[1992] | 1 | SUBROUTINE thermcell_2002(ngrid, nlay, ptimestep, iflag_thermals, pplay, & |
---|
| 2 | pplev, pphi, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, & |
---|
| 3 | fraca, wa_moy, r_aspect, l_mix, w2di, tho) |
---|
[878] | 4 | |
---|
[1992] | 5 | USE dimphy |
---|
| 6 | USE write_field_phy |
---|
| 7 | IMPLICIT NONE |
---|
[878] | 8 | |
---|
[1992] | 9 | ! ======================================================================= |
---|
[878] | 10 | |
---|
[1992] | 11 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 12 | ! de "thermiques" explicitement representes |
---|
[878] | 13 | |
---|
[1992] | 14 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
[878] | 15 | |
---|
[1992] | 16 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 17 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 18 | ! mélange |
---|
[878] | 19 | |
---|
[1992] | 20 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 21 | ! en compte: |
---|
| 22 | ! 1. un flux de masse montant |
---|
| 23 | ! 2. un flux de masse descendant |
---|
| 24 | ! 3. un entrainement |
---|
| 25 | ! 4. un detrainement |
---|
[878] | 26 | |
---|
[1992] | 27 | ! ======================================================================= |
---|
[878] | 28 | |
---|
[1992] | 29 | ! ----------------------------------------------------------------------- |
---|
| 30 | ! declarations: |
---|
| 31 | ! ------------- |
---|
[878] | 32 | |
---|
[1992] | 33 | include "YOMCST.h" |
---|
[1943] | 34 | |
---|
[1992] | 35 | ! arguments: |
---|
| 36 | ! ---------- |
---|
[878] | 37 | |
---|
[1992] | 38 | INTEGER ngrid, nlay, w2di, iflag_thermals |
---|
| 39 | REAL tho |
---|
| 40 | REAL ptimestep, l_mix, r_aspect |
---|
| 41 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 42 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 43 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 44 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 45 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 46 | REAL pphi(ngrid, nlay) |
---|
| 47 | REAL fraca(ngrid, nlay+1), zw2(ngrid, nlay+1) |
---|
[878] | 48 | |
---|
[1992] | 49 | INTEGER, SAVE :: idetr = 3, lev_out = 1 |
---|
| 50 | !$OMP THREADPRIVATE(idetr,lev_out) |
---|
[878] | 51 | |
---|
[1992] | 52 | ! local: |
---|
| 53 | ! ------ |
---|
[878] | 54 | |
---|
[1992] | 55 | INTEGER, SAVE :: dvdq = 0, flagdq = 0, dqimpl = 1 |
---|
| 56 | LOGICAL, SAVE :: debut = .TRUE. |
---|
| 57 | !$OMP THREADPRIVATE(dvdq,flagdq,debut,dqimpl) |
---|
[878] | 58 | |
---|
[1992] | 59 | INTEGER ig, k, l, lmax(klon, klev+1), lmaxa(klon), lmix(klon) |
---|
| 60 | REAL zmax(klon), zw, zz, ztva(klon, klev), zzz |
---|
[878] | 61 | |
---|
[1992] | 62 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 63 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 64 | REAL ztv(klon, klev) |
---|
| 65 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 66 | REAL wh(klon, klev+1) |
---|
| 67 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 68 | REAL zla(klon, klev+1) |
---|
| 69 | REAL zwa(klon, klev+1) |
---|
| 70 | REAL zld(klon, klev+1) |
---|
| 71 | REAL zwd(klon, klev+1) |
---|
| 72 | REAL zsortie(klon, klev) |
---|
| 73 | REAL zva(klon, klev) |
---|
| 74 | REAL zua(klon, klev) |
---|
| 75 | REAL zoa(klon, klev) |
---|
[878] | 76 | |
---|
[1992] | 77 | REAL zha(klon, klev) |
---|
| 78 | REAL wa_moy(klon, klev+1) |
---|
| 79 | REAL fracc(klon, klev+1) |
---|
| 80 | REAL zf, zf2 |
---|
| 81 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 82 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 83 | |
---|
[1992] | 84 | REAL count_time |
---|
[1403] | 85 | |
---|
[1992] | 86 | LOGICAL sorties |
---|
| 87 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 88 | REAL zpspsk(klon, klev) |
---|
[878] | 89 | |
---|
[1992] | 90 | REAL wmax(klon, klev), wmaxa(klon) |
---|
[878] | 91 | |
---|
[1992] | 92 | REAL wa(klon, klev, klev+1) |
---|
| 93 | REAL wd(klon, klev+1) |
---|
| 94 | REAL larg_part(klon, klev, klev+1) |
---|
| 95 | REAL fracd(klon, klev+1) |
---|
| 96 | REAL xxx(klon, klev+1) |
---|
| 97 | REAL larg_cons(klon, klev+1) |
---|
| 98 | REAL larg_detr(klon, klev+1) |
---|
| 99 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 100 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 101 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 102 | REAL fmc(klon, klev+1) |
---|
[987] | 103 | |
---|
[1992] | 104 | CHARACTER (LEN=2) :: str2 |
---|
| 105 | CHARACTER (LEN=10) :: str10 |
---|
[878] | 106 | |
---|
[1992] | 107 | CHARACTER (LEN=20) :: modname = 'thermcell2002' |
---|
| 108 | CHARACTER (LEN=80) :: abort_message |
---|
[878] | 109 | |
---|
[1992] | 110 | LOGICAL vtest(klon), down |
---|
[878] | 111 | |
---|
[1992] | 112 | EXTERNAL scopy |
---|
[878] | 113 | |
---|
[1992] | 114 | INTEGER ncorrec, ll |
---|
| 115 | SAVE ncorrec |
---|
| 116 | DATA ncorrec/0/ |
---|
| 117 | !$OMP THREADPRIVATE(ncorrec) |
---|
[878] | 118 | |
---|
[1943] | 119 | |
---|
[1992] | 120 | ! ----------------------------------------------------------------------- |
---|
| 121 | ! initialisation: |
---|
| 122 | ! --------------- |
---|
[878] | 123 | |
---|
[1992] | 124 | sorties = .TRUE. |
---|
| 125 | IF (ngrid/=klon) THEN |
---|
| 126 | PRINT * |
---|
| 127 | PRINT *, 'STOP dans convadj' |
---|
| 128 | PRINT *, 'ngrid =', ngrid |
---|
| 129 | PRINT *, 'klon =', klon |
---|
| 130 | END IF |
---|
[878] | 131 | |
---|
[1992] | 132 | ! ----------------------------------------------------------------------- |
---|
| 133 | ! incrementation eventuelle de tendances precedentes: |
---|
| 134 | ! --------------------------------------------------- |
---|
[878] | 135 | |
---|
[1992] | 136 | ! print*,'0 OK convect8' |
---|
[878] | 137 | |
---|
[1992] | 138 | DO l = 1, nlay |
---|
| 139 | DO ig = 1, ngrid |
---|
| 140 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 141 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 142 | zu(ig, l) = pu(ig, l) |
---|
| 143 | zv(ig, l) = pv(ig, l) |
---|
| 144 | zo(ig, l) = po(ig, l) |
---|
| 145 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 146 | END DO |
---|
| 147 | END DO |
---|
[878] | 148 | |
---|
[1992] | 149 | ! print*,'1 OK convect8' |
---|
| 150 | ! -------------------- |
---|
[878] | 151 | |
---|
| 152 | |
---|
[1992] | 153 | ! + + + + + + + + + + + |
---|
[878] | 154 | |
---|
| 155 | |
---|
[1992] | 156 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 157 | ! wh,wt,wo ... |
---|
[878] | 158 | |
---|
[1992] | 159 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[878] | 160 | |
---|
| 161 | |
---|
[1992] | 162 | ! -------------------- zlev(1) |
---|
| 163 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[878] | 164 | |
---|
| 165 | |
---|
[1943] | 166 | |
---|
[1992] | 167 | ! ----------------------------------------------------------------------- |
---|
| 168 | ! Calcul des altitudes des couches |
---|
| 169 | ! ----------------------------------------------------------------------- |
---|
[878] | 170 | |
---|
[1992] | 171 | IF (debut) THEN |
---|
| 172 | flagdq = (iflag_thermals-1000)/100 |
---|
| 173 | dvdq = (iflag_thermals-(1000+flagdq*100))/10 |
---|
| 174 | IF (flagdq==2) dqimpl = -1 |
---|
| 175 | IF (flagdq==3) dqimpl = 1 |
---|
| 176 | debut = .FALSE. |
---|
| 177 | END IF |
---|
| 178 | PRINT *, 'TH flag th ', iflag_thermals, flagdq, dvdq, dqimpl |
---|
[878] | 179 | |
---|
[1992] | 180 | DO l = 2, nlay |
---|
| 181 | DO ig = 1, ngrid |
---|
| 182 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 183 | END DO |
---|
| 184 | END DO |
---|
| 185 | DO ig = 1, ngrid |
---|
| 186 | zlev(ig, 1) = 0. |
---|
| 187 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 188 | END DO |
---|
| 189 | DO l = 1, nlay |
---|
| 190 | DO ig = 1, ngrid |
---|
| 191 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 192 | END DO |
---|
| 193 | END DO |
---|
[878] | 194 | |
---|
[1992] | 195 | ! print*,'2 OK convect8' |
---|
| 196 | ! ----------------------------------------------------------------------- |
---|
| 197 | ! Calcul des densites |
---|
| 198 | ! ----------------------------------------------------------------------- |
---|
[878] | 199 | |
---|
[1992] | 200 | DO l = 1, nlay |
---|
| 201 | DO ig = 1, ngrid |
---|
| 202 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 203 | END DO |
---|
| 204 | END DO |
---|
[878] | 205 | |
---|
[1992] | 206 | DO l = 2, nlay |
---|
| 207 | DO ig = 1, ngrid |
---|
| 208 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 209 | END DO |
---|
| 210 | END DO |
---|
[878] | 211 | |
---|
[1992] | 212 | DO k = 1, nlay |
---|
| 213 | DO l = 1, nlay + 1 |
---|
| 214 | DO ig = 1, ngrid |
---|
| 215 | wa(ig, k, l) = 0. |
---|
| 216 | END DO |
---|
| 217 | END DO |
---|
| 218 | END DO |
---|
[878] | 219 | |
---|
[1992] | 220 | ! print*,'3 OK convect8' |
---|
| 221 | ! ------------------------------------------------------------------ |
---|
| 222 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 223 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
[878] | 224 | |
---|
[1992] | 225 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 226 | ! w2 est stoke dans wa |
---|
[878] | 227 | |
---|
[1992] | 228 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 229 | ! independants par couches que pour calculer l'entrainement |
---|
| 230 | ! a la base et la hauteur max de l'ascendance. |
---|
[878] | 231 | |
---|
[1992] | 232 | ! Indicages: |
---|
| 233 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 234 | ! une vitesse wa(k,l). |
---|
[878] | 235 | |
---|
[1992] | 236 | ! -------------------- |
---|
[878] | 237 | |
---|
[1992] | 238 | ! + + + + + + + + + + |
---|
[878] | 239 | |
---|
[1992] | 240 | ! wa(k,l) ---- -------------------- l |
---|
| 241 | ! /\ |
---|
| 242 | ! /||\ + + + + + + + + + + |
---|
| 243 | ! || |
---|
| 244 | ! || -------------------- |
---|
| 245 | ! || |
---|
| 246 | ! || + + + + + + + + + + |
---|
| 247 | ! || |
---|
| 248 | ! || -------------------- |
---|
| 249 | ! ||__ |
---|
| 250 | ! |___ + + + + + + + + + + k |
---|
[878] | 251 | |
---|
[1992] | 252 | ! -------------------- |
---|
[878] | 253 | |
---|
| 254 | |
---|
| 255 | |
---|
[1992] | 256 | ! ------------------------------------------------------------------ |
---|
[878] | 257 | |
---|
| 258 | |
---|
[1992] | 259 | DO k = 1, nlay - 1 |
---|
| 260 | DO ig = 1, ngrid |
---|
| 261 | wa(ig, k, k) = 0. |
---|
| 262 | wa(ig, k, k+1) = 2.*rg*(ztv(ig,k)-ztv(ig,k+1))/ztv(ig, k+1)* & |
---|
| 263 | (zlev(ig,k+1)-zlev(ig,k)) |
---|
| 264 | END DO |
---|
| 265 | DO l = k + 1, nlay - 1 |
---|
| 266 | DO ig = 1, ngrid |
---|
| 267 | wa(ig, k, l+1) = wa(ig, k, l) + 2.*rg*(ztv(ig,k)-ztv(ig,l))/ztv(ig, l & |
---|
| 268 | )*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 269 | END DO |
---|
| 270 | END DO |
---|
| 271 | DO ig = 1, ngrid |
---|
| 272 | wa(ig, k, nlay+1) = 0. |
---|
| 273 | END DO |
---|
| 274 | END DO |
---|
[878] | 275 | |
---|
[1992] | 276 | ! print*,'4 OK convect8' |
---|
| 277 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 278 | DO k = 1, nlay - 1 |
---|
| 279 | DO ig = 1, ngrid |
---|
| 280 | lmax(ig, k) = k |
---|
| 281 | END DO |
---|
| 282 | DO l = nlay, k + 1, -1 |
---|
| 283 | DO ig = 1, ngrid |
---|
| 284 | IF (wa(ig,k,l)<=1.E-10) lmax(ig, k) = l - 1 |
---|
| 285 | END DO |
---|
| 286 | END DO |
---|
| 287 | END DO |
---|
[878] | 288 | |
---|
[1992] | 289 | ! print*,'5 OK convect8' |
---|
| 290 | ! Calcule du w max du thermique |
---|
| 291 | DO k = 1, nlay |
---|
| 292 | DO ig = 1, ngrid |
---|
| 293 | wmax(ig, k) = 0. |
---|
| 294 | END DO |
---|
| 295 | END DO |
---|
[878] | 296 | |
---|
[1992] | 297 | DO k = 1, nlay - 1 |
---|
| 298 | DO l = k, nlay |
---|
| 299 | DO ig = 1, ngrid |
---|
| 300 | IF (l<=lmax(ig,k)) THEN |
---|
| 301 | wa(ig, k, l) = sqrt(wa(ig,k,l)) |
---|
| 302 | wmax(ig, k) = max(wmax(ig,k), wa(ig,k,l)) |
---|
| 303 | ELSE |
---|
| 304 | wa(ig, k, l) = 0. |
---|
| 305 | END IF |
---|
| 306 | END DO |
---|
| 307 | END DO |
---|
| 308 | END DO |
---|
[878] | 309 | |
---|
[1992] | 310 | DO k = 1, nlay - 1 |
---|
| 311 | DO ig = 1, ngrid |
---|
| 312 | pu_therm(ig, k) = sqrt(wmax(ig,k)) |
---|
| 313 | pv_therm(ig, k) = sqrt(wmax(ig,k)) |
---|
| 314 | END DO |
---|
| 315 | END DO |
---|
[878] | 316 | |
---|
[1992] | 317 | ! print*,'6 OK convect8' |
---|
| 318 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 319 | DO ig = 1, ngrid |
---|
| 320 | zmax(ig) = 500. |
---|
| 321 | END DO |
---|
| 322 | ! print*,'LMAX LMAX LMAX ' |
---|
| 323 | DO k = 1, nlay - 1 |
---|
| 324 | DO ig = 1, ngrid |
---|
| 325 | zmax(ig) = max(zmax(ig), zlev(ig,lmax(ig,k))-zlev(ig,k)) |
---|
| 326 | END DO |
---|
| 327 | ! print*,k,lmax(1,k) |
---|
| 328 | END DO |
---|
| 329 | ! print*,'ZMAX ZMAX ZMAX ',zmax |
---|
| 330 | ! call dump2d(iim,jjm-1,zmax(2:ngrid-1),'ZMAX ') |
---|
[1943] | 331 | |
---|
[1992] | 332 | ! print*,'OKl336' |
---|
| 333 | ! Calcul de l'entrainement. |
---|
| 334 | ! Le rapport d'aspect relie la largeur de l'ascendance a l'epaisseur |
---|
| 335 | ! de la couche d'alimentation en partant du principe que la vitesse |
---|
| 336 | ! maximum dans l'ascendance est la vitesse d'entrainement horizontale. |
---|
| 337 | DO k = 1, nlay |
---|
| 338 | DO ig = 1, ngrid |
---|
| 339 | zzz = rho(ig, k)*wmax(ig, k)*(zlev(ig,k+1)-zlev(ig,k))/ & |
---|
| 340 | (zmax(ig)*r_aspect) |
---|
| 341 | IF (w2di==2) THEN |
---|
| 342 | entr(ig, k) = entr(ig, k) + ptimestep*(zzz-entr(ig,k))/tho |
---|
| 343 | ELSE |
---|
| 344 | entr(ig, k) = zzz |
---|
| 345 | END IF |
---|
| 346 | ztva(ig, k) = ztv(ig, k) |
---|
| 347 | END DO |
---|
| 348 | END DO |
---|
[878] | 349 | |
---|
| 350 | |
---|
[1992] | 351 | ! print*,'7 OK convect8' |
---|
| 352 | DO k = 1, klev + 1 |
---|
| 353 | DO ig = 1, ngrid |
---|
| 354 | zw2(ig, k) = 0. |
---|
| 355 | fmc(ig, k) = 0. |
---|
| 356 | larg_cons(ig, k) = 0. |
---|
| 357 | larg_detr(ig, k) = 0. |
---|
| 358 | wa_moy(ig, k) = 0. |
---|
| 359 | END DO |
---|
| 360 | END DO |
---|
[878] | 361 | |
---|
[1992] | 362 | ! print*,'8 OK convect8' |
---|
| 363 | DO ig = 1, ngrid |
---|
| 364 | lmaxa(ig) = 1 |
---|
| 365 | lmix(ig) = 1 |
---|
| 366 | wmaxa(ig) = 0. |
---|
| 367 | END DO |
---|
[878] | 368 | |
---|
| 369 | |
---|
[1992] | 370 | ! print*,'OKl372' |
---|
| 371 | DO l = 1, nlay - 2 |
---|
| 372 | DO ig = 1, ngrid |
---|
| 373 | ! if (zw2(ig,l).lt.1.e-10.and.ztv(ig,l).gt.ztv(ig,l+1)) then |
---|
| 374 | ! print*,'COUCOU ',l,zw2(ig,l),ztv(ig,l),ztv(ig,l+1) |
---|
| 375 | IF (zw2(ig,l)<1.E-10 .AND. ztv(ig,l)>ztv(ig,l+1) .AND. & |
---|
| 376 | entr(ig,l)>1.E-10) THEN |
---|
| 377 | ! print*,'COUCOU cas 1' |
---|
| 378 | ! Initialisation de l'ascendance |
---|
| 379 | ! lmix(ig)=1 |
---|
| 380 | ztva(ig, l) = ztv(ig, l) |
---|
| 381 | fmc(ig, l) = 0. |
---|
| 382 | fmc(ig, l+1) = entr(ig, l) |
---|
| 383 | zw2(ig, l) = 0. |
---|
| 384 | ! if (.not.ztv(ig,l+1).gt.150.) then |
---|
| 385 | ! print*,'ig,l+1,ztv(ig,l+1)' |
---|
| 386 | ! print*, ig,l+1,ztv(ig,l+1) |
---|
| 387 | ! endif |
---|
| 388 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 389 | (zlev(ig,l+1)-zlev(ig,l)) |
---|
| 390 | larg_detr(ig, l) = 0. |
---|
| 391 | ELSE IF (zw2(ig,l)>=1.E-10 .AND. fmc(ig,l)+entr(ig,l)>1.E-10) THEN |
---|
| 392 | ! Incrementation... |
---|
| 393 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 394 | ! if (.not.fmc(ig,l+1).gt.1.e-15) then |
---|
| 395 | ! print*,'ig,l+1,fmc(ig,l+1)' |
---|
| 396 | ! print*, ig,l+1,fmc(ig,l+1) |
---|
| 397 | ! print*,'Fmc ',(fmc(ig,ll),ll=1,klev+1) |
---|
| 398 | ! print*,'W2 ',(zw2(ig,ll),ll=1,klev+1) |
---|
| 399 | ! print*,'Tv ',(ztv(ig,ll),ll=1,klev) |
---|
| 400 | ! print*,'Entr ',(entr(ig,ll),ll=1,klev) |
---|
| 401 | ! endif |
---|
| 402 | ztva(ig, l) = (fmc(ig,l)*ztva(ig,l-1)+entr(ig,l)*ztv(ig,l))/ & |
---|
| 403 | fmc(ig, l+1) |
---|
| 404 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
| 405 | ! consideree commence avec une vitesse nulle). |
---|
| 406 | zw2(ig, l+1) = zw2(ig, l)*(fmc(ig,l)/fmc(ig,l+1))**2 + & |
---|
| 407 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 408 | END IF |
---|
| 409 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 410 | zw2(ig, l+1) = 0. |
---|
| 411 | lmaxa(ig) = l |
---|
| 412 | ELSE |
---|
| 413 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 414 | END IF |
---|
| 415 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 416 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 417 | lmix(ig) = l + 1 |
---|
| 418 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 419 | END IF |
---|
| 420 | ! print*,'COUCOU cas 2 LMIX=',lmix(ig),wa_moy(ig,l+1),wmaxa(ig) |
---|
| 421 | END DO |
---|
| 422 | END DO |
---|
[878] | 423 | |
---|
[1992] | 424 | ! print*,'9 OK convect8' |
---|
| 425 | ! print*,'WA1 ',wa_moy |
---|
[878] | 426 | |
---|
[1992] | 427 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
[878] | 428 | |
---|
[1992] | 429 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 430 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
| 431 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
| 432 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 433 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
[878] | 434 | |
---|
[1992] | 435 | ! print*,'OKl439' |
---|
| 436 | DO l = 2, nlay |
---|
| 437 | DO ig = 1, ngrid |
---|
| 438 | IF (l<=lmaxa(ig)) THEN |
---|
| 439 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 440 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 441 | END IF |
---|
| 442 | END DO |
---|
| 443 | END DO |
---|
[878] | 444 | |
---|
[1992] | 445 | DO l = 2, nlay |
---|
| 446 | DO ig = 1, ngrid |
---|
| 447 | IF (l<=lmaxa(ig)) THEN |
---|
| 448 | ! if (idetr.eq.0) then |
---|
| 449 | ! cette option est finalement en dur. |
---|
| 450 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 451 | ! else if (idetr.eq.1) then |
---|
| 452 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 453 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 454 | ! else if (idetr.eq.2) then |
---|
| 455 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 456 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 457 | ! else if (idetr.eq.4) then |
---|
| 458 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 459 | ! s *wa_moy(ig,l) |
---|
| 460 | ! endif |
---|
| 461 | END IF |
---|
| 462 | END DO |
---|
| 463 | END DO |
---|
[878] | 464 | |
---|
[1992] | 465 | ! print*,'10 OK convect8' |
---|
| 466 | ! print*,'WA2 ',wa_moy |
---|
| 467 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
| 468 | ! compte de l'epluchage du thermique. |
---|
[878] | 469 | |
---|
[1992] | 470 | DO l = 2, nlay |
---|
| 471 | DO ig = 1, ngrid |
---|
| 472 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 473 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 474 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 475 | IF (l>lmix(ig)) THEN |
---|
| 476 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 477 | IF (idetr==0) THEN |
---|
| 478 | fraca(ig, l) = fraca(ig, lmix(ig)) |
---|
| 479 | ELSE IF (idetr==1) THEN |
---|
| 480 | fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l) |
---|
| 481 | ELSE IF (idetr==2) THEN |
---|
| 482 | fraca(ig, l) = fraca(ig, lmix(ig))*(1.-(1.-xxx(ig,l))**2) |
---|
| 483 | ELSE |
---|
| 484 | fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l)**2 |
---|
| 485 | END IF |
---|
| 486 | END IF |
---|
| 487 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 488 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 489 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 490 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 491 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 492 | ELSE |
---|
| 493 | ! wa_moy(ig,l)=0. |
---|
| 494 | fraca(ig, l) = 0. |
---|
| 495 | fracc(ig, l) = 0. |
---|
| 496 | fracd(ig, l) = 1. |
---|
| 497 | END IF |
---|
| 498 | END DO |
---|
| 499 | END DO |
---|
[878] | 500 | |
---|
[1992] | 501 | ! print*,'11 OK convect8' |
---|
| 502 | ! print*,'Ea3 ',wa_moy |
---|
| 503 | ! ------------------------------------------------------------------ |
---|
| 504 | ! Calcul de fracd, wd |
---|
| 505 | ! somme wa - wd = 0 |
---|
| 506 | ! ------------------------------------------------------------------ |
---|
[878] | 507 | |
---|
| 508 | |
---|
[1992] | 509 | DO ig = 1, ngrid |
---|
| 510 | fm(ig, 1) = 0. |
---|
| 511 | fm(ig, nlay+1) = 0. |
---|
| 512 | END DO |
---|
[878] | 513 | |
---|
[1992] | 514 | DO l = 2, nlay |
---|
| 515 | DO ig = 1, ngrid |
---|
| 516 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 517 | END DO |
---|
| 518 | DO ig = 1, ngrid |
---|
| 519 | IF (fracd(ig,l)<0.1) THEN |
---|
| 520 | abort_message = 'fracd trop petit' |
---|
[2311] | 521 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 522 | ELSE |
---|
| 523 | ! vitesse descendante "diagnostique" |
---|
| 524 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 525 | END IF |
---|
| 526 | END DO |
---|
| 527 | END DO |
---|
[878] | 528 | |
---|
[1992] | 529 | DO l = 1, nlay |
---|
| 530 | DO ig = 1, ngrid |
---|
| 531 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 532 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 533 | END DO |
---|
| 534 | END DO |
---|
[878] | 535 | |
---|
[1992] | 536 | ! print*,'12 OK convect8' |
---|
| 537 | ! print*,'WA4 ',wa_moy |
---|
| 538 | ! c------------------------------------------------------------------ |
---|
| 539 | ! calcul du transport vertical |
---|
| 540 | ! ------------------------------------------------------------------ |
---|
[878] | 541 | |
---|
[1992] | 542 | GO TO 4444 |
---|
| 543 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 544 | DO l = 2, nlay - 1 |
---|
| 545 | DO ig = 1, ngrid |
---|
| 546 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 547 | ig,l+1)) THEN |
---|
| 548 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 549 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 550 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 551 | END IF |
---|
| 552 | END DO |
---|
| 553 | END DO |
---|
[878] | 554 | |
---|
[1992] | 555 | DO l = 1, nlay |
---|
| 556 | DO ig = 1, ngrid |
---|
| 557 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 558 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 559 | ! s ,entr(ig,l)*ptimestep |
---|
| 560 | ! s ,' M=',masse(ig,l) |
---|
| 561 | END IF |
---|
| 562 | END DO |
---|
| 563 | END DO |
---|
[878] | 564 | |
---|
[1992] | 565 | DO l = 1, nlay |
---|
| 566 | DO ig = 1, ngrid |
---|
| 567 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 568 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 569 | ! s ,' FM=',fm(ig,l) |
---|
| 570 | END IF |
---|
| 571 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 572 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 573 | ! s ,' M=',masse(ig,l) |
---|
| 574 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 575 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 576 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 577 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 578 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 579 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 580 | END IF |
---|
| 581 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 582 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 583 | ! s ,' E=',entr(ig,l) |
---|
| 584 | END IF |
---|
| 585 | END DO |
---|
| 586 | END DO |
---|
[878] | 587 | |
---|
[1992] | 588 | 4444 CONTINUE |
---|
| 589 | ! print*,'OK 444 ' |
---|
[987] | 590 | |
---|
[1992] | 591 | IF (w2di==1) THEN |
---|
| 592 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 593 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 594 | ELSE |
---|
| 595 | fm0 = fm |
---|
| 596 | entr0 = entr |
---|
| 597 | END IF |
---|
[878] | 598 | |
---|
[1992] | 599 | IF (flagdq==0) THEN |
---|
| 600 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 601 | zha) |
---|
| 602 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 603 | zoa) |
---|
| 604 | PRINT *, 'THERMALS OPT 1' |
---|
| 605 | ELSE IF (flagdq==1) THEN |
---|
| 606 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 607 | zdhadj, zha) |
---|
| 608 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 609 | pdoadj, zoa) |
---|
| 610 | PRINT *, 'THERMALS OPT 2' |
---|
| 611 | ELSE |
---|
| 612 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zh, & |
---|
| 613 | zdhadj, zha, lev_out) |
---|
| 614 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zo, & |
---|
| 615 | pdoadj, zoa, lev_out) |
---|
| 616 | PRINT *, 'THERMALS OPT 3', dqimpl |
---|
| 617 | END IF |
---|
[878] | 618 | |
---|
[1992] | 619 | PRINT *, 'TH VENT ', dvdq |
---|
| 620 | IF (dvdq==0) THEN |
---|
| 621 | ! print*,'TH VENT OK ',dvdq |
---|
| 622 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 623 | zua) |
---|
| 624 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 625 | zva) |
---|
| 626 | ELSE IF (dvdq==1) THEN |
---|
| 627 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 628 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 629 | ELSE IF (dvdq==2) THEN |
---|
| 630 | CALL thermcell_dv2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, & |
---|
| 631 | zmax, zu, zv, pduadj, pdvadj, zua, zva, lev_out) |
---|
| 632 | ELSE IF (dvdq==3) THEN |
---|
| 633 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zu, & |
---|
| 634 | pduadj, zua, lev_out) |
---|
| 635 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zv, & |
---|
| 636 | pdvadj, zva, lev_out) |
---|
| 637 | END IF |
---|
[878] | 638 | |
---|
[1992] | 639 | ! CALL writefield_phy('duadj',pduadj,klev) |
---|
[878] | 640 | |
---|
[1992] | 641 | DO l = 1, nlay |
---|
| 642 | DO ig = 1, ngrid |
---|
| 643 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 644 | zf2 = zf/(1.-zf) |
---|
| 645 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 646 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 647 | END DO |
---|
| 648 | END DO |
---|
[878] | 649 | |
---|
| 650 | |
---|
| 651 | |
---|
[1992] | 652 | ! print*,'13 OK convect8' |
---|
| 653 | ! print*,'WA5 ',wa_moy |
---|
| 654 | DO l = 1, nlay |
---|
| 655 | DO ig = 1, ngrid |
---|
| 656 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 657 | END DO |
---|
| 658 | END DO |
---|
[940] | 659 | |
---|
[878] | 660 | |
---|
[1992] | 661 | ! do l=1,nlay |
---|
| 662 | ! do ig=1,ngrid |
---|
| 663 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 664 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 665 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 666 | ! endif |
---|
| 667 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 668 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 669 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 670 | ! endif |
---|
| 671 | ! enddo |
---|
| 672 | ! enddo |
---|
[878] | 673 | |
---|
[1992] | 674 | ! print*,'14 OK convect8' |
---|
| 675 | ! ------------------------------------------------------------------ |
---|
| 676 | ! Calculs pour les sorties |
---|
| 677 | ! ------------------------------------------------------------------ |
---|
[1403] | 678 | |
---|
[1992] | 679 | IF (sorties) THEN |
---|
| 680 | DO l = 1, nlay |
---|
| 681 | DO ig = 1, ngrid |
---|
| 682 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 683 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 684 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 685 | (1.-fracd(ig,l)) |
---|
| 686 | END DO |
---|
| 687 | END DO |
---|
[878] | 688 | |
---|
[1992] | 689 | DO l = 1, nlay |
---|
| 690 | DO ig = 1, ngrid |
---|
| 691 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 692 | IF (detr(ig,l)<0.) THEN |
---|
| 693 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
| 694 | detr(ig, l) = 0. |
---|
| 695 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 696 | END IF |
---|
| 697 | END DO |
---|
| 698 | END DO |
---|
| 699 | END IF |
---|
[878] | 700 | |
---|
[1992] | 701 | ! print*,'15 OK convect8' |
---|
[987] | 702 | |
---|
[878] | 703 | |
---|
[1992] | 704 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
[940] | 705 | |
---|
[1992] | 706 | ! print*,'19 OK convect8' |
---|
| 707 | RETURN |
---|
| 708 | END SUBROUTINE thermcell_2002 |
---|
[878] | 709 | |
---|
[1992] | 710 | SUBROUTINE thermcell_cld(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
| 711 | debut, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, zqla, & |
---|
| 712 | lmax, zmax_sec, wmax_sec, zw_sec, lmix_sec, ratqscth, ratqsdiff & ! s |
---|
| 713 | ! ,pu_therm,pv_therm |
---|
| 714 | , r_aspect, l_mix, w2di, tho) |
---|
[878] | 715 | |
---|
[1992] | 716 | USE dimphy |
---|
| 717 | IMPLICIT NONE |
---|
[878] | 718 | |
---|
[1992] | 719 | ! ======================================================================= |
---|
[878] | 720 | |
---|
[1992] | 721 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 722 | ! de "thermiques" explicitement representes |
---|
[878] | 723 | |
---|
[1992] | 724 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
[878] | 725 | |
---|
[1992] | 726 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 727 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 728 | ! mélange |
---|
[878] | 729 | |
---|
[1992] | 730 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 731 | ! en compte: |
---|
| 732 | ! 1. un flux de masse montant |
---|
| 733 | ! 2. un flux de masse descendant |
---|
| 734 | ! 3. un entrainement |
---|
| 735 | ! 4. un detrainement |
---|
[878] | 736 | |
---|
[1992] | 737 | ! ======================================================================= |
---|
[878] | 738 | |
---|
[1992] | 739 | ! ----------------------------------------------------------------------- |
---|
| 740 | ! declarations: |
---|
| 741 | ! ------------- |
---|
[878] | 742 | |
---|
[1992] | 743 | include "YOMCST.h" |
---|
| 744 | include "YOETHF.h" |
---|
| 745 | include "FCTTRE.h" |
---|
[878] | 746 | |
---|
[1992] | 747 | ! arguments: |
---|
| 748 | ! ---------- |
---|
[878] | 749 | |
---|
[1992] | 750 | INTEGER ngrid, nlay, w2di |
---|
| 751 | REAL tho |
---|
| 752 | REAL ptimestep, l_mix, r_aspect |
---|
| 753 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 754 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 755 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 756 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 757 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 758 | REAL pphi(ngrid, nlay) |
---|
[878] | 759 | |
---|
[1992] | 760 | INTEGER idetr |
---|
| 761 | SAVE idetr |
---|
| 762 | DATA idetr/3/ |
---|
| 763 | !$OMP THREADPRIVATE(idetr) |
---|
[878] | 764 | |
---|
[1992] | 765 | ! local: |
---|
| 766 | ! ------ |
---|
[878] | 767 | |
---|
[1992] | 768 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 769 | REAL zsortie1d(klon) |
---|
| 770 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 771 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 772 | REAL linter(klon) |
---|
| 773 | REAL zmix(klon), fracazmix(klon) |
---|
| 774 | REAL alpha |
---|
| 775 | SAVE alpha |
---|
| 776 | DATA alpha/1./ |
---|
| 777 | !$OMP THREADPRIVATE(alpha) |
---|
[878] | 778 | |
---|
[1992] | 779 | ! RC |
---|
| 780 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
| 781 | REAL zmax_sec(klon) |
---|
| 782 | REAL zmax_sec2(klon) |
---|
| 783 | REAL zw_sec(klon, klev+1) |
---|
| 784 | INTEGER lmix_sec(klon) |
---|
| 785 | REAL w_est(klon, klev+1) |
---|
| 786 | ! on garde le zmax du pas de temps precedent |
---|
| 787 | ! real zmax0(klon) |
---|
| 788 | ! save zmax0 |
---|
| 789 | ! real zmix0(klon) |
---|
| 790 | ! save zmix0 |
---|
| 791 | REAL, SAVE, ALLOCATABLE :: zmax0(:), zmix0(:) |
---|
| 792 | !$OMP THREADPRIVATE(zmax0, zmix0) |
---|
[878] | 793 | |
---|
[1992] | 794 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 795 | REAL deltaz(klon, klev) |
---|
| 796 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 797 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
| 798 | REAL ztv(klon, klev) |
---|
| 799 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 800 | REAL zl(klon, klev) |
---|
| 801 | REAL wh(klon, klev+1) |
---|
| 802 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 803 | REAL zla(klon, klev+1) |
---|
| 804 | REAL zwa(klon, klev+1) |
---|
| 805 | REAL zld(klon, klev+1) |
---|
| 806 | REAL zwd(klon, klev+1) |
---|
| 807 | REAL zsortie(klon, klev) |
---|
| 808 | REAL zva(klon, klev) |
---|
| 809 | REAL zua(klon, klev) |
---|
| 810 | REAL zoa(klon, klev) |
---|
[878] | 811 | |
---|
[1992] | 812 | REAL zta(klon, klev) |
---|
| 813 | REAL zha(klon, klev) |
---|
| 814 | REAL wa_moy(klon, klev+1) |
---|
| 815 | REAL fraca(klon, klev+1) |
---|
| 816 | REAL fracc(klon, klev+1) |
---|
| 817 | REAL zf, zf2 |
---|
| 818 | REAL thetath2(klon, klev), wth2(klon, klev), wth3(klon, klev) |
---|
| 819 | REAL q2(klon, klev) |
---|
| 820 | REAL dtheta(klon, klev) |
---|
| 821 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 822 | |
---|
[1992] | 823 | REAL ratqscth(klon, klev) |
---|
| 824 | REAL sum |
---|
| 825 | REAL sumdiff |
---|
| 826 | REAL ratqsdiff(klon, klev) |
---|
| 827 | REAL count_time |
---|
| 828 | INTEGER ialt |
---|
[878] | 829 | |
---|
[1992] | 830 | LOGICAL sorties |
---|
| 831 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 832 | REAL zpspsk(klon, klev) |
---|
[878] | 833 | |
---|
[1992] | 834 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 835 | REAL wmax(klon), wmaxa(klon) |
---|
| 836 | REAL wmax_sec(klon) |
---|
| 837 | REAL wmax_sec2(klon) |
---|
| 838 | REAL wa(klon, klev, klev+1) |
---|
| 839 | REAL wd(klon, klev+1) |
---|
| 840 | REAL larg_part(klon, klev, klev+1) |
---|
| 841 | REAL fracd(klon, klev+1) |
---|
| 842 | REAL xxx(klon, klev+1) |
---|
| 843 | REAL larg_cons(klon, klev+1) |
---|
| 844 | REAL larg_detr(klon, klev+1) |
---|
| 845 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 846 | REAL massetot(klon, klev) |
---|
| 847 | REAL detr0(klon, klev) |
---|
| 848 | REAL alim0(klon, klev) |
---|
| 849 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 850 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 851 | REAL fmc(klon, klev+1) |
---|
[878] | 852 | |
---|
[1992] | 853 | REAL zcor, zdelta, zcvm5, qlbef |
---|
| 854 | REAL tbef(klon), qsatbef(klon) |
---|
| 855 | REAL dqsat_dt, dt, num, denom |
---|
| 856 | REAL reps, rlvcp, ddt0 |
---|
| 857 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
| 858 | ! CR niveau de condensation |
---|
| 859 | REAL nivcon(klon) |
---|
| 860 | REAL zcon(klon) |
---|
| 861 | REAL zqsat(klon, klev) |
---|
| 862 | REAL zqsatth(klon, klev) |
---|
| 863 | PARAMETER (ddt0=.01) |
---|
[878] | 864 | |
---|
| 865 | |
---|
[1992] | 866 | ! CR:nouvelles variables |
---|
| 867 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 868 | REAL detr_star(klon, klev) |
---|
| 869 | REAL alim_star_tot(klon), alim_star2(klon) |
---|
| 870 | REAL entr_star_tot(klon) |
---|
| 871 | REAL detr_star_tot(klon) |
---|
| 872 | REAL alim_star(klon, klev) |
---|
| 873 | REAL alim(klon, klev) |
---|
| 874 | REAL nu(klon, klev) |
---|
| 875 | REAL nu_e(klon, klev) |
---|
| 876 | REAL nu_min |
---|
| 877 | REAL nu_max |
---|
| 878 | REAL nu_r |
---|
| 879 | REAL f(klon) |
---|
| 880 | ! real f(klon), f0(klon) |
---|
| 881 | ! save f0 |
---|
| 882 | REAL, SAVE, ALLOCATABLE :: f0(:) |
---|
| 883 | !$OMP THREADPRIVATE(f0) |
---|
[878] | 884 | |
---|
[1992] | 885 | REAL f_old |
---|
| 886 | REAL zlevinter(klon) |
---|
| 887 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 888 | !$OMP THREADPRIVATE(first) |
---|
| 889 | ! data first /.false./ |
---|
| 890 | ! save first |
---|
| 891 | LOGICAL nuage |
---|
| 892 | ! save nuage |
---|
| 893 | LOGICAL boucle |
---|
| 894 | LOGICAL therm |
---|
| 895 | LOGICAL debut |
---|
| 896 | LOGICAL rale |
---|
| 897 | INTEGER test(klon) |
---|
| 898 | INTEGER signe_zw2 |
---|
| 899 | ! RC |
---|
[878] | 900 | |
---|
[1992] | 901 | CHARACTER *2 str2 |
---|
| 902 | CHARACTER *10 str10 |
---|
[878] | 903 | |
---|
[1992] | 904 | CHARACTER (LEN=20) :: modname = 'thermcell_cld' |
---|
| 905 | CHARACTER (LEN=80) :: abort_message |
---|
[878] | 906 | |
---|
[1992] | 907 | LOGICAL vtest(klon), down |
---|
| 908 | LOGICAL zsat(klon) |
---|
[878] | 909 | |
---|
[1992] | 910 | EXTERNAL scopy |
---|
[878] | 911 | |
---|
[1992] | 912 | INTEGER ncorrec, ll |
---|
| 913 | SAVE ncorrec |
---|
| 914 | DATA ncorrec/0/ |
---|
| 915 | !$OMP THREADPRIVATE(ncorrec) |
---|
[878] | 916 | |
---|
| 917 | |
---|
| 918 | |
---|
[1992] | 919 | ! ----------------------------------------------------------------------- |
---|
| 920 | ! initialisation: |
---|
| 921 | ! --------------- |
---|
[878] | 922 | |
---|
[1992] | 923 | IF (first) THEN |
---|
| 924 | ALLOCATE (zmix0(klon)) |
---|
| 925 | ALLOCATE (zmax0(klon)) |
---|
| 926 | ALLOCATE (f0(klon)) |
---|
| 927 | first = .FALSE. |
---|
| 928 | END IF |
---|
[878] | 929 | |
---|
[1992] | 930 | sorties = .FALSE. |
---|
| 931 | ! print*,'NOUVEAU DETR PLUIE ' |
---|
| 932 | IF (ngrid/=klon) THEN |
---|
| 933 | PRINT * |
---|
| 934 | PRINT *, 'STOP dans convadj' |
---|
| 935 | PRINT *, 'ngrid =', ngrid |
---|
| 936 | PRINT *, 'klon =', klon |
---|
| 937 | END IF |
---|
[878] | 938 | |
---|
[1992] | 939 | ! Initialisation |
---|
| 940 | rlvcp = rlvtt/rcpd |
---|
| 941 | reps = rd/rv |
---|
| 942 | ! initialisations de zqsat |
---|
| 943 | DO ll = 1, nlay |
---|
| 944 | DO ig = 1, ngrid |
---|
| 945 | zqsat(ig, ll) = 0. |
---|
| 946 | zqsatth(ig, ll) = 0. |
---|
| 947 | END DO |
---|
| 948 | END DO |
---|
[878] | 949 | |
---|
[1992] | 950 | ! on met le first a true pour le premier passage de la journée |
---|
| 951 | DO ig = 1, klon |
---|
| 952 | test(ig) = 0 |
---|
| 953 | END DO |
---|
| 954 | IF (debut) THEN |
---|
| 955 | DO ig = 1, klon |
---|
| 956 | test(ig) = 1 |
---|
| 957 | f0(ig) = 0. |
---|
| 958 | zmax0(ig) = 0. |
---|
| 959 | END DO |
---|
| 960 | END IF |
---|
| 961 | DO ig = 1, klon |
---|
| 962 | IF ((.NOT. debut) .AND. (f0(ig)<1.E-10)) THEN |
---|
| 963 | test(ig) = 1 |
---|
| 964 | END IF |
---|
| 965 | END DO |
---|
| 966 | ! do ig=1,klon |
---|
| 967 | ! print*,'test(ig)',test(ig),zmax0(ig) |
---|
| 968 | ! enddo |
---|
| 969 | nuage = .FALSE. |
---|
| 970 | ! ----------------------------------------------------------------------- |
---|
| 971 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
| 972 | ! --------------------------------------------------- |
---|
[878] | 973 | |
---|
[1992] | 974 | ! Pr Tprec=Tl calcul de qsat |
---|
| 975 | ! Si qsat>qT T=Tl, q=qT |
---|
| 976 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
| 977 | ! On cherche DDT < DDT0 |
---|
[878] | 978 | |
---|
[1992] | 979 | ! defaut |
---|
| 980 | DO ll = 1, nlay |
---|
| 981 | DO ig = 1, ngrid |
---|
| 982 | zo(ig, ll) = po(ig, ll) |
---|
| 983 | zl(ig, ll) = 0. |
---|
| 984 | zh(ig, ll) = pt(ig, ll) |
---|
| 985 | END DO |
---|
| 986 | END DO |
---|
| 987 | DO ig = 1, ngrid |
---|
| 988 | zsat(ig) = .FALSE. |
---|
| 989 | END DO |
---|
[878] | 990 | |
---|
| 991 | |
---|
[1992] | 992 | DO ll = 1, nlay |
---|
| 993 | ! les points insatures sont definitifs |
---|
| 994 | DO ig = 1, ngrid |
---|
| 995 | tbef(ig) = pt(ig, ll) |
---|
| 996 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 997 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
| 998 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 999 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1000 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 1001 | zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>1.E-10) |
---|
| 1002 | END DO |
---|
[878] | 1003 | |
---|
[1992] | 1004 | DO ig = 1, ngrid |
---|
| 1005 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
| 1006 | qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
---|
| 1007 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
| 1008 | dt = 0.5*rlvcp*qlbef |
---|
| 1009 | ! write(18,*),'DT0=',DT |
---|
| 1010 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
| 1011 | DO WHILE (abs(dt)>ddt0) |
---|
| 1012 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
| 1013 | tbef(ig) = tbef(ig) + dt |
---|
| 1014 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1015 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
| 1016 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 1017 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1018 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 1019 | ! on veut le signe de qlbef |
---|
| 1020 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
| 1021 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1022 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 1023 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1024 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
| 1025 | num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
---|
| 1026 | denom = 1. + rlvcp*dqsat_dt |
---|
| 1027 | IF (denom<1.E-10) THEN |
---|
| 1028 | PRINT *, 'pb denom' |
---|
| 1029 | END IF |
---|
| 1030 | dt = num/denom |
---|
| 1031 | END DO |
---|
| 1032 | ! on ecrit de maniere conservative (sat ou non) |
---|
| 1033 | zl(ig, ll) = max(0., qlbef) |
---|
| 1034 | ! T = Tl +Lv/Cp ql |
---|
| 1035 | zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
---|
| 1036 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
| 1037 | END IF |
---|
| 1038 | ! on ecrit zqsat |
---|
| 1039 | zqsat(ig, ll) = qsatbef(ig) |
---|
| 1040 | END DO |
---|
| 1041 | END DO |
---|
| 1042 | ! AM fin |
---|
[878] | 1043 | |
---|
[1992] | 1044 | ! ----------------------------------------------------------------------- |
---|
| 1045 | ! incrementation eventuelle de tendances precedentes: |
---|
| 1046 | ! --------------------------------------------------- |
---|
[878] | 1047 | |
---|
[1992] | 1048 | ! print*,'0 OK convect8' |
---|
[878] | 1049 | |
---|
[1992] | 1050 | DO l = 1, nlay |
---|
| 1051 | DO ig = 1, ngrid |
---|
| 1052 | zpspsk(ig, l) = (pplay(ig,l)/100000.)**rkappa |
---|
| 1053 | ! zpspsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**RKAPPA |
---|
| 1054 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
| 1055 | zu(ig, l) = pu(ig, l) |
---|
| 1056 | zv(ig, l) = pv(ig, l) |
---|
| 1057 | ! zo(ig,l)=po(ig,l) |
---|
| 1058 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
| 1059 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
| 1060 | ! theta ! |
---|
[878] | 1061 | |
---|
[1992] | 1062 | ! T-> Theta |
---|
| 1063 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
| 1064 | ! AM Theta_v |
---|
| 1065 | ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
---|
| 1066 | ! AM Thetal |
---|
| 1067 | zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
[878] | 1068 | |
---|
[1992] | 1069 | END DO |
---|
| 1070 | END DO |
---|
[878] | 1071 | |
---|
[1992] | 1072 | ! print*,'1 OK convect8' |
---|
| 1073 | ! -------------------- |
---|
[878] | 1074 | |
---|
| 1075 | |
---|
[1992] | 1076 | ! + + + + + + + + + + + |
---|
[878] | 1077 | |
---|
| 1078 | |
---|
[1992] | 1079 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 1080 | ! wh,wt,wo ... |
---|
[878] | 1081 | |
---|
[1992] | 1082 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[878] | 1083 | |
---|
| 1084 | |
---|
[1992] | 1085 | ! -------------------- zlev(1) |
---|
| 1086 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[878] | 1087 | |
---|
| 1088 | |
---|
| 1089 | |
---|
[1992] | 1090 | ! ----------------------------------------------------------------------- |
---|
| 1091 | ! Calcul des altitudes des couches |
---|
| 1092 | ! ----------------------------------------------------------------------- |
---|
[878] | 1093 | |
---|
[1992] | 1094 | DO l = 2, nlay |
---|
| 1095 | DO ig = 1, ngrid |
---|
| 1096 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 1097 | END DO |
---|
| 1098 | END DO |
---|
| 1099 | DO ig = 1, ngrid |
---|
| 1100 | zlev(ig, 1) = 0. |
---|
| 1101 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 1102 | END DO |
---|
| 1103 | DO l = 1, nlay |
---|
| 1104 | DO ig = 1, ngrid |
---|
| 1105 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 1106 | END DO |
---|
| 1107 | END DO |
---|
| 1108 | ! calcul de deltaz |
---|
| 1109 | DO l = 1, nlay |
---|
| 1110 | DO ig = 1, ngrid |
---|
| 1111 | deltaz(ig, l) = zlev(ig, l+1) - zlev(ig, l) |
---|
| 1112 | END DO |
---|
| 1113 | END DO |
---|
[878] | 1114 | |
---|
[1992] | 1115 | ! print*,'2 OK convect8' |
---|
| 1116 | ! ----------------------------------------------------------------------- |
---|
| 1117 | ! Calcul des densites |
---|
| 1118 | ! ----------------------------------------------------------------------- |
---|
[1943] | 1119 | |
---|
[1992] | 1120 | DO l = 1, nlay |
---|
| 1121 | DO ig = 1, ngrid |
---|
| 1122 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
| 1123 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
---|
| 1124 | END DO |
---|
| 1125 | END DO |
---|
[878] | 1126 | |
---|
[1992] | 1127 | DO l = 2, nlay |
---|
| 1128 | DO ig = 1, ngrid |
---|
| 1129 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 1130 | END DO |
---|
| 1131 | END DO |
---|
[878] | 1132 | |
---|
[1992] | 1133 | DO k = 1, nlay |
---|
| 1134 | DO l = 1, nlay + 1 |
---|
| 1135 | DO ig = 1, ngrid |
---|
| 1136 | wa(ig, k, l) = 0. |
---|
| 1137 | END DO |
---|
| 1138 | END DO |
---|
| 1139 | END DO |
---|
| 1140 | ! Cr:ajout:calcul de la masse |
---|
| 1141 | DO l = 1, nlay |
---|
| 1142 | DO ig = 1, ngrid |
---|
| 1143 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1144 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 1145 | END DO |
---|
| 1146 | END DO |
---|
| 1147 | ! print*,'3 OK convect8' |
---|
| 1148 | ! ------------------------------------------------------------------ |
---|
| 1149 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 1150 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
[878] | 1151 | |
---|
[1992] | 1152 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 1153 | ! w2 est stoke dans wa |
---|
[878] | 1154 | |
---|
[1992] | 1155 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 1156 | ! independants par couches que pour calculer l'entrainement |
---|
| 1157 | ! a la base et la hauteur max de l'ascendance. |
---|
[878] | 1158 | |
---|
[1992] | 1159 | ! Indicages: |
---|
| 1160 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 1161 | ! une vitesse wa(k,l). |
---|
[878] | 1162 | |
---|
[1992] | 1163 | ! -------------------- |
---|
[878] | 1164 | |
---|
[1992] | 1165 | ! + + + + + + + + + + |
---|
[878] | 1166 | |
---|
[1992] | 1167 | ! wa(k,l) ---- -------------------- l |
---|
| 1168 | ! /\ |
---|
| 1169 | ! /||\ + + + + + + + + + + |
---|
| 1170 | ! || |
---|
| 1171 | ! || -------------------- |
---|
| 1172 | ! || |
---|
| 1173 | ! || + + + + + + + + + + |
---|
| 1174 | ! || |
---|
| 1175 | ! || -------------------- |
---|
| 1176 | ! ||__ |
---|
| 1177 | ! |___ + + + + + + + + + + k |
---|
[878] | 1178 | |
---|
[1992] | 1179 | ! -------------------- |
---|
[878] | 1180 | |
---|
| 1181 | |
---|
| 1182 | |
---|
[1992] | 1183 | ! ------------------------------------------------------------------ |
---|
[878] | 1184 | |
---|
[1992] | 1185 | ! CR: ponderation entrainement des couches instables |
---|
| 1186 | ! def des alim_star tels que alim=f*alim_star |
---|
| 1187 | DO l = 1, klev |
---|
| 1188 | DO ig = 1, ngrid |
---|
| 1189 | alim_star(ig, l) = 0. |
---|
| 1190 | alim(ig, l) = 0. |
---|
| 1191 | END DO |
---|
| 1192 | END DO |
---|
| 1193 | ! determination de la longueur de la couche d entrainement |
---|
| 1194 | DO ig = 1, ngrid |
---|
| 1195 | lentr(ig) = 1 |
---|
| 1196 | END DO |
---|
[878] | 1197 | |
---|
[1992] | 1198 | ! on ne considere que les premieres couches instables |
---|
| 1199 | therm = .FALSE. |
---|
| 1200 | DO k = nlay - 2, 1, -1 |
---|
| 1201 | DO ig = 1, ngrid |
---|
| 1202 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 1203 | lentr(ig) = k + 1 |
---|
| 1204 | therm = .TRUE. |
---|
| 1205 | END IF |
---|
| 1206 | END DO |
---|
| 1207 | END DO |
---|
[878] | 1208 | |
---|
[1992] | 1209 | ! determination du lmin: couche d ou provient le thermique |
---|
| 1210 | DO ig = 1, ngrid |
---|
| 1211 | lmin(ig) = 1 |
---|
| 1212 | END DO |
---|
| 1213 | DO ig = 1, ngrid |
---|
| 1214 | DO l = nlay, 2, -1 |
---|
| 1215 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 1216 | lmin(ig) = l - 1 |
---|
| 1217 | END IF |
---|
| 1218 | END DO |
---|
| 1219 | END DO |
---|
[878] | 1220 | |
---|
[1992] | 1221 | ! definition de l'entrainement des couches |
---|
| 1222 | DO l = 1, klev - 1 |
---|
| 1223 | DO ig = 1, ngrid |
---|
| 1224 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
| 1225 | ! def possibles pour alim_star: zdthetadz, dthetadz, zdtheta |
---|
| 1226 | alim_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
---|
| 1227 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1228 | *sqrt(zlev(ig,l+1)) |
---|
| 1229 | ! alim_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
| 1230 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
| 1231 | END IF |
---|
| 1232 | END DO |
---|
| 1233 | END DO |
---|
[987] | 1234 | |
---|
[1992] | 1235 | ! pas de thermique si couche 1 stable |
---|
| 1236 | DO ig = 1, ngrid |
---|
| 1237 | ! if (lmin(ig).gt.1) then |
---|
| 1238 | ! CRnouveau test |
---|
| 1239 | IF (alim_star(ig,1)<1.E-10) THEN |
---|
| 1240 | DO l = 1, klev |
---|
| 1241 | alim_star(ig, l) = 0. |
---|
| 1242 | END DO |
---|
| 1243 | END IF |
---|
| 1244 | END DO |
---|
| 1245 | ! calcul de l entrainement total |
---|
| 1246 | DO ig = 1, ngrid |
---|
| 1247 | alim_star_tot(ig) = 0. |
---|
| 1248 | entr_star_tot(ig) = 0. |
---|
| 1249 | detr_star_tot(ig) = 0. |
---|
| 1250 | END DO |
---|
| 1251 | DO ig = 1, ngrid |
---|
| 1252 | DO k = 1, klev |
---|
| 1253 | alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig, k) |
---|
| 1254 | END DO |
---|
| 1255 | END DO |
---|
[878] | 1256 | |
---|
[1992] | 1257 | ! Calcul entrainement normalise |
---|
| 1258 | DO ig = 1, ngrid |
---|
| 1259 | IF (alim_star_tot(ig)>1.E-10) THEN |
---|
| 1260 | ! do l=1,lentr(ig) |
---|
| 1261 | DO l = 1, klev |
---|
| 1262 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
| 1263 | alim_star(ig, l) = alim_star(ig, l)/alim_star_tot(ig) |
---|
| 1264 | END DO |
---|
| 1265 | END IF |
---|
| 1266 | END DO |
---|
[878] | 1267 | |
---|
[1992] | 1268 | ! print*,'fin calcul alim_star' |
---|
[1403] | 1269 | |
---|
[1992] | 1270 | ! AM:initialisations |
---|
| 1271 | DO k = 1, nlay |
---|
| 1272 | DO ig = 1, ngrid |
---|
| 1273 | ztva(ig, k) = ztv(ig, k) |
---|
| 1274 | ztla(ig, k) = zthl(ig, k) |
---|
| 1275 | zqla(ig, k) = 0. |
---|
| 1276 | zqta(ig, k) = po(ig, k) |
---|
| 1277 | zsat(ig) = .FALSE. |
---|
| 1278 | END DO |
---|
| 1279 | END DO |
---|
| 1280 | DO k = 1, klev |
---|
| 1281 | DO ig = 1, ngrid |
---|
| 1282 | detr_star(ig, k) = 0. |
---|
| 1283 | entr_star(ig, k) = 0. |
---|
| 1284 | detr(ig, k) = 0. |
---|
| 1285 | entr(ig, k) = 0. |
---|
| 1286 | END DO |
---|
| 1287 | END DO |
---|
| 1288 | ! print*,'7 OK convect8' |
---|
| 1289 | DO k = 1, klev + 1 |
---|
| 1290 | DO ig = 1, ngrid |
---|
| 1291 | zw2(ig, k) = 0. |
---|
| 1292 | fmc(ig, k) = 0. |
---|
| 1293 | ! CR |
---|
| 1294 | f_star(ig, k) = 0. |
---|
| 1295 | ! RC |
---|
| 1296 | larg_cons(ig, k) = 0. |
---|
| 1297 | larg_detr(ig, k) = 0. |
---|
| 1298 | wa_moy(ig, k) = 0. |
---|
| 1299 | END DO |
---|
| 1300 | END DO |
---|
[878] | 1301 | |
---|
[1992] | 1302 | ! n print*,'8 OK convect8' |
---|
| 1303 | DO ig = 1, ngrid |
---|
| 1304 | linter(ig) = 1. |
---|
| 1305 | lmaxa(ig) = 1 |
---|
| 1306 | lmix(ig) = 1 |
---|
| 1307 | wmaxa(ig) = 0. |
---|
| 1308 | END DO |
---|
[878] | 1309 | |
---|
[1992] | 1310 | nu_min = l_mix |
---|
| 1311 | nu_max = 1000. |
---|
| 1312 | ! do ig=1,ngrid |
---|
| 1313 | ! nu_max=wmax_sec(ig) |
---|
| 1314 | ! enddo |
---|
| 1315 | DO ig = 1, ngrid |
---|
| 1316 | DO k = 1, klev |
---|
| 1317 | nu(ig, k) = 0. |
---|
| 1318 | nu_e(ig, k) = 0. |
---|
| 1319 | END DO |
---|
| 1320 | END DO |
---|
| 1321 | ! Calcul de l'excès de température du à la diffusion turbulente |
---|
| 1322 | DO ig = 1, ngrid |
---|
| 1323 | DO l = 1, klev |
---|
| 1324 | dtheta(ig, l) = 0. |
---|
| 1325 | END DO |
---|
| 1326 | END DO |
---|
| 1327 | DO ig = 1, ngrid |
---|
| 1328 | DO l = 1, lentr(ig) - 1 |
---|
| 1329 | dtheta(ig, l) = sqrt(10.*0.4*zlev(ig,l+1)**2*1.*((ztv(ig,l+1)- & |
---|
| 1330 | ztv(ig,l))/(zlev(ig,l+1)-zlev(ig,l)))**2) |
---|
| 1331 | END DO |
---|
| 1332 | END DO |
---|
| 1333 | ! do l=1,nlay-2 |
---|
| 1334 | DO l = 1, klev - 1 |
---|
| 1335 | DO ig = 1, ngrid |
---|
| 1336 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
---|
| 1337 | zw2(ig,l)<1E-10) THEN |
---|
| 1338 | ! AM |
---|
| 1339 | ! test:on rajoute un excès de T dans couche alim |
---|
| 1340 | ! ztla(ig,l)=zthl(ig,l)+dtheta(ig,l) |
---|
| 1341 | ztla(ig, l) = zthl(ig, l) |
---|
| 1342 | ! test: on rajoute un excès de q dans la couche alim |
---|
| 1343 | ! zqta(ig,l)=po(ig,l)+0.001 |
---|
| 1344 | zqta(ig, l) = po(ig, l) |
---|
| 1345 | zqla(ig, l) = zl(ig, l) |
---|
| 1346 | ! AM |
---|
| 1347 | f_star(ig, l+1) = alim_star(ig, l) |
---|
| 1348 | ! test:calcul de dteta |
---|
| 1349 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 1350 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 1351 | w_est(ig, l+1) = zw2(ig, l+1) |
---|
| 1352 | larg_detr(ig, l) = 0. |
---|
| 1353 | ! print*,'coucou boucle 1' |
---|
| 1354 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
---|
| 1355 | l))>1.E-10) THEN |
---|
| 1356 | ! print*,'coucou boucle 2' |
---|
| 1357 | ! estimation du detrainement a partir de la geometrie du pas |
---|
| 1358 | ! precedent |
---|
| 1359 | IF ((test(ig)==1) .OR. ((.NOT. debut) .AND. (f0(ig)<1.E-10))) THEN |
---|
| 1360 | detr_star(ig, l) = 0. |
---|
| 1361 | entr_star(ig, l) = 0. |
---|
| 1362 | ! print*,'coucou test(ig)',test(ig),f0(ig),zmax0(ig) |
---|
| 1363 | ELSE |
---|
| 1364 | ! print*,'coucou debut detr' |
---|
| 1365 | ! tests sur la definition du detr |
---|
| 1366 | IF (zqla(ig,l-1)>1.E-10) THEN |
---|
| 1367 | nuage = .TRUE. |
---|
| 1368 | END IF |
---|
[987] | 1369 | |
---|
[1992] | 1370 | w_est(ig, l+1) = zw2(ig, l)*((f_star(ig,l))**2)/(f_star(ig,l)+ & |
---|
| 1371 | alim_star(ig,l))**2 + 2.*rg*(ztva(ig,l-1)-ztv(ig,l))/ztv(ig, l)*( & |
---|
| 1372 | zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1373 | IF (w_est(ig,l+1)<0.) THEN |
---|
| 1374 | w_est(ig, l+1) = zw2(ig, l) |
---|
| 1375 | END IF |
---|
| 1376 | IF (l>2) THEN |
---|
| 1377 | IF ((w_est(ig,l+1)>w_est(ig,l)) .AND. (zlev(ig, & |
---|
| 1378 | l+1)<zmax_sec(ig)) .AND. (zqla(ig,l-1)<1.E-10)) THEN |
---|
| 1379 | detr_star(ig, l) = max(0., (rhobarz(ig, & |
---|
| 1380 | l+1)*sqrt(w_est(ig,l+1))*sqrt(nu(ig,l)* & |
---|
| 1381 | zlev(ig,l+1))-rhobarz(ig,l)*sqrt(w_est(ig,l))*sqrt(nu(ig,l)* & |
---|
| 1382 | zlev(ig,l)))/(r_aspect*zmax_sec(ig))) |
---|
| 1383 | ELSE IF ((zlev(ig,l+1)<zmax_sec(ig)) .AND. (zqla(ig, & |
---|
| 1384 | l-1)<1.E-10)) THEN |
---|
| 1385 | detr_star(ig, l) = -f0(ig)*f_star(ig, lmix(ig))/(rhobarz(ig, & |
---|
| 1386 | lmix(ig))*wmaxa(ig))*(rhobarz(ig,l+1)*sqrt(w_est(ig, & |
---|
| 1387 | l+1))*((zmax_sec(ig)-zlev(ig,l+1))/((zmax_sec(ig)-zlev(ig, & |
---|
| 1388 | lmix(ig)))))**2.-rhobarz(ig,l)*sqrt(w_est(ig, & |
---|
| 1389 | l))*((zmax_sec(ig)-zlev(ig,l))/((zmax_sec(ig)-zlev(ig,lmix(ig & |
---|
| 1390 | )))))**2.) |
---|
| 1391 | ELSE |
---|
| 1392 | detr_star(ig, l) = 0.002*f0(ig)*f_star(ig, l)* & |
---|
| 1393 | (zlev(ig,l+1)-zlev(ig,l)) |
---|
[878] | 1394 | |
---|
[1992] | 1395 | END IF |
---|
| 1396 | ELSE |
---|
| 1397 | detr_star(ig, l) = 0. |
---|
| 1398 | END IF |
---|
[878] | 1399 | |
---|
[1992] | 1400 | detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
---|
| 1401 | IF (nuage) THEN |
---|
| 1402 | entr_star(ig, l) = 0.4*detr_star(ig, l) |
---|
| 1403 | ELSE |
---|
| 1404 | entr_star(ig, l) = 0.4*detr_star(ig, l) |
---|
| 1405 | END IF |
---|
[878] | 1406 | |
---|
[1992] | 1407 | IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
---|
| 1408 | detr_star(ig, l) = f_star(ig, l) |
---|
| 1409 | ! entr_star(ig,l)=0. |
---|
| 1410 | END IF |
---|
[878] | 1411 | |
---|
[1992] | 1412 | IF ((l<lentr(ig))) THEN |
---|
| 1413 | entr_star(ig, l) = 0. |
---|
| 1414 | ! detr_star(ig,l)=0. |
---|
| 1415 | END IF |
---|
[878] | 1416 | |
---|
[1992] | 1417 | ! print*,'ok detr_star' |
---|
| 1418 | END IF |
---|
| 1419 | ! prise en compte du detrainement dans le calcul du flux |
---|
| 1420 | f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
| 1421 | entr_star(ig, l) - detr_star(ig, l) |
---|
| 1422 | ! test |
---|
| 1423 | ! if (f_star(ig,l+1).lt.0.) then |
---|
| 1424 | ! f_star(ig,l+1)=0. |
---|
| 1425 | ! entr_star(ig,l)=0. |
---|
| 1426 | ! detr_star(ig,l)=f_star(ig,l)+alim_star(ig,l) |
---|
| 1427 | ! endif |
---|
| 1428 | ! test sur le signe de f_star |
---|
| 1429 | IF (f_star(ig,l+1)>1.E-10) THEN |
---|
| 1430 | ! then |
---|
| 1431 | ! test |
---|
| 1432 | ! if (((f_star(ig,l+1)+detr_star(ig,l)).gt.1.e-10)) then |
---|
| 1433 | ! AM on melange Tl et qt du thermique |
---|
| 1434 | ! on rajoute un excès de T dans la couche alim |
---|
| 1435 | ! if (l.lt.lentr(ig)) then |
---|
| 1436 | ! ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ |
---|
| 1437 | ! s |
---|
| 1438 | ! (alim_star(ig,l)+entr_star(ig,l))*(zthl(ig,l)+dtheta(ig,l))) |
---|
| 1439 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1440 | ! else |
---|
| 1441 | ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+(alim_star(ig, & |
---|
| 1442 | l)+entr_star(ig,l))*zthl(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1443 | ! s /(f_star(ig,l+1)) |
---|
| 1444 | ! endif |
---|
| 1445 | ! on rajoute un excès de q dans la couche alim |
---|
| 1446 | ! if (l.lt.lentr(ig)) then |
---|
| 1447 | ! zqta(ig,l)=(f_star(ig,l)*zqta(ig,l-1)+ |
---|
| 1448 | ! s (alim_star(ig,l)+entr_star(ig,l))*(po(ig,l)+0.001)) |
---|
| 1449 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1450 | ! else |
---|
| 1451 | zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+(alim_star(ig, & |
---|
| 1452 | l)+entr_star(ig,l))*po(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1453 | ! s /(f_star(ig,l+1)) |
---|
| 1454 | ! endif |
---|
| 1455 | ! AM on en deduit thetav et ql du thermique |
---|
| 1456 | ! CR test |
---|
| 1457 | ! Tbef(ig)=ztla(ig,l)*zpspsk(ig,l) |
---|
| 1458 | tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
---|
| 1459 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1460 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
| 1461 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 1462 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1463 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 1464 | zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>1.E-10) |
---|
[878] | 1465 | |
---|
[1992] | 1466 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
| 1467 | qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
| 1468 | dt = 0.5*rlvcp*qlbef |
---|
| 1469 | ! write(17,*)'DT0=',DT |
---|
| 1470 | DO WHILE (abs(dt)>ddt0) |
---|
| 1471 | ! print*,'aie' |
---|
| 1472 | tbef(ig) = tbef(ig) + dt |
---|
| 1473 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1474 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
| 1475 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 1476 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1477 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 1478 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
[878] | 1479 | |
---|
[1992] | 1480 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 1481 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 1482 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 1483 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
| 1484 | num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
---|
| 1485 | denom = 1. + rlvcp*dqsat_dt |
---|
| 1486 | IF (denom<1.E-10) THEN |
---|
| 1487 | PRINT *, 'pb denom' |
---|
| 1488 | END IF |
---|
| 1489 | dt = num/denom |
---|
| 1490 | ! write(17,*)'DT=',DT |
---|
| 1491 | END DO |
---|
| 1492 | zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
| 1493 | zqla(ig, l) = max(0., qlbef) |
---|
| 1494 | ! zqla(ig,l)=0. |
---|
| 1495 | END IF |
---|
| 1496 | ! zqla(ig,l) = max(0.,zqta(ig,l)-qsatbef(ig)) |
---|
[878] | 1497 | |
---|
[1992] | 1498 | ! on ecrit de maniere conservative (sat ou non) |
---|
| 1499 | ! T = Tl +Lv/Cp ql |
---|
| 1500 | ! CR rq utilisation de humidite specifique ou rapport de melange? |
---|
| 1501 | ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
---|
| 1502 | ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
---|
| 1503 | ! on rajoute le calcul de zha pour diagnostiques (temp potentielle) |
---|
| 1504 | zha(ig, l) = ztva(ig, l) |
---|
| 1505 | ! if (l.lt.lentr(ig)) then |
---|
| 1506 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
| 1507 | ! s -zqla(ig,l))-zqla(ig,l)) + 0.1 |
---|
| 1508 | ! else |
---|
| 1509 | ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig, & |
---|
| 1510 | l))-zqla(ig,l)) |
---|
| 1511 | ! endif |
---|
| 1512 | ! ztva(ig,l) = ztla(ig,l)*zpspsk(ig,l)+RLvCp*zqla(ig,l) |
---|
| 1513 | ! s /(1.-retv*zqla(ig,l)) |
---|
| 1514 | ! ztva(ig,l) = ztva(ig,l)/zpspsk(ig,l) |
---|
| 1515 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
| 1516 | ! s /(1.-retv*zqta(ig,l)) |
---|
| 1517 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
| 1518 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
| 1519 | ! write(13,*)zqla(ig,l),zqla(ig,l)/(1.-retv*zqla(ig,l)) |
---|
| 1520 | ! on ecrit zqsat |
---|
| 1521 | zqsatth(ig, l) = qsatbef(ig) |
---|
| 1522 | ! enddo |
---|
| 1523 | ! DO ig=1,ngrid |
---|
| 1524 | ! if (zw2(ig,l).ge.1.e-10.and. |
---|
| 1525 | ! s f_star(ig,l)+entr_star(ig,l).gt.1.e-10) then |
---|
| 1526 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
| 1527 | ! consideree commence avec une vitesse nulle). |
---|
[878] | 1528 | |
---|
[1992] | 1529 | ! if (f_star(ig,l+1).gt.1.e-10) then |
---|
| 1530 | zw2(ig, l+1) = zw2(ig, l)* & ! s |
---|
| 1531 | ! ((f_star(ig,l)-detr_star(ig,l))**2) |
---|
| 1532 | ! s /f_star(ig,l+1)**2+ |
---|
| 1533 | ((f_star(ig,l))**2)/(f_star(ig,l+1)+detr_star(ig,l))**2 + & ! s |
---|
| 1534 | ! /(f_star(ig,l+1))**2+ |
---|
| 1535 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1536 | ! s *(f_star(ig,l)/f_star(ig,l+1))**2 |
---|
[878] | 1537 | |
---|
[1992] | 1538 | END IF |
---|
| 1539 | END IF |
---|
[878] | 1540 | |
---|
[1992] | 1541 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 1542 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 1543 | ig,l)) |
---|
| 1544 | zw2(ig, l+1) = 0. |
---|
| 1545 | ! print*,'linter=',linter(ig) |
---|
| 1546 | ! else if ((zw2(ig,l+1).lt.1.e-10).and.(zw2(ig,l+1).ge.0.)) then |
---|
| 1547 | ! linter(ig)=l+1 |
---|
| 1548 | ! print*,'linter=l',zw2(ig,l),zw2(ig,l+1) |
---|
| 1549 | ELSE |
---|
| 1550 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 1551 | ! wa_moy(ig,l+1)=zw2(ig,l+1) |
---|
| 1552 | END IF |
---|
| 1553 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 1554 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 1555 | lmix(ig) = l + 1 |
---|
| 1556 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 1557 | END IF |
---|
| 1558 | END DO |
---|
| 1559 | END DO |
---|
| 1560 | PRINT *, 'fin calcul zw2' |
---|
[878] | 1561 | |
---|
[1992] | 1562 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 1563 | DO ig = 1, ngrid |
---|
| 1564 | lmax(ig) = lentr(ig) |
---|
| 1565 | END DO |
---|
| 1566 | DO ig = 1, ngrid |
---|
| 1567 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 1568 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 1569 | lmax(ig) = l - 1 |
---|
| 1570 | END IF |
---|
| 1571 | END DO |
---|
| 1572 | END DO |
---|
| 1573 | ! pas de thermique si couche 1 stable |
---|
| 1574 | DO ig = 1, ngrid |
---|
| 1575 | IF (lmin(ig)>1) THEN |
---|
| 1576 | lmax(ig) = 1 |
---|
| 1577 | lmin(ig) = 1 |
---|
| 1578 | lentr(ig) = 1 |
---|
| 1579 | END IF |
---|
| 1580 | END DO |
---|
[878] | 1581 | |
---|
[1992] | 1582 | ! Determination de zw2 max |
---|
| 1583 | DO ig = 1, ngrid |
---|
| 1584 | wmax(ig) = 0. |
---|
| 1585 | END DO |
---|
[878] | 1586 | |
---|
[1992] | 1587 | DO l = 1, nlay |
---|
| 1588 | DO ig = 1, ngrid |
---|
| 1589 | IF (l<=lmax(ig)) THEN |
---|
| 1590 | IF (zw2(ig,l)<0.) THEN |
---|
| 1591 | PRINT *, 'pb2 zw2<0' |
---|
| 1592 | END IF |
---|
| 1593 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 1594 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 1595 | ELSE |
---|
| 1596 | zw2(ig, l) = 0. |
---|
| 1597 | END IF |
---|
| 1598 | END DO |
---|
| 1599 | END DO |
---|
[878] | 1600 | |
---|
[1992] | 1601 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 1602 | DO ig = 1, ngrid |
---|
| 1603 | zmax(ig) = 0. |
---|
| 1604 | zlevinter(ig) = zlev(ig, 1) |
---|
| 1605 | END DO |
---|
| 1606 | DO ig = 1, ngrid |
---|
| 1607 | ! calcul de zlevinter |
---|
| 1608 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 1609 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 1610 | ! pour le cas ou on prend tjs lmin=1 |
---|
| 1611 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 1612 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
---|
| 1613 | zmax0(ig) = zmax(ig) |
---|
| 1614 | WRITE (11, *) 'ig,lmax,linter', ig, lmax(ig), linter(ig) |
---|
| 1615 | WRITE (12, *) 'ig,zlevinter,zmax', ig, zmax(ig), zlevinter(ig) |
---|
| 1616 | END DO |
---|
[878] | 1617 | |
---|
[1992] | 1618 | ! Calcul de zmax_sec et wmax_sec |
---|
| 1619 | CALL fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, f0, & |
---|
| 1620 | zpspsk, alim, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, zmax_sec2, & |
---|
| 1621 | wmax_sec2) |
---|
[878] | 1622 | |
---|
[1992] | 1623 | PRINT *, 'avant fermeture' |
---|
| 1624 | ! Fermeture,determination de f |
---|
| 1625 | ! en lmax f=d-e |
---|
| 1626 | DO ig = 1, ngrid |
---|
| 1627 | ! entr_star(ig,lmax(ig))=0. |
---|
| 1628 | ! f_star(ig,lmax(ig)+1)=0. |
---|
| 1629 | ! detr_star(ig,lmax(ig))=f_star(ig,lmax(ig))+entr_star(ig,lmax(ig)) |
---|
| 1630 | ! s +alim_star(ig,lmax(ig)) |
---|
| 1631 | END DO |
---|
[878] | 1632 | |
---|
[1992] | 1633 | DO ig = 1, ngrid |
---|
| 1634 | alim_star2(ig) = 0. |
---|
| 1635 | END DO |
---|
| 1636 | ! calcul de entr_star_tot |
---|
| 1637 | DO ig = 1, ngrid |
---|
| 1638 | DO k = 1, lmix(ig) |
---|
| 1639 | entr_star_tot(ig) = entr_star_tot(ig) & ! s |
---|
| 1640 | ! +entr_star(ig,k) |
---|
| 1641 | +alim_star(ig, k) |
---|
| 1642 | ! s -detr_star(ig,k) |
---|
| 1643 | detr_star_tot(ig) = detr_star_tot(ig) & ! s |
---|
| 1644 | ! +alim_star(ig,k) |
---|
| 1645 | -detr_star(ig, k) + entr_star(ig, k) |
---|
| 1646 | END DO |
---|
| 1647 | END DO |
---|
[878] | 1648 | |
---|
[1992] | 1649 | DO ig = 1, ngrid |
---|
| 1650 | IF (alim_star_tot(ig)<1.E-10) THEN |
---|
| 1651 | f(ig) = 0. |
---|
| 1652 | ELSE |
---|
| 1653 | ! do k=lmin(ig),lentr(ig) |
---|
| 1654 | DO k = 1, lentr(ig) |
---|
| 1655 | alim_star2(ig) = alim_star2(ig) + alim_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 1656 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 1657 | END DO |
---|
| 1658 | IF ((zmax_sec(ig)>1.E-10) .AND. (1==1)) THEN |
---|
| 1659 | f(ig) = wmax_sec(ig)/(max(500.,zmax_sec(ig))*r_aspect*alim_star2(ig)) |
---|
| 1660 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax_sec(ig))*wmax_sec & |
---|
| 1661 | (ig)) |
---|
| 1662 | ELSE |
---|
| 1663 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*alim_star2(ig)) |
---|
| 1664 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax(ig))*wmax(ig)) |
---|
| 1665 | END IF |
---|
| 1666 | END IF |
---|
| 1667 | f0(ig) = f(ig) |
---|
| 1668 | END DO |
---|
| 1669 | PRINT *, 'apres fermeture' |
---|
| 1670 | ! Calcul de l'entrainement |
---|
| 1671 | DO ig = 1, ngrid |
---|
| 1672 | DO k = 1, klev |
---|
| 1673 | alim(ig, k) = f(ig)*alim_star(ig, k) |
---|
| 1674 | END DO |
---|
| 1675 | END DO |
---|
| 1676 | ! CR:test pour entrainer moins que la masse |
---|
| 1677 | ! do ig=1,ngrid |
---|
| 1678 | ! do l=1,lentr(ig) |
---|
| 1679 | ! if ((alim(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
---|
| 1680 | ! alim(ig,l+1)=alim(ig,l+1)+alim(ig,l) |
---|
| 1681 | ! s -0.9*masse(ig,l)/ptimestep |
---|
| 1682 | ! alim(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
| 1683 | ! endif |
---|
| 1684 | ! enddo |
---|
| 1685 | ! enddo |
---|
| 1686 | ! calcul du détrainement |
---|
| 1687 | DO ig = 1, klon |
---|
| 1688 | DO k = 1, klev |
---|
| 1689 | detr(ig, k) = f(ig)*detr_star(ig, k) |
---|
| 1690 | IF (detr(ig,k)<0.) THEN |
---|
| 1691 | ! print*,'detr1<0!!!' |
---|
| 1692 | END IF |
---|
| 1693 | END DO |
---|
| 1694 | DO k = 1, klev |
---|
| 1695 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 1696 | IF (entr(ig,k)<0.) THEN |
---|
| 1697 | ! print*,'entr1<0!!!' |
---|
| 1698 | END IF |
---|
| 1699 | END DO |
---|
| 1700 | END DO |
---|
[878] | 1701 | |
---|
[1992] | 1702 | ! do ig=1,ngrid |
---|
| 1703 | ! do l=1,klev |
---|
| 1704 | ! if (((detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep).gt. |
---|
| 1705 | ! s (masse(ig,l))) then |
---|
| 1706 | ! print*,'d2+e2+a2>m2','ig=',ig,'l=',l,'lmax(ig)=',lmax(ig),'d+e+a=' |
---|
| 1707 | ! s,(detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep,'m=',masse(ig,l) |
---|
| 1708 | ! endif |
---|
| 1709 | ! enddo |
---|
| 1710 | ! enddo |
---|
| 1711 | ! Calcul des flux |
---|
[878] | 1712 | |
---|
[1992] | 1713 | DO ig = 1, ngrid |
---|
| 1714 | DO l = 1, lmax(ig) |
---|
| 1715 | ! do l=1,klev |
---|
| 1716 | ! fmc(ig,l+1)=f(ig)*f_star(ig,l+1) |
---|
| 1717 | fmc(ig, l+1) = fmc(ig, l) + alim(ig, l) + entr(ig, l) - detr(ig, l) |
---|
| 1718 | ! print*,'??!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
| 1719 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
| 1720 | ! s 'f+1=',fmc(ig,l+1) |
---|
| 1721 | IF (fmc(ig,l+1)<0.) THEN |
---|
| 1722 | PRINT *, 'fmc1<0', l + 1, lmax(ig), fmc(ig, l+1) |
---|
| 1723 | fmc(ig, l+1) = fmc(ig, l) |
---|
| 1724 | detr(ig, l) = alim(ig, l) + entr(ig, l) |
---|
| 1725 | ! fmc(ig,l+1)=0. |
---|
| 1726 | ! print*,'fmc1<0',l+1,lmax(ig),fmc(ig,l+1) |
---|
| 1727 | END IF |
---|
| 1728 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
---|
| 1729 | ! f_old=fmc(ig,l+1) |
---|
| 1730 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
| 1731 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l+1) |
---|
| 1732 | ! endif |
---|
[878] | 1733 | |
---|
[1992] | 1734 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
---|
| 1735 | ! f_old=fmc(ig,l+1) |
---|
| 1736 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
| 1737 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l) |
---|
| 1738 | ! endif |
---|
| 1739 | ! rajout du test sur alpha croissant |
---|
| 1740 | ! if test |
---|
| 1741 | ! if (1.eq.0) then |
---|
[878] | 1742 | |
---|
[1992] | 1743 | IF (l==klev) THEN |
---|
| 1744 | PRINT *, 'THERMCELL PB ig=', ig, ' l=', l |
---|
| 1745 | abort_message = 'THERMCELL PB' |
---|
[2311] | 1746 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 1747 | END IF |
---|
| 1748 | ! if ((zw2(ig,l+1).gt.1.e-10).and.(zw2(ig,l).gt.1.e-10).and. |
---|
| 1749 | ! s (l.ge.lentr(ig)).and. |
---|
| 1750 | IF ((zw2(ig,l+1)>1.E-10) .AND. (zw2(ig,l)>1.E-10) .AND. (l>=lentr(ig))) & |
---|
| 1751 | THEN |
---|
| 1752 | IF (((fmc(ig,l+1)/(rhobarz(ig,l+1)*zw2(ig,l+1)))>(fmc(ig,l)/ & |
---|
| 1753 | (rhobarz(ig,l)*zw2(ig,l))))) THEN |
---|
| 1754 | f_old = fmc(ig, l+1) |
---|
| 1755 | fmc(ig, l+1) = fmc(ig, l)*rhobarz(ig, l+1)*zw2(ig, l+1)/ & |
---|
| 1756 | (rhobarz(ig,l)*zw2(ig,l)) |
---|
| 1757 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
| 1758 | ! detr(ig,l)=(fmc(ig,l+1)-fmc(ig,l))/(0.4-1.) |
---|
| 1759 | ! entr(ig,l)=0.4*detr(ig,l) |
---|
| 1760 | ! entr(ig,l)=fmc(ig,l+1)-fmc(ig,l)+detr(ig,l) |
---|
| 1761 | END IF |
---|
| 1762 | END IF |
---|
| 1763 | IF ((fmc(ig,l+1)>fmc(ig,l)) .AND. (l>lentr(ig))) THEN |
---|
| 1764 | f_old = fmc(ig, l+1) |
---|
| 1765 | fmc(ig, l+1) = fmc(ig, l) |
---|
| 1766 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
| 1767 | END IF |
---|
| 1768 | IF (detr(ig,l)>fmc(ig,l)) THEN |
---|
| 1769 | detr(ig, l) = fmc(ig, l) |
---|
| 1770 | entr(ig, l) = fmc(ig, l+1) - alim(ig, l) |
---|
| 1771 | END IF |
---|
| 1772 | IF (fmc(ig,l+1)<0.) THEN |
---|
| 1773 | detr(ig, l) = detr(ig, l) + fmc(ig, l+1) |
---|
| 1774 | fmc(ig, l+1) = 0. |
---|
| 1775 | PRINT *, 'fmc2<0', l + 1, lmax(ig) |
---|
| 1776 | END IF |
---|
[878] | 1777 | |
---|
[1992] | 1778 | ! test pour ne pas avoir f=0 et d=e/=0 |
---|
| 1779 | ! if (fmc(ig,l+1).lt.1.e-10) then |
---|
| 1780 | ! detr(ig,l+1)=0. |
---|
| 1781 | ! entr(ig,l+1)=0. |
---|
| 1782 | ! zqla(ig,l+1)=0. |
---|
| 1783 | ! zw2(ig,l+1)=0. |
---|
| 1784 | ! lmax(ig)=l+1 |
---|
| 1785 | ! zmax(ig)=zlev(ig,lmax(ig)) |
---|
| 1786 | ! endif |
---|
| 1787 | IF (zw2(ig,l+1)>1.E-10) THEN |
---|
| 1788 | IF ((((fmc(ig,l+1))/(rhobarz(ig,l+1)*zw2(ig,l+1)))>1.)) THEN |
---|
| 1789 | f_old = fmc(ig, l+1) |
---|
| 1790 | fmc(ig, l+1) = rhobarz(ig, l+1)*zw2(ig, l+1) |
---|
| 1791 | zw2(ig, l+1) = 0. |
---|
| 1792 | zqla(ig, l+1) = 0. |
---|
| 1793 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
| 1794 | lmax(ig) = l + 1 |
---|
| 1795 | zmax(ig) = zlev(ig, lmax(ig)) |
---|
| 1796 | PRINT *, 'alpha>1', l + 1, lmax(ig) |
---|
| 1797 | END IF |
---|
| 1798 | END IF |
---|
| 1799 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 1800 | ! endif test |
---|
| 1801 | ! endif |
---|
| 1802 | END DO |
---|
| 1803 | END DO |
---|
| 1804 | DO ig = 1, ngrid |
---|
| 1805 | ! if (fmc(ig,lmax(ig)+1).ne.0.) then |
---|
| 1806 | fmc(ig, lmax(ig)+1) = 0. |
---|
| 1807 | entr(ig, lmax(ig)) = 0. |
---|
| 1808 | detr(ig, lmax(ig)) = fmc(ig, lmax(ig)) + entr(ig, lmax(ig)) + & |
---|
| 1809 | alim(ig, lmax(ig)) |
---|
| 1810 | ! endif |
---|
| 1811 | END DO |
---|
| 1812 | ! test sur le signe de fmc |
---|
| 1813 | DO ig = 1, ngrid |
---|
| 1814 | DO l = 1, klev + 1 |
---|
| 1815 | IF (fmc(ig,l)<0.) THEN |
---|
| 1816 | PRINT *, 'fm1<0!!!', 'ig=', ig, 'l=', l, 'a=', alim(ig, l-1), 'e=', & |
---|
| 1817 | entr(ig, l-1), 'f=', fmc(ig, l-1), 'd=', detr(ig, l-1), 'f+1=', & |
---|
| 1818 | fmc(ig, l) |
---|
| 1819 | END IF |
---|
| 1820 | END DO |
---|
| 1821 | END DO |
---|
| 1822 | ! test de verification |
---|
| 1823 | DO ig = 1, ngrid |
---|
| 1824 | DO l = 1, lmax(ig) |
---|
| 1825 | IF ((abs(fmc(ig,l+1)-fmc(ig,l)-alim(ig,l)-entr(ig,l)+ & |
---|
| 1826 | detr(ig,l)))>1.E-4) THEN |
---|
| 1827 | ! print*,'pbcm!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
| 1828 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
| 1829 | ! s 'f+1=',fmc(ig,l+1) |
---|
| 1830 | END IF |
---|
| 1831 | IF (detr(ig,l)<0.) THEN |
---|
| 1832 | PRINT *, 'detrdemi<0!!!' |
---|
| 1833 | END IF |
---|
| 1834 | END DO |
---|
| 1835 | END DO |
---|
[878] | 1836 | |
---|
[1992] | 1837 | ! RC |
---|
| 1838 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 1839 | DO ig = 1, ngrid |
---|
| 1840 | IF (lmix(ig)>1.) THEN |
---|
| 1841 | ! test |
---|
| 1842 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 1843 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 1844 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 1845 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
[878] | 1846 | |
---|
[1992] | 1847 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 1848 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 1849 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 1850 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 1851 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 1852 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 1853 | ELSE |
---|
| 1854 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 1855 | PRINT *, 'pb zmix' |
---|
| 1856 | END IF |
---|
| 1857 | ELSE |
---|
| 1858 | zmix(ig) = 0. |
---|
| 1859 | END IF |
---|
| 1860 | ! test |
---|
| 1861 | IF ((zmax(ig)-zmix(ig))<=0.) THEN |
---|
| 1862 | zmix(ig) = 0.9*zmax(ig) |
---|
| 1863 | ! print*,'pb zmix>zmax' |
---|
| 1864 | END IF |
---|
| 1865 | END DO |
---|
| 1866 | DO ig = 1, klon |
---|
| 1867 | zmix0(ig) = zmix(ig) |
---|
| 1868 | END DO |
---|
[878] | 1869 | |
---|
[1992] | 1870 | ! calcul du nouveau lmix correspondant |
---|
| 1871 | DO ig = 1, ngrid |
---|
| 1872 | DO l = 1, klev |
---|
| 1873 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 1874 | lmix(ig) = l |
---|
| 1875 | END IF |
---|
| 1876 | END DO |
---|
| 1877 | END DO |
---|
[878] | 1878 | |
---|
[1992] | 1879 | ! ne devrait pas arriver!!!!! |
---|
| 1880 | DO ig = 1, ngrid |
---|
| 1881 | DO l = 1, klev |
---|
| 1882 | IF (detr(ig,l)>(fmc(ig,l)+alim(ig,l))+entr(ig,l)) THEN |
---|
| 1883 | PRINT *, 'detr2>fmc2!!!', 'ig=', ig, 'l=', l, 'd=', detr(ig, l), & |
---|
| 1884 | 'f=', fmc(ig, l), 'lmax=', lmax(ig) |
---|
| 1885 | ! detr(ig,l)=fmc(ig,l)+alim(ig,l)+entr(ig,l) |
---|
| 1886 | ! entr(ig,l)=0. |
---|
| 1887 | ! fmc(ig,l+1)=0. |
---|
| 1888 | ! zw2(ig,l+1)=0. |
---|
| 1889 | ! zqla(ig,l+1)=0. |
---|
| 1890 | PRINT *, 'pb!fm=0 et f_star>0', l, lmax(ig) |
---|
| 1891 | ! lmax(ig)=l |
---|
| 1892 | END IF |
---|
| 1893 | END DO |
---|
| 1894 | END DO |
---|
| 1895 | DO ig = 1, ngrid |
---|
| 1896 | DO l = lmax(ig) + 1, klev + 1 |
---|
| 1897 | ! fmc(ig,l)=0. |
---|
| 1898 | ! detr(ig,l)=0. |
---|
| 1899 | ! entr(ig,l)=0. |
---|
| 1900 | ! zw2(ig,l)=0. |
---|
| 1901 | ! zqla(ig,l)=0. |
---|
| 1902 | END DO |
---|
| 1903 | END DO |
---|
[878] | 1904 | |
---|
[1992] | 1905 | ! Calcul du detrainement lors du premier passage |
---|
| 1906 | ! print*,'9 OK convect8' |
---|
| 1907 | ! print*,'WA1 ',wa_moy |
---|
[878] | 1908 | |
---|
[1992] | 1909 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
[878] | 1910 | |
---|
[1992] | 1911 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 1912 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
| 1913 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
| 1914 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 1915 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
[878] | 1916 | |
---|
[1992] | 1917 | DO l = 2, nlay |
---|
| 1918 | DO ig = 1, ngrid |
---|
| 1919 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
| 1920 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 1921 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 1922 | END IF |
---|
| 1923 | END DO |
---|
| 1924 | END DO |
---|
[878] | 1925 | |
---|
[1992] | 1926 | DO l = 2, nlay |
---|
| 1927 | DO ig = 1, ngrid |
---|
| 1928 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
| 1929 | ! if (idetr.eq.0) then |
---|
| 1930 | ! cette option est finalement en dur. |
---|
| 1931 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 1932 | PRINT *, 'pb l_mix*zlev<0' |
---|
| 1933 | END IF |
---|
| 1934 | ! CR: test: nouvelle def de lambda |
---|
| 1935 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 1936 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 1937 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
| 1938 | ELSE |
---|
| 1939 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 1940 | END IF |
---|
| 1941 | ! else if (idetr.eq.1) then |
---|
| 1942 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 1943 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 1944 | ! else if (idetr.eq.2) then |
---|
| 1945 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 1946 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 1947 | ! else if (idetr.eq.4) then |
---|
| 1948 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 1949 | ! s *wa_moy(ig,l) |
---|
| 1950 | ! endif |
---|
| 1951 | END IF |
---|
| 1952 | END DO |
---|
| 1953 | END DO |
---|
[878] | 1954 | |
---|
[1992] | 1955 | ! print*,'10 OK convect8' |
---|
| 1956 | ! print*,'WA2 ',wa_moy |
---|
| 1957 | ! cal1cul de la fraction de la maille concernée par l'ascendance en tenant |
---|
| 1958 | ! compte de l'epluchage du thermique. |
---|
[878] | 1959 | |
---|
| 1960 | |
---|
[1992] | 1961 | DO l = 2, nlay |
---|
| 1962 | DO ig = 1, ngrid |
---|
| 1963 | IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
---|
| 1964 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 1965 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 1966 | ! test |
---|
| 1967 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 1968 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 1969 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 1970 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 1971 | ELSE |
---|
| 1972 | ! wa_moy(ig,l)=0. |
---|
| 1973 | fraca(ig, l) = 0. |
---|
| 1974 | fracc(ig, l) = 0. |
---|
| 1975 | fracd(ig, l) = 1. |
---|
| 1976 | END IF |
---|
| 1977 | END DO |
---|
| 1978 | END DO |
---|
| 1979 | ! CR: calcul de fracazmix |
---|
| 1980 | DO ig = 1, ngrid |
---|
| 1981 | IF (test(ig)==1) THEN |
---|
| 1982 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 1983 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 1984 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca( & |
---|
| 1985 | ig,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 1986 | END IF |
---|
| 1987 | END DO |
---|
[878] | 1988 | |
---|
[1992] | 1989 | DO l = 2, nlay |
---|
| 1990 | DO ig = 1, ngrid |
---|
| 1991 | IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
---|
| 1992 | IF (l>lmix(ig)) THEN |
---|
| 1993 | ! test |
---|
| 1994 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 1995 | ! print*,'pb xxx' |
---|
| 1996 | xxx(ig, l) = (lmax(ig)+1.-l)/(lmax(ig)+1.-lmix(ig)) |
---|
| 1997 | ELSE |
---|
| 1998 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 1999 | END IF |
---|
| 2000 | IF (idetr==0) THEN |
---|
| 2001 | fraca(ig, l) = fracazmix(ig) |
---|
| 2002 | ELSE IF (idetr==1) THEN |
---|
| 2003 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 2004 | ELSE IF (idetr==2) THEN |
---|
| 2005 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 2006 | ELSE |
---|
| 2007 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 2008 | END IF |
---|
| 2009 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 2010 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 2011 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 2012 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 2013 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 2014 | END IF |
---|
| 2015 | END IF |
---|
| 2016 | END DO |
---|
| 2017 | END DO |
---|
[878] | 2018 | |
---|
[1992] | 2019 | PRINT *, 'fin calcul fraca' |
---|
| 2020 | ! print*,'11 OK convect8' |
---|
| 2021 | ! print*,'Ea3 ',wa_moy |
---|
| 2022 | ! ------------------------------------------------------------------ |
---|
| 2023 | ! Calcul de fracd, wd |
---|
| 2024 | ! somme wa - wd = 0 |
---|
| 2025 | ! ------------------------------------------------------------------ |
---|
[878] | 2026 | |
---|
| 2027 | |
---|
[1992] | 2028 | DO ig = 1, ngrid |
---|
| 2029 | fm(ig, 1) = 0. |
---|
| 2030 | fm(ig, nlay+1) = 0. |
---|
| 2031 | END DO |
---|
[878] | 2032 | |
---|
[1992] | 2033 | DO l = 2, nlay |
---|
| 2034 | DO ig = 1, ngrid |
---|
| 2035 | IF (test(ig)==1) THEN |
---|
| 2036 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 2037 | ! CR:test |
---|
| 2038 | IF (alim(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) & |
---|
| 2039 | THEN |
---|
| 2040 | fm(ig, l) = fm(ig, l-1) |
---|
| 2041 | ! write(1,*)'ajustement fm, l',l |
---|
| 2042 | END IF |
---|
| 2043 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 2044 | ! RC |
---|
| 2045 | END IF |
---|
| 2046 | END DO |
---|
| 2047 | DO ig = 1, ngrid |
---|
| 2048 | IF (fracd(ig,l)<0.1 .AND. (test(ig)==1)) THEN |
---|
| 2049 | abort_message = 'fracd trop petit' |
---|
[2311] | 2050 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 2051 | ELSE |
---|
| 2052 | ! vitesse descendante "diagnostique" |
---|
| 2053 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 2054 | END IF |
---|
| 2055 | END DO |
---|
| 2056 | END DO |
---|
[878] | 2057 | |
---|
[1992] | 2058 | DO l = 1, nlay + 1 |
---|
| 2059 | DO ig = 1, ngrid |
---|
| 2060 | IF (test(ig)==0) THEN |
---|
| 2061 | fm(ig, l) = fmc(ig, l) |
---|
| 2062 | END IF |
---|
| 2063 | END DO |
---|
| 2064 | END DO |
---|
[878] | 2065 | |
---|
[1992] | 2066 | ! fin du first |
---|
| 2067 | DO l = 1, nlay |
---|
| 2068 | DO ig = 1, ngrid |
---|
| 2069 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 2070 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 2071 | END DO |
---|
| 2072 | END DO |
---|
[878] | 2073 | |
---|
[1992] | 2074 | ! print*,'12 OK convect8' |
---|
| 2075 | ! print*,'WA4 ',wa_moy |
---|
| 2076 | ! c------------------------------------------------------------------ |
---|
| 2077 | ! calcul du transport vertical |
---|
| 2078 | ! ------------------------------------------------------------------ |
---|
[878] | 2079 | |
---|
[1992] | 2080 | GO TO 4444 |
---|
| 2081 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 2082 | DO l = 2, nlay - 1 |
---|
| 2083 | DO ig = 1, ngrid |
---|
| 2084 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 2085 | ig,l+1)) THEN |
---|
| 2086 | PRINT *, 'WARN!!! FM>M ig=', ig, ' l=', l, ' FM=', & |
---|
| 2087 | fm(ig, l+1)*ptimestep, ' M=', masse(ig, l), masse(ig, l+1) |
---|
| 2088 | END IF |
---|
| 2089 | END DO |
---|
| 2090 | END DO |
---|
[878] | 2091 | |
---|
[1992] | 2092 | DO l = 1, nlay |
---|
| 2093 | DO ig = 1, ngrid |
---|
| 2094 | IF ((alim(ig,l)+entr(ig,l))*ptimestep>masse(ig,l)) THEN |
---|
| 2095 | PRINT *, 'WARN!!! E>M ig=', ig, ' l=', l, ' E==', & |
---|
| 2096 | (entr(ig,l)+alim(ig,l))*ptimestep, ' M=', masse(ig, l) |
---|
| 2097 | END IF |
---|
| 2098 | END DO |
---|
| 2099 | END DO |
---|
[878] | 2100 | |
---|
[1992] | 2101 | DO l = 1, nlay |
---|
| 2102 | DO ig = 1, ngrid |
---|
| 2103 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 2104 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 2105 | ! s ,' FM=',fm(ig,l) |
---|
| 2106 | END IF |
---|
| 2107 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 2108 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 2109 | ! s ,' M=',masse(ig,l) |
---|
| 2110 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 2111 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 2112 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 2113 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 2114 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 2115 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 2116 | END IF |
---|
| 2117 | IF (.NOT. alim(ig,l)>=0. .OR. .NOT. alim(ig,l)<=10.) THEN |
---|
| 2118 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 2119 | ! s ,' E=',entr(ig,l) |
---|
| 2120 | END IF |
---|
| 2121 | END DO |
---|
| 2122 | END DO |
---|
[878] | 2123 | |
---|
[1992] | 2124 | 4444 CONTINUE |
---|
[878] | 2125 | |
---|
[1992] | 2126 | ! CR:redefinition du entr |
---|
| 2127 | ! CR:test:on ne change pas la def du entr mais la def du fm |
---|
| 2128 | DO l = 1, nlay |
---|
| 2129 | DO ig = 1, ngrid |
---|
| 2130 | IF (test(ig)==1) THEN |
---|
| 2131 | detr(ig, l) = fm(ig, l) + alim(ig, l) - fm(ig, l+1) |
---|
| 2132 | IF (detr(ig,l)<0.) THEN |
---|
| 2133 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 2134 | fm(ig, l+1) = fm(ig, l) + alim(ig, l) |
---|
| 2135 | detr(ig, l) = 0. |
---|
| 2136 | ! write(11,*)'l,ig,entr',l,ig,entr(ig,l) |
---|
| 2137 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 2138 | END IF |
---|
| 2139 | END IF |
---|
| 2140 | END DO |
---|
| 2141 | END DO |
---|
| 2142 | ! RC |
---|
[878] | 2143 | |
---|
[1992] | 2144 | IF (w2di==1) THEN |
---|
| 2145 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 2146 | entr0 = entr0 + ptimestep*(alim+entr-entr0)/tho |
---|
| 2147 | ELSE |
---|
| 2148 | fm0 = fm |
---|
| 2149 | entr0 = alim + entr |
---|
| 2150 | detr0 = detr |
---|
| 2151 | alim0 = alim |
---|
| 2152 | ! zoa=zqta |
---|
| 2153 | ! entr0=alim |
---|
| 2154 | END IF |
---|
[878] | 2155 | |
---|
[1992] | 2156 | IF (1==1) THEN |
---|
| 2157 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
| 2158 | ! . ,zh,zdhadj,zha) |
---|
| 2159 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
| 2160 | ! . ,zo,pdoadj,zoa) |
---|
| 2161 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
| 2162 | zdthladj, zta) |
---|
| 2163 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
| 2164 | zoa) |
---|
| 2165 | ELSE |
---|
| 2166 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 2167 | zdhadj, zha) |
---|
| 2168 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 2169 | pdoadj, zoa) |
---|
| 2170 | END IF |
---|
[878] | 2171 | |
---|
[1992] | 2172 | IF (1==0) THEN |
---|
| 2173 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 2174 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 2175 | ELSE |
---|
| 2176 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 2177 | zua) |
---|
| 2178 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 2179 | zva) |
---|
| 2180 | END IF |
---|
[878] | 2181 | |
---|
[1992] | 2182 | ! Calcul des moments |
---|
| 2183 | ! do l=1,nlay |
---|
| 2184 | ! do ig=1,ngrid |
---|
| 2185 | ! zf=0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 2186 | ! zf2=zf/(1.-zf) |
---|
| 2187 | ! thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 2188 | ! wth2(ig,l)=zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 2189 | ! enddo |
---|
| 2190 | ! enddo |
---|
[878] | 2191 | |
---|
| 2192 | |
---|
| 2193 | |
---|
| 2194 | |
---|
| 2195 | |
---|
| 2196 | |
---|
[1992] | 2197 | ! print*,'13 OK convect8' |
---|
| 2198 | ! print*,'WA5 ',wa_moy |
---|
| 2199 | DO l = 1, nlay |
---|
| 2200 | DO ig = 1, ngrid |
---|
| 2201 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
| 2202 | pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
---|
| 2203 | END DO |
---|
| 2204 | END DO |
---|
[878] | 2205 | |
---|
| 2206 | |
---|
[1992] | 2207 | ! do l=1,nlay |
---|
| 2208 | ! do ig=1,ngrid |
---|
| 2209 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 2210 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 2211 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 2212 | ! endif |
---|
| 2213 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 2214 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 2215 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 2216 | ! endif |
---|
| 2217 | ! enddo |
---|
| 2218 | ! enddo |
---|
[878] | 2219 | |
---|
[1992] | 2220 | ! print*,'14 OK convect8' |
---|
| 2221 | ! ------------------------------------------------------------------ |
---|
| 2222 | ! Calculs pour les sorties |
---|
| 2223 | ! ------------------------------------------------------------------ |
---|
| 2224 | ! calcul de fraca pour les sorties |
---|
| 2225 | DO l = 2, klev |
---|
| 2226 | DO ig = 1, klon |
---|
| 2227 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 2228 | fraca(ig, l) = fm(ig, l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 2229 | ELSE |
---|
| 2230 | fraca(ig, l) = 0. |
---|
| 2231 | END IF |
---|
| 2232 | END DO |
---|
| 2233 | END DO |
---|
| 2234 | IF (sorties) THEN |
---|
| 2235 | DO l = 1, nlay |
---|
| 2236 | DO ig = 1, ngrid |
---|
| 2237 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 2238 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 2239 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 2240 | (1.-fracd(ig,l)) |
---|
| 2241 | END DO |
---|
| 2242 | END DO |
---|
| 2243 | ! CR calcul du niveau de condensation |
---|
| 2244 | ! initialisation |
---|
| 2245 | DO ig = 1, ngrid |
---|
| 2246 | nivcon(ig) = 0. |
---|
| 2247 | zcon(ig) = 0. |
---|
| 2248 | END DO |
---|
| 2249 | DO k = nlay, 1, -1 |
---|
| 2250 | DO ig = 1, ngrid |
---|
| 2251 | IF (zqla(ig,k)>1E-10) THEN |
---|
| 2252 | nivcon(ig) = k |
---|
| 2253 | zcon(ig) = zlev(ig, k) |
---|
| 2254 | END IF |
---|
| 2255 | ! if (zcon(ig).gt.1.e-10) then |
---|
| 2256 | ! nuage=.true. |
---|
| 2257 | ! else |
---|
| 2258 | ! nuage=.false. |
---|
| 2259 | ! endif |
---|
| 2260 | END DO |
---|
| 2261 | END DO |
---|
[878] | 2262 | |
---|
[1992] | 2263 | DO l = 1, nlay |
---|
| 2264 | DO ig = 1, ngrid |
---|
| 2265 | zf = fraca(ig, l) |
---|
| 2266 | zf2 = zf/(1.-zf) |
---|
| 2267 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
| 2268 | wth2(ig, l) = zf2*(zw2(ig,l))**2 |
---|
| 2269 | ! print*,'wth2=',wth2(ig,l) |
---|
| 2270 | wth3(ig, l) = zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l))*zw2(ig, l)* & |
---|
| 2271 | zw2(ig, l)*zw2(ig, l) |
---|
| 2272 | q2(ig, l) = zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 2273 | ! test: on calcul q2/po=ratqsc |
---|
| 2274 | ! if (nuage) then |
---|
| 2275 | ratqscth(ig, l) = sqrt(q2(ig,l))/(po(ig,l)*1000.) |
---|
| 2276 | ! else |
---|
| 2277 | ! ratqscth(ig,l)=0. |
---|
| 2278 | ! endif |
---|
| 2279 | END DO |
---|
| 2280 | END DO |
---|
| 2281 | ! calcul du ratqscdiff |
---|
| 2282 | sum = 0. |
---|
| 2283 | sumdiff = 0. |
---|
| 2284 | ratqsdiff(:, :) = 0. |
---|
| 2285 | DO ig = 1, ngrid |
---|
| 2286 | DO l = 1, lentr(ig) |
---|
| 2287 | sum = sum + alim_star(ig, l)*zqta(ig, l)*1000. |
---|
| 2288 | END DO |
---|
| 2289 | END DO |
---|
| 2290 | DO ig = 1, ngrid |
---|
| 2291 | DO l = 1, lentr(ig) |
---|
| 2292 | zf = fraca(ig, l) |
---|
| 2293 | zf2 = zf/(1.-zf) |
---|
| 2294 | sumdiff = sumdiff + alim_star(ig, l)*(zqta(ig,l)*1000.-sum)**2 |
---|
| 2295 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 2296 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 2297 | END DO |
---|
| 2298 | END DO |
---|
| 2299 | DO l = 1, klev |
---|
| 2300 | DO ig = 1, ngrid |
---|
| 2301 | ratqsdiff(ig, l) = sqrt(sumdiff)/(po(ig,l)*1000.) |
---|
| 2302 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 2303 | END DO |
---|
| 2304 | END DO |
---|
[878] | 2305 | |
---|
[1992] | 2306 | END IF |
---|
[878] | 2307 | |
---|
[1992] | 2308 | ! print*,'19 OK convect8' |
---|
| 2309 | RETURN |
---|
| 2310 | END SUBROUTINE thermcell_cld |
---|
[878] | 2311 | |
---|
[1992] | 2312 | SUBROUTINE thermcell_eau(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, & |
---|
| 2313 | pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
| 2314 | ! ,pu_therm,pv_therm |
---|
| 2315 | , r_aspect, l_mix, w2di, tho) |
---|
[878] | 2316 | |
---|
[1992] | 2317 | USE dimphy |
---|
| 2318 | IMPLICIT NONE |
---|
[878] | 2319 | |
---|
[1992] | 2320 | ! ======================================================================= |
---|
[878] | 2321 | |
---|
[1992] | 2322 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 2323 | ! de "thermiques" explicitement representes |
---|
[1403] | 2324 | |
---|
[1992] | 2325 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
[878] | 2326 | |
---|
[1992] | 2327 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 2328 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 2329 | ! mélange |
---|
[878] | 2330 | |
---|
[1992] | 2331 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 2332 | ! en compte: |
---|
| 2333 | ! 1. un flux de masse montant |
---|
| 2334 | ! 2. un flux de masse descendant |
---|
| 2335 | ! 3. un entrainement |
---|
| 2336 | ! 4. un detrainement |
---|
[878] | 2337 | |
---|
[1992] | 2338 | ! ======================================================================= |
---|
[878] | 2339 | |
---|
[1992] | 2340 | ! ----------------------------------------------------------------------- |
---|
| 2341 | ! declarations: |
---|
| 2342 | ! ------------- |
---|
[878] | 2343 | |
---|
[1992] | 2344 | include "YOMCST.h" |
---|
| 2345 | include "YOETHF.h" |
---|
| 2346 | include "FCTTRE.h" |
---|
[878] | 2347 | |
---|
[1992] | 2348 | ! arguments: |
---|
| 2349 | ! ---------- |
---|
[878] | 2350 | |
---|
[1992] | 2351 | INTEGER ngrid, nlay, w2di |
---|
| 2352 | REAL tho |
---|
| 2353 | REAL ptimestep, l_mix, r_aspect |
---|
| 2354 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 2355 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 2356 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 2357 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 2358 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 2359 | REAL pphi(ngrid, nlay) |
---|
[878] | 2360 | |
---|
[1992] | 2361 | INTEGER idetr |
---|
| 2362 | SAVE idetr |
---|
| 2363 | DATA idetr/3/ |
---|
| 2364 | !$OMP THREADPRIVATE(idetr) |
---|
[878] | 2365 | |
---|
[1992] | 2366 | ! local: |
---|
| 2367 | ! ------ |
---|
[878] | 2368 | |
---|
[1992] | 2369 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 2370 | REAL zsortie1d(klon) |
---|
| 2371 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 2372 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 2373 | REAL linter(klon) |
---|
| 2374 | REAL zmix(klon), fracazmix(klon) |
---|
| 2375 | ! RC |
---|
| 2376 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
[878] | 2377 | |
---|
[1992] | 2378 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 2379 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 2380 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
| 2381 | REAL ztv(klon, klev) |
---|
| 2382 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 2383 | REAL zl(klon, klev) |
---|
| 2384 | REAL wh(klon, klev+1) |
---|
| 2385 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 2386 | REAL zla(klon, klev+1) |
---|
| 2387 | REAL zwa(klon, klev+1) |
---|
| 2388 | REAL zld(klon, klev+1) |
---|
| 2389 | REAL zwd(klon, klev+1) |
---|
| 2390 | REAL zsortie(klon, klev) |
---|
| 2391 | REAL zva(klon, klev) |
---|
| 2392 | REAL zua(klon, klev) |
---|
| 2393 | REAL zoa(klon, klev) |
---|
[878] | 2394 | |
---|
[1992] | 2395 | REAL zta(klon, klev) |
---|
| 2396 | REAL zha(klon, klev) |
---|
| 2397 | REAL wa_moy(klon, klev+1) |
---|
| 2398 | REAL fraca(klon, klev+1) |
---|
| 2399 | REAL fracc(klon, klev+1) |
---|
| 2400 | REAL zf, zf2 |
---|
| 2401 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 2402 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 2403 | |
---|
[1992] | 2404 | REAL count_time |
---|
| 2405 | INTEGER ialt |
---|
[878] | 2406 | |
---|
[1992] | 2407 | LOGICAL sorties |
---|
| 2408 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 2409 | REAL zpspsk(klon, klev) |
---|
[878] | 2410 | |
---|
[1992] | 2411 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 2412 | REAL wmax(klon), wmaxa(klon) |
---|
| 2413 | REAL wa(klon, klev, klev+1) |
---|
| 2414 | REAL wd(klon, klev+1) |
---|
| 2415 | REAL larg_part(klon, klev, klev+1) |
---|
| 2416 | REAL fracd(klon, klev+1) |
---|
| 2417 | REAL xxx(klon, klev+1) |
---|
| 2418 | REAL larg_cons(klon, klev+1) |
---|
| 2419 | REAL larg_detr(klon, klev+1) |
---|
| 2420 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 2421 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 2422 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 2423 | REAL fmc(klon, klev+1) |
---|
[878] | 2424 | |
---|
[1992] | 2425 | REAL zcor, zdelta, zcvm5, qlbef |
---|
| 2426 | REAL tbef(klon), qsatbef(klon) |
---|
| 2427 | REAL dqsat_dt, dt, num, denom |
---|
| 2428 | REAL reps, rlvcp, ddt0 |
---|
| 2429 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
[878] | 2430 | |
---|
[1992] | 2431 | PARAMETER (ddt0=.01) |
---|
[878] | 2432 | |
---|
[1992] | 2433 | ! CR:nouvelles variables |
---|
| 2434 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 2435 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 2436 | REAL f(klon), f0(klon) |
---|
| 2437 | REAL zlevinter(klon) |
---|
| 2438 | LOGICAL first |
---|
| 2439 | DATA first/.FALSE./ |
---|
| 2440 | SAVE first |
---|
| 2441 | !$OMP THREADPRIVATE(first) |
---|
[878] | 2442 | |
---|
[1992] | 2443 | ! RC |
---|
[878] | 2444 | |
---|
[1992] | 2445 | CHARACTER *2 str2 |
---|
| 2446 | CHARACTER *10 str10 |
---|
[878] | 2447 | |
---|
[1992] | 2448 | CHARACTER (LEN=20) :: modname = 'thermcell_eau' |
---|
| 2449 | CHARACTER (LEN=80) :: abort_message |
---|
[878] | 2450 | |
---|
[1992] | 2451 | LOGICAL vtest(klon), down |
---|
| 2452 | LOGICAL zsat(klon) |
---|
[878] | 2453 | |
---|
[1992] | 2454 | EXTERNAL scopy |
---|
[878] | 2455 | |
---|
[1992] | 2456 | INTEGER ncorrec, ll |
---|
| 2457 | SAVE ncorrec |
---|
| 2458 | DATA ncorrec/0/ |
---|
| 2459 | !$OMP THREADPRIVATE(ncorrec) |
---|
[878] | 2460 | |
---|
| 2461 | |
---|
| 2462 | |
---|
[1992] | 2463 | ! ----------------------------------------------------------------------- |
---|
| 2464 | ! initialisation: |
---|
| 2465 | ! --------------- |
---|
[878] | 2466 | |
---|
[1992] | 2467 | sorties = .TRUE. |
---|
| 2468 | IF (ngrid/=klon) THEN |
---|
| 2469 | PRINT * |
---|
| 2470 | PRINT *, 'STOP dans convadj' |
---|
| 2471 | PRINT *, 'ngrid =', ngrid |
---|
| 2472 | PRINT *, 'klon =', klon |
---|
| 2473 | END IF |
---|
[878] | 2474 | |
---|
[1992] | 2475 | ! Initialisation |
---|
| 2476 | rlvcp = rlvtt/rcpd |
---|
| 2477 | reps = rd/rv |
---|
[878] | 2478 | |
---|
[1992] | 2479 | ! ----------------------------------------------------------------------- |
---|
| 2480 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
| 2481 | ! --------------------------------------------------- |
---|
[878] | 2482 | |
---|
[1992] | 2483 | ! Pr Tprec=Tl calcul de qsat |
---|
| 2484 | ! Si qsat>qT T=Tl, q=qT |
---|
| 2485 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
| 2486 | ! On cherche DDT < DDT0 |
---|
[878] | 2487 | |
---|
[1992] | 2488 | ! defaut |
---|
| 2489 | DO ll = 1, nlay |
---|
| 2490 | DO ig = 1, ngrid |
---|
| 2491 | zo(ig, ll) = po(ig, ll) |
---|
| 2492 | zl(ig, ll) = 0. |
---|
| 2493 | zh(ig, ll) = pt(ig, ll) |
---|
| 2494 | END DO |
---|
| 2495 | END DO |
---|
| 2496 | DO ig = 1, ngrid |
---|
| 2497 | zsat(ig) = .FALSE. |
---|
| 2498 | END DO |
---|
[878] | 2499 | |
---|
| 2500 | |
---|
[1992] | 2501 | DO ll = 1, nlay |
---|
| 2502 | ! les points insatures sont definitifs |
---|
| 2503 | DO ig = 1, ngrid |
---|
| 2504 | tbef(ig) = pt(ig, ll) |
---|
| 2505 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2506 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
| 2507 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 2508 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2509 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 2510 | zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>0.00001) |
---|
| 2511 | END DO |
---|
[878] | 2512 | |
---|
[1992] | 2513 | DO ig = 1, ngrid |
---|
| 2514 | IF (zsat(ig)) THEN |
---|
| 2515 | qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
---|
| 2516 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
| 2517 | dt = 0.5*rlvcp*qlbef |
---|
| 2518 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
| 2519 | DO WHILE (dt>ddt0) |
---|
| 2520 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
| 2521 | tbef(ig) = tbef(ig) + dt |
---|
| 2522 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2523 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
| 2524 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 2525 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2526 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 2527 | ! on veut le signe de qlbef |
---|
| 2528 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
| 2529 | ! dqsat_dT |
---|
| 2530 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2531 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 2532 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2533 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
| 2534 | num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
---|
| 2535 | denom = 1. + rlvcp*dqsat_dt |
---|
| 2536 | dt = num/denom |
---|
| 2537 | END DO |
---|
| 2538 | ! on ecrit de maniere conservative (sat ou non) |
---|
| 2539 | zl(ig, ll) = max(0., qlbef) |
---|
| 2540 | ! T = Tl +Lv/Cp ql |
---|
| 2541 | zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
---|
| 2542 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
| 2543 | END IF |
---|
| 2544 | END DO |
---|
| 2545 | END DO |
---|
| 2546 | ! AM fin |
---|
[878] | 2547 | |
---|
[1992] | 2548 | ! ----------------------------------------------------------------------- |
---|
| 2549 | ! incrementation eventuelle de tendances precedentes: |
---|
| 2550 | ! --------------------------------------------------- |
---|
[878] | 2551 | |
---|
[1992] | 2552 | ! print*,'0 OK convect8' |
---|
[878] | 2553 | |
---|
[1992] | 2554 | DO l = 1, nlay |
---|
| 2555 | DO ig = 1, ngrid |
---|
| 2556 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 2557 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
| 2558 | zu(ig, l) = pu(ig, l) |
---|
| 2559 | zv(ig, l) = pv(ig, l) |
---|
| 2560 | ! zo(ig,l)=po(ig,l) |
---|
| 2561 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
| 2562 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
| 2563 | ! theta ! |
---|
[878] | 2564 | |
---|
[1992] | 2565 | ! T-> Theta |
---|
| 2566 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
| 2567 | ! AM Theta_v |
---|
| 2568 | ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
---|
| 2569 | ! AM Thetal |
---|
| 2570 | zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
[878] | 2571 | |
---|
[1992] | 2572 | END DO |
---|
| 2573 | END DO |
---|
[878] | 2574 | |
---|
[1992] | 2575 | ! print*,'1 OK convect8' |
---|
| 2576 | ! -------------------- |
---|
[878] | 2577 | |
---|
| 2578 | |
---|
[1992] | 2579 | ! + + + + + + + + + + + |
---|
[878] | 2580 | |
---|
| 2581 | |
---|
[1992] | 2582 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 2583 | ! wh,wt,wo ... |
---|
[878] | 2584 | |
---|
[1992] | 2585 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[878] | 2586 | |
---|
| 2587 | |
---|
[1992] | 2588 | ! -------------------- zlev(1) |
---|
| 2589 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[878] | 2590 | |
---|
| 2591 | |
---|
| 2592 | |
---|
[1992] | 2593 | ! ----------------------------------------------------------------------- |
---|
| 2594 | ! Calcul des altitudes des couches |
---|
| 2595 | ! ----------------------------------------------------------------------- |
---|
[878] | 2596 | |
---|
[1992] | 2597 | DO l = 2, nlay |
---|
| 2598 | DO ig = 1, ngrid |
---|
| 2599 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 2600 | END DO |
---|
| 2601 | END DO |
---|
| 2602 | DO ig = 1, ngrid |
---|
| 2603 | zlev(ig, 1) = 0. |
---|
| 2604 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 2605 | END DO |
---|
| 2606 | DO l = 1, nlay |
---|
| 2607 | DO ig = 1, ngrid |
---|
| 2608 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 2609 | END DO |
---|
| 2610 | END DO |
---|
| 2611 | |
---|
| 2612 | ! print*,'2 OK convect8' |
---|
| 2613 | ! ----------------------------------------------------------------------- |
---|
| 2614 | ! Calcul des densites |
---|
| 2615 | ! ----------------------------------------------------------------------- |
---|
| 2616 | |
---|
| 2617 | DO l = 1, nlay |
---|
| 2618 | DO ig = 1, ngrid |
---|
| 2619 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
| 2620 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
---|
| 2621 | END DO |
---|
| 2622 | END DO |
---|
| 2623 | |
---|
| 2624 | DO l = 2, nlay |
---|
| 2625 | DO ig = 1, ngrid |
---|
| 2626 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 2627 | END DO |
---|
| 2628 | END DO |
---|
| 2629 | |
---|
| 2630 | DO k = 1, nlay |
---|
| 2631 | DO l = 1, nlay + 1 |
---|
| 2632 | DO ig = 1, ngrid |
---|
| 2633 | wa(ig, k, l) = 0. |
---|
| 2634 | END DO |
---|
| 2635 | END DO |
---|
| 2636 | END DO |
---|
| 2637 | |
---|
| 2638 | ! print*,'3 OK convect8' |
---|
| 2639 | ! ------------------------------------------------------------------ |
---|
| 2640 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 2641 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
| 2642 | |
---|
| 2643 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 2644 | ! w2 est stoke dans wa |
---|
| 2645 | |
---|
| 2646 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 2647 | ! independants par couches que pour calculer l'entrainement |
---|
| 2648 | ! a la base et la hauteur max de l'ascendance. |
---|
| 2649 | |
---|
| 2650 | ! Indicages: |
---|
| 2651 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 2652 | ! une vitesse wa(k,l). |
---|
| 2653 | |
---|
| 2654 | ! -------------------- |
---|
| 2655 | |
---|
| 2656 | ! + + + + + + + + + + |
---|
| 2657 | |
---|
| 2658 | ! wa(k,l) ---- -------------------- l |
---|
| 2659 | ! /\ |
---|
| 2660 | ! /||\ + + + + + + + + + + |
---|
| 2661 | ! || |
---|
| 2662 | ! || -------------------- |
---|
| 2663 | ! || |
---|
| 2664 | ! || + + + + + + + + + + |
---|
| 2665 | ! || |
---|
| 2666 | ! || -------------------- |
---|
| 2667 | ! ||__ |
---|
| 2668 | ! |___ + + + + + + + + + + k |
---|
| 2669 | |
---|
| 2670 | ! -------------------- |
---|
| 2671 | |
---|
| 2672 | |
---|
| 2673 | |
---|
| 2674 | ! ------------------------------------------------------------------ |
---|
| 2675 | |
---|
| 2676 | ! CR: ponderation entrainement des couches instables |
---|
| 2677 | ! def des entr_star tels que entr=f*entr_star |
---|
| 2678 | DO l = 1, klev |
---|
| 2679 | DO ig = 1, ngrid |
---|
| 2680 | entr_star(ig, l) = 0. |
---|
| 2681 | END DO |
---|
| 2682 | END DO |
---|
| 2683 | ! determination de la longueur de la couche d entrainement |
---|
| 2684 | DO ig = 1, ngrid |
---|
| 2685 | lentr(ig) = 1 |
---|
| 2686 | END DO |
---|
| 2687 | |
---|
| 2688 | ! on ne considere que les premieres couches instables |
---|
| 2689 | DO k = nlay - 1, 1, -1 |
---|
| 2690 | DO ig = 1, ngrid |
---|
| 2691 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<ztv(ig,k+2)) THEN |
---|
| 2692 | lentr(ig) = k |
---|
| 2693 | END IF |
---|
| 2694 | END DO |
---|
| 2695 | END DO |
---|
| 2696 | |
---|
| 2697 | ! determination du lmin: couche d ou provient le thermique |
---|
| 2698 | DO ig = 1, ngrid |
---|
| 2699 | lmin(ig) = 1 |
---|
| 2700 | END DO |
---|
| 2701 | DO ig = 1, ngrid |
---|
| 2702 | DO l = nlay, 2, -1 |
---|
| 2703 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 2704 | lmin(ig) = l - 1 |
---|
| 2705 | END IF |
---|
| 2706 | END DO |
---|
| 2707 | END DO |
---|
| 2708 | |
---|
| 2709 | ! definition de l'entrainement des couches |
---|
| 2710 | DO l = 1, klev - 1 |
---|
| 2711 | DO ig = 1, ngrid |
---|
| 2712 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
| 2713 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 2714 | END IF |
---|
| 2715 | END DO |
---|
| 2716 | END DO |
---|
| 2717 | ! pas de thermique si couche 1 stable |
---|
| 2718 | DO ig = 1, ngrid |
---|
| 2719 | IF (lmin(ig)>1) THEN |
---|
| 2720 | DO l = 1, klev |
---|
| 2721 | entr_star(ig, l) = 0. |
---|
| 2722 | END DO |
---|
| 2723 | END IF |
---|
| 2724 | END DO |
---|
| 2725 | ! calcul de l entrainement total |
---|
| 2726 | DO ig = 1, ngrid |
---|
| 2727 | entr_star_tot(ig) = 0. |
---|
| 2728 | END DO |
---|
| 2729 | DO ig = 1, ngrid |
---|
| 2730 | DO k = 1, klev |
---|
| 2731 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 2732 | END DO |
---|
| 2733 | END DO |
---|
| 2734 | |
---|
| 2735 | DO k = 1, klev |
---|
| 2736 | DO ig = 1, ngrid |
---|
| 2737 | ztva(ig, k) = ztv(ig, k) |
---|
| 2738 | END DO |
---|
| 2739 | END DO |
---|
| 2740 | ! RC |
---|
| 2741 | ! AM:initialisations |
---|
| 2742 | DO k = 1, nlay |
---|
| 2743 | DO ig = 1, ngrid |
---|
| 2744 | ztva(ig, k) = ztv(ig, k) |
---|
| 2745 | ztla(ig, k) = zthl(ig, k) |
---|
| 2746 | zqla(ig, k) = 0. |
---|
| 2747 | zqta(ig, k) = po(ig, k) |
---|
| 2748 | zsat(ig) = .FALSE. |
---|
| 2749 | END DO |
---|
| 2750 | END DO |
---|
| 2751 | |
---|
| 2752 | ! print*,'7 OK convect8' |
---|
| 2753 | DO k = 1, klev + 1 |
---|
| 2754 | DO ig = 1, ngrid |
---|
| 2755 | zw2(ig, k) = 0. |
---|
| 2756 | fmc(ig, k) = 0. |
---|
| 2757 | ! CR |
---|
| 2758 | f_star(ig, k) = 0. |
---|
| 2759 | ! RC |
---|
| 2760 | larg_cons(ig, k) = 0. |
---|
| 2761 | larg_detr(ig, k) = 0. |
---|
| 2762 | wa_moy(ig, k) = 0. |
---|
| 2763 | END DO |
---|
| 2764 | END DO |
---|
| 2765 | |
---|
| 2766 | ! print*,'8 OK convect8' |
---|
| 2767 | DO ig = 1, ngrid |
---|
| 2768 | linter(ig) = 1. |
---|
| 2769 | lmaxa(ig) = 1 |
---|
| 2770 | lmix(ig) = 1 |
---|
| 2771 | wmaxa(ig) = 0. |
---|
| 2772 | END DO |
---|
| 2773 | |
---|
| 2774 | ! CR: |
---|
| 2775 | DO l = 1, nlay - 2 |
---|
| 2776 | DO ig = 1, ngrid |
---|
| 2777 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 2778 | zw2(ig,l)<1E-10) THEN |
---|
| 2779 | ! AM |
---|
| 2780 | ztla(ig, l) = zthl(ig, l) |
---|
| 2781 | zqta(ig, l) = po(ig, l) |
---|
| 2782 | zqla(ig, l) = zl(ig, l) |
---|
| 2783 | ! AM |
---|
| 2784 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 2785 | ! test:calcul de dteta |
---|
| 2786 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 2787 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 2788 | larg_detr(ig, l) = 0. |
---|
| 2789 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 2790 | l)>1.E-10)) THEN |
---|
| 2791 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 2792 | |
---|
| 2793 | ! AM on melange Tl et qt du thermique |
---|
| 2794 | ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+entr_star(ig,l)*zthl(ig,l))/ & |
---|
| 2795 | f_star(ig, l+1) |
---|
| 2796 | zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+entr_star(ig,l)*po(ig,l))/ & |
---|
| 2797 | f_star(ig, l+1) |
---|
| 2798 | |
---|
| 2799 | ! ztva(ig,l)=(f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l) |
---|
| 2800 | ! s *ztv(ig,l))/f_star(ig,l+1) |
---|
| 2801 | |
---|
| 2802 | ! AM on en deduit thetav et ql du thermique |
---|
| 2803 | tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
---|
| 2804 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2805 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
| 2806 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 2807 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2808 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 2809 | zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>0.00001) |
---|
| 2810 | END IF |
---|
| 2811 | END DO |
---|
| 2812 | DO ig = 1, ngrid |
---|
| 2813 | IF (zsat(ig)) THEN |
---|
| 2814 | qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
| 2815 | dt = 0.5*rlvcp*qlbef |
---|
| 2816 | DO WHILE (dt>ddt0) |
---|
| 2817 | tbef(ig) = tbef(ig) + dt |
---|
| 2818 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2819 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
| 2820 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
| 2821 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2822 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
| 2823 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
| 2824 | |
---|
| 2825 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
| 2826 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 2827 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
| 2828 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
| 2829 | num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
---|
| 2830 | denom = 1. + rlvcp*dqsat_dt |
---|
| 2831 | dt = num/denom |
---|
| 2832 | END DO |
---|
| 2833 | zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
| 2834 | END IF |
---|
| 2835 | ! on ecrit de maniere conservative (sat ou non) |
---|
| 2836 | ! T = Tl +Lv/Cp ql |
---|
| 2837 | ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
---|
| 2838 | ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
---|
| 2839 | ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig,l))-zqla(ig,l)) |
---|
| 2840 | |
---|
| 2841 | END DO |
---|
| 2842 | DO ig = 1, ngrid |
---|
| 2843 | IF (zw2(ig,l)>=1.E-10 .AND. f_star(ig,l)+entr_star(ig,l)>1.E-10) THEN |
---|
| 2844 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
| 2845 | ! consideree commence avec une vitesse nulle). |
---|
| 2846 | |
---|
| 2847 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 2848 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 2849 | END IF |
---|
| 2850 | ! determination de zmax continu par interpolation lineaire |
---|
| 2851 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 2852 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 2853 | ig,l)) |
---|
| 2854 | zw2(ig, l+1) = 0. |
---|
| 2855 | lmaxa(ig) = l |
---|
| 2856 | ELSE |
---|
| 2857 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 2858 | END IF |
---|
| 2859 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 2860 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 2861 | lmix(ig) = l + 1 |
---|
| 2862 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 2863 | END IF |
---|
| 2864 | END DO |
---|
| 2865 | END DO |
---|
| 2866 | |
---|
| 2867 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 2868 | DO ig = 1, ngrid |
---|
| 2869 | lmax(ig) = lentr(ig) |
---|
| 2870 | END DO |
---|
| 2871 | DO ig = 1, ngrid |
---|
| 2872 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 2873 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 2874 | lmax(ig) = l - 1 |
---|
| 2875 | END IF |
---|
| 2876 | END DO |
---|
| 2877 | END DO |
---|
| 2878 | ! pas de thermique si couche 1 stable |
---|
| 2879 | DO ig = 1, ngrid |
---|
| 2880 | IF (lmin(ig)>1) THEN |
---|
| 2881 | lmax(ig) = 1 |
---|
| 2882 | lmin(ig) = 1 |
---|
| 2883 | END IF |
---|
| 2884 | END DO |
---|
| 2885 | |
---|
| 2886 | ! Determination de zw2 max |
---|
| 2887 | DO ig = 1, ngrid |
---|
| 2888 | wmax(ig) = 0. |
---|
| 2889 | END DO |
---|
| 2890 | |
---|
| 2891 | DO l = 1, nlay |
---|
| 2892 | DO ig = 1, ngrid |
---|
| 2893 | IF (l<=lmax(ig)) THEN |
---|
| 2894 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 2895 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 2896 | ELSE |
---|
| 2897 | zw2(ig, l) = 0. |
---|
| 2898 | END IF |
---|
| 2899 | END DO |
---|
| 2900 | END DO |
---|
| 2901 | |
---|
| 2902 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 2903 | DO ig = 1, ngrid |
---|
| 2904 | zmax(ig) = 500. |
---|
| 2905 | zlevinter(ig) = zlev(ig, 1) |
---|
| 2906 | END DO |
---|
| 2907 | DO ig = 1, ngrid |
---|
| 2908 | ! calcul de zlevinter |
---|
| 2909 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 2910 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 2911 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 2912 | END DO |
---|
| 2913 | |
---|
| 2914 | ! Fermeture,determination de f |
---|
| 2915 | DO ig = 1, ngrid |
---|
| 2916 | entr_star2(ig) = 0. |
---|
| 2917 | END DO |
---|
| 2918 | DO ig = 1, ngrid |
---|
| 2919 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 2920 | f(ig) = 0. |
---|
| 2921 | ELSE |
---|
| 2922 | DO k = lmin(ig), lentr(ig) |
---|
| 2923 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 2924 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 2925 | END DO |
---|
| 2926 | ! Nouvelle fermeture |
---|
| 2927 | f(ig) = wmax(ig)/(zmax(ig)*r_aspect*entr_star2(ig))*entr_star_tot(ig) |
---|
| 2928 | ! test |
---|
| 2929 | IF (first) THEN |
---|
| 2930 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
---|
| 2931 | END IF |
---|
| 2932 | END IF |
---|
| 2933 | f0(ig) = f(ig) |
---|
| 2934 | first = .TRUE. |
---|
| 2935 | END DO |
---|
| 2936 | |
---|
| 2937 | ! Calcul de l'entrainement |
---|
| 2938 | DO k = 1, klev |
---|
| 2939 | DO ig = 1, ngrid |
---|
| 2940 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 2941 | END DO |
---|
| 2942 | END DO |
---|
| 2943 | ! Calcul des flux |
---|
| 2944 | DO ig = 1, ngrid |
---|
| 2945 | DO l = 1, lmax(ig) - 1 |
---|
| 2946 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 2947 | END DO |
---|
| 2948 | END DO |
---|
| 2949 | |
---|
| 2950 | ! RC |
---|
| 2951 | |
---|
| 2952 | |
---|
| 2953 | ! print*,'9 OK convect8' |
---|
| 2954 | ! print*,'WA1 ',wa_moy |
---|
| 2955 | |
---|
| 2956 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 2957 | |
---|
| 2958 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 2959 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
| 2960 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
| 2961 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 2962 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 2963 | |
---|
| 2964 | DO l = 2, nlay |
---|
| 2965 | DO ig = 1, ngrid |
---|
| 2966 | IF (l<=lmaxa(ig)) THEN |
---|
| 2967 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 2968 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 2969 | END IF |
---|
| 2970 | END DO |
---|
| 2971 | END DO |
---|
| 2972 | |
---|
| 2973 | DO l = 2, nlay |
---|
| 2974 | DO ig = 1, ngrid |
---|
| 2975 | IF (l<=lmaxa(ig)) THEN |
---|
| 2976 | ! if (idetr.eq.0) then |
---|
| 2977 | ! cette option est finalement en dur. |
---|
| 2978 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 2979 | ! else if (idetr.eq.1) then |
---|
| 2980 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 2981 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 2982 | ! else if (idetr.eq.2) then |
---|
| 2983 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 2984 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 2985 | ! else if (idetr.eq.4) then |
---|
| 2986 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 2987 | ! s *wa_moy(ig,l) |
---|
| 2988 | ! endif |
---|
| 2989 | END IF |
---|
| 2990 | END DO |
---|
| 2991 | END DO |
---|
| 2992 | |
---|
| 2993 | ! print*,'10 OK convect8' |
---|
| 2994 | ! print*,'WA2 ',wa_moy |
---|
| 2995 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
| 2996 | ! compte de l'epluchage du thermique. |
---|
| 2997 | |
---|
| 2998 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 2999 | DO ig = 1, ngrid |
---|
| 3000 | IF (lmix(ig)>1.) THEN |
---|
| 3001 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig))) & |
---|
| 3002 | **2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 3003 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 3004 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 3005 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))-zw2(ig,lmix(ig)+1))*((zlev( & |
---|
| 3006 | ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 3007 | ELSE |
---|
| 3008 | zmix(ig) = 0. |
---|
| 3009 | END IF |
---|
| 3010 | END DO |
---|
| 3011 | |
---|
| 3012 | ! calcul du nouveau lmix correspondant |
---|
| 3013 | DO ig = 1, ngrid |
---|
| 3014 | DO l = 1, klev |
---|
| 3015 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 3016 | lmix(ig) = l |
---|
| 3017 | END IF |
---|
| 3018 | END DO |
---|
| 3019 | END DO |
---|
| 3020 | |
---|
| 3021 | DO l = 2, nlay |
---|
| 3022 | DO ig = 1, ngrid |
---|
| 3023 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 3024 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 3025 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 3026 | ! test |
---|
| 3027 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 3028 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 3029 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 3030 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 3031 | ELSE |
---|
| 3032 | ! wa_moy(ig,l)=0. |
---|
| 3033 | fraca(ig, l) = 0. |
---|
| 3034 | fracc(ig, l) = 0. |
---|
| 3035 | fracd(ig, l) = 1. |
---|
| 3036 | END IF |
---|
| 3037 | END DO |
---|
| 3038 | END DO |
---|
| 3039 | ! CR: calcul de fracazmix |
---|
| 3040 | DO ig = 1, ngrid |
---|
| 3041 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 3042 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 3043 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 3044 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 3045 | END DO |
---|
| 3046 | |
---|
| 3047 | DO l = 2, nlay |
---|
| 3048 | DO ig = 1, ngrid |
---|
| 3049 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 3050 | IF (l>lmix(ig)) THEN |
---|
| 3051 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 3052 | IF (idetr==0) THEN |
---|
| 3053 | fraca(ig, l) = fracazmix(ig) |
---|
| 3054 | ELSE IF (idetr==1) THEN |
---|
| 3055 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 3056 | ELSE IF (idetr==2) THEN |
---|
| 3057 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 3058 | ELSE |
---|
| 3059 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 3060 | END IF |
---|
| 3061 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 3062 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 3063 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 3064 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 3065 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 3066 | END IF |
---|
| 3067 | END IF |
---|
| 3068 | END DO |
---|
| 3069 | END DO |
---|
| 3070 | |
---|
| 3071 | ! print*,'11 OK convect8' |
---|
| 3072 | ! print*,'Ea3 ',wa_moy |
---|
| 3073 | ! ------------------------------------------------------------------ |
---|
| 3074 | ! Calcul de fracd, wd |
---|
| 3075 | ! somme wa - wd = 0 |
---|
| 3076 | ! ------------------------------------------------------------------ |
---|
| 3077 | |
---|
| 3078 | |
---|
| 3079 | DO ig = 1, ngrid |
---|
| 3080 | fm(ig, 1) = 0. |
---|
| 3081 | fm(ig, nlay+1) = 0. |
---|
| 3082 | END DO |
---|
| 3083 | |
---|
| 3084 | DO l = 2, nlay |
---|
| 3085 | DO ig = 1, ngrid |
---|
| 3086 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 3087 | ! CR:test |
---|
| 3088 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 3089 | fm(ig, l) = fm(ig, l-1) |
---|
| 3090 | ! write(1,*)'ajustement fm, l',l |
---|
| 3091 | END IF |
---|
| 3092 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 3093 | ! RC |
---|
| 3094 | END DO |
---|
| 3095 | DO ig = 1, ngrid |
---|
| 3096 | IF (fracd(ig,l)<0.1) THEN |
---|
| 3097 | abort_message = 'fracd trop petit' |
---|
[2311] | 3098 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 3099 | ELSE |
---|
| 3100 | ! vitesse descendante "diagnostique" |
---|
| 3101 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 3102 | END IF |
---|
| 3103 | END DO |
---|
| 3104 | END DO |
---|
| 3105 | |
---|
| 3106 | DO l = 1, nlay |
---|
| 3107 | DO ig = 1, ngrid |
---|
| 3108 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 3109 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 3110 | END DO |
---|
| 3111 | END DO |
---|
| 3112 | |
---|
| 3113 | ! print*,'12 OK convect8' |
---|
| 3114 | ! print*,'WA4 ',wa_moy |
---|
| 3115 | ! c------------------------------------------------------------------ |
---|
| 3116 | ! calcul du transport vertical |
---|
| 3117 | ! ------------------------------------------------------------------ |
---|
| 3118 | |
---|
| 3119 | GO TO 4444 |
---|
| 3120 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 3121 | DO l = 2, nlay - 1 |
---|
| 3122 | DO ig = 1, ngrid |
---|
| 3123 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 3124 | ig,l+1)) THEN |
---|
| 3125 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 3126 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 3127 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 3128 | END IF |
---|
| 3129 | END DO |
---|
| 3130 | END DO |
---|
| 3131 | |
---|
| 3132 | DO l = 1, nlay |
---|
| 3133 | DO ig = 1, ngrid |
---|
| 3134 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 3135 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 3136 | ! s ,entr(ig,l)*ptimestep |
---|
| 3137 | ! s ,' M=',masse(ig,l) |
---|
| 3138 | END IF |
---|
| 3139 | END DO |
---|
| 3140 | END DO |
---|
| 3141 | |
---|
| 3142 | DO l = 1, nlay |
---|
| 3143 | DO ig = 1, ngrid |
---|
| 3144 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 3145 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 3146 | ! s ,' FM=',fm(ig,l) |
---|
| 3147 | END IF |
---|
| 3148 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 3149 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 3150 | ! s ,' M=',masse(ig,l) |
---|
| 3151 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 3152 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 3153 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 3154 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 3155 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 3156 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 3157 | END IF |
---|
| 3158 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 3159 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 3160 | ! s ,' E=',entr(ig,l) |
---|
| 3161 | END IF |
---|
| 3162 | END DO |
---|
| 3163 | END DO |
---|
| 3164 | |
---|
| 3165 | 4444 CONTINUE |
---|
| 3166 | |
---|
| 3167 | IF (w2di==1) THEN |
---|
| 3168 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 3169 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 3170 | ELSE |
---|
| 3171 | fm0 = fm |
---|
| 3172 | entr0 = entr |
---|
| 3173 | END IF |
---|
| 3174 | |
---|
| 3175 | IF (1==1) THEN |
---|
| 3176 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
| 3177 | ! . ,zh,zdhadj,zha) |
---|
| 3178 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
| 3179 | ! . ,zo,pdoadj,zoa) |
---|
| 3180 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
| 3181 | zdthladj, zta) |
---|
| 3182 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
| 3183 | zoa) |
---|
| 3184 | ELSE |
---|
| 3185 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 3186 | zdhadj, zha) |
---|
| 3187 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 3188 | pdoadj, zoa) |
---|
| 3189 | END IF |
---|
| 3190 | |
---|
| 3191 | IF (1==0) THEN |
---|
| 3192 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 3193 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 3194 | ELSE |
---|
| 3195 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 3196 | zua) |
---|
| 3197 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 3198 | zva) |
---|
| 3199 | END IF |
---|
| 3200 | |
---|
| 3201 | DO l = 1, nlay |
---|
| 3202 | DO ig = 1, ngrid |
---|
| 3203 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 3204 | zf2 = zf/(1.-zf) |
---|
| 3205 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 3206 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 3207 | END DO |
---|
| 3208 | END DO |
---|
| 3209 | |
---|
| 3210 | |
---|
| 3211 | |
---|
| 3212 | ! print*,'13 OK convect8' |
---|
| 3213 | ! print*,'WA5 ',wa_moy |
---|
| 3214 | DO l = 1, nlay |
---|
| 3215 | DO ig = 1, ngrid |
---|
| 3216 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
| 3217 | pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
---|
| 3218 | END DO |
---|
| 3219 | END DO |
---|
| 3220 | |
---|
| 3221 | |
---|
| 3222 | ! do l=1,nlay |
---|
| 3223 | ! do ig=1,ngrid |
---|
| 3224 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 3225 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 3226 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 3227 | ! endif |
---|
| 3228 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 3229 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 3230 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 3231 | ! endif |
---|
| 3232 | ! enddo |
---|
| 3233 | ! enddo |
---|
| 3234 | |
---|
| 3235 | ! print*,'14 OK convect8' |
---|
| 3236 | ! ------------------------------------------------------------------ |
---|
| 3237 | ! Calculs pour les sorties |
---|
| 3238 | ! ------------------------------------------------------------------ |
---|
| 3239 | |
---|
| 3240 | RETURN |
---|
| 3241 | END SUBROUTINE thermcell_eau |
---|
| 3242 | |
---|
| 3243 | SUBROUTINE thermcell(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, pt, & |
---|
| 3244 | po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
| 3245 | ! ,pu_therm,pv_therm |
---|
| 3246 | , r_aspect, l_mix, w2di, tho) |
---|
| 3247 | |
---|
| 3248 | USE dimphy |
---|
| 3249 | IMPLICIT NONE |
---|
| 3250 | |
---|
| 3251 | ! ======================================================================= |
---|
| 3252 | |
---|
| 3253 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 3254 | ! de "thermiques" explicitement representes |
---|
| 3255 | |
---|
| 3256 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
| 3257 | |
---|
| 3258 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 3259 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 3260 | ! mélange |
---|
| 3261 | |
---|
| 3262 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 3263 | ! en compte: |
---|
| 3264 | ! 1. un flux de masse montant |
---|
| 3265 | ! 2. un flux de masse descendant |
---|
| 3266 | ! 3. un entrainement |
---|
| 3267 | ! 4. un detrainement |
---|
| 3268 | |
---|
| 3269 | ! ======================================================================= |
---|
| 3270 | |
---|
| 3271 | ! ----------------------------------------------------------------------- |
---|
| 3272 | ! declarations: |
---|
| 3273 | ! ------------- |
---|
| 3274 | |
---|
| 3275 | include "YOMCST.h" |
---|
| 3276 | |
---|
| 3277 | ! arguments: |
---|
| 3278 | ! ---------- |
---|
| 3279 | |
---|
| 3280 | INTEGER ngrid, nlay, w2di |
---|
| 3281 | REAL tho |
---|
| 3282 | REAL ptimestep, l_mix, r_aspect |
---|
| 3283 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 3284 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 3285 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 3286 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 3287 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 3288 | REAL pphi(ngrid, nlay) |
---|
| 3289 | |
---|
| 3290 | INTEGER idetr |
---|
| 3291 | SAVE idetr |
---|
| 3292 | DATA idetr/3/ |
---|
| 3293 | !$OMP THREADPRIVATE(idetr) |
---|
| 3294 | |
---|
| 3295 | ! local: |
---|
| 3296 | ! ------ |
---|
| 3297 | |
---|
| 3298 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 3299 | REAL zsortie1d(klon) |
---|
| 3300 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 3301 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 3302 | REAL linter(klon) |
---|
| 3303 | REAL zmix(klon), fracazmix(klon) |
---|
| 3304 | ! RC |
---|
| 3305 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
| 3306 | |
---|
| 3307 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 3308 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 3309 | REAL ztv(klon, klev) |
---|
| 3310 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 3311 | REAL wh(klon, klev+1) |
---|
| 3312 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 3313 | REAL zla(klon, klev+1) |
---|
| 3314 | REAL zwa(klon, klev+1) |
---|
| 3315 | REAL zld(klon, klev+1) |
---|
| 3316 | REAL zwd(klon, klev+1) |
---|
| 3317 | REAL zsortie(klon, klev) |
---|
| 3318 | REAL zva(klon, klev) |
---|
| 3319 | REAL zua(klon, klev) |
---|
| 3320 | REAL zoa(klon, klev) |
---|
| 3321 | |
---|
| 3322 | REAL zha(klon, klev) |
---|
| 3323 | REAL wa_moy(klon, klev+1) |
---|
| 3324 | REAL fraca(klon, klev+1) |
---|
| 3325 | REAL fracc(klon, klev+1) |
---|
| 3326 | REAL zf, zf2 |
---|
| 3327 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 3328 | ! common/comtherm/thetath2,wth2 |
---|
| 3329 | |
---|
| 3330 | REAL count_time |
---|
| 3331 | INTEGER ialt |
---|
| 3332 | |
---|
| 3333 | LOGICAL sorties |
---|
| 3334 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 3335 | REAL zpspsk(klon, klev) |
---|
| 3336 | |
---|
| 3337 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 3338 | REAL wmax(klon), wmaxa(klon) |
---|
| 3339 | REAL wa(klon, klev, klev+1) |
---|
| 3340 | REAL wd(klon, klev+1) |
---|
| 3341 | REAL larg_part(klon, klev, klev+1) |
---|
| 3342 | REAL fracd(klon, klev+1) |
---|
| 3343 | REAL xxx(klon, klev+1) |
---|
| 3344 | REAL larg_cons(klon, klev+1) |
---|
| 3345 | REAL larg_detr(klon, klev+1) |
---|
| 3346 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 3347 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 3348 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 3349 | REAL fmc(klon, klev+1) |
---|
| 3350 | |
---|
| 3351 | ! CR:nouvelles variables |
---|
| 3352 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 3353 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 3354 | REAL f(klon), f0(klon) |
---|
| 3355 | REAL zlevinter(klon) |
---|
| 3356 | LOGICAL first |
---|
| 3357 | DATA first/.FALSE./ |
---|
| 3358 | SAVE first |
---|
| 3359 | !$OMP THREADPRIVATE(first) |
---|
| 3360 | ! RC |
---|
| 3361 | |
---|
| 3362 | CHARACTER *2 str2 |
---|
| 3363 | CHARACTER *10 str10 |
---|
| 3364 | |
---|
| 3365 | CHARACTER (LEN=20) :: modname = 'thermcell' |
---|
| 3366 | CHARACTER (LEN=80) :: abort_message |
---|
| 3367 | |
---|
| 3368 | LOGICAL vtest(klon), down |
---|
| 3369 | |
---|
| 3370 | EXTERNAL scopy |
---|
| 3371 | |
---|
| 3372 | INTEGER ncorrec, ll |
---|
| 3373 | SAVE ncorrec |
---|
| 3374 | DATA ncorrec/0/ |
---|
| 3375 | !$OMP THREADPRIVATE(ncorrec) |
---|
| 3376 | |
---|
| 3377 | |
---|
| 3378 | ! ----------------------------------------------------------------------- |
---|
| 3379 | ! initialisation: |
---|
| 3380 | ! --------------- |
---|
| 3381 | |
---|
| 3382 | sorties = .TRUE. |
---|
| 3383 | IF (ngrid/=klon) THEN |
---|
| 3384 | PRINT * |
---|
| 3385 | PRINT *, 'STOP dans convadj' |
---|
| 3386 | PRINT *, 'ngrid =', ngrid |
---|
| 3387 | PRINT *, 'klon =', klon |
---|
| 3388 | END IF |
---|
| 3389 | |
---|
| 3390 | ! ----------------------------------------------------------------------- |
---|
| 3391 | ! incrementation eventuelle de tendances precedentes: |
---|
| 3392 | ! --------------------------------------------------- |
---|
| 3393 | |
---|
| 3394 | ! print*,'0 OK convect8' |
---|
| 3395 | |
---|
| 3396 | DO l = 1, nlay |
---|
| 3397 | DO ig = 1, ngrid |
---|
| 3398 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 3399 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 3400 | zu(ig, l) = pu(ig, l) |
---|
| 3401 | zv(ig, l) = pv(ig, l) |
---|
| 3402 | zo(ig, l) = po(ig, l) |
---|
| 3403 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 3404 | END DO |
---|
| 3405 | END DO |
---|
| 3406 | |
---|
| 3407 | ! print*,'1 OK convect8' |
---|
| 3408 | ! -------------------- |
---|
| 3409 | |
---|
| 3410 | |
---|
| 3411 | ! + + + + + + + + + + + |
---|
| 3412 | |
---|
| 3413 | |
---|
| 3414 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 3415 | ! wh,wt,wo ... |
---|
| 3416 | |
---|
| 3417 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 3418 | |
---|
| 3419 | |
---|
| 3420 | ! -------------------- zlev(1) |
---|
| 3421 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 3422 | |
---|
| 3423 | |
---|
| 3424 | |
---|
| 3425 | ! ----------------------------------------------------------------------- |
---|
| 3426 | ! Calcul des altitudes des couches |
---|
| 3427 | ! ----------------------------------------------------------------------- |
---|
| 3428 | |
---|
| 3429 | DO l = 2, nlay |
---|
| 3430 | DO ig = 1, ngrid |
---|
| 3431 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 3432 | END DO |
---|
| 3433 | END DO |
---|
| 3434 | DO ig = 1, ngrid |
---|
| 3435 | zlev(ig, 1) = 0. |
---|
| 3436 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 3437 | END DO |
---|
| 3438 | DO l = 1, nlay |
---|
| 3439 | DO ig = 1, ngrid |
---|
| 3440 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 3441 | END DO |
---|
| 3442 | END DO |
---|
| 3443 | |
---|
| 3444 | ! print*,'2 OK convect8' |
---|
| 3445 | ! ----------------------------------------------------------------------- |
---|
| 3446 | ! Calcul des densites |
---|
| 3447 | ! ----------------------------------------------------------------------- |
---|
| 3448 | |
---|
| 3449 | DO l = 1, nlay |
---|
| 3450 | DO ig = 1, ngrid |
---|
| 3451 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 3452 | END DO |
---|
| 3453 | END DO |
---|
| 3454 | |
---|
| 3455 | DO l = 2, nlay |
---|
| 3456 | DO ig = 1, ngrid |
---|
| 3457 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 3458 | END DO |
---|
| 3459 | END DO |
---|
| 3460 | |
---|
| 3461 | DO k = 1, nlay |
---|
| 3462 | DO l = 1, nlay + 1 |
---|
| 3463 | DO ig = 1, ngrid |
---|
| 3464 | wa(ig, k, l) = 0. |
---|
| 3465 | END DO |
---|
| 3466 | END DO |
---|
| 3467 | END DO |
---|
| 3468 | |
---|
| 3469 | ! print*,'3 OK convect8' |
---|
| 3470 | ! ------------------------------------------------------------------ |
---|
| 3471 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 3472 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
| 3473 | |
---|
| 3474 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 3475 | ! w2 est stoke dans wa |
---|
| 3476 | |
---|
| 3477 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 3478 | ! independants par couches que pour calculer l'entrainement |
---|
| 3479 | ! a la base et la hauteur max de l'ascendance. |
---|
| 3480 | |
---|
| 3481 | ! Indicages: |
---|
| 3482 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 3483 | ! une vitesse wa(k,l). |
---|
| 3484 | |
---|
| 3485 | ! -------------------- |
---|
| 3486 | |
---|
| 3487 | ! + + + + + + + + + + |
---|
| 3488 | |
---|
| 3489 | ! wa(k,l) ---- -------------------- l |
---|
| 3490 | ! /\ |
---|
| 3491 | ! /||\ + + + + + + + + + + |
---|
| 3492 | ! || |
---|
| 3493 | ! || -------------------- |
---|
| 3494 | ! || |
---|
| 3495 | ! || + + + + + + + + + + |
---|
| 3496 | ! || |
---|
| 3497 | ! || -------------------- |
---|
| 3498 | ! ||__ |
---|
| 3499 | ! |___ + + + + + + + + + + k |
---|
| 3500 | |
---|
| 3501 | ! -------------------- |
---|
| 3502 | |
---|
| 3503 | |
---|
| 3504 | |
---|
| 3505 | ! ------------------------------------------------------------------ |
---|
| 3506 | |
---|
| 3507 | ! CR: ponderation entrainement des couches instables |
---|
| 3508 | ! def des entr_star tels que entr=f*entr_star |
---|
| 3509 | DO l = 1, klev |
---|
| 3510 | DO ig = 1, ngrid |
---|
| 3511 | entr_star(ig, l) = 0. |
---|
| 3512 | END DO |
---|
| 3513 | END DO |
---|
| 3514 | ! determination de la longueur de la couche d entrainement |
---|
| 3515 | DO ig = 1, ngrid |
---|
| 3516 | lentr(ig) = 1 |
---|
| 3517 | END DO |
---|
| 3518 | |
---|
| 3519 | ! on ne considere que les premieres couches instables |
---|
| 3520 | DO k = nlay - 2, 1, -1 |
---|
| 3521 | DO ig = 1, ngrid |
---|
| 3522 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 3523 | lentr(ig) = k |
---|
| 3524 | END IF |
---|
| 3525 | END DO |
---|
| 3526 | END DO |
---|
| 3527 | |
---|
| 3528 | ! determination du lmin: couche d ou provient le thermique |
---|
| 3529 | DO ig = 1, ngrid |
---|
| 3530 | lmin(ig) = 1 |
---|
| 3531 | END DO |
---|
| 3532 | DO ig = 1, ngrid |
---|
| 3533 | DO l = nlay, 2, -1 |
---|
| 3534 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 3535 | lmin(ig) = l - 1 |
---|
| 3536 | END IF |
---|
| 3537 | END DO |
---|
| 3538 | END DO |
---|
| 3539 | |
---|
| 3540 | ! definition de l'entrainement des couches |
---|
| 3541 | DO l = 1, klev - 1 |
---|
| 3542 | DO ig = 1, ngrid |
---|
| 3543 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
| 3544 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 3545 | END IF |
---|
| 3546 | END DO |
---|
| 3547 | END DO |
---|
| 3548 | ! pas de thermique si couches 1->5 stables |
---|
| 3549 | DO ig = 1, ngrid |
---|
| 3550 | IF (lmin(ig)>5) THEN |
---|
| 3551 | DO l = 1, klev |
---|
| 3552 | entr_star(ig, l) = 0. |
---|
| 3553 | END DO |
---|
| 3554 | END IF |
---|
| 3555 | END DO |
---|
| 3556 | ! calcul de l entrainement total |
---|
| 3557 | DO ig = 1, ngrid |
---|
| 3558 | entr_star_tot(ig) = 0. |
---|
| 3559 | END DO |
---|
| 3560 | DO ig = 1, ngrid |
---|
| 3561 | DO k = 1, klev |
---|
| 3562 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 3563 | END DO |
---|
| 3564 | END DO |
---|
| 3565 | |
---|
| 3566 | PRINT *, 'fin calcul entr_star' |
---|
| 3567 | DO k = 1, klev |
---|
| 3568 | DO ig = 1, ngrid |
---|
| 3569 | ztva(ig, k) = ztv(ig, k) |
---|
| 3570 | END DO |
---|
| 3571 | END DO |
---|
| 3572 | ! RC |
---|
| 3573 | ! print*,'7 OK convect8' |
---|
| 3574 | DO k = 1, klev + 1 |
---|
| 3575 | DO ig = 1, ngrid |
---|
| 3576 | zw2(ig, k) = 0. |
---|
| 3577 | fmc(ig, k) = 0. |
---|
| 3578 | ! CR |
---|
| 3579 | f_star(ig, k) = 0. |
---|
| 3580 | ! RC |
---|
| 3581 | larg_cons(ig, k) = 0. |
---|
| 3582 | larg_detr(ig, k) = 0. |
---|
| 3583 | wa_moy(ig, k) = 0. |
---|
| 3584 | END DO |
---|
| 3585 | END DO |
---|
| 3586 | |
---|
| 3587 | ! print*,'8 OK convect8' |
---|
| 3588 | DO ig = 1, ngrid |
---|
| 3589 | linter(ig) = 1. |
---|
| 3590 | lmaxa(ig) = 1 |
---|
| 3591 | lmix(ig) = 1 |
---|
| 3592 | wmaxa(ig) = 0. |
---|
| 3593 | END DO |
---|
| 3594 | |
---|
| 3595 | ! CR: |
---|
| 3596 | DO l = 1, nlay - 2 |
---|
| 3597 | DO ig = 1, ngrid |
---|
| 3598 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 3599 | zw2(ig,l)<1E-10) THEN |
---|
| 3600 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 3601 | ! test:calcul de dteta |
---|
| 3602 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 3603 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 3604 | larg_detr(ig, l) = 0. |
---|
| 3605 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 3606 | l)>1.E-10)) THEN |
---|
| 3607 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 3608 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
| 3609 | f_star(ig, l+1) |
---|
| 3610 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 3611 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 3612 | END IF |
---|
| 3613 | ! determination de zmax continu par interpolation lineaire |
---|
| 3614 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 3615 | ! test |
---|
| 3616 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
| 3617 | PRINT *, 'pb linter' |
---|
| 3618 | END IF |
---|
| 3619 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 3620 | ig,l)) |
---|
| 3621 | zw2(ig, l+1) = 0. |
---|
| 3622 | lmaxa(ig) = l |
---|
| 3623 | ELSE |
---|
| 3624 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 3625 | PRINT *, 'pb1 zw2<0' |
---|
| 3626 | END IF |
---|
| 3627 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 3628 | END IF |
---|
| 3629 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 3630 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 3631 | lmix(ig) = l + 1 |
---|
| 3632 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 3633 | END IF |
---|
| 3634 | END DO |
---|
| 3635 | END DO |
---|
| 3636 | PRINT *, 'fin calcul zw2' |
---|
| 3637 | |
---|
| 3638 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 3639 | DO ig = 1, ngrid |
---|
| 3640 | lmax(ig) = lentr(ig) |
---|
| 3641 | END DO |
---|
| 3642 | DO ig = 1, ngrid |
---|
| 3643 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 3644 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 3645 | lmax(ig) = l - 1 |
---|
| 3646 | END IF |
---|
| 3647 | END DO |
---|
| 3648 | END DO |
---|
| 3649 | ! pas de thermique si couches 1->5 stables |
---|
| 3650 | DO ig = 1, ngrid |
---|
| 3651 | IF (lmin(ig)>5) THEN |
---|
| 3652 | lmax(ig) = 1 |
---|
| 3653 | lmin(ig) = 1 |
---|
| 3654 | END IF |
---|
| 3655 | END DO |
---|
| 3656 | |
---|
| 3657 | ! Determination de zw2 max |
---|
| 3658 | DO ig = 1, ngrid |
---|
| 3659 | wmax(ig) = 0. |
---|
| 3660 | END DO |
---|
| 3661 | |
---|
| 3662 | DO l = 1, nlay |
---|
| 3663 | DO ig = 1, ngrid |
---|
| 3664 | IF (l<=lmax(ig)) THEN |
---|
| 3665 | IF (zw2(ig,l)<0.) THEN |
---|
| 3666 | PRINT *, 'pb2 zw2<0' |
---|
| 3667 | END IF |
---|
| 3668 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 3669 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 3670 | ELSE |
---|
| 3671 | zw2(ig, l) = 0. |
---|
| 3672 | END IF |
---|
| 3673 | END DO |
---|
| 3674 | END DO |
---|
| 3675 | |
---|
| 3676 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 3677 | DO ig = 1, ngrid |
---|
| 3678 | zmax(ig) = 0. |
---|
| 3679 | zlevinter(ig) = zlev(ig, 1) |
---|
| 3680 | END DO |
---|
| 3681 | DO ig = 1, ngrid |
---|
| 3682 | ! calcul de zlevinter |
---|
| 3683 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 3684 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 3685 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 3686 | END DO |
---|
| 3687 | |
---|
| 3688 | PRINT *, 'avant fermeture' |
---|
| 3689 | ! Fermeture,determination de f |
---|
| 3690 | DO ig = 1, ngrid |
---|
| 3691 | entr_star2(ig) = 0. |
---|
| 3692 | END DO |
---|
| 3693 | DO ig = 1, ngrid |
---|
| 3694 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 3695 | f(ig) = 0. |
---|
| 3696 | ELSE |
---|
| 3697 | DO k = lmin(ig), lentr(ig) |
---|
| 3698 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 3699 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 3700 | END DO |
---|
| 3701 | ! Nouvelle fermeture |
---|
| 3702 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
---|
| 3703 | entr_star_tot(ig) |
---|
| 3704 | ! test |
---|
| 3705 | ! if (first) then |
---|
| 3706 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
| 3707 | ! s *wmax(ig)) |
---|
| 3708 | ! endif |
---|
| 3709 | END IF |
---|
| 3710 | ! f0(ig)=f(ig) |
---|
| 3711 | ! first=.true. |
---|
| 3712 | END DO |
---|
| 3713 | PRINT *, 'apres fermeture' |
---|
| 3714 | |
---|
| 3715 | ! Calcul de l'entrainement |
---|
| 3716 | DO k = 1, klev |
---|
| 3717 | DO ig = 1, ngrid |
---|
| 3718 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 3719 | END DO |
---|
| 3720 | END DO |
---|
| 3721 | ! Calcul des flux |
---|
| 3722 | DO ig = 1, ngrid |
---|
| 3723 | DO l = 1, lmax(ig) - 1 |
---|
| 3724 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 3725 | END DO |
---|
| 3726 | END DO |
---|
| 3727 | |
---|
| 3728 | ! RC |
---|
| 3729 | |
---|
| 3730 | |
---|
| 3731 | ! print*,'9 OK convect8' |
---|
| 3732 | ! print*,'WA1 ',wa_moy |
---|
| 3733 | |
---|
| 3734 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 3735 | |
---|
| 3736 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 3737 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
| 3738 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
| 3739 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 3740 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 3741 | |
---|
| 3742 | DO l = 2, nlay |
---|
| 3743 | DO ig = 1, ngrid |
---|
| 3744 | IF (l<=lmaxa(ig)) THEN |
---|
| 3745 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 3746 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 3747 | END IF |
---|
| 3748 | END DO |
---|
| 3749 | END DO |
---|
| 3750 | |
---|
| 3751 | DO l = 2, nlay |
---|
| 3752 | DO ig = 1, ngrid |
---|
| 3753 | IF (l<=lmaxa(ig)) THEN |
---|
| 3754 | ! if (idetr.eq.0) then |
---|
| 3755 | ! cette option est finalement en dur. |
---|
| 3756 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 3757 | PRINT *, 'pb l_mix*zlev<0' |
---|
| 3758 | END IF |
---|
| 3759 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 3760 | ! else if (idetr.eq.1) then |
---|
| 3761 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 3762 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 3763 | ! else if (idetr.eq.2) then |
---|
| 3764 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 3765 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 3766 | ! else if (idetr.eq.4) then |
---|
| 3767 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 3768 | ! s *wa_moy(ig,l) |
---|
| 3769 | ! endif |
---|
| 3770 | END IF |
---|
| 3771 | END DO |
---|
| 3772 | END DO |
---|
| 3773 | |
---|
| 3774 | ! print*,'10 OK convect8' |
---|
| 3775 | ! print*,'WA2 ',wa_moy |
---|
| 3776 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
| 3777 | ! compte de l'epluchage du thermique. |
---|
| 3778 | |
---|
| 3779 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 3780 | DO ig = 1, ngrid |
---|
| 3781 | IF (lmix(ig)>1.) THEN |
---|
| 3782 | ! test |
---|
| 3783 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 3784 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 3785 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 3786 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
| 3787 | |
---|
| 3788 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 3789 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 3790 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 3791 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 3792 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 3793 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 3794 | ELSE |
---|
| 3795 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 3796 | PRINT *, 'pb zmix' |
---|
| 3797 | END IF |
---|
| 3798 | ELSE |
---|
| 3799 | zmix(ig) = 0. |
---|
| 3800 | END IF |
---|
| 3801 | ! test |
---|
| 3802 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
| 3803 | zmix(ig) = 0.99*zmax(ig) |
---|
| 3804 | ! print*,'pb zmix>zmax' |
---|
| 3805 | END IF |
---|
| 3806 | END DO |
---|
| 3807 | |
---|
| 3808 | ! calcul du nouveau lmix correspondant |
---|
| 3809 | DO ig = 1, ngrid |
---|
| 3810 | DO l = 1, klev |
---|
| 3811 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 3812 | lmix(ig) = l |
---|
| 3813 | END IF |
---|
| 3814 | END DO |
---|
| 3815 | END DO |
---|
| 3816 | |
---|
| 3817 | DO l = 2, nlay |
---|
| 3818 | DO ig = 1, ngrid |
---|
| 3819 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 3820 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 3821 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 3822 | ! test |
---|
| 3823 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 3824 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 3825 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 3826 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 3827 | ELSE |
---|
| 3828 | ! wa_moy(ig,l)=0. |
---|
| 3829 | fraca(ig, l) = 0. |
---|
| 3830 | fracc(ig, l) = 0. |
---|
| 3831 | fracd(ig, l) = 1. |
---|
| 3832 | END IF |
---|
| 3833 | END DO |
---|
| 3834 | END DO |
---|
| 3835 | ! CR: calcul de fracazmix |
---|
| 3836 | DO ig = 1, ngrid |
---|
| 3837 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 3838 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 3839 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 3840 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 3841 | END DO |
---|
| 3842 | |
---|
| 3843 | DO l = 2, nlay |
---|
| 3844 | DO ig = 1, ngrid |
---|
| 3845 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 3846 | IF (l>lmix(ig)) THEN |
---|
| 3847 | ! test |
---|
| 3848 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 3849 | ! print*,'pb xxx' |
---|
| 3850 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 3851 | ELSE |
---|
| 3852 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 3853 | END IF |
---|
| 3854 | IF (idetr==0) THEN |
---|
| 3855 | fraca(ig, l) = fracazmix(ig) |
---|
| 3856 | ELSE IF (idetr==1) THEN |
---|
| 3857 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 3858 | ELSE IF (idetr==2) THEN |
---|
| 3859 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 3860 | ELSE |
---|
| 3861 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 3862 | END IF |
---|
| 3863 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 3864 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 3865 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 3866 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 3867 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 3868 | END IF |
---|
| 3869 | END IF |
---|
| 3870 | END DO |
---|
| 3871 | END DO |
---|
| 3872 | |
---|
| 3873 | PRINT *, 'fin calcul fraca' |
---|
| 3874 | ! print*,'11 OK convect8' |
---|
| 3875 | ! print*,'Ea3 ',wa_moy |
---|
| 3876 | ! ------------------------------------------------------------------ |
---|
| 3877 | ! Calcul de fracd, wd |
---|
| 3878 | ! somme wa - wd = 0 |
---|
| 3879 | ! ------------------------------------------------------------------ |
---|
| 3880 | |
---|
| 3881 | |
---|
| 3882 | DO ig = 1, ngrid |
---|
| 3883 | fm(ig, 1) = 0. |
---|
| 3884 | fm(ig, nlay+1) = 0. |
---|
| 3885 | END DO |
---|
| 3886 | |
---|
| 3887 | DO l = 2, nlay |
---|
| 3888 | DO ig = 1, ngrid |
---|
| 3889 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 3890 | ! CR:test |
---|
| 3891 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 3892 | fm(ig, l) = fm(ig, l-1) |
---|
| 3893 | ! write(1,*)'ajustement fm, l',l |
---|
| 3894 | END IF |
---|
| 3895 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 3896 | ! RC |
---|
| 3897 | END DO |
---|
| 3898 | DO ig = 1, ngrid |
---|
| 3899 | IF (fracd(ig,l)<0.1) THEN |
---|
| 3900 | abort_message = 'fracd trop petit' |
---|
[2311] | 3901 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 3902 | ELSE |
---|
| 3903 | ! vitesse descendante "diagnostique" |
---|
| 3904 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 3905 | END IF |
---|
| 3906 | END DO |
---|
| 3907 | END DO |
---|
| 3908 | |
---|
| 3909 | DO l = 1, nlay |
---|
| 3910 | DO ig = 1, ngrid |
---|
| 3911 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 3912 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 3913 | END DO |
---|
| 3914 | END DO |
---|
| 3915 | |
---|
| 3916 | ! print*,'12 OK convect8' |
---|
| 3917 | ! print*,'WA4 ',wa_moy |
---|
| 3918 | ! c------------------------------------------------------------------ |
---|
| 3919 | ! calcul du transport vertical |
---|
| 3920 | ! ------------------------------------------------------------------ |
---|
| 3921 | |
---|
| 3922 | GO TO 4444 |
---|
| 3923 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 3924 | DO l = 2, nlay - 1 |
---|
| 3925 | DO ig = 1, ngrid |
---|
| 3926 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 3927 | ig,l+1)) THEN |
---|
| 3928 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 3929 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 3930 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 3931 | END IF |
---|
| 3932 | END DO |
---|
| 3933 | END DO |
---|
| 3934 | |
---|
| 3935 | DO l = 1, nlay |
---|
| 3936 | DO ig = 1, ngrid |
---|
| 3937 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 3938 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 3939 | ! s ,entr(ig,l)*ptimestep |
---|
| 3940 | ! s ,' M=',masse(ig,l) |
---|
| 3941 | END IF |
---|
| 3942 | END DO |
---|
| 3943 | END DO |
---|
| 3944 | |
---|
| 3945 | DO l = 1, nlay |
---|
| 3946 | DO ig = 1, ngrid |
---|
| 3947 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 3948 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 3949 | ! s ,' FM=',fm(ig,l) |
---|
| 3950 | END IF |
---|
| 3951 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 3952 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 3953 | ! s ,' M=',masse(ig,l) |
---|
| 3954 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 3955 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 3956 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 3957 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 3958 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 3959 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 3960 | END IF |
---|
| 3961 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 3962 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 3963 | ! s ,' E=',entr(ig,l) |
---|
| 3964 | END IF |
---|
| 3965 | END DO |
---|
| 3966 | END DO |
---|
| 3967 | |
---|
| 3968 | 4444 CONTINUE |
---|
| 3969 | |
---|
| 3970 | ! CR:redefinition du entr |
---|
| 3971 | DO l = 1, nlay |
---|
| 3972 | DO ig = 1, ngrid |
---|
| 3973 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 3974 | IF (detr(ig,l)<0.) THEN |
---|
| 3975 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
| 3976 | detr(ig, l) = 0. |
---|
| 3977 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 3978 | END IF |
---|
| 3979 | END DO |
---|
| 3980 | END DO |
---|
| 3981 | ! RC |
---|
| 3982 | IF (w2di==1) THEN |
---|
| 3983 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 3984 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 3985 | ELSE |
---|
| 3986 | fm0 = fm |
---|
| 3987 | entr0 = entr |
---|
| 3988 | END IF |
---|
| 3989 | |
---|
| 3990 | IF (1==1) THEN |
---|
| 3991 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 3992 | zha) |
---|
| 3993 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 3994 | zoa) |
---|
| 3995 | ELSE |
---|
| 3996 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 3997 | zdhadj, zha) |
---|
| 3998 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 3999 | pdoadj, zoa) |
---|
| 4000 | END IF |
---|
| 4001 | |
---|
| 4002 | IF (1==0) THEN |
---|
| 4003 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 4004 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 4005 | ELSE |
---|
| 4006 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 4007 | zua) |
---|
| 4008 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 4009 | zva) |
---|
| 4010 | END IF |
---|
| 4011 | |
---|
| 4012 | DO l = 1, nlay |
---|
| 4013 | DO ig = 1, ngrid |
---|
| 4014 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 4015 | zf2 = zf/(1.-zf) |
---|
| 4016 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 4017 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 4018 | END DO |
---|
| 4019 | END DO |
---|
| 4020 | |
---|
| 4021 | |
---|
| 4022 | |
---|
| 4023 | ! print*,'13 OK convect8' |
---|
| 4024 | ! print*,'WA5 ',wa_moy |
---|
| 4025 | DO l = 1, nlay |
---|
| 4026 | DO ig = 1, ngrid |
---|
| 4027 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 4028 | END DO |
---|
| 4029 | END DO |
---|
| 4030 | |
---|
| 4031 | |
---|
| 4032 | ! do l=1,nlay |
---|
| 4033 | ! do ig=1,ngrid |
---|
| 4034 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 4035 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 4036 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 4037 | ! endif |
---|
| 4038 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 4039 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 4040 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 4041 | ! endif |
---|
| 4042 | ! enddo |
---|
| 4043 | ! enddo |
---|
| 4044 | |
---|
| 4045 | ! print*,'14 OK convect8' |
---|
| 4046 | ! ------------------------------------------------------------------ |
---|
| 4047 | ! Calculs pour les sorties |
---|
| 4048 | ! ------------------------------------------------------------------ |
---|
| 4049 | |
---|
| 4050 | IF (sorties) THEN |
---|
| 4051 | DO l = 1, nlay |
---|
| 4052 | DO ig = 1, ngrid |
---|
| 4053 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 4054 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 4055 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 4056 | (1.-fracd(ig,l)) |
---|
| 4057 | END DO |
---|
| 4058 | END DO |
---|
| 4059 | |
---|
| 4060 | ! deja fait |
---|
| 4061 | ! do l=1,nlay |
---|
| 4062 | ! do ig=1,ngrid |
---|
| 4063 | ! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
---|
| 4064 | ! if (detr(ig,l).lt.0.) then |
---|
| 4065 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 4066 | ! detr(ig,l)=0. |
---|
| 4067 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 4068 | ! endif |
---|
| 4069 | ! enddo |
---|
| 4070 | ! enddo |
---|
| 4071 | |
---|
| 4072 | ! print*,'15 OK convect8' |
---|
| 4073 | |
---|
| 4074 | |
---|
| 4075 | ! #define und |
---|
| 4076 | GO TO 123 |
---|
[878] | 4077 | #ifdef und |
---|
[1992] | 4078 | CALL writeg1d(1, nlay, wd, 'wd ', 'wd ') |
---|
| 4079 | CALL writeg1d(1, nlay, zwa, 'wa ', 'wa ') |
---|
| 4080 | CALL writeg1d(1, nlay, fracd, 'fracd ', 'fracd ') |
---|
| 4081 | CALL writeg1d(1, nlay, fraca, 'fraca ', 'fraca ') |
---|
| 4082 | CALL writeg1d(1, nlay, wa_moy, 'wam ', 'wam ') |
---|
| 4083 | CALL writeg1d(1, nlay, zla, 'la ', 'la ') |
---|
| 4084 | CALL writeg1d(1, nlay, zld, 'ld ', 'ld ') |
---|
| 4085 | CALL writeg1d(1, nlay, pt, 'pt ', 'pt ') |
---|
| 4086 | CALL writeg1d(1, nlay, zh, 'zh ', 'zh ') |
---|
| 4087 | CALL writeg1d(1, nlay, zha, 'zha ', 'zha ') |
---|
| 4088 | CALL writeg1d(1, nlay, zu, 'zu ', 'zu ') |
---|
| 4089 | CALL writeg1d(1, nlay, zv, 'zv ', 'zv ') |
---|
| 4090 | CALL writeg1d(1, nlay, zo, 'zo ', 'zo ') |
---|
| 4091 | CALL writeg1d(1, nlay, wh, 'wh ', 'wh ') |
---|
| 4092 | CALL writeg1d(1, nlay, wu, 'wu ', 'wu ') |
---|
| 4093 | CALL writeg1d(1, nlay, wv, 'wv ', 'wv ') |
---|
| 4094 | CALL writeg1d(1, nlay, wo, 'w15uo ', 'wXo ') |
---|
| 4095 | CALL writeg1d(1, nlay, zdhadj, 'zdhadj ', 'zdhadj ') |
---|
| 4096 | CALL writeg1d(1, nlay, pduadj, 'pduadj ', 'pduadj ') |
---|
| 4097 | CALL writeg1d(1, nlay, pdvadj, 'pdvadj ', 'pdvadj ') |
---|
| 4098 | CALL writeg1d(1, nlay, pdoadj, 'pdoadj ', 'pdoadj ') |
---|
| 4099 | CALL writeg1d(1, nlay, entr, 'entr ', 'entr ') |
---|
| 4100 | CALL writeg1d(1, nlay, detr, 'detr ', 'detr ') |
---|
| 4101 | CALL writeg1d(1, nlay, fm, 'fm ', 'fm ') |
---|
[878] | 4102 | |
---|
[1992] | 4103 | CALL writeg1d(1, nlay, pdtadj, 'pdtadj ', 'pdtadj ') |
---|
| 4104 | CALL writeg1d(1, nlay, pplay, 'pplay ', 'pplay ') |
---|
| 4105 | CALL writeg1d(1, nlay, pplev, 'pplev ', 'pplev ') |
---|
[878] | 4106 | |
---|
[1992] | 4107 | ! recalcul des flux en diagnostique... |
---|
| 4108 | ! print*,'PAS DE TEMPS ',ptimestep |
---|
| 4109 | CALL dt2f(pplev, pplay, pt, pdtadj, wh) |
---|
| 4110 | CALL writeg1d(1, nlay, wh, 'wh2 ', 'wh2 ') |
---|
[878] | 4111 | #endif |
---|
[1992] | 4112 | 123 CONTINUE |
---|
[878] | 4113 | |
---|
[1992] | 4114 | END IF |
---|
[878] | 4115 | |
---|
[1992] | 4116 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
[878] | 4117 | |
---|
[1992] | 4118 | ! print*,'19 OK convect8' |
---|
| 4119 | RETURN |
---|
| 4120 | END SUBROUTINE thermcell |
---|
[878] | 4121 | |
---|
[1992] | 4122 | SUBROUTINE dqthermcell(ngrid, nlay, ptimestep, fm, entr, masse, q, dq, qa) |
---|
| 4123 | USE dimphy |
---|
| 4124 | IMPLICIT NONE |
---|
[878] | 4125 | |
---|
[1992] | 4126 | ! ======================================================================= |
---|
[878] | 4127 | |
---|
[1992] | 4128 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4129 | ! de "thermiques" explicitement representes |
---|
| 4130 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
[878] | 4131 | |
---|
[1992] | 4132 | ! ======================================================================= |
---|
[878] | 4133 | |
---|
[1992] | 4134 | INTEGER ngrid, nlay |
---|
[878] | 4135 | |
---|
[1992] | 4136 | REAL ptimestep |
---|
| 4137 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
| 4138 | REAL entr(ngrid, nlay) |
---|
| 4139 | REAL q(ngrid, nlay) |
---|
| 4140 | REAL dq(ngrid, nlay) |
---|
[878] | 4141 | |
---|
[1992] | 4142 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
---|
[878] | 4143 | |
---|
[1992] | 4144 | INTEGER ig, k |
---|
[878] | 4145 | |
---|
[1992] | 4146 | ! calcul du detrainement |
---|
[878] | 4147 | |
---|
[1992] | 4148 | DO k = 1, nlay |
---|
| 4149 | DO ig = 1, ngrid |
---|
| 4150 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
| 4151 | ! test |
---|
| 4152 | IF (detr(ig,k)<0.) THEN |
---|
| 4153 | entr(ig, k) = entr(ig, k) - detr(ig, k) |
---|
| 4154 | detr(ig, k) = 0. |
---|
| 4155 | ! print*,'detr2<0!!!','ig=',ig,'k=',k,'f=',fm(ig,k), |
---|
| 4156 | ! s 'f+1=',fm(ig,k+1),'e=',entr(ig,k),'d=',detr(ig,k) |
---|
| 4157 | END IF |
---|
| 4158 | IF (fm(ig,k+1)<0.) THEN |
---|
| 4159 | ! print*,'fm2<0!!!' |
---|
| 4160 | END IF |
---|
| 4161 | IF (entr(ig,k)<0.) THEN |
---|
| 4162 | ! print*,'entr2<0!!!' |
---|
| 4163 | END IF |
---|
| 4164 | END DO |
---|
| 4165 | END DO |
---|
[878] | 4166 | |
---|
[1992] | 4167 | ! calcul de la valeur dans les ascendances |
---|
| 4168 | DO ig = 1, ngrid |
---|
| 4169 | qa(ig, 1) = q(ig, 1) |
---|
| 4170 | END DO |
---|
[878] | 4171 | |
---|
[1992] | 4172 | DO k = 2, nlay |
---|
| 4173 | DO ig = 1, ngrid |
---|
| 4174 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
| 4175 | qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+entr(ig,k)*q(ig,k))/ & |
---|
| 4176 | (fm(ig,k+1)+detr(ig,k)) |
---|
| 4177 | ELSE |
---|
| 4178 | qa(ig, k) = q(ig, k) |
---|
| 4179 | END IF |
---|
| 4180 | IF (qa(ig,k)<0.) THEN |
---|
| 4181 | ! print*,'qa<0!!!' |
---|
| 4182 | END IF |
---|
| 4183 | IF (q(ig,k)<0.) THEN |
---|
| 4184 | ! print*,'q<0!!!' |
---|
| 4185 | END IF |
---|
| 4186 | END DO |
---|
| 4187 | END DO |
---|
[878] | 4188 | |
---|
[1992] | 4189 | DO k = 2, nlay |
---|
| 4190 | DO ig = 1, ngrid |
---|
| 4191 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
| 4192 | wqd(ig, k) = fm(ig, k)*q(ig, k) |
---|
| 4193 | IF (wqd(ig,k)<0.) THEN |
---|
| 4194 | ! print*,'wqd<0!!!' |
---|
| 4195 | END IF |
---|
| 4196 | END DO |
---|
| 4197 | END DO |
---|
| 4198 | DO ig = 1, ngrid |
---|
| 4199 | wqd(ig, 1) = 0. |
---|
| 4200 | wqd(ig, nlay+1) = 0. |
---|
| 4201 | END DO |
---|
[878] | 4202 | |
---|
[1992] | 4203 | DO k = 1, nlay |
---|
| 4204 | DO ig = 1, ngrid |
---|
| 4205 | dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*q(ig,k)-wqd(ig,k)+wqd(ig,k+ & |
---|
| 4206 | 1))/masse(ig, k) |
---|
| 4207 | ! if (dq(ig,k).lt.0.) then |
---|
| 4208 | ! print*,'dq<0!!!' |
---|
| 4209 | ! endif |
---|
| 4210 | END DO |
---|
| 4211 | END DO |
---|
[878] | 4212 | |
---|
[1992] | 4213 | RETURN |
---|
| 4214 | END SUBROUTINE dqthermcell |
---|
| 4215 | SUBROUTINE dvthermcell(ngrid, nlay, ptimestep, fm, entr, masse, fraca, larga, & |
---|
| 4216 | u, v, du, dv, ua, va) |
---|
| 4217 | USE dimphy |
---|
| 4218 | IMPLICIT NONE |
---|
[878] | 4219 | |
---|
[1992] | 4220 | ! ======================================================================= |
---|
[878] | 4221 | |
---|
[1992] | 4222 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4223 | ! de "thermiques" explicitement representes |
---|
| 4224 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
[878] | 4225 | |
---|
[1992] | 4226 | ! ======================================================================= |
---|
[878] | 4227 | |
---|
[1992] | 4228 | INTEGER ngrid, nlay |
---|
[878] | 4229 | |
---|
[1992] | 4230 | REAL ptimestep |
---|
| 4231 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
| 4232 | REAL fraca(ngrid, nlay+1) |
---|
| 4233 | REAL larga(ngrid) |
---|
| 4234 | REAL entr(ngrid, nlay) |
---|
| 4235 | REAL u(ngrid, nlay) |
---|
| 4236 | REAL ua(ngrid, nlay) |
---|
| 4237 | REAL du(ngrid, nlay) |
---|
| 4238 | REAL v(ngrid, nlay) |
---|
| 4239 | REAL va(ngrid, nlay) |
---|
| 4240 | REAL dv(ngrid, nlay) |
---|
[878] | 4241 | |
---|
[1992] | 4242 | REAL qa(klon, klev), detr(klon, klev) |
---|
| 4243 | REAL wvd(klon, klev+1), wud(klon, klev+1) |
---|
| 4244 | REAL gamma0, gamma(klon, klev+1) |
---|
| 4245 | REAL dua, dva |
---|
| 4246 | INTEGER iter |
---|
[878] | 4247 | |
---|
[1992] | 4248 | INTEGER ig, k |
---|
[878] | 4249 | |
---|
[1992] | 4250 | ! calcul du detrainement |
---|
[878] | 4251 | |
---|
[1992] | 4252 | DO k = 1, nlay |
---|
| 4253 | DO ig = 1, ngrid |
---|
| 4254 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
| 4255 | END DO |
---|
| 4256 | END DO |
---|
[878] | 4257 | |
---|
[1992] | 4258 | ! calcul de la valeur dans les ascendances |
---|
| 4259 | DO ig = 1, ngrid |
---|
| 4260 | ua(ig, 1) = u(ig, 1) |
---|
| 4261 | va(ig, 1) = v(ig, 1) |
---|
| 4262 | END DO |
---|
[878] | 4263 | |
---|
[1992] | 4264 | DO k = 2, nlay |
---|
| 4265 | DO ig = 1, ngrid |
---|
| 4266 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
| 4267 | ! On itère sur la valeur du coeff de freinage. |
---|
| 4268 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 4269 | gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
---|
| 4270 | k)))*0.5/larga(ig) |
---|
| 4271 | ! gamma0=0. |
---|
| 4272 | ! la première fois on multiplie le coefficient de freinage |
---|
| 4273 | ! par le module du vent dans la couche en dessous. |
---|
| 4274 | dua = ua(ig, k-1) - u(ig, k-1) |
---|
| 4275 | dva = va(ig, k-1) - v(ig, k-1) |
---|
| 4276 | DO iter = 1, 5 |
---|
| 4277 | gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
---|
| 4278 | ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(entr(ig,k)+gamma(ig, & |
---|
| 4279 | k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
---|
| 4280 | va(ig, k) = (fm(ig,k)*va(ig,k-1)+(entr(ig,k)+gamma(ig, & |
---|
| 4281 | k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
---|
| 4282 | ! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
| 4283 | dua = ua(ig, k) - u(ig, k) |
---|
| 4284 | dva = va(ig, k) - v(ig, k) |
---|
| 4285 | END DO |
---|
| 4286 | ELSE |
---|
| 4287 | ua(ig, k) = u(ig, k) |
---|
| 4288 | va(ig, k) = v(ig, k) |
---|
| 4289 | gamma(ig, k) = 0. |
---|
| 4290 | END IF |
---|
| 4291 | END DO |
---|
| 4292 | END DO |
---|
[878] | 4293 | |
---|
[1992] | 4294 | DO k = 2, nlay |
---|
| 4295 | DO ig = 1, ngrid |
---|
| 4296 | wud(ig, k) = fm(ig, k)*u(ig, k) |
---|
| 4297 | wvd(ig, k) = fm(ig, k)*v(ig, k) |
---|
| 4298 | END DO |
---|
| 4299 | END DO |
---|
| 4300 | DO ig = 1, ngrid |
---|
| 4301 | wud(ig, 1) = 0. |
---|
| 4302 | wud(ig, nlay+1) = 0. |
---|
| 4303 | wvd(ig, 1) = 0. |
---|
| 4304 | wvd(ig, nlay+1) = 0. |
---|
| 4305 | END DO |
---|
[878] | 4306 | |
---|
[1992] | 4307 | DO k = 1, nlay |
---|
| 4308 | DO ig = 1, ngrid |
---|
| 4309 | du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
| 4310 | k))*u(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
---|
| 4311 | dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
| 4312 | k))*v(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
---|
| 4313 | END DO |
---|
| 4314 | END DO |
---|
[878] | 4315 | |
---|
[1992] | 4316 | RETURN |
---|
| 4317 | END SUBROUTINE dvthermcell |
---|
| 4318 | SUBROUTINE dqthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, frac, q, dq, & |
---|
| 4319 | qa) |
---|
| 4320 | USE dimphy |
---|
| 4321 | IMPLICIT NONE |
---|
[878] | 4322 | |
---|
[1992] | 4323 | ! ======================================================================= |
---|
[878] | 4324 | |
---|
[1992] | 4325 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4326 | ! de "thermiques" explicitement representes |
---|
| 4327 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
[878] | 4328 | |
---|
[1992] | 4329 | ! ======================================================================= |
---|
[878] | 4330 | |
---|
[1992] | 4331 | INTEGER ngrid, nlay |
---|
[878] | 4332 | |
---|
[1992] | 4333 | REAL ptimestep |
---|
| 4334 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
| 4335 | REAL entr(ngrid, nlay), frac(ngrid, nlay) |
---|
| 4336 | REAL q(ngrid, nlay) |
---|
| 4337 | REAL dq(ngrid, nlay) |
---|
[878] | 4338 | |
---|
[1992] | 4339 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
---|
| 4340 | REAL qe(klon, klev), zf, zf2 |
---|
[878] | 4341 | |
---|
[1992] | 4342 | INTEGER ig, k |
---|
[878] | 4343 | |
---|
[1992] | 4344 | ! calcul du detrainement |
---|
[878] | 4345 | |
---|
[1992] | 4346 | DO k = 1, nlay |
---|
| 4347 | DO ig = 1, ngrid |
---|
| 4348 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
| 4349 | END DO |
---|
| 4350 | END DO |
---|
[878] | 4351 | |
---|
[1992] | 4352 | ! calcul de la valeur dans les ascendances |
---|
| 4353 | DO ig = 1, ngrid |
---|
| 4354 | qa(ig, 1) = q(ig, 1) |
---|
| 4355 | qe(ig, 1) = q(ig, 1) |
---|
| 4356 | END DO |
---|
[878] | 4357 | |
---|
[1992] | 4358 | DO k = 2, nlay |
---|
| 4359 | DO ig = 1, ngrid |
---|
| 4360 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
| 4361 | zf = 0.5*(frac(ig,k)+frac(ig,k+1)) |
---|
| 4362 | zf2 = 1./(1.-zf) |
---|
| 4363 | qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+zf2*entr(ig,k)*q(ig,k))/ & |
---|
| 4364 | (fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2) |
---|
| 4365 | qe(ig, k) = (q(ig,k)-zf*qa(ig,k))*zf2 |
---|
| 4366 | ELSE |
---|
| 4367 | qa(ig, k) = q(ig, k) |
---|
| 4368 | qe(ig, k) = q(ig, k) |
---|
| 4369 | END IF |
---|
| 4370 | END DO |
---|
| 4371 | END DO |
---|
[878] | 4372 | |
---|
[1992] | 4373 | DO k = 2, nlay |
---|
| 4374 | DO ig = 1, ngrid |
---|
| 4375 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
| 4376 | wqd(ig, k) = fm(ig, k)*qe(ig, k) |
---|
| 4377 | END DO |
---|
| 4378 | END DO |
---|
| 4379 | DO ig = 1, ngrid |
---|
| 4380 | wqd(ig, 1) = 0. |
---|
| 4381 | wqd(ig, nlay+1) = 0. |
---|
| 4382 | END DO |
---|
[878] | 4383 | |
---|
[1992] | 4384 | DO k = 1, nlay |
---|
| 4385 | DO ig = 1, ngrid |
---|
| 4386 | dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*qe(ig,k)-wqd(ig,k)+wqd(ig,k & |
---|
| 4387 | +1))/masse(ig, k) |
---|
| 4388 | END DO |
---|
| 4389 | END DO |
---|
[878] | 4390 | |
---|
[1992] | 4391 | RETURN |
---|
| 4392 | END SUBROUTINE dqthermcell2 |
---|
| 4393 | SUBROUTINE dvthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, fraca, & |
---|
| 4394 | larga, u, v, du, dv, ua, va) |
---|
| 4395 | USE dimphy |
---|
| 4396 | IMPLICIT NONE |
---|
[878] | 4397 | |
---|
[1992] | 4398 | ! ======================================================================= |
---|
[878] | 4399 | |
---|
[1992] | 4400 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4401 | ! de "thermiques" explicitement representes |
---|
| 4402 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
[878] | 4403 | |
---|
[1992] | 4404 | ! ======================================================================= |
---|
[878] | 4405 | |
---|
[1992] | 4406 | INTEGER ngrid, nlay |
---|
[878] | 4407 | |
---|
[1992] | 4408 | REAL ptimestep |
---|
| 4409 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
| 4410 | REAL fraca(ngrid, nlay+1) |
---|
| 4411 | REAL larga(ngrid) |
---|
| 4412 | REAL entr(ngrid, nlay) |
---|
| 4413 | REAL u(ngrid, nlay) |
---|
| 4414 | REAL ua(ngrid, nlay) |
---|
| 4415 | REAL du(ngrid, nlay) |
---|
| 4416 | REAL v(ngrid, nlay) |
---|
| 4417 | REAL va(ngrid, nlay) |
---|
| 4418 | REAL dv(ngrid, nlay) |
---|
[878] | 4419 | |
---|
[1992] | 4420 | REAL qa(klon, klev), detr(klon, klev), zf, zf2 |
---|
| 4421 | REAL wvd(klon, klev+1), wud(klon, klev+1) |
---|
| 4422 | REAL gamma0, gamma(klon, klev+1) |
---|
| 4423 | REAL ue(klon, klev), ve(klon, klev) |
---|
| 4424 | REAL dua, dva |
---|
| 4425 | INTEGER iter |
---|
[878] | 4426 | |
---|
[1992] | 4427 | INTEGER ig, k |
---|
[878] | 4428 | |
---|
[1992] | 4429 | ! calcul du detrainement |
---|
[878] | 4430 | |
---|
[1992] | 4431 | DO k = 1, nlay |
---|
| 4432 | DO ig = 1, ngrid |
---|
| 4433 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
| 4434 | END DO |
---|
| 4435 | END DO |
---|
[878] | 4436 | |
---|
[1992] | 4437 | ! calcul de la valeur dans les ascendances |
---|
| 4438 | DO ig = 1, ngrid |
---|
| 4439 | ua(ig, 1) = u(ig, 1) |
---|
| 4440 | va(ig, 1) = v(ig, 1) |
---|
| 4441 | ue(ig, 1) = u(ig, 1) |
---|
| 4442 | ve(ig, 1) = v(ig, 1) |
---|
| 4443 | END DO |
---|
[878] | 4444 | |
---|
[1992] | 4445 | DO k = 2, nlay |
---|
| 4446 | DO ig = 1, ngrid |
---|
| 4447 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
| 4448 | ! On itère sur la valeur du coeff de freinage. |
---|
| 4449 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 4450 | gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
---|
| 4451 | k)))*0.5/larga(ig)*1. |
---|
| 4452 | ! s *0.5 |
---|
| 4453 | ! gamma0=0. |
---|
| 4454 | zf = 0.5*(fraca(ig,k)+fraca(ig,k+1)) |
---|
| 4455 | zf = 0. |
---|
| 4456 | zf2 = 1./(1.-zf) |
---|
| 4457 | ! la première fois on multiplie le coefficient de freinage |
---|
| 4458 | ! par le module du vent dans la couche en dessous. |
---|
| 4459 | dua = ua(ig, k-1) - u(ig, k-1) |
---|
| 4460 | dva = va(ig, k-1) - v(ig, k-1) |
---|
| 4461 | DO iter = 1, 5 |
---|
| 4462 | ! On choisit une relaxation lineaire. |
---|
| 4463 | gamma(ig, k) = gamma0 |
---|
| 4464 | ! On choisit une relaxation quadratique. |
---|
| 4465 | gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
---|
| 4466 | ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
---|
| 4467 | k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
---|
| 4468 | ) |
---|
| 4469 | va(ig, k) = (fm(ig,k)*va(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
---|
| 4470 | k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
---|
| 4471 | ) |
---|
| 4472 | ! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
| 4473 | dua = ua(ig, k) - u(ig, k) |
---|
| 4474 | dva = va(ig, k) - v(ig, k) |
---|
| 4475 | ue(ig, k) = (u(ig,k)-zf*ua(ig,k))*zf2 |
---|
| 4476 | ve(ig, k) = (v(ig,k)-zf*va(ig,k))*zf2 |
---|
| 4477 | END DO |
---|
| 4478 | ELSE |
---|
| 4479 | ua(ig, k) = u(ig, k) |
---|
| 4480 | va(ig, k) = v(ig, k) |
---|
| 4481 | ue(ig, k) = u(ig, k) |
---|
| 4482 | ve(ig, k) = v(ig, k) |
---|
| 4483 | gamma(ig, k) = 0. |
---|
| 4484 | END IF |
---|
| 4485 | END DO |
---|
| 4486 | END DO |
---|
[878] | 4487 | |
---|
[1992] | 4488 | DO k = 2, nlay |
---|
| 4489 | DO ig = 1, ngrid |
---|
| 4490 | wud(ig, k) = fm(ig, k)*ue(ig, k) |
---|
| 4491 | wvd(ig, k) = fm(ig, k)*ve(ig, k) |
---|
| 4492 | END DO |
---|
| 4493 | END DO |
---|
| 4494 | DO ig = 1, ngrid |
---|
| 4495 | wud(ig, 1) = 0. |
---|
| 4496 | wud(ig, nlay+1) = 0. |
---|
| 4497 | wvd(ig, 1) = 0. |
---|
| 4498 | wvd(ig, nlay+1) = 0. |
---|
| 4499 | END DO |
---|
[878] | 4500 | |
---|
[1992] | 4501 | DO k = 1, nlay |
---|
| 4502 | DO ig = 1, ngrid |
---|
| 4503 | du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
| 4504 | k))*ue(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
---|
| 4505 | dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
| 4506 | k))*ve(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
---|
| 4507 | END DO |
---|
| 4508 | END DO |
---|
[878] | 4509 | |
---|
[1992] | 4510 | RETURN |
---|
| 4511 | END SUBROUTINE dvthermcell2 |
---|
| 4512 | SUBROUTINE thermcell_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
| 4513 | pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
| 4514 | ! ,pu_therm,pv_therm |
---|
| 4515 | , r_aspect, l_mix, w2di, tho) |
---|
[878] | 4516 | |
---|
[1992] | 4517 | USE dimphy |
---|
| 4518 | IMPLICIT NONE |
---|
[878] | 4519 | |
---|
[1992] | 4520 | ! ======================================================================= |
---|
[878] | 4521 | |
---|
[1992] | 4522 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 4523 | ! de "thermiques" explicitement representes |
---|
[878] | 4524 | |
---|
[1992] | 4525 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
[878] | 4526 | |
---|
[1992] | 4527 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 4528 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 4529 | ! mélange |
---|
[878] | 4530 | |
---|
[1992] | 4531 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 4532 | ! en compte: |
---|
| 4533 | ! 1. un flux de masse montant |
---|
| 4534 | ! 2. un flux de masse descendant |
---|
| 4535 | ! 3. un entrainement |
---|
| 4536 | ! 4. un detrainement |
---|
[878] | 4537 | |
---|
[1992] | 4538 | ! ======================================================================= |
---|
[878] | 4539 | |
---|
[1992] | 4540 | ! ----------------------------------------------------------------------- |
---|
| 4541 | ! declarations: |
---|
| 4542 | ! ------------- |
---|
[1403] | 4543 | |
---|
[1992] | 4544 | include "YOMCST.h" |
---|
[878] | 4545 | |
---|
[1992] | 4546 | ! arguments: |
---|
| 4547 | ! ---------- |
---|
[878] | 4548 | |
---|
[1992] | 4549 | INTEGER ngrid, nlay, w2di |
---|
| 4550 | REAL tho |
---|
| 4551 | REAL ptimestep, l_mix, r_aspect |
---|
| 4552 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 4553 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 4554 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 4555 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 4556 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 4557 | REAL pphi(ngrid, nlay) |
---|
[878] | 4558 | |
---|
[1992] | 4559 | INTEGER idetr |
---|
| 4560 | SAVE idetr |
---|
| 4561 | DATA idetr/3/ |
---|
| 4562 | !$OMP THREADPRIVATE(idetr) |
---|
[878] | 4563 | |
---|
[1992] | 4564 | ! local: |
---|
| 4565 | ! ------ |
---|
[878] | 4566 | |
---|
[1992] | 4567 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 4568 | REAL zsortie1d(klon) |
---|
| 4569 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 4570 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 4571 | REAL linter(klon) |
---|
| 4572 | REAL zmix(klon), fracazmix(klon) |
---|
| 4573 | ! RC |
---|
| 4574 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
[878] | 4575 | |
---|
[1992] | 4576 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 4577 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 4578 | REAL ztv(klon, klev) |
---|
| 4579 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 4580 | REAL wh(klon, klev+1) |
---|
| 4581 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 4582 | REAL zla(klon, klev+1) |
---|
| 4583 | REAL zwa(klon, klev+1) |
---|
| 4584 | REAL zld(klon, klev+1) |
---|
| 4585 | REAL zwd(klon, klev+1) |
---|
| 4586 | REAL zsortie(klon, klev) |
---|
| 4587 | REAL zva(klon, klev) |
---|
| 4588 | REAL zua(klon, klev) |
---|
| 4589 | REAL zoa(klon, klev) |
---|
[878] | 4590 | |
---|
[1992] | 4591 | REAL zha(klon, klev) |
---|
| 4592 | REAL wa_moy(klon, klev+1) |
---|
| 4593 | REAL fraca(klon, klev+1) |
---|
| 4594 | REAL fracc(klon, klev+1) |
---|
| 4595 | REAL zf, zf2 |
---|
| 4596 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 4597 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 4598 | |
---|
[1992] | 4599 | REAL count_time |
---|
| 4600 | INTEGER ialt |
---|
[878] | 4601 | |
---|
[1992] | 4602 | LOGICAL sorties |
---|
| 4603 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 4604 | REAL zpspsk(klon, klev) |
---|
[878] | 4605 | |
---|
[1992] | 4606 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 4607 | REAL wmax(klon), wmaxa(klon) |
---|
| 4608 | REAL wa(klon, klev, klev+1) |
---|
| 4609 | REAL wd(klon, klev+1) |
---|
| 4610 | REAL larg_part(klon, klev, klev+1) |
---|
| 4611 | REAL fracd(klon, klev+1) |
---|
| 4612 | REAL xxx(klon, klev+1) |
---|
| 4613 | REAL larg_cons(klon, klev+1) |
---|
| 4614 | REAL larg_detr(klon, klev+1) |
---|
| 4615 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 4616 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 4617 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 4618 | REAL fmc(klon, klev+1) |
---|
[878] | 4619 | |
---|
[1992] | 4620 | ! CR:nouvelles variables |
---|
| 4621 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 4622 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 4623 | REAL f(klon), f0(klon) |
---|
| 4624 | REAL zlevinter(klon) |
---|
| 4625 | LOGICAL first |
---|
| 4626 | DATA first/.FALSE./ |
---|
| 4627 | SAVE first |
---|
| 4628 | !$OMP THREADPRIVATE(first) |
---|
| 4629 | ! RC |
---|
[878] | 4630 | |
---|
[1992] | 4631 | CHARACTER *2 str2 |
---|
| 4632 | CHARACTER *10 str10 |
---|
[878] | 4633 | |
---|
[1992] | 4634 | CHARACTER (LEN=20) :: modname = 'thermcell_sec' |
---|
| 4635 | CHARACTER (LEN=80) :: abort_message |
---|
[878] | 4636 | |
---|
[1992] | 4637 | LOGICAL vtest(klon), down |
---|
[878] | 4638 | |
---|
[1992] | 4639 | EXTERNAL scopy |
---|
[878] | 4640 | |
---|
[1992] | 4641 | INTEGER ncorrec, ll |
---|
| 4642 | SAVE ncorrec |
---|
| 4643 | DATA ncorrec/0/ |
---|
| 4644 | !$OMP THREADPRIVATE(ncorrec) |
---|
[878] | 4645 | |
---|
| 4646 | |
---|
[1992] | 4647 | ! ----------------------------------------------------------------------- |
---|
| 4648 | ! initialisation: |
---|
| 4649 | ! --------------- |
---|
[878] | 4650 | |
---|
[1992] | 4651 | sorties = .TRUE. |
---|
| 4652 | IF (ngrid/=klon) THEN |
---|
| 4653 | PRINT * |
---|
| 4654 | PRINT *, 'STOP dans convadj' |
---|
| 4655 | PRINT *, 'ngrid =', ngrid |
---|
| 4656 | PRINT *, 'klon =', klon |
---|
| 4657 | END IF |
---|
[878] | 4658 | |
---|
[1992] | 4659 | ! ----------------------------------------------------------------------- |
---|
| 4660 | ! incrementation eventuelle de tendances precedentes: |
---|
| 4661 | ! --------------------------------------------------- |
---|
[878] | 4662 | |
---|
[1992] | 4663 | ! print*,'0 OK convect8' |
---|
[878] | 4664 | |
---|
[1992] | 4665 | DO l = 1, nlay |
---|
| 4666 | DO ig = 1, ngrid |
---|
| 4667 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 4668 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 4669 | zu(ig, l) = pu(ig, l) |
---|
| 4670 | zv(ig, l) = pv(ig, l) |
---|
| 4671 | zo(ig, l) = po(ig, l) |
---|
| 4672 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 4673 | END DO |
---|
| 4674 | END DO |
---|
[878] | 4675 | |
---|
[1992] | 4676 | ! print*,'1 OK convect8' |
---|
| 4677 | ! -------------------- |
---|
[878] | 4678 | |
---|
| 4679 | |
---|
[1992] | 4680 | ! + + + + + + + + + + + |
---|
[878] | 4681 | |
---|
| 4682 | |
---|
[1992] | 4683 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 4684 | ! wh,wt,wo ... |
---|
[878] | 4685 | |
---|
[1992] | 4686 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[878] | 4687 | |
---|
| 4688 | |
---|
[1992] | 4689 | ! -------------------- zlev(1) |
---|
| 4690 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[878] | 4691 | |
---|
| 4692 | |
---|
| 4693 | |
---|
[1992] | 4694 | ! ----------------------------------------------------------------------- |
---|
| 4695 | ! Calcul des altitudes des couches |
---|
| 4696 | ! ----------------------------------------------------------------------- |
---|
[878] | 4697 | |
---|
[1992] | 4698 | DO l = 2, nlay |
---|
| 4699 | DO ig = 1, ngrid |
---|
| 4700 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 4701 | END DO |
---|
| 4702 | END DO |
---|
| 4703 | DO ig = 1, ngrid |
---|
| 4704 | zlev(ig, 1) = 0. |
---|
| 4705 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 4706 | END DO |
---|
| 4707 | DO l = 1, nlay |
---|
| 4708 | DO ig = 1, ngrid |
---|
| 4709 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 4710 | END DO |
---|
| 4711 | END DO |
---|
[878] | 4712 | |
---|
[1992] | 4713 | ! print*,'2 OK convect8' |
---|
| 4714 | ! ----------------------------------------------------------------------- |
---|
| 4715 | ! Calcul des densites |
---|
| 4716 | ! ----------------------------------------------------------------------- |
---|
[878] | 4717 | |
---|
[1992] | 4718 | DO l = 1, nlay |
---|
| 4719 | DO ig = 1, ngrid |
---|
| 4720 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 4721 | END DO |
---|
| 4722 | END DO |
---|
[878] | 4723 | |
---|
[1992] | 4724 | DO l = 2, nlay |
---|
| 4725 | DO ig = 1, ngrid |
---|
| 4726 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 4727 | END DO |
---|
| 4728 | END DO |
---|
[878] | 4729 | |
---|
[1992] | 4730 | DO k = 1, nlay |
---|
| 4731 | DO l = 1, nlay + 1 |
---|
| 4732 | DO ig = 1, ngrid |
---|
| 4733 | wa(ig, k, l) = 0. |
---|
| 4734 | END DO |
---|
| 4735 | END DO |
---|
| 4736 | END DO |
---|
[878] | 4737 | |
---|
[1992] | 4738 | ! print*,'3 OK convect8' |
---|
| 4739 | ! ------------------------------------------------------------------ |
---|
| 4740 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 4741 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
[878] | 4742 | |
---|
[1992] | 4743 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 4744 | ! w2 est stoke dans wa |
---|
[878] | 4745 | |
---|
[1992] | 4746 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 4747 | ! independants par couches que pour calculer l'entrainement |
---|
| 4748 | ! a la base et la hauteur max de l'ascendance. |
---|
[878] | 4749 | |
---|
[1992] | 4750 | ! Indicages: |
---|
| 4751 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 4752 | ! une vitesse wa(k,l). |
---|
[878] | 4753 | |
---|
[1992] | 4754 | ! -------------------- |
---|
[878] | 4755 | |
---|
[1992] | 4756 | ! + + + + + + + + + + |
---|
[878] | 4757 | |
---|
[1992] | 4758 | ! wa(k,l) ---- -------------------- l |
---|
| 4759 | ! /\ |
---|
| 4760 | ! /||\ + + + + + + + + + + |
---|
| 4761 | ! || |
---|
| 4762 | ! || -------------------- |
---|
| 4763 | ! || |
---|
| 4764 | ! || + + + + + + + + + + |
---|
| 4765 | ! || |
---|
| 4766 | ! || -------------------- |
---|
| 4767 | ! ||__ |
---|
| 4768 | ! |___ + + + + + + + + + + k |
---|
[878] | 4769 | |
---|
[1992] | 4770 | ! -------------------- |
---|
[878] | 4771 | |
---|
| 4772 | |
---|
| 4773 | |
---|
[1992] | 4774 | ! ------------------------------------------------------------------ |
---|
| 4775 | |
---|
| 4776 | ! CR: ponderation entrainement des couches instables |
---|
| 4777 | ! def des entr_star tels que entr=f*entr_star |
---|
| 4778 | DO l = 1, klev |
---|
| 4779 | DO ig = 1, ngrid |
---|
| 4780 | entr_star(ig, l) = 0. |
---|
| 4781 | END DO |
---|
| 4782 | END DO |
---|
| 4783 | ! determination de la longueur de la couche d entrainement |
---|
| 4784 | DO ig = 1, ngrid |
---|
| 4785 | lentr(ig) = 1 |
---|
| 4786 | END DO |
---|
| 4787 | |
---|
| 4788 | ! on ne considere que les premieres couches instables |
---|
| 4789 | DO k = nlay - 2, 1, -1 |
---|
| 4790 | DO ig = 1, ngrid |
---|
| 4791 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 4792 | lentr(ig) = k |
---|
| 4793 | END IF |
---|
| 4794 | END DO |
---|
| 4795 | END DO |
---|
| 4796 | |
---|
| 4797 | ! determination du lmin: couche d ou provient le thermique |
---|
| 4798 | DO ig = 1, ngrid |
---|
| 4799 | lmin(ig) = 1 |
---|
| 4800 | END DO |
---|
| 4801 | DO ig = 1, ngrid |
---|
| 4802 | DO l = nlay, 2, -1 |
---|
| 4803 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 4804 | lmin(ig) = l - 1 |
---|
| 4805 | END IF |
---|
| 4806 | END DO |
---|
| 4807 | END DO |
---|
| 4808 | |
---|
| 4809 | ! definition de l'entrainement des couches |
---|
| 4810 | DO l = 1, klev - 1 |
---|
| 4811 | DO ig = 1, ngrid |
---|
| 4812 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
| 4813 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))** & ! s |
---|
| 4814 | ! (zlev(ig,l+1)-zlev(ig,l)) |
---|
| 4815 | sqrt(zlev(ig,l+1)) |
---|
| 4816 | END IF |
---|
| 4817 | END DO |
---|
| 4818 | END DO |
---|
| 4819 | ! pas de thermique si couche 1 stable |
---|
| 4820 | DO ig = 1, ngrid |
---|
| 4821 | IF (lmin(ig)>1) THEN |
---|
| 4822 | DO l = 1, klev |
---|
| 4823 | entr_star(ig, l) = 0. |
---|
| 4824 | END DO |
---|
| 4825 | END IF |
---|
| 4826 | END DO |
---|
| 4827 | ! calcul de l entrainement total |
---|
| 4828 | DO ig = 1, ngrid |
---|
| 4829 | entr_star_tot(ig) = 0. |
---|
| 4830 | END DO |
---|
| 4831 | DO ig = 1, ngrid |
---|
| 4832 | DO k = 1, klev |
---|
| 4833 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 4834 | END DO |
---|
| 4835 | END DO |
---|
| 4836 | |
---|
| 4837 | ! print*,'fin calcul entr_star' |
---|
| 4838 | DO k = 1, klev |
---|
| 4839 | DO ig = 1, ngrid |
---|
| 4840 | ztva(ig, k) = ztv(ig, k) |
---|
| 4841 | END DO |
---|
| 4842 | END DO |
---|
| 4843 | ! RC |
---|
| 4844 | ! print*,'7 OK convect8' |
---|
| 4845 | DO k = 1, klev + 1 |
---|
| 4846 | DO ig = 1, ngrid |
---|
| 4847 | zw2(ig, k) = 0. |
---|
| 4848 | fmc(ig, k) = 0. |
---|
| 4849 | ! CR |
---|
| 4850 | f_star(ig, k) = 0. |
---|
| 4851 | ! RC |
---|
| 4852 | larg_cons(ig, k) = 0. |
---|
| 4853 | larg_detr(ig, k) = 0. |
---|
| 4854 | wa_moy(ig, k) = 0. |
---|
| 4855 | END DO |
---|
| 4856 | END DO |
---|
| 4857 | |
---|
| 4858 | ! print*,'8 OK convect8' |
---|
| 4859 | DO ig = 1, ngrid |
---|
| 4860 | linter(ig) = 1. |
---|
| 4861 | lmaxa(ig) = 1 |
---|
| 4862 | lmix(ig) = 1 |
---|
| 4863 | wmaxa(ig) = 0. |
---|
| 4864 | END DO |
---|
| 4865 | |
---|
| 4866 | ! CR: |
---|
| 4867 | DO l = 1, nlay - 2 |
---|
| 4868 | DO ig = 1, ngrid |
---|
| 4869 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 4870 | zw2(ig,l)<1E-10) THEN |
---|
| 4871 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 4872 | ! test:calcul de dteta |
---|
| 4873 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 4874 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 4875 | larg_detr(ig, l) = 0. |
---|
| 4876 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 4877 | l)>1.E-10)) THEN |
---|
| 4878 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 4879 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
| 4880 | f_star(ig, l+1) |
---|
| 4881 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 4882 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 4883 | END IF |
---|
| 4884 | ! determination de zmax continu par interpolation lineaire |
---|
| 4885 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 4886 | ! test |
---|
| 4887 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
| 4888 | ! print*,'pb linter' |
---|
| 4889 | END IF |
---|
| 4890 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 4891 | ig,l)) |
---|
| 4892 | zw2(ig, l+1) = 0. |
---|
| 4893 | lmaxa(ig) = l |
---|
| 4894 | ELSE |
---|
| 4895 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 4896 | ! print*,'pb1 zw2<0' |
---|
| 4897 | END IF |
---|
| 4898 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 4899 | END IF |
---|
| 4900 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 4901 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 4902 | lmix(ig) = l + 1 |
---|
| 4903 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 4904 | END IF |
---|
| 4905 | END DO |
---|
| 4906 | END DO |
---|
| 4907 | ! print*,'fin calcul zw2' |
---|
| 4908 | |
---|
| 4909 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 4910 | DO ig = 1, ngrid |
---|
| 4911 | lmax(ig) = lentr(ig) |
---|
| 4912 | END DO |
---|
| 4913 | DO ig = 1, ngrid |
---|
| 4914 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 4915 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 4916 | lmax(ig) = l - 1 |
---|
| 4917 | END IF |
---|
| 4918 | END DO |
---|
| 4919 | END DO |
---|
| 4920 | ! pas de thermique si couche 1 stable |
---|
| 4921 | DO ig = 1, ngrid |
---|
| 4922 | IF (lmin(ig)>1) THEN |
---|
| 4923 | lmax(ig) = 1 |
---|
| 4924 | lmin(ig) = 1 |
---|
| 4925 | END IF |
---|
| 4926 | END DO |
---|
| 4927 | |
---|
| 4928 | ! Determination de zw2 max |
---|
| 4929 | DO ig = 1, ngrid |
---|
| 4930 | wmax(ig) = 0. |
---|
| 4931 | END DO |
---|
| 4932 | |
---|
| 4933 | DO l = 1, nlay |
---|
| 4934 | DO ig = 1, ngrid |
---|
| 4935 | IF (l<=lmax(ig)) THEN |
---|
| 4936 | IF (zw2(ig,l)<0.) THEN |
---|
| 4937 | ! print*,'pb2 zw2<0' |
---|
| 4938 | END IF |
---|
| 4939 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 4940 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 4941 | ELSE |
---|
| 4942 | zw2(ig, l) = 0. |
---|
| 4943 | END IF |
---|
| 4944 | END DO |
---|
| 4945 | END DO |
---|
| 4946 | |
---|
| 4947 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 4948 | DO ig = 1, ngrid |
---|
| 4949 | zmax(ig) = 0. |
---|
| 4950 | zlevinter(ig) = zlev(ig, 1) |
---|
| 4951 | END DO |
---|
| 4952 | DO ig = 1, ngrid |
---|
| 4953 | ! calcul de zlevinter |
---|
| 4954 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 4955 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 4956 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 4957 | END DO |
---|
| 4958 | |
---|
| 4959 | ! print*,'avant fermeture' |
---|
| 4960 | ! Fermeture,determination de f |
---|
| 4961 | DO ig = 1, ngrid |
---|
| 4962 | entr_star2(ig) = 0. |
---|
| 4963 | END DO |
---|
| 4964 | DO ig = 1, ngrid |
---|
| 4965 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 4966 | f(ig) = 0. |
---|
| 4967 | ELSE |
---|
| 4968 | DO k = lmin(ig), lentr(ig) |
---|
| 4969 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 4970 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 4971 | END DO |
---|
| 4972 | ! Nouvelle fermeture |
---|
| 4973 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
---|
| 4974 | entr_star_tot(ig) |
---|
| 4975 | ! test |
---|
| 4976 | ! if (first) then |
---|
| 4977 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
| 4978 | ! s *wmax(ig)) |
---|
| 4979 | ! endif |
---|
| 4980 | END IF |
---|
| 4981 | ! f0(ig)=f(ig) |
---|
| 4982 | ! first=.true. |
---|
| 4983 | END DO |
---|
| 4984 | ! print*,'apres fermeture' |
---|
| 4985 | |
---|
| 4986 | ! Calcul de l'entrainement |
---|
| 4987 | DO k = 1, klev |
---|
| 4988 | DO ig = 1, ngrid |
---|
| 4989 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 4990 | END DO |
---|
| 4991 | END DO |
---|
| 4992 | ! CR:test pour entrainer moins que la masse |
---|
| 4993 | DO ig = 1, ngrid |
---|
| 4994 | DO l = 1, lentr(ig) |
---|
| 4995 | IF ((entr(ig,l)*ptimestep)>(0.9*masse(ig,l))) THEN |
---|
| 4996 | entr(ig, l+1) = entr(ig, l+1) + entr(ig, l) - & |
---|
| 4997 | 0.9*masse(ig, l)/ptimestep |
---|
| 4998 | entr(ig, l) = 0.9*masse(ig, l)/ptimestep |
---|
| 4999 | END IF |
---|
| 5000 | END DO |
---|
| 5001 | END DO |
---|
| 5002 | ! CR: fin test |
---|
| 5003 | ! Calcul des flux |
---|
| 5004 | DO ig = 1, ngrid |
---|
| 5005 | DO l = 1, lmax(ig) - 1 |
---|
| 5006 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 5007 | END DO |
---|
| 5008 | END DO |
---|
| 5009 | |
---|
| 5010 | ! RC |
---|
| 5011 | |
---|
| 5012 | |
---|
| 5013 | ! print*,'9 OK convect8' |
---|
| 5014 | ! print*,'WA1 ',wa_moy |
---|
| 5015 | |
---|
| 5016 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 5017 | |
---|
| 5018 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 5019 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
| 5020 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
| 5021 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 5022 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 5023 | |
---|
| 5024 | DO l = 2, nlay |
---|
| 5025 | DO ig = 1, ngrid |
---|
| 5026 | IF (l<=lmaxa(ig)) THEN |
---|
| 5027 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 5028 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 5029 | END IF |
---|
| 5030 | END DO |
---|
| 5031 | END DO |
---|
| 5032 | |
---|
| 5033 | DO l = 2, nlay |
---|
| 5034 | DO ig = 1, ngrid |
---|
| 5035 | IF (l<=lmaxa(ig)) THEN |
---|
| 5036 | ! if (idetr.eq.0) then |
---|
| 5037 | ! cette option est finalement en dur. |
---|
| 5038 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 5039 | ! print*,'pb l_mix*zlev<0' |
---|
| 5040 | END IF |
---|
| 5041 | ! CR: test: nouvelle def de lambda |
---|
| 5042 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 5043 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 5044 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
| 5045 | ELSE |
---|
| 5046 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 5047 | END IF |
---|
| 5048 | ! RC |
---|
| 5049 | ! else if (idetr.eq.1) then |
---|
| 5050 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 5051 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 5052 | ! else if (idetr.eq.2) then |
---|
| 5053 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 5054 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 5055 | ! else if (idetr.eq.4) then |
---|
| 5056 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 5057 | ! s *wa_moy(ig,l) |
---|
| 5058 | ! endif |
---|
| 5059 | END IF |
---|
| 5060 | END DO |
---|
| 5061 | END DO |
---|
| 5062 | |
---|
| 5063 | ! print*,'10 OK convect8' |
---|
| 5064 | ! print*,'WA2 ',wa_moy |
---|
| 5065 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
| 5066 | ! compte de l'epluchage du thermique. |
---|
| 5067 | |
---|
| 5068 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 5069 | DO ig = 1, ngrid |
---|
| 5070 | IF (lmix(ig)>1.) THEN |
---|
| 5071 | ! test |
---|
| 5072 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 5073 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 5074 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 5075 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
| 5076 | |
---|
| 5077 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 5078 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 5079 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 5080 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 5081 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 5082 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 5083 | ELSE |
---|
| 5084 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 5085 | ! print*,'pb zmix' |
---|
| 5086 | END IF |
---|
| 5087 | ELSE |
---|
| 5088 | zmix(ig) = 0. |
---|
| 5089 | END IF |
---|
| 5090 | ! test |
---|
| 5091 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
| 5092 | zmix(ig) = 0.99*zmax(ig) |
---|
| 5093 | ! print*,'pb zmix>zmax' |
---|
| 5094 | END IF |
---|
| 5095 | END DO |
---|
| 5096 | |
---|
| 5097 | ! calcul du nouveau lmix correspondant |
---|
| 5098 | DO ig = 1, ngrid |
---|
| 5099 | DO l = 1, klev |
---|
| 5100 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 5101 | lmix(ig) = l |
---|
| 5102 | END IF |
---|
| 5103 | END DO |
---|
| 5104 | END DO |
---|
| 5105 | |
---|
| 5106 | DO l = 2, nlay |
---|
| 5107 | DO ig = 1, ngrid |
---|
| 5108 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 5109 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 5110 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 5111 | ! test |
---|
| 5112 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 5113 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 5114 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 5115 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 5116 | ELSE |
---|
| 5117 | ! wa_moy(ig,l)=0. |
---|
| 5118 | fraca(ig, l) = 0. |
---|
| 5119 | fracc(ig, l) = 0. |
---|
| 5120 | fracd(ig, l) = 1. |
---|
| 5121 | END IF |
---|
| 5122 | END DO |
---|
| 5123 | END DO |
---|
| 5124 | ! CR: calcul de fracazmix |
---|
| 5125 | DO ig = 1, ngrid |
---|
| 5126 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 5127 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 5128 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 5129 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 5130 | END DO |
---|
| 5131 | |
---|
| 5132 | DO l = 2, nlay |
---|
| 5133 | DO ig = 1, ngrid |
---|
| 5134 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 5135 | IF (l>lmix(ig)) THEN |
---|
| 5136 | ! test |
---|
| 5137 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 5138 | ! print*,'pb xxx' |
---|
| 5139 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 5140 | ELSE |
---|
| 5141 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 5142 | END IF |
---|
| 5143 | IF (idetr==0) THEN |
---|
| 5144 | fraca(ig, l) = fracazmix(ig) |
---|
| 5145 | ELSE IF (idetr==1) THEN |
---|
| 5146 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 5147 | ELSE IF (idetr==2) THEN |
---|
| 5148 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 5149 | ELSE |
---|
| 5150 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 5151 | END IF |
---|
| 5152 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 5153 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 5154 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 5155 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 5156 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 5157 | END IF |
---|
| 5158 | END IF |
---|
| 5159 | END DO |
---|
| 5160 | END DO |
---|
| 5161 | |
---|
| 5162 | ! print*,'fin calcul fraca' |
---|
| 5163 | ! print*,'11 OK convect8' |
---|
| 5164 | ! print*,'Ea3 ',wa_moy |
---|
| 5165 | ! ------------------------------------------------------------------ |
---|
| 5166 | ! Calcul de fracd, wd |
---|
| 5167 | ! somme wa - wd = 0 |
---|
| 5168 | ! ------------------------------------------------------------------ |
---|
| 5169 | |
---|
| 5170 | |
---|
| 5171 | DO ig = 1, ngrid |
---|
| 5172 | fm(ig, 1) = 0. |
---|
| 5173 | fm(ig, nlay+1) = 0. |
---|
| 5174 | END DO |
---|
| 5175 | |
---|
| 5176 | DO l = 2, nlay |
---|
| 5177 | DO ig = 1, ngrid |
---|
| 5178 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 5179 | ! CR:test |
---|
| 5180 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 5181 | fm(ig, l) = fm(ig, l-1) |
---|
| 5182 | ! write(1,*)'ajustement fm, l',l |
---|
| 5183 | END IF |
---|
| 5184 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 5185 | ! RC |
---|
| 5186 | END DO |
---|
| 5187 | DO ig = 1, ngrid |
---|
| 5188 | IF (fracd(ig,l)<0.1) THEN |
---|
| 5189 | abort_message = 'fracd trop petit' |
---|
[2311] | 5190 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 5191 | ELSE |
---|
| 5192 | ! vitesse descendante "diagnostique" |
---|
| 5193 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 5194 | END IF |
---|
| 5195 | END DO |
---|
| 5196 | END DO |
---|
| 5197 | |
---|
| 5198 | DO l = 1, nlay |
---|
| 5199 | DO ig = 1, ngrid |
---|
| 5200 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 5201 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 5202 | END DO |
---|
| 5203 | END DO |
---|
| 5204 | |
---|
| 5205 | ! print*,'12 OK convect8' |
---|
| 5206 | ! print*,'WA4 ',wa_moy |
---|
| 5207 | ! c------------------------------------------------------------------ |
---|
| 5208 | ! calcul du transport vertical |
---|
| 5209 | ! ------------------------------------------------------------------ |
---|
| 5210 | |
---|
| 5211 | GO TO 4444 |
---|
| 5212 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 5213 | DO l = 2, nlay - 1 |
---|
| 5214 | DO ig = 1, ngrid |
---|
| 5215 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 5216 | ig,l+1)) THEN |
---|
| 5217 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 5218 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 5219 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 5220 | END IF |
---|
| 5221 | END DO |
---|
| 5222 | END DO |
---|
| 5223 | |
---|
| 5224 | DO l = 1, nlay |
---|
| 5225 | DO ig = 1, ngrid |
---|
| 5226 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 5227 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 5228 | ! s ,entr(ig,l)*ptimestep |
---|
| 5229 | ! s ,' M=',masse(ig,l) |
---|
| 5230 | END IF |
---|
| 5231 | END DO |
---|
| 5232 | END DO |
---|
| 5233 | |
---|
| 5234 | DO l = 1, nlay |
---|
| 5235 | DO ig = 1, ngrid |
---|
| 5236 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 5237 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 5238 | ! s ,' FM=',fm(ig,l) |
---|
| 5239 | END IF |
---|
| 5240 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 5241 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 5242 | ! s ,' M=',masse(ig,l) |
---|
| 5243 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 5244 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 5245 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 5246 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 5247 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 5248 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 5249 | END IF |
---|
| 5250 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 5251 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 5252 | ! s ,' E=',entr(ig,l) |
---|
| 5253 | END IF |
---|
| 5254 | END DO |
---|
| 5255 | END DO |
---|
| 5256 | |
---|
| 5257 | 4444 CONTINUE |
---|
| 5258 | |
---|
| 5259 | ! CR:redefinition du entr |
---|
| 5260 | DO l = 1, nlay |
---|
| 5261 | DO ig = 1, ngrid |
---|
| 5262 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 5263 | IF (detr(ig,l)<0.) THEN |
---|
| 5264 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
| 5265 | detr(ig, l) = 0. |
---|
| 5266 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 5267 | END IF |
---|
| 5268 | END DO |
---|
| 5269 | END DO |
---|
| 5270 | ! RC |
---|
| 5271 | IF (w2di==1) THEN |
---|
| 5272 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 5273 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 5274 | ELSE |
---|
| 5275 | fm0 = fm |
---|
| 5276 | entr0 = entr |
---|
| 5277 | END IF |
---|
| 5278 | |
---|
| 5279 | IF (1==1) THEN |
---|
| 5280 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 5281 | zha) |
---|
| 5282 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 5283 | zoa) |
---|
| 5284 | ELSE |
---|
| 5285 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 5286 | zdhadj, zha) |
---|
| 5287 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 5288 | pdoadj, zoa) |
---|
| 5289 | END IF |
---|
| 5290 | |
---|
| 5291 | IF (1==0) THEN |
---|
| 5292 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 5293 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 5294 | ELSE |
---|
| 5295 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 5296 | zua) |
---|
| 5297 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 5298 | zva) |
---|
| 5299 | END IF |
---|
| 5300 | |
---|
| 5301 | DO l = 1, nlay |
---|
| 5302 | DO ig = 1, ngrid |
---|
| 5303 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 5304 | zf2 = zf/(1.-zf) |
---|
| 5305 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 5306 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 5307 | END DO |
---|
| 5308 | END DO |
---|
| 5309 | |
---|
| 5310 | |
---|
| 5311 | |
---|
| 5312 | ! print*,'13 OK convect8' |
---|
| 5313 | ! print*,'WA5 ',wa_moy |
---|
| 5314 | DO l = 1, nlay |
---|
| 5315 | DO ig = 1, ngrid |
---|
| 5316 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 5317 | END DO |
---|
| 5318 | END DO |
---|
| 5319 | |
---|
| 5320 | |
---|
| 5321 | ! do l=1,nlay |
---|
| 5322 | ! do ig=1,ngrid |
---|
| 5323 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 5324 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 5325 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 5326 | ! endif |
---|
| 5327 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 5328 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 5329 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 5330 | ! endif |
---|
| 5331 | ! enddo |
---|
| 5332 | ! enddo |
---|
| 5333 | |
---|
| 5334 | ! print*,'14 OK convect8' |
---|
| 5335 | ! ------------------------------------------------------------------ |
---|
| 5336 | ! Calculs pour les sorties |
---|
| 5337 | ! ------------------------------------------------------------------ |
---|
| 5338 | |
---|
| 5339 | RETURN |
---|
| 5340 | END SUBROUTINE thermcell_sec |
---|
| 5341 | |
---|