5 ',wa_moy |
---|
4025 | DO l = 1, nlay |
---|
4026 | DO ig = 1, ngrid |
---|
4027 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
4028 | END DO |
---|
4029 | END DO |
---|
4030 | |
---|
4031 | |
---|
4032 | ! do l=1,nlay |
---|
4033 | ! do ig=1,ngrid |
---|
4034 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
4035 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
4036 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
4037 | ! endif |
---|
4038 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
4039 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
4040 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
4041 | ! endif |
---|
4042 | ! enddo |
---|
4043 | ! enddo |
---|
4044 | |
---|
4045 | ! print*,'14 OK convect8' |
---|
4046 | ! ------------------------------------------------------------------ |
---|
4047 | ! Calculs pour les sorties |
---|
4048 | ! ------------------------------------------------------------------ |
---|
4049 | |
---|
4050 | IF (sorties) THEN |
---|
4051 | DO l = 1, nlay |
---|
4052 | DO ig = 1, ngrid |
---|
4053 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
4054 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
4055 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
4056 | (1.-fracd(ig,l)) |
---|
4057 | END DO |
---|
4058 | END DO |
---|
4059 | |
---|
4060 | ! deja fait |
---|
4061 | ! do l=1,nlay |
---|
4062 | ! do ig=1,ngrid |
---|
4063 | ! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
---|
4064 | ! if (detr(ig,l).lt.0.) then |
---|
4065 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
4066 | ! detr(ig,l)=0. |
---|
4067 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
4068 | ! endif |
---|
4069 | ! enddo |
---|
4070 | ! enddo |
---|
4071 | |
---|
4072 | ! print*,'15 OK convect8' |
---|
4073 | |
---|
4074 | |
---|
4075 | ! #define und |
---|
4076 | GO TO 123 |
---|
4077 | #ifdef und |
---|
4078 | CALL writeg1d(1, nlay, wd, 'wd ', 'wd ') |
---|
4079 | CALL writeg1d(1, nlay, zwa, 'wa ', 'wa ') |
---|
4080 | CALL writeg1d(1, nlay, fracd, 'fracd ', 'fracd ') |
---|
4081 | CALL writeg1d(1, nlay, fraca, 'fraca ', 'fraca ') |
---|
4082 | CALL writeg1d(1, nlay, wa_moy, 'wam ', 'wam ') |
---|
4083 | CALL writeg1d(1, nlay, zla, 'la ', 'la ') |
---|
4084 | CALL writeg1d(1, nlay, zld, 'ld ', 'ld ') |
---|
4085 | CALL writeg1d(1, nlay, pt, 'pt ', 'pt ') |
---|
4086 | CALL writeg1d(1, nlay, zh, 'zh ', 'zh ') |
---|
4087 | CALL writeg1d(1, nlay, zha, 'zha ', 'zha ') |
---|
4088 | CALL writeg1d(1, nlay, zu, 'zu ', 'zu ') |
---|
4089 | CALL writeg1d(1, nlay, zv, 'zv ', 'zv ') |
---|
4090 | CALL writeg1d(1, nlay, zo, 'zo ', 'zo ') |
---|
4091 | CALL writeg1d(1, nlay, wh, 'wh ', 'wh ') |
---|
4092 | CALL writeg1d(1, nlay, wu, 'wu ', 'wu ') |
---|
4093 | CALL writeg1d(1, nlay, wv, 'wv ', 'wv ') |
---|
4094 | CALL writeg1d(1, nlay, wo, 'w15uo ', 'wXo ') |
---|
4095 | CALL writeg1d(1, nlay, zdhadj, 'zdhadj ', 'zdhadj ') |
---|
4096 | CALL writeg1d(1, nlay, pduadj, 'pduadj ', 'pduadj ') |
---|
4097 | CALL writeg1d(1, nlay, pdvadj, 'pdvadj ', 'pdvadj ') |
---|
4098 | CALL writeg1d(1, nlay, pdoadj, 'pdoadj ', 'pdoadj ') |
---|
4099 | CALL writeg1d(1, nlay, entr, 'entr ', 'entr ') |
---|
4100 | CALL writeg1d(1, nlay, detr, 'detr ', 'detr ') |
---|
4101 | CALL writeg1d(1, nlay, fm, 'fm ', 'fm ') |
---|
4102 | |
---|
4103 | CALL writeg1d(1, nlay, pdtadj, 'pdtadj ', 'pdtadj ') |
---|
4104 | CALL writeg1d(1, nlay, pplay, 'pplay ', 'pplay ') |
---|
4105 | CALL writeg1d(1, nlay, pplev, 'pplev ', 'pplev ') |
---|
4106 | |
---|
4107 | ! recalcul des flux en diagnostique... |
---|
4108 | ! print*,'PAS DE TEMPS ',ptimestep |
---|
4109 | CALL dt2f(pplev, pplay, pt, pdtadj, wh) |
---|
4110 | CALL writeg1d(1, nlay, wh, 'wh2 ', 'wh2 ') |
---|
4111 | #endif |
---|
4112 | 123 CONTINUE |
---|
4113 | |
---|
4114 | END IF |
---|
4115 | |
---|
4116 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
4117 | |
---|
4118 | ! print*,'19 OK convect8' |
---|
4119 | RETURN |
---|
4120 | END SUBROUTINE thermcell |
---|
4121 | |
---|
4122 | SUBROUTINE dqthermcell(ngrid, nlay, ptimestep, fm, entr, masse, q, dq, qa) |
---|
4123 | USE dimphy |
---|
4124 | IMPLICIT NONE |
---|
4125 | |
---|
4126 | ! ======================================================================= |
---|
4127 | |
---|
4128 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4129 | ! de "thermiques" explicitement representes |
---|
4130 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4131 | |
---|
4132 | ! ======================================================================= |
---|
4133 | |
---|
4134 | INTEGER ngrid, nlay |
---|
4135 | |
---|
4136 | REAL ptimestep |
---|
4137 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
4138 | REAL entr(ngrid, nlay) |
---|
4139 | REAL q(ngrid, nlay) |
---|
4140 | REAL dq(ngrid, nlay) |
---|
4141 | |
---|
4142 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
---|
4143 | |
---|
4144 | INTEGER ig, k |
---|
4145 | |
---|
4146 | ! calcul du detrainement |
---|
4147 | |
---|
4148 | DO k = 1, nlay |
---|
4149 | DO ig = 1, ngrid |
---|
4150 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
4151 | ! test |
---|
4152 | IF (detr(ig,k)<0.) THEN |
---|
4153 | entr(ig, k) = entr(ig, k) - detr(ig, k) |
---|
4154 | detr(ig, k) = 0. |
---|
4155 | ! print*,'detr2<0!!!','ig=',ig,'k=',k,'f=',fm(ig,k), |
---|
4156 | ! s 'f+1=',fm(ig,k+1),'e=',entr(ig,k),'d=',detr(ig,k) |
---|
4157 | END IF |
---|
4158 | IF (fm(ig,k+1)<0.) THEN |
---|
4159 | ! print*,'fm2<0!!!' |
---|
4160 | END IF |
---|
4161 | IF (entr(ig,k)<0.) THEN |
---|
4162 | ! print*,'entr2<0!!!' |
---|
4163 | END IF |
---|
4164 | END DO |
---|
4165 | END DO |
---|
4166 | |
---|
4167 | ! calcul de la valeur dans les ascendances |
---|
4168 | DO ig = 1, ngrid |
---|
4169 | qa(ig, 1) = q(ig, 1) |
---|
4170 | END DO |
---|
4171 | |
---|
4172 | DO k = 2, nlay |
---|
4173 | DO ig = 1, ngrid |
---|
4174 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
4175 | qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+entr(ig,k)*q(ig,k))/ & |
---|
4176 | (fm(ig,k+1)+detr(ig,k)) |
---|
4177 | ELSE |
---|
4178 | qa(ig, k) = q(ig, k) |
---|
4179 | END IF |
---|
4180 | IF (qa(ig,k)<0.) THEN |
---|
4181 | ! print*,'qa<0!!!' |
---|
4182 | END IF |
---|
4183 | IF (q(ig,k)<0.) THEN |
---|
4184 | ! print*,'q<0!!!' |
---|
4185 | END IF |
---|
4186 | END DO |
---|
4187 | END DO |
---|
4188 | |
---|
4189 | DO k = 2, nlay |
---|
4190 | DO ig = 1, ngrid |
---|
4191 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
4192 | wqd(ig, k) = fm(ig, k)*q(ig, k) |
---|
4193 | IF (wqd(ig,k)<0.) THEN |
---|
4194 | ! print*,'wqd<0!!!' |
---|
4195 | END IF |
---|
4196 | END DO |
---|
4197 | END DO |
---|
4198 | DO ig = 1, ngrid |
---|
4199 | wqd(ig, 1) = 0. |
---|
4200 | wqd(ig, nlay+1) = 0. |
---|
4201 | END DO |
---|
4202 | |
---|
4203 | DO k = 1, nlay |
---|
4204 | DO ig = 1, ngrid |
---|
4205 | dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*q(ig,k)-wqd(ig,k)+wqd(ig,k+ & |
---|
4206 | 1))/masse(ig, k) |
---|
4207 | ! if (dq(ig,k).lt.0.) then |
---|
4208 | ! print*,'dq<0!!!' |
---|
4209 | ! endif |
---|
4210 | END DO |
---|
4211 | END DO |
---|
4212 | |
---|
4213 | RETURN |
---|
4214 | END SUBROUTINE dqthermcell |
---|
4215 | SUBROUTINE dvthermcell(ngrid, nlay, ptimestep, fm, entr, masse, fraca, larga, & |
---|
4216 | u, v, du, dv, ua, va) |
---|
4217 | USE dimphy |
---|
4218 | IMPLICIT NONE |
---|
4219 | |
---|
4220 | ! ======================================================================= |
---|
4221 | |
---|
4222 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4223 | ! de "thermiques" explicitement representes |
---|
4224 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4225 | |
---|
4226 | ! ======================================================================= |
---|
4227 | |
---|
4228 | INTEGER ngrid, nlay |
---|
4229 | |
---|
4230 | REAL ptimestep |
---|
4231 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
4232 | REAL fraca(ngrid, nlay+1) |
---|
4233 | REAL larga(ngrid) |
---|
4234 | REAL entr(ngrid, nlay) |
---|
4235 | REAL u(ngrid, nlay) |
---|
4236 | REAL ua(ngrid, nlay) |
---|
4237 | REAL du(ngrid, nlay) |
---|
4238 | REAL v(ngrid, nlay) |
---|
4239 | REAL va(ngrid, nlay) |
---|
4240 | REAL dv(ngrid, nlay) |
---|
4241 | |
---|
4242 | REAL qa(klon, klev), detr(klon, klev) |
---|
4243 | REAL wvd(klon, klev+1), wud(klon, klev+1) |
---|
4244 | REAL gamma0, gamma(klon, klev+1) |
---|
4245 | REAL dua, dva |
---|
4246 | INTEGER iter |
---|
4247 | |
---|
4248 | INTEGER ig, k |
---|
4249 | |
---|
4250 | ! calcul du detrainement |
---|
4251 | |
---|
4252 | DO k = 1, nlay |
---|
4253 | DO ig = 1, ngrid |
---|
4254 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
4255 | END DO |
---|
4256 | END DO |
---|
4257 | |
---|
4258 | ! calcul de la valeur dans les ascendances |
---|
4259 | DO ig = 1, ngrid |
---|
4260 | ua(ig, 1) = u(ig, 1) |
---|
4261 | va(ig, 1) = v(ig, 1) |
---|
4262 | END DO |
---|
4263 | |
---|
4264 | DO k = 2, nlay |
---|
4265 | DO ig = 1, ngrid |
---|
4266 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
4267 | ! On itère sur la valeur du coeff de freinage. |
---|
4268 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
4269 | gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
---|
4270 | k)))*0.5/larga(ig) |
---|
4271 | ! gamma0=0. |
---|
4272 | ! la première fois on multiplie le coefficient de freinage |
---|
4273 | ! par le module du vent dans la couche en dessous. |
---|
4274 | dua = ua(ig, k-1) - u(ig, k-1) |
---|
4275 | dva = va(ig, k-1) - v(ig, k-1) |
---|
4276 | DO iter = 1, 5 |
---|
4277 | gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
---|
4278 | ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(entr(ig,k)+gamma(ig, & |
---|
4279 | k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
---|
4280 | va(ig, k) = (fm(ig,k)*va(ig,k-1)+(entr(ig,k)+gamma(ig, & |
---|
4281 | k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
---|
4282 | ! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
4283 | dua = ua(ig, k) - u(ig, k) |
---|
4284 | dva = va(ig, k) - v(ig, k) |
---|
4285 | END DO |
---|
4286 | ELSE |
---|
4287 | ua(ig, k) = u(ig, k) |
---|
4288 | va(ig, k) = v(ig, k) |
---|
4289 | gamma(ig, k) = 0. |
---|
4290 | END IF |
---|
4291 | END DO |
---|
4292 | END DO |
---|
4293 | |
---|
4294 | DO k = 2, nlay |
---|
4295 | DO ig = 1, ngrid |
---|
4296 | wud(ig, k) = fm(ig, k)*u(ig, k) |
---|
4297 | wvd(ig, k) = fm(ig, k)*v(ig, k) |
---|
4298 | END DO |
---|
4299 | END DO |
---|
4300 | DO ig = 1, ngrid |
---|
4301 | wud(ig, 1) = 0. |
---|
4302 | wud(ig, nlay+1) = 0. |
---|
4303 | wvd(ig, 1) = 0. |
---|
4304 | wvd(ig, nlay+1) = 0. |
---|
4305 | END DO |
---|
4306 | |
---|
4307 | DO k = 1, nlay |
---|
4308 | DO ig = 1, ngrid |
---|
4309 | du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
4310 | k))*u(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
---|
4311 | dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
4312 | k))*v(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
---|
4313 | END DO |
---|
4314 | END DO |
---|
4315 | |
---|
4316 | RETURN |
---|
4317 | END SUBROUTINE dvthermcell |
---|
4318 | SUBROUTINE dqthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, frac, q, dq, & |
---|
4319 | qa) |
---|
4320 | USE dimphy |
---|
4321 | IMPLICIT NONE |
---|
4322 | |
---|
4323 | ! ======================================================================= |
---|
4324 | |
---|
4325 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4326 | ! de "thermiques" explicitement representes |
---|
4327 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4328 | |
---|
4329 | ! ======================================================================= |
---|
4330 | |
---|
4331 | INTEGER ngrid, nlay |
---|
4332 | |
---|
4333 | REAL ptimestep |
---|
4334 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
4335 | REAL entr(ngrid, nlay), frac(ngrid, nlay) |
---|
4336 | REAL q(ngrid, nlay) |
---|
4337 | REAL dq(ngrid, nlay) |
---|
4338 | |
---|
4339 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
---|
4340 | REAL qe(klon, klev), zf, zf2 |
---|
4341 | |
---|
4342 | INTEGER ig, k |
---|
4343 | |
---|
4344 | ! calcul du detrainement |
---|
4345 | |
---|
4346 | DO k = 1, nlay |
---|
4347 | DO ig = 1, ngrid |
---|
4348 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
4349 | END DO |
---|
4350 | END DO |
---|
4351 | |
---|
4352 | ! calcul de la valeur dans les ascendances |
---|
4353 | DO ig = 1, ngrid |
---|
4354 | qa(ig, 1) = q(ig, 1) |
---|
4355 | qe(ig, 1) = q(ig, 1) |
---|
4356 | END DO |
---|
4357 | |
---|
4358 | DO k = 2, nlay |
---|
4359 | DO ig = 1, ngrid |
---|
4360 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
4361 | zf = 0.5*(frac(ig,k)+frac(ig,k+1)) |
---|
4362 | zf2 = 1./(1.-zf) |
---|
4363 | qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+zf2*entr(ig,k)*q(ig,k))/ & |
---|
4364 | (fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2) |
---|
4365 | qe(ig, k) = (q(ig,k)-zf*qa(ig,k))*zf2 |
---|
4366 | ELSE |
---|
4367 | qa(ig, k) = q(ig, k) |
---|
4368 | qe(ig, k) = q(ig, k) |
---|
4369 | END IF |
---|
4370 | END DO |
---|
4371 | END DO |
---|
4372 | |
---|
4373 | DO k = 2, nlay |
---|
4374 | DO ig = 1, ngrid |
---|
4375 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
4376 | wqd(ig, k) = fm(ig, k)*qe(ig, k) |
---|
4377 | END DO |
---|
4378 | END DO |
---|
4379 | DO ig = 1, ngrid |
---|
4380 | wqd(ig, 1) = 0. |
---|
4381 | wqd(ig, nlay+1) = 0. |
---|
4382 | END DO |
---|
4383 | |
---|
4384 | DO k = 1, nlay |
---|
4385 | DO ig = 1, ngrid |
---|
4386 | dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*qe(ig,k)-wqd(ig,k)+wqd(ig,k & |
---|
4387 | +1))/masse(ig, k) |
---|
4388 | END DO |
---|
4389 | END DO |
---|
4390 | |
---|
4391 | RETURN |
---|
4392 | END SUBROUTINE dqthermcell2 |
---|
4393 | SUBROUTINE dvthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, fraca, & |
---|
4394 | larga, u, v, du, dv, ua, va) |
---|
4395 | USE dimphy |
---|
4396 | IMPLICIT NONE |
---|
4397 | |
---|
4398 | ! ======================================================================= |
---|
4399 | |
---|
4400 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4401 | ! de "thermiques" explicitement representes |
---|
4402 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4403 | |
---|
4404 | ! ======================================================================= |
---|
4405 | |
---|
4406 | INTEGER ngrid, nlay |
---|
4407 | |
---|
4408 | REAL ptimestep |
---|
4409 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
4410 | REAL fraca(ngrid, nlay+1) |
---|
4411 | REAL larga(ngrid) |
---|
4412 | REAL entr(ngrid, nlay) |
---|
4413 | REAL u(ngrid, nlay) |
---|
4414 | REAL ua(ngrid, nlay) |
---|
4415 | REAL du(ngrid, nlay) |
---|
4416 | REAL v(ngrid, nlay) |
---|
4417 | REAL va(ngrid, nlay) |
---|
4418 | REAL dv(ngrid, nlay) |
---|
4419 | |
---|
4420 | REAL qa(klon, klev), detr(klon, klev), zf, zf2 |
---|
4421 | REAL wvd(klon, klev+1), wud(klon, klev+1) |
---|
4422 | REAL gamma0, gamma(klon, klev+1) |
---|
4423 | REAL ue(klon, klev), ve(klon, klev) |
---|
4424 | REAL dua, dva |
---|
4425 | INTEGER iter |
---|
4426 | |
---|
4427 | INTEGER ig, k |
---|
4428 | |
---|
4429 | ! calcul du detrainement |
---|
4430 | |
---|
4431 | DO k = 1, nlay |
---|
4432 | DO ig = 1, ngrid |
---|
4433 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
4434 | END DO |
---|
4435 | END DO |
---|
4436 | |
---|
4437 | ! calcul de la valeur dans les ascendances |
---|
4438 | DO ig = 1, ngrid |
---|
4439 | ua(ig, 1) = u(ig, 1) |
---|
4440 | va(ig, 1) = v(ig, 1) |
---|
4441 | ue(ig, 1) = u(ig, 1) |
---|
4442 | ve(ig, 1) = v(ig, 1) |
---|
4443 | END DO |
---|
4444 | |
---|
4445 | DO k = 2, nlay |
---|
4446 | DO ig = 1, ngrid |
---|
4447 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
4448 | ! On itère sur la valeur du coeff de freinage. |
---|
4449 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
4450 | gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
---|
4451 | k)))*0.5/larga(ig)*1. |
---|
4452 | ! s *0.5 |
---|
4453 | ! gamma0=0. |
---|
4454 | zf = 0.5*(fraca(ig,k)+fraca(ig,k+1)) |
---|
4455 | zf = 0. |
---|
4456 | zf2 = 1./(1.-zf) |
---|
4457 | ! la première fois on multiplie le coefficient de freinage |
---|
4458 | ! par le module du vent dans la couche en dessous. |
---|
4459 | dua = ua(ig, k-1) - u(ig, k-1) |
---|
4460 | dva = va(ig, k-1) - v(ig, k-1) |
---|
4461 | DO iter = 1, 5 |
---|
4462 | ! On choisit une relaxation lineaire. |
---|
4463 | gamma(ig, k) = gamma0 |
---|
4464 | ! On choisit une relaxation quadratique. |
---|
4465 | gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
---|
4466 | ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
---|
4467 | k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
---|
4468 | ) |
---|
4469 | va(ig, k) = (fm(ig,k)*va(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
---|
4470 | k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
---|
4471 | ) |
---|
4472 | ! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
4473 | dua = ua(ig, k) - u(ig, k) |
---|
4474 | dva = va(ig, k) - v(ig, k) |
---|
4475 | ue(ig, k) = (u(ig,k)-zf*ua(ig,k))*zf2 |
---|
4476 | ve(ig, k) = (v(ig,k)-zf*va(ig,k))*zf2 |
---|
4477 | END DO |
---|
4478 | ELSE |
---|
4479 | ua(ig, k) = u(ig, k) |
---|
4480 | va(ig, k) = v(ig, k) |
---|
4481 | ue(ig, k) = u(ig, k) |
---|
4482 | ve(ig, k) = v(ig, k) |
---|
4483 | gamma(ig, k) = 0. |
---|
4484 | END IF |
---|
4485 | END DO |
---|
4486 | END DO |
---|
4487 | |
---|
4488 | DO k = 2, nlay |
---|
4489 | DO ig = 1, ngrid |
---|
4490 | wud(ig, k) = fm(ig, k)*ue(ig, k) |
---|
4491 | wvd(ig, k) = fm(ig, k)*ve(ig, k) |
---|
4492 | END DO |
---|
4493 | END DO |
---|
4494 | DO ig = 1, ngrid |
---|
4495 | wud(ig, 1) = 0. |
---|
4496 | wud(ig, nlay+1) = 0. |
---|
4497 | wvd(ig, 1) = 0. |
---|
4498 | wvd(ig, nlay+1) = 0. |
---|
4499 | END DO |
---|
4500 | |
---|
4501 | DO k = 1, nlay |
---|
4502 | DO ig = 1, ngrid |
---|
4503 | du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
4504 | k))*ue(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
---|
4505 | dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
4506 | k))*ve(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
---|
4507 | END DO |
---|
4508 | END DO |
---|
4509 | |
---|
4510 | RETURN |
---|
4511 | END SUBROUTINE dvthermcell2 |
---|
4512 | SUBROUTINE thermcell_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
4513 | pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
4514 | ! ,pu_therm,pv_therm |
---|
4515 | , r_aspect, l_mix, w2di, tho) |
---|
4516 | |
---|
4517 | USE dimphy |
---|
4518 | IMPLICIT NONE |
---|
4519 | |
---|
4520 | ! ======================================================================= |
---|
4521 | |
---|
4522 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4523 | ! de "thermiques" explicitement representes |
---|
4524 | |
---|
4525 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
4526 | |
---|
4527 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
4528 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
4529 | ! mélange |
---|
4530 | |
---|
4531 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
4532 | ! en compte: |
---|
4533 | ! 1. un flux de masse montant |
---|
4534 | ! 2. un flux de masse descendant |
---|
4535 | ! 3. un entrainement |
---|
4536 | ! 4. un detrainement |
---|
4537 | |
---|
4538 | ! ======================================================================= |
---|
4539 | |
---|
4540 | ! ----------------------------------------------------------------------- |
---|
4541 | ! declarations: |
---|
4542 | ! ------------- |
---|
4543 | |
---|
4544 | include "YOMCST.h" |
---|
4545 | |
---|
4546 | ! arguments: |
---|
4547 | ! ---------- |
---|
4548 | |
---|
4549 | INTEGER ngrid, nlay, w2di |
---|
4550 | REAL tho |
---|
4551 | REAL ptimestep, l_mix, r_aspect |
---|
4552 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
4553 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
4554 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
4555 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
4556 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
4557 | REAL pphi(ngrid, nlay) |
---|
4558 | |
---|
4559 | INTEGER idetr |
---|
4560 | SAVE idetr |
---|
4561 | DATA idetr/3/ |
---|
4562 | !$OMP THREADPRIVATE(idetr) |
---|
4563 | |
---|
4564 | ! local: |
---|
4565 | ! ------ |
---|
4566 | |
---|
4567 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
4568 | REAL zsortie1d(klon) |
---|
4569 | ! CR: on remplace lmax(klon,klev+1) |
---|
4570 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
4571 | REAL linter(klon) |
---|
4572 | REAL zmix(klon), fracazmix(klon) |
---|
4573 | ! RC |
---|
4574 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
4575 | |
---|
4576 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
4577 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
4578 | REAL ztv(klon, klev) |
---|
4579 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
4580 | REAL wh(klon, klev+1) |
---|
4581 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
4582 | REAL zla(klon, klev+1) |
---|
4583 | REAL zwa(klon, klev+1) |
---|
4584 | REAL zld(klon, klev+1) |
---|
4585 | REAL zwd(klon, klev+1) |
---|
4586 | REAL zsortie(klon, klev) |
---|
4587 | REAL zva(klon, klev) |
---|
4588 | REAL zua(klon, klev) |
---|
4589 | REAL zoa(klon, klev) |
---|
4590 | |
---|
4591 | REAL zha(klon, klev) |
---|
4592 | REAL wa_moy(klon, klev+1) |
---|
4593 | REAL fraca(klon, klev+1) |
---|
4594 | REAL fracc(klon, klev+1) |
---|
4595 | REAL zf, zf2 |
---|
4596 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
4597 | ! common/comtherm/thetath2,wth2 |
---|
4598 | |
---|
4599 | REAL count_time |
---|
4600 | INTEGER ialt |
---|
4601 | |
---|
4602 | LOGICAL sorties |
---|
4603 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
4604 | REAL zpspsk(klon, klev) |
---|
4605 | |
---|
4606 | ! real wmax(klon,klev),wmaxa(klon) |
---|
4607 | REAL wmax(klon), wmaxa(klon) |
---|
4608 | REAL wa(klon, klev, klev+1) |
---|
4609 | REAL wd(klon, klev+1) |
---|
4610 | REAL larg_part(klon, klev, klev+1) |
---|
4611 | REAL fracd(klon, klev+1) |
---|
4612 | REAL xxx(klon, klev+1) |
---|
4613 | REAL larg_cons(klon, klev+1) |
---|
4614 | REAL larg_detr(klon, klev+1) |
---|
4615 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
4616 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
4617 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
4618 | REAL fmc(klon, klev+1) |
---|
4619 | |
---|
4620 | ! CR:nouvelles variables |
---|
4621 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
4622 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
4623 | REAL f(klon), f0(klon) |
---|
4624 | REAL zlevinter(klon) |
---|
4625 | LOGICAL first |
---|
4626 | DATA first/.FALSE./ |
---|
4627 | SAVE first |
---|
4628 | !$OMP THREADPRIVATE(first) |
---|
4629 | ! RC |
---|
4630 | |
---|
4631 | CHARACTER *2 str2 |
---|
4632 | CHARACTER *10 str10 |
---|
4633 | |
---|
4634 | CHARACTER (LEN=20) :: modname = 'thermcell_sec' |
---|
4635 | CHARACTER (LEN=80) :: abort_message |
---|
4636 | |
---|
4637 | LOGICAL vtest(klon), down |
---|
4638 | |
---|
4639 | EXTERNAL scopy |
---|
4640 | |
---|
4641 | INTEGER ncorrec, ll |
---|
4642 | SAVE ncorrec |
---|
4643 | DATA ncorrec/0/ |
---|
4644 | !$OMP THREADPRIVATE(ncorrec) |
---|
4645 | |
---|
4646 | |
---|
4647 | ! ----------------------------------------------------------------------- |
---|
4648 | ! initialisation: |
---|
4649 | ! --------------- |
---|
4650 | |
---|
4651 | sorties = .TRUE. |
---|
4652 | IF (ngrid/=klon) THEN |
---|
4653 | PRINT * |
---|
4654 | PRINT *, 'STOP dans convadj' |
---|
4655 | PRINT *, 'ngrid =', ngrid |
---|
4656 | PRINT *, 'klon =', klon |
---|
4657 | END IF |
---|
4658 | |
---|
4659 | ! ----------------------------------------------------------------------- |
---|
4660 | ! incrementation eventuelle de tendances precedentes: |
---|
4661 | ! --------------------------------------------------- |
---|
4662 | |
---|
4663 | ! print*,'0 OK convect8' |
---|
4664 | |
---|
4665 | DO l = 1, nlay |
---|
4666 | DO ig = 1, ngrid |
---|
4667 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
4668 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
4669 | zu(ig, l) = pu(ig, l) |
---|
4670 | zv(ig, l) = pv(ig, l) |
---|
4671 | zo(ig, l) = po(ig, l) |
---|
4672 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
4673 | END DO |
---|
4674 | END DO |
---|
4675 | |
---|
4676 | ! print*,'1 OK convect8' |
---|
4677 | ! -------------------- |
---|
4678 | |
---|
4679 | |
---|
4680 | ! + + + + + + + + + + + |
---|
4681 | |
---|
4682 | |
---|
4683 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
4684 | ! wh,wt,wo ... |
---|
4685 | |
---|
4686 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
4687 | |
---|
4688 | |
---|
4689 | ! -------------------- zlev(1) |
---|
4690 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
4691 | |
---|
4692 | |
---|
4693 | |
---|
4694 | ! ----------------------------------------------------------------------- |
---|
4695 | ! Calcul des altitudes des couches |
---|
4696 | ! ----------------------------------------------------------------------- |
---|
4697 | |
---|
4698 | DO l = 2, nlay |
---|
4699 | DO ig = 1, ngrid |
---|
4700 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
4701 | END DO |
---|
4702 | END DO |
---|
4703 | DO ig = 1, ngrid |
---|
4704 | zlev(ig, 1) = 0. |
---|
4705 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
4706 | END DO |
---|
4707 | DO l = 1, nlay |
---|
4708 | DO ig = 1, ngrid |
---|
4709 | zlay(ig, l) = pphi(ig, l)/rg |
---|
4710 | END DO |
---|
4711 | END DO |
---|
4712 | |
---|
4713 | ! print*,'2 OK convect8' |
---|
4714 | ! ----------------------------------------------------------------------- |
---|
4715 | ! Calcul des densites |
---|
4716 | ! ----------------------------------------------------------------------- |
---|
4717 | |
---|
4718 | DO l = 1, nlay |
---|
4719 | DO ig = 1, ngrid |
---|
4720 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
4721 | END DO |
---|
4722 | END DO |
---|
4723 | |
---|
4724 | DO l = 2, nlay |
---|
4725 | DO ig = 1, ngrid |
---|
4726 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
4727 | END DO |
---|
4728 | END DO |
---|
4729 | |
---|
4730 | DO k = 1, nlay |
---|
4731 | DO l = 1, nlay + 1 |
---|
4732 | DO ig = 1, ngrid |
---|
4733 | wa(ig, k, l) = 0. |
---|
4734 | END DO |
---|
4735 | END DO |
---|
4736 | END DO |
---|
4737 | |
---|
4738 | ! print*,'3 OK convect8' |
---|
4739 | ! ------------------------------------------------------------------ |
---|
4740 | ! Calcul de w2, quarre de w a partir de la cape |
---|
4741 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
4742 | |
---|
4743 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
4744 | ! w2 est stoke dans wa |
---|
4745 | |
---|
4746 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
4747 | ! independants par couches que pour calculer l'entrainement |
---|
4748 | ! a la base et la hauteur max de l'ascendance. |
---|
4749 | |
---|
4750 | ! Indicages: |
---|
4751 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
4752 | ! une vitesse wa(k,l). |
---|
4753 | |
---|
4754 | ! -------------------- |
---|
4755 | |
---|
4756 | ! + + + + + + + + + + |
---|
4757 | |
---|
4758 | ! wa(k,l) ---- -------------------- l |
---|
4759 | ! /\ |
---|
4760 | ! /||\ + + + + + + + + + + |
---|
4761 | ! || |
---|
4762 | ! || -------------------- |
---|
4763 | ! || |
---|
4764 | ! || + + + + + + + + + + |
---|
4765 | ! || |
---|
4766 | ! || -------------------- |
---|
4767 | ! ||__ |
---|
4768 | ! |___ + + + + + + + + + + k |
---|
4769 | |
---|
4770 | ! -------------------- |
---|
4771 | |
---|
4772 | |
---|
4773 | |
---|
4774 | ! ------------------------------------------------------------------ |
---|
4775 | |
---|
4776 | ! CR: ponderation entrainement des couches instables |
---|
4777 | ! def des entr_star tels que entr=f*entr_star |
---|
4778 | DO l = 1, klev |
---|
4779 | DO ig = 1, ngrid |
---|
4780 | entr_star(ig, l) = 0. |
---|
4781 | END DO |
---|
4782 | END DO |
---|
4783 | ! determination de la longueur de la couche d entrainement |
---|
4784 | DO ig = 1, ngrid |
---|
4785 | lentr(ig) = 1 |
---|
4786 | END DO |
---|
4787 | |
---|
4788 | ! on ne considere que les premieres couches instables |
---|
4789 | DO k = nlay - 2, 1, -1 |
---|
4790 | DO ig = 1, ngrid |
---|
4791 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
4792 | lentr(ig) = k |
---|
4793 | END IF |
---|
4794 | END DO |
---|
4795 | END DO |
---|
4796 | |
---|
4797 | ! determination du lmin: couche d ou provient le thermique |
---|
4798 | DO ig = 1, ngrid |
---|
4799 | lmin(ig) = 1 |
---|
4800 | END DO |
---|
4801 | DO ig = 1, ngrid |
---|
4802 | DO l = nlay, 2, -1 |
---|
4803 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
4804 | lmin(ig) = l - 1 |
---|
4805 | END IF |
---|
4806 | END DO |
---|
4807 | END DO |
---|
4808 | |
---|
4809 | ! definition de l'entrainement des couches |
---|
4810 | DO l = 1, klev - 1 |
---|
4811 | DO ig = 1, ngrid |
---|
4812 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
4813 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))** & ! s |
---|
4814 | ! (zlev(ig,l+1)-zlev(ig,l)) |
---|
4815 | sqrt(zlev(ig,l+1)) |
---|
4816 | END IF |
---|
4817 | END DO |
---|
4818 | END DO |
---|
4819 | ! pas de thermique si couche 1 stable |
---|
4820 | DO ig = 1, ngrid |
---|
4821 | IF (lmin(ig)>1) THEN |
---|
4822 | DO l = 1, klev |
---|
4823 | entr_star(ig, l) = 0. |
---|
4824 | END DO |
---|
4825 | END IF |
---|
4826 | END DO |
---|
4827 | ! calcul de l entrainement total |
---|
4828 | DO ig = 1, ngrid |
---|
4829 | entr_star_tot(ig) = 0. |
---|
4830 | END DO |
---|
4831 | DO ig = 1, ngrid |
---|
4832 | DO k = 1, klev |
---|
4833 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
4834 | END DO |
---|
4835 | END DO |
---|
4836 | |
---|
4837 | ! print*,'fin calcul entr_star' |
---|
4838 | DO k = 1, klev |
---|
4839 | DO ig = 1, ngrid |
---|
4840 | ztva(ig, k) = ztv(ig, k) |
---|
4841 | END DO |
---|
4842 | END DO |
---|
4843 | ! RC |
---|
4844 | ! print*,'7 OK convect8' |
---|
4845 | DO k = 1, klev + 1 |
---|
4846 | DO ig = 1, ngrid |
---|
4847 | zw2(ig, k) = 0. |
---|
4848 | fmc(ig, k) = 0. |
---|
4849 | ! CR |
---|
4850 | f_star(ig, k) = 0. |
---|
4851 | ! RC |
---|
4852 | larg_cons(ig, k) = 0. |
---|
4853 | larg_detr(ig, k) = 0. |
---|
4854 | wa_moy(ig, k) = 0. |
---|
4855 | END DO |
---|
4856 | END DO |
---|
4857 | |
---|
4858 | ! print*,'8 OK convect8' |
---|
4859 | DO ig = 1, ngrid |
---|
4860 | linter(ig) = 1. |
---|
4861 | lmaxa(ig) = 1 |
---|
4862 | lmix(ig) = 1 |
---|
4863 | wmaxa(ig) = 0. |
---|
4864 | END DO |
---|
4865 | |
---|
4866 | ! CR: |
---|
4867 | DO l = 1, nlay - 2 |
---|
4868 | DO ig = 1, ngrid |
---|
4869 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
4870 | zw2(ig,l)<1E-10) THEN |
---|
4871 | f_star(ig, l+1) = entr_star(ig, l) |
---|
4872 | ! test:calcul de dteta |
---|
4873 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
4874 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
4875 | larg_detr(ig, l) = 0. |
---|
4876 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
4877 | l)>1.E-10)) THEN |
---|
4878 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
4879 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
4880 | f_star(ig, l+1) |
---|
4881 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
4882 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
4883 | END IF |
---|
4884 | ! determination de zmax continu par interpolation lineaire |
---|
4885 | IF (zw2(ig,l+1)<0.) THEN |
---|
4886 | ! test |
---|
4887 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
4888 | ! print*,'pb linter' |
---|
4889 | END IF |
---|
4890 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
4891 | ig,l)) |
---|
4892 | zw2(ig, l+1) = 0. |
---|
4893 | lmaxa(ig) = l |
---|
4894 | ELSE |
---|
4895 | IF (zw2(ig,l+1)<0.) THEN |
---|
4896 | ! print*,'pb1 zw2<0' |
---|
4897 | END IF |
---|
4898 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
4899 | END IF |
---|
4900 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
4901 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
4902 | lmix(ig) = l + 1 |
---|
4903 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
4904 | END IF |
---|
4905 | END DO |
---|
4906 | END DO |
---|
4907 | ! print*,'fin calcul zw2' |
---|
4908 | |
---|
4909 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
4910 | DO ig = 1, ngrid |
---|
4911 | lmax(ig) = lentr(ig) |
---|
4912 | END DO |
---|
4913 | DO ig = 1, ngrid |
---|
4914 | DO l = nlay, lentr(ig) + 1, -1 |
---|
4915 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
4916 | lmax(ig) = l - 1 |
---|
4917 | END IF |
---|
4918 | END DO |
---|
4919 | END DO |
---|
4920 | ! pas de thermique si couche 1 stable |
---|
4921 | DO ig = 1, ngrid |
---|
4922 | IF (lmin(ig)>1) THEN |
---|
4923 | lmax(ig) = 1 |
---|
4924 | lmin(ig) = 1 |
---|
4925 | END IF |
---|
4926 | END DO |
---|
4927 | |
---|
4928 | ! Determination de zw2 max |
---|
4929 | DO ig = 1, ngrid |
---|
4930 | wmax(ig) = 0. |
---|
4931 | END DO |
---|
4932 | |
---|
4933 | DO l = 1, nlay |
---|
4934 | DO ig = 1, ngrid |
---|
4935 | IF (l<=lmax(ig)) THEN |
---|
4936 | IF (zw2(ig,l)<0.) THEN |
---|
4937 | ! print*,'pb2 zw2<0' |
---|
4938 | END IF |
---|
4939 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
4940 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
4941 | ELSE |
---|
4942 | zw2(ig, l) = 0. |
---|
4943 | END IF |
---|
4944 | END DO |
---|
4945 | END DO |
---|
4946 | |
---|
4947 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
4948 | DO ig = 1, ngrid |
---|
4949 | zmax(ig) = 0. |
---|
4950 | zlevinter(ig) = zlev(ig, 1) |
---|
4951 | END DO |
---|
4952 | DO ig = 1, ngrid |
---|
4953 | ! calcul de zlevinter |
---|
4954 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
4955 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
4956 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
4957 | END DO |
---|
4958 | |
---|
4959 | ! print*,'avant fermeture' |
---|
4960 | ! Fermeture,determination de f |
---|
4961 | DO ig = 1, ngrid |
---|
4962 | entr_star2(ig) = 0. |
---|
4963 | END DO |
---|
4964 | DO ig = 1, ngrid |
---|
4965 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
4966 | f(ig) = 0. |
---|
4967 | ELSE |
---|
4968 | DO k = lmin(ig), lentr(ig) |
---|
4969 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
4970 | zlev(ig,k+1)-zlev(ig,k))) |
---|
4971 | END DO |
---|
4972 | ! Nouvelle fermeture |
---|
4973 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
---|
4974 | entr_star_tot(ig) |
---|
4975 | ! test |
---|
4976 | ! if (first) then |
---|
4977 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
4978 | ! s *wmax(ig)) |
---|
4979 | ! endif |
---|
4980 | END IF |
---|
4981 | ! f0(ig)=f(ig) |
---|
4982 | ! first=.true. |
---|
4983 | END DO |
---|
4984 | ! print*,'apres fermeture' |
---|
4985 | |
---|
4986 | ! Calcul de l'entrainement |
---|
4987 | DO k = 1, klev |
---|
4988 | DO ig = 1, ngrid |
---|
4989 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
4990 | END DO |
---|
4991 | END DO |
---|
4992 | ! CR:test pour entrainer moins que la masse |
---|
4993 | DO ig = 1, ngrid |
---|
4994 | DO l = 1, lentr(ig) |
---|
4995 | IF ((entr(ig,l)*ptimestep)>(0.9*masse(ig,l))) THEN |
---|
4996 | entr(ig, l+1) = entr(ig, l+1) + entr(ig, l) - & |
---|
4997 | 0.9*masse(ig, l)/ptimestep |
---|
4998 | entr(ig, l) = 0.9*masse(ig, l)/ptimestep |
---|
4999 | END IF |
---|
5000 | END DO |
---|
5001 | END DO |
---|
5002 | ! CR: fin test |
---|
5003 | ! Calcul des flux |
---|
5004 | DO ig = 1, ngrid |
---|
5005 | DO l = 1, lmax(ig) - 1 |
---|
5006 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
5007 | END DO |
---|
5008 | END DO |
---|
5009 | |
---|
5010 | ! RC |
---|
5011 | |
---|
5012 | |
---|
5013 | ! print*,'9 OK convect8' |
---|
5014 | ! print*,'WA1 ',wa_moy |
---|
5015 | |
---|
5016 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
5017 | |
---|
5018 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
5019 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
5020 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
5021 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
5022 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
5023 | |
---|
5024 | DO l = 2, nlay |
---|
5025 | DO ig = 1, ngrid |
---|
5026 | IF (l<=lmaxa(ig)) THEN |
---|
5027 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
5028 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
5029 | END IF |
---|
5030 | END DO |
---|
5031 | END DO |
---|
5032 | |
---|
5033 | DO l = 2, nlay |
---|
5034 | DO ig = 1, ngrid |
---|
5035 | IF (l<=lmaxa(ig)) THEN |
---|
5036 | ! if (idetr.eq.0) then |
---|
5037 | ! cette option est finalement en dur. |
---|
5038 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
5039 | ! print*,'pb l_mix*zlev<0' |
---|
5040 | END IF |
---|
5041 | ! CR: test: nouvelle def de lambda |
---|
5042 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5043 | IF (zw2(ig,l)>1.E-10) THEN |
---|
5044 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
5045 | ELSE |
---|
5046 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
5047 | END IF |
---|
5048 | ! RC |
---|
5049 | ! else if (idetr.eq.1) then |
---|
5050 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
5051 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
5052 | ! else if (idetr.eq.2) then |
---|
5053 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5054 | ! s *sqrt(wa_moy(ig,l)) |
---|
5055 | ! else if (idetr.eq.4) then |
---|
5056 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5057 | ! s *wa_moy(ig,l) |
---|
5058 | ! endif |
---|
5059 | END IF |
---|
5060 | END DO |
---|
5061 | END DO |
---|
5062 | |
---|
5063 | ! print*,'10 OK convect8' |
---|
5064 | ! print*,'WA2 ',wa_moy |
---|
5065 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
5066 | ! compte de l'epluchage du thermique. |
---|
5067 | |
---|
5068 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
5069 | DO ig = 1, ngrid |
---|
5070 | IF (lmix(ig)>1.) THEN |
---|
5071 | ! test |
---|
5072 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
5073 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
5074 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
5075 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
5076 | |
---|
5077 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
5078 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
5079 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
5080 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
5081 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
5082 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
5083 | ELSE |
---|
5084 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
5085 | ! print*,'pb zmix' |
---|
5086 | END IF |
---|
5087 | ELSE |
---|
5088 | zmix(ig) = 0. |
---|
5089 | END IF |
---|
5090 | ! test |
---|
5091 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
5092 | zmix(ig) = 0.99*zmax(ig) |
---|
5093 | ! print*,'pb zmix>zmax' |
---|
5094 | END IF |
---|
5095 | END DO |
---|
5096 | |
---|
5097 | ! calcul du nouveau lmix correspondant |
---|
5098 | DO ig = 1, ngrid |
---|
5099 | DO l = 1, klev |
---|
5100 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
5101 | lmix(ig) = l |
---|
5102 | END IF |
---|
5103 | END DO |
---|
5104 | END DO |
---|
5105 | |
---|
5106 | DO l = 2, nlay |
---|
5107 | DO ig = 1, ngrid |
---|
5108 | IF (larg_cons(ig,l)>1.) THEN |
---|
5109 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
5110 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
5111 | ! test |
---|
5112 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
5113 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
5114 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
5115 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
5116 | ELSE |
---|
5117 | ! wa_moy(ig,l)=0. |
---|
5118 | fraca(ig, l) = 0. |
---|
5119 | fracc(ig, l) = 0. |
---|
5120 | fracd(ig, l) = 1. |
---|
5121 | END IF |
---|
5122 | END DO |
---|
5123 | END DO |
---|
5124 | ! CR: calcul de fracazmix |
---|
5125 | DO ig = 1, ngrid |
---|
5126 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
5127 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
5128 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
5129 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
5130 | END DO |
---|
5131 | |
---|
5132 | DO l = 2, nlay |
---|
5133 | DO ig = 1, ngrid |
---|
5134 | IF (larg_cons(ig,l)>1.) THEN |
---|
5135 | IF (l>lmix(ig)) THEN |
---|
5136 | ! test |
---|
5137 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
5138 | ! print*,'pb xxx' |
---|
5139 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
5140 | ELSE |
---|
5141 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
5142 | END IF |
---|
5143 | IF (idetr==0) THEN |
---|
5144 | fraca(ig, l) = fracazmix(ig) |
---|
5145 | ELSE IF (idetr==1) THEN |
---|
5146 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
5147 | ELSE IF (idetr==2) THEN |
---|
5148 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
5149 | ELSE |
---|
5150 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
5151 | END IF |
---|
5152 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
5153 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
5154 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
5155 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
5156 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
5157 | END IF |
---|
5158 | END IF |
---|
5159 | END DO |
---|
5160 | END DO |
---|
5161 | |
---|
5162 | ! print*,'fin calcul fraca' |
---|
5163 | ! print*,'11 OK convect8' |
---|
5164 | ! print*,'Ea3 ',wa_moy |
---|
5165 | ! ------------------------------------------------------------------ |
---|
5166 | ! Calcul de fracd, wd |
---|
5167 | ! somme wa - wd = 0 |
---|
5168 | ! ------------------------------------------------------------------ |
---|
5169 | |
---|
5170 | |
---|
5171 | DO ig = 1, ngrid |
---|
5172 | fm(ig, 1) = 0. |
---|
5173 | fm(ig, nlay+1) = 0. |
---|
5174 | END DO |
---|
5175 | |
---|
5176 | DO l = 2, nlay |
---|
5177 | DO ig = 1, ngrid |
---|
5178 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
5179 | ! CR:test |
---|
5180 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
5181 | fm(ig, l) = fm(ig, l-1) |
---|
5182 | ! write(1,*)'ajustement fm, l',l |
---|
5183 | END IF |
---|
5184 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
5185 | ! RC |
---|
5186 | END DO |
---|
5187 | DO ig = 1, ngrid |
---|
5188 | IF (fracd(ig,l)<0.1) THEN |
---|
5189 | abort_message = 'fracd trop petit' |
---|
5190 | CALL abort_physic(modname, abort_message, 1) |
---|
5191 | ELSE |
---|
5192 | ! vitesse descendante "diagnostique" |
---|
5193 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
5194 | END IF |
---|
5195 | END DO |
---|
5196 | END DO |
---|
5197 | |
---|
5198 | DO l = 1, nlay |
---|
5199 | DO ig = 1, ngrid |
---|
5200 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
5201 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
5202 | END DO |
---|
5203 | END DO |
---|
5204 | |
---|
5205 | ! print*,'12 OK convect8' |
---|
5206 | ! print*,'WA4 ',wa_moy |
---|
5207 | ! c------------------------------------------------------------------ |
---|
5208 | ! calcul du transport vertical |
---|
5209 | ! ------------------------------------------------------------------ |
---|
5210 | |
---|
5211 | GO TO 4444 |
---|
5212 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
5213 | DO l = 2, nlay - 1 |
---|
5214 | DO ig = 1, ngrid |
---|
5215 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
5216 | ig,l+1)) THEN |
---|
5217 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
5218 | ! s ,fm(ig,l+1)*ptimestep |
---|
5219 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
5220 | END IF |
---|
5221 | END DO |
---|
5222 | END DO |
---|
5223 | |
---|
5224 | DO l = 1, nlay |
---|
5225 | DO ig = 1, ngrid |
---|
5226 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
5227 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
5228 | ! s ,entr(ig,l)*ptimestep |
---|
5229 | ! s ,' M=',masse(ig,l) |
---|
5230 | END IF |
---|
5231 | END DO |
---|
5232 | END DO |
---|
5233 | |
---|
5234 | DO l = 1, nlay |
---|
5235 | DO ig = 1, ngrid |
---|
5236 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
5237 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
5238 | ! s ,' FM=',fm(ig,l) |
---|
5239 | END IF |
---|
5240 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
5241 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
5242 | ! s ,' M=',masse(ig,l) |
---|
5243 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
5244 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
5245 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
5246 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
5247 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
5248 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
5249 | END IF |
---|
5250 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
5251 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
5252 | ! s ,' E=',entr(ig,l) |
---|
5253 | END IF |
---|
5254 | END DO |
---|
5255 | END DO |
---|
5256 | |
---|
5257 | 4444 CONTINUE |
---|
5258 | |
---|
5259 | ! CR:redefinition du entr |
---|
5260 | DO l = 1, nlay |
---|
5261 | DO ig = 1, ngrid |
---|
5262 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
5263 | IF (detr(ig,l)<0.) THEN |
---|
5264 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
5265 | detr(ig, l) = 0. |
---|
5266 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
5267 | END IF |
---|
5268 | END DO |
---|
5269 | END DO |
---|
5270 | ! RC |
---|
5271 | IF (w2di==1) THEN |
---|
5272 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
5273 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
5274 | ELSE |
---|
5275 | fm0 = fm |
---|
5276 | entr0 = entr |
---|
5277 | END IF |
---|
5278 | |
---|
5279 | IF (1==1) THEN |
---|
5280 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
5281 | zha) |
---|
5282 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
5283 | zoa) |
---|
5284 | ELSE |
---|
5285 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
5286 | zdhadj, zha) |
---|
5287 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
5288 | pdoadj, zoa) |
---|
5289 | END IF |
---|
5290 | |
---|
5291 | IF (1==0) THEN |
---|
5292 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
5293 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
5294 | ELSE |
---|
5295 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
5296 | zua) |
---|
5297 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
5298 | zva) |
---|
5299 | END IF |
---|
5300 | |
---|
5301 | DO l = 1, nlay |
---|
5302 | DO ig = 1, ngrid |
---|
5303 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
5304 | zf2 = zf/(1.-zf) |
---|
5305 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
5306 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
5307 | END DO |
---|
5308 | END DO |
---|
5309 | |
---|
5310 | |
---|
5311 | |
---|
5312 | ! print*,'13 OK convect8' |
---|
5313 | ! print*,'WA5 ',wa_moy |
---|
5314 | DO l = 1, nlay |
---|
5315 | DO ig = 1, ngrid |
---|
5316 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
5317 | END DO |
---|
5318 | END DO |
---|
5319 | |
---|
5320 | |
---|
5321 | ! do l=1,nlay |
---|
5322 | ! do ig=1,ngrid |
---|
5323 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
5324 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
5325 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
5326 | ! endif |
---|
5327 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
5328 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
5329 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
5330 | ! endif |
---|
5331 | ! enddo |
---|
5332 | ! enddo |
---|
5333 | |
---|
5334 | ! print*,'14 OK convect8' |
---|
5335 | ! ------------------------------------------------------------------ |
---|
5336 | ! Calculs pour les sorties |
---|
5337 | ! ------------------------------------------------------------------ |
---|
5338 | |
---|
5339 | RETURN |
---|
5340 | END SUBROUTINE thermcell_sec |
---|
5341 | |
---|