[878] | 1 | ! |
---|
[1403] | 2 | ! $Id: thermcell_main.F90 2387 2015-11-07 09:27:40Z adurocher $ |
---|
[878] | 3 | ! |
---|
[972] | 4 | SUBROUTINE thermcell_main(itap,ngrid,nlay,ptimestep & |
---|
[878] | 5 | & ,pplay,pplev,pphi,debut & |
---|
| 6 | & ,pu,pv,pt,po & |
---|
| 7 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
[1026] | 8 | & ,fm0,entr0,detr0,zqta,zqla,lmax & |
---|
[878] | 9 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
[927] | 10 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th & |
---|
[1403] | 11 | & ,zmax0, f0,zw2,fraca,ztv & |
---|
[1638] | 12 | & ,zpspsk,ztla,zthl & |
---|
| 13 | !!! nrlmd le 10/04/2012 |
---|
| 14 | & ,pbl_tke,pctsrf,omega,airephy & |
---|
| 15 | & ,zlcl,fraca0,w0,w_conv,therm_tke_max0,env_tke_max0 & |
---|
| 16 | & ,n2,s2,ale_bl_stat & |
---|
| 17 | & ,therm_tke_max,env_tke_max & |
---|
| 18 | & ,alp_bl_det,alp_bl_fluct_m,alp_bl_fluct_tke & |
---|
| 19 | & ,alp_bl_conv,alp_bl_stat & |
---|
| 20 | !!! fin nrlmd le 10/04/2012 |
---|
[1790] | 21 | & ,ztva ) |
---|
[878] | 22 | |
---|
[972] | 23 | USE dimphy |
---|
[1738] | 24 | USE ioipsl |
---|
[1785] | 25 | USE indice_sol_mod |
---|
[2311] | 26 | USE print_control_mod, ONLY: lunout,prt_level |
---|
[878] | 27 | IMPLICIT NONE |
---|
| 28 | |
---|
| 29 | !======================================================================= |
---|
| 30 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
| 31 | ! Version du 09.02.07 |
---|
| 32 | ! Calcul du transport vertical dans la couche limite en presence |
---|
| 33 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
| 34 | ! |
---|
[1403] | 35 | ! Reecriture a partir d'un listing papier a Habas, le 14/02/00 |
---|
[878] | 36 | ! |
---|
[1403] | 37 | ! le thermique est suppose homogene et dissipe par melange avec |
---|
| 38 | ! son environnement. la longueur l_mix controle l'efficacite du |
---|
| 39 | ! melange |
---|
[878] | 40 | ! |
---|
[1403] | 41 | ! Le calcul du transport des differentes especes se fait en prenant |
---|
[878] | 42 | ! en compte: |
---|
| 43 | ! 1. un flux de masse montant |
---|
| 44 | ! 2. un flux de masse descendant |
---|
| 45 | ! 3. un entrainement |
---|
| 46 | ! 4. un detrainement |
---|
| 47 | ! |
---|
[1738] | 48 | ! Modif 2013/01/04 (FH hourdin@lmd.jussieu.fr) |
---|
| 49 | ! Introduction of an implicit computation of vertical advection in |
---|
| 50 | ! the environment of thermal plumes in thermcell_dq |
---|
| 51 | ! impl = 0 : explicit, 1 : implicit, -1 : old version |
---|
| 52 | ! controled by iflag_thermals = |
---|
| 53 | ! 15, 16 run with impl=-1 : numerical convergence with NPv3 |
---|
| 54 | ! 17, 18 run with impl=1 : more stable |
---|
| 55 | ! 15 and 17 correspond to the activation of the stratocumulus "bidouille" |
---|
| 56 | ! |
---|
[878] | 57 | !======================================================================= |
---|
| 58 | |
---|
[1738] | 59 | |
---|
[878] | 60 | !----------------------------------------------------------------------- |
---|
| 61 | ! declarations: |
---|
| 62 | ! ------------- |
---|
| 63 | |
---|
| 64 | #include "YOMCST.h" |
---|
| 65 | #include "YOETHF.h" |
---|
| 66 | #include "FCTTRE.h" |
---|
[1496] | 67 | #include "thermcell.h" |
---|
[878] | 68 | |
---|
| 69 | ! arguments: |
---|
| 70 | ! ---------- |
---|
| 71 | |
---|
[972] | 72 | !IM 140508 |
---|
| 73 | INTEGER itap |
---|
| 74 | |
---|
[1496] | 75 | INTEGER ngrid,nlay |
---|
| 76 | real ptimestep |
---|
[878] | 77 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
| 78 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
| 79 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
| 80 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
| 81 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 82 | real pphi(ngrid,nlay) |
---|
[1943] | 83 | LOGICAL debut |
---|
[878] | 84 | |
---|
| 85 | ! local: |
---|
| 86 | ! ------ |
---|
| 87 | |
---|
[972] | 88 | integer icount |
---|
[1738] | 89 | |
---|
| 90 | integer, save :: dvdq=1,dqimpl=-1 |
---|
| 91 | !$OMP THREADPRIVATE(dvdq,dqimpl) |
---|
[972] | 92 | data icount/0/ |
---|
| 93 | save icount |
---|
[987] | 94 | !$OMP THREADPRIVATE(icount) |
---|
[972] | 95 | |
---|
[883] | 96 | integer,save :: igout=1 |
---|
[987] | 97 | !$OMP THREADPRIVATE(igout) |
---|
[938] | 98 | integer,save :: lunout1=6 |
---|
[987] | 99 | !$OMP THREADPRIVATE(lunout1) |
---|
[883] | 100 | integer,save :: lev_out=10 |
---|
[987] | 101 | !$OMP THREADPRIVATE(lev_out) |
---|
[878] | 102 | |
---|
[1638] | 103 | REAL susqr2pi, Reuler |
---|
| 104 | |
---|
[1494] | 105 | INTEGER ig,k,l,ll,ierr |
---|
[878] | 106 | real zsortie1d(klon) |
---|
| 107 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
| 108 | INTEGER lmix(klon) |
---|
[1026] | 109 | INTEGER lmix_bis(klon) |
---|
[878] | 110 | real linter(klon) |
---|
| 111 | real zmix(klon) |
---|
[1403] | 112 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev),zw_est(klon,klev+1),ztva_est(klon,klev) |
---|
[1026] | 113 | ! real fraca(klon,klev) |
---|
| 114 | |
---|
[878] | 115 | real zmax_sec(klon) |
---|
| 116 | !on garde le zmax du pas de temps precedent |
---|
| 117 | real zmax0(klon) |
---|
[927] | 118 | !FH/IM save zmax0 |
---|
[878] | 119 | |
---|
[972] | 120 | real lambda |
---|
| 121 | |
---|
[878] | 122 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
| 123 | real deltaz(klon,klev) |
---|
[972] | 124 | REAL zh(klon,klev) |
---|
[878] | 125 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
| 126 | REAL ztv(klon,klev) |
---|
| 127 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
| 128 | real zl(klon,klev) |
---|
| 129 | real zsortie(klon,klev) |
---|
| 130 | real zva(klon,klev) |
---|
| 131 | real zua(klon,klev) |
---|
| 132 | real zoa(klon,klev) |
---|
| 133 | |
---|
| 134 | real zta(klon,klev) |
---|
| 135 | real zha(klon,klev) |
---|
| 136 | real fraca(klon,klev+1) |
---|
| 137 | real zf,zf2 |
---|
| 138 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
| 139 | real q2(klon,klev) |
---|
[972] | 140 | ! FH probleme de dimensionnement avec l'allocation dynamique |
---|
| 141 | ! common/comtherm/thetath2,wth2 |
---|
[1403] | 142 | real wq(klon,klev) |
---|
| 143 | real wthl(klon,klev) |
---|
| 144 | real wthv(klon,klev) |
---|
[878] | 145 | |
---|
| 146 | real ratqscth(klon,klev) |
---|
| 147 | real var |
---|
| 148 | real vardiff |
---|
| 149 | real ratqsdiff(klon,klev) |
---|
| 150 | |
---|
| 151 | logical sorties |
---|
[972] | 152 | real rho(klon,klev),rhobarz(klon,klev),masse(klon,klev) |
---|
[878] | 153 | real zpspsk(klon,klev) |
---|
| 154 | |
---|
| 155 | real wmax(klon) |
---|
[1403] | 156 | real wmax_tmp(klon) |
---|
[878] | 157 | real wmax_sec(klon) |
---|
[972] | 158 | real fm0(klon,klev+1),entr0(klon,klev),detr0(klon,klev) |
---|
| 159 | real fm(klon,klev+1),entr(klon,klev),detr(klon,klev) |
---|
[878] | 160 | |
---|
| 161 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
| 162 | !niveau de condensation |
---|
[879] | 163 | integer nivcon(klon) |
---|
[878] | 164 | real zcon(klon) |
---|
| 165 | REAL CHI |
---|
| 166 | real zcon2(klon) |
---|
| 167 | real pcon(klon) |
---|
| 168 | real zqsat(klon,klev) |
---|
| 169 | real zqsatth(klon,klev) |
---|
| 170 | |
---|
| 171 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
| 172 | real detr_star(klon,klev) |
---|
[1403] | 173 | real alim_star_tot(klon) |
---|
[878] | 174 | real alim_star(klon,klev) |
---|
[1403] | 175 | real alim_star_clos(klon,klev) |
---|
[878] | 176 | real f(klon), f0(klon) |
---|
[927] | 177 | !FH/IM save f0 |
---|
[878] | 178 | real zlevinter(klon) |
---|
| 179 | real seuil |
---|
[1403] | 180 | real csc(klon,klev) |
---|
[878] | 181 | |
---|
[1638] | 182 | !!! nrlmd le 10/04/2012 |
---|
| 183 | |
---|
| 184 | !------Entrées |
---|
| 185 | real pbl_tke(klon,klev+1,nbsrf) |
---|
| 186 | real pctsrf(klon,nbsrf) |
---|
| 187 | real omega(klon,klev) |
---|
| 188 | real airephy(klon) |
---|
| 189 | !------Sorties |
---|
| 190 | real zlcl(klon),fraca0(klon),w0(klon),w_conv(klon) |
---|
| 191 | real therm_tke_max0(klon),env_tke_max0(klon) |
---|
| 192 | real n2(klon),s2(klon) |
---|
| 193 | real ale_bl_stat(klon) |
---|
| 194 | real therm_tke_max(klon,klev),env_tke_max(klon,klev) |
---|
| 195 | real alp_bl_det(klon),alp_bl_fluct_m(klon),alp_bl_fluct_tke(klon),alp_bl_conv(klon),alp_bl_stat(klon) |
---|
| 196 | !------Local |
---|
| 197 | integer nsrf |
---|
| 198 | real rhobarz0(klon) ! Densité au LCL |
---|
| 199 | logical ok_lcl(klon) ! Existence du LCL des thermiques |
---|
| 200 | integer klcl(klon) ! Niveau du LCL |
---|
| 201 | real interp(klon) ! Coef d'interpolation pour le LCL |
---|
| 202 | !--Triggering |
---|
| 203 | real Su ! Surface unité: celle d'un updraft élémentaire |
---|
| 204 | parameter(Su=4e4) |
---|
| 205 | real hcoef ! Coefficient directeur pour le calcul de s2 |
---|
| 206 | parameter(hcoef=1) |
---|
| 207 | real hmincoef ! Coefficient directeur pour l'ordonnée à l'origine pour le calcul de s2 |
---|
| 208 | parameter(hmincoef=0.3) |
---|
| 209 | real eps1 ! Fraction de surface occupée par la population 1 : eps1=n1*s1/(fraca0*Sd) |
---|
| 210 | parameter(eps1=0.3) |
---|
| 211 | real hmin(ngrid) ! Ordonnée à l'origine pour le calcul de s2 |
---|
| 212 | real zmax_moy(ngrid) ! Hauteur moyenne des thermiques : zmax_moy = zlcl + 0.33 (zmax-zlcl) |
---|
| 213 | real zmax_moy_coef |
---|
| 214 | parameter(zmax_moy_coef=0.33) |
---|
| 215 | real depth(klon) ! Epaisseur moyenne du cumulus |
---|
| 216 | real w_max(klon) ! Vitesse max statistique |
---|
| 217 | real s_max(klon) |
---|
| 218 | !--Closure |
---|
| 219 | real pbl_tke_max(klon,klev) ! Profil de TKE moyenne |
---|
| 220 | real pbl_tke_max0(klon) ! TKE moyenne au LCL |
---|
| 221 | real w_ls(klon,klev) ! Vitesse verticale grande échelle (m/s) |
---|
| 222 | real coef_m ! On considère un rendement pour alp_bl_fluct_m |
---|
| 223 | parameter(coef_m=1.) |
---|
| 224 | real coef_tke ! On considère un rendement pour alp_bl_fluct_tke |
---|
| 225 | parameter(coef_tke=1.) |
---|
| 226 | |
---|
| 227 | !!! fin nrlmd le 10/04/2012 |
---|
| 228 | |
---|
[878] | 229 | ! |
---|
[879] | 230 | !nouvelles variables pour la convection |
---|
| 231 | real Ale_bl(klon) |
---|
| 232 | real Alp_bl(klon) |
---|
[1496] | 233 | real alp_int(klon),dp_int(klon),zdp |
---|
[879] | 234 | real ale_int(klon) |
---|
| 235 | integer n_int(klon) |
---|
| 236 | real fm_tot(klon) |
---|
| 237 | real wght_th(klon,klev) |
---|
| 238 | integer lalim_conv(klon) |
---|
[926] | 239 | !v1d logical therm |
---|
| 240 | !v1d save therm |
---|
[878] | 241 | |
---|
| 242 | character*2 str2 |
---|
| 243 | character*10 str10 |
---|
| 244 | |
---|
[1403] | 245 | character (len=20) :: modname='thermcell_main' |
---|
| 246 | character (len=80) :: abort_message |
---|
| 247 | |
---|
[878] | 248 | EXTERNAL SCOPY |
---|
| 249 | ! |
---|
| 250 | |
---|
| 251 | !----------------------------------------------------------------------- |
---|
| 252 | ! initialisation: |
---|
| 253 | ! --------------- |
---|
| 254 | ! |
---|
| 255 | |
---|
[1943] | 256 | seuil=0.25 |
---|
[878] | 257 | |
---|
[1943] | 258 | if (debut) then |
---|
| 259 | if (iflag_thermals==15.or.iflag_thermals==16) then |
---|
| 260 | dvdq=0 |
---|
| 261 | dqimpl=-1 |
---|
| 262 | else |
---|
| 263 | dvdq=1 |
---|
| 264 | dqimpl=1 |
---|
[972] | 265 | endif |
---|
| 266 | |
---|
[1943] | 267 | fm0=0. |
---|
| 268 | entr0=0. |
---|
| 269 | detr0=0. |
---|
| 270 | endif |
---|
| 271 | fm=0. ; entr=0. ; detr=0. |
---|
| 272 | icount=icount+1 |
---|
[972] | 273 | |
---|
| 274 | !IM 090508 beg |
---|
| 275 | !print*,'=====================================================================' |
---|
| 276 | !print*,'=====================================================================' |
---|
| 277 | !print*,' PAS ',icount,' PAS ',icount,' PAS ',icount,' PAS ',icount |
---|
| 278 | !print*,'=====================================================================' |
---|
| 279 | !print*,'=====================================================================' |
---|
| 280 | !IM 090508 end |
---|
| 281 | |
---|
[938] | 282 | if (prt_level.ge.1) print*,'thermcell_main V4' |
---|
[878] | 283 | |
---|
| 284 | sorties=.true. |
---|
| 285 | IF(ngrid.NE.klon) THEN |
---|
| 286 | PRINT* |
---|
| 287 | PRINT*,'STOP dans convadj' |
---|
| 288 | PRINT*,'ngrid =',ngrid |
---|
| 289 | PRINT*,'klon =',klon |
---|
| 290 | ENDIF |
---|
| 291 | ! |
---|
[1403] | 292 | ! write(lunout,*)'WARNING thermcell_main f0=max(f0,1.e-2)' |
---|
[972] | 293 | do ig=1,klon |
---|
| 294 | f0(ig)=max(f0(ig),1.e-2) |
---|
[1403] | 295 | zmax0(ig)=max(zmax0(ig),40.) |
---|
[972] | 296 | !IMmarche pas ?! if (f0(ig)<1.e-2) f0(ig)=1.e-2 |
---|
| 297 | enddo |
---|
[878] | 298 | |
---|
[1494] | 299 | if (prt_level.ge.20) then |
---|
| 300 | do ig=1,ngrid |
---|
| 301 | print*,'th_main ig f0',ig,f0(ig) |
---|
| 302 | enddo |
---|
| 303 | endif |
---|
[878] | 304 | !----------------------------------------------------------------------- |
---|
| 305 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
| 306 | ! -------------------------------------------------------------------- |
---|
| 307 | ! |
---|
| 308 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
| 309 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
| 310 | |
---|
[938] | 311 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
[878] | 312 | |
---|
| 313 | !------------------------------------------------------------------------ |
---|
| 314 | ! -------------------- |
---|
| 315 | ! |
---|
| 316 | ! |
---|
| 317 | ! + + + + + + + + + + + |
---|
| 318 | ! |
---|
| 319 | ! |
---|
| 320 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 321 | ! wh,wt,wo ... |
---|
| 322 | ! |
---|
| 323 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 324 | ! |
---|
| 325 | ! |
---|
| 326 | ! -------------------- zlev(1) |
---|
| 327 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 328 | ! |
---|
| 329 | ! |
---|
| 330 | |
---|
| 331 | !----------------------------------------------------------------------- |
---|
| 332 | ! Calcul des altitudes des couches |
---|
| 333 | !----------------------------------------------------------------------- |
---|
| 334 | |
---|
| 335 | do l=2,nlay |
---|
| 336 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
| 337 | enddo |
---|
| 338 | zlev(:,1)=0. |
---|
| 339 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
| 340 | do l=1,nlay |
---|
| 341 | zlay(:,l)=pphi(:,l)/RG |
---|
| 342 | enddo |
---|
| 343 | !calcul de l epaisseur des couches |
---|
| 344 | do l=1,nlay |
---|
| 345 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
| 346 | enddo |
---|
| 347 | |
---|
| 348 | ! print*,'2 OK convect8' |
---|
| 349 | !----------------------------------------------------------------------- |
---|
| 350 | ! Calcul des densites |
---|
| 351 | !----------------------------------------------------------------------- |
---|
| 352 | |
---|
[1494] | 353 | rho(:,:)=pplay(:,:)/(zpspsk(:,:)*RD*ztv(:,:)) |
---|
[878] | 354 | |
---|
[1146] | 355 | if (prt_level.ge.10)write(lunout,*) & |
---|
| 356 | & 'WARNING thermcell_main rhobarz(:,1)=rho(:,1)' |
---|
[972] | 357 | rhobarz(:,1)=rho(:,1) |
---|
| 358 | |
---|
[878] | 359 | do l=2,nlay |
---|
| 360 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
| 361 | enddo |
---|
| 362 | |
---|
| 363 | !calcul de la masse |
---|
| 364 | do l=1,nlay |
---|
| 365 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
| 366 | enddo |
---|
| 367 | |
---|
[938] | 368 | if (prt_level.ge.1) print*,'thermcell_main apres initialisation' |
---|
[878] | 369 | |
---|
| 370 | !------------------------------------------------------------------ |
---|
| 371 | ! |
---|
| 372 | ! /|\ |
---|
| 373 | ! -------- | F_k+1 ------- |
---|
| 374 | ! ----> D_k |
---|
| 375 | ! /|\ <---- E_k , A_k |
---|
| 376 | ! -------- | F_k --------- |
---|
| 377 | ! ----> D_k-1 |
---|
| 378 | ! <---- E_k-1 , A_k-1 |
---|
| 379 | ! |
---|
| 380 | ! |
---|
| 381 | ! |
---|
| 382 | ! |
---|
| 383 | ! |
---|
| 384 | ! --------------------------- |
---|
| 385 | ! |
---|
| 386 | ! ----- F_lmax+1=0 ---------- \ |
---|
| 387 | ! lmax (zmax) | |
---|
| 388 | ! --------------------------- | |
---|
| 389 | ! | |
---|
| 390 | ! --------------------------- | |
---|
| 391 | ! | |
---|
| 392 | ! --------------------------- | |
---|
| 393 | ! | |
---|
| 394 | ! --------------------------- | |
---|
| 395 | ! | |
---|
| 396 | ! --------------------------- | |
---|
| 397 | ! | E |
---|
| 398 | ! --------------------------- | D |
---|
| 399 | ! | |
---|
| 400 | ! --------------------------- | |
---|
| 401 | ! | |
---|
| 402 | ! --------------------------- \ | |
---|
| 403 | ! lalim | | |
---|
| 404 | ! --------------------------- | | |
---|
| 405 | ! | | |
---|
| 406 | ! --------------------------- | | |
---|
| 407 | ! | A | |
---|
| 408 | ! --------------------------- | | |
---|
| 409 | ! | | |
---|
| 410 | ! --------------------------- | | |
---|
| 411 | ! lmin (=1 pour le moment) | | |
---|
| 412 | ! ----- F_lmin=0 ------------ / / |
---|
| 413 | ! |
---|
| 414 | ! --------------------------- |
---|
| 415 | ! ////////////////////////// |
---|
| 416 | ! |
---|
| 417 | ! |
---|
| 418 | !============================================================================= |
---|
| 419 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
---|
| 420 | !============================================================================= |
---|
| 421 | |
---|
| 422 | !------------------------------------------------------------------ |
---|
[1403] | 423 | ! 1. alim_star est le profil vertical de l'alimentation a la base du |
---|
| 424 | ! panache thermique, calcule a partir de la flotabilite de l'air sec |
---|
[878] | 425 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
---|
| 426 | !------------------------------------------------------------------ |
---|
| 427 | ! |
---|
| 428 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
[1403] | 429 | lmin=1 |
---|
[878] | 430 | |
---|
| 431 | !----------------------------------------------------------------------------- |
---|
| 432 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
---|
| 433 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
---|
| 434 | ! Il s'agit d'un calcul de type CAPE |
---|
[1403] | 435 | ! zmax_sec est utilise pour determiner la geometrie du thermique. |
---|
[878] | 436 | !------------------------------------------------------------------------------ |
---|
[1403] | 437 | !--------------------------------------------------------------------------------- |
---|
| 438 | !calcul du melange et des variables dans le thermique |
---|
| 439 | !-------------------------------------------------------------------------------- |
---|
[878] | 440 | ! |
---|
[1403] | 441 | if (prt_level.ge.1) print*,'avant thermcell_plume ',lev_out |
---|
| 442 | !IM 140508 CALL thermcell_plume(ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & |
---|
[878] | 443 | |
---|
[1403] | 444 | ! Gestion temporaire de plusieurs appels à thermcell_plume au travers |
---|
| 445 | ! de la variable iflag_thermals |
---|
[878] | 446 | |
---|
[1403] | 447 | ! print*,'THERM thermcell_main iflag_thermals_ed=',iflag_thermals_ed |
---|
| 448 | if (iflag_thermals_ed<=9) then |
---|
| 449 | ! print*,'THERM NOUVELLE/NOUVELLE Arnaud' |
---|
| 450 | CALL thermcell_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz,& |
---|
| 451 | & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & |
---|
| 452 | & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & |
---|
| 453 | & ztla,zqla,zqta,zha,zw2,zw_est,ztva_est,zqsatth,lmix,lmix_bis,linter & |
---|
| 454 | & ,lev_out,lunout1,igout) |
---|
[878] | 455 | |
---|
[1403] | 456 | elseif (iflag_thermals_ed>9) then |
---|
| 457 | ! print*,'THERM RIO et al 2010, version d Arnaud' |
---|
| 458 | CALL thermcellV1_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz,& |
---|
| 459 | & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & |
---|
| 460 | & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & |
---|
| 461 | & ztla,zqla,zqta,zha,zw2,zw_est,ztva_est,zqsatth,lmix,lmix_bis,linter & |
---|
| 462 | & ,lev_out,lunout1,igout) |
---|
[878] | 463 | |
---|
[1403] | 464 | endif |
---|
[878] | 465 | |
---|
[972] | 466 | if (prt_level.ge.1) print*,'apres thermcell_plume ',lev_out |
---|
| 467 | |
---|
[878] | 468 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lalim ') |
---|
| 469 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lmix ') |
---|
| 470 | |
---|
[938] | 471 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
| 472 | if (prt_level.ge.10) then |
---|
[972] | 473 | write(lunout1,*) 'Dans thermcell_main 2' |
---|
| 474 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 475 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 476 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 477 | write(lunout1,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
[878] | 478 | & ,f_star(igout,l+1),l=1,nint(linter(igout))+5) |
---|
| 479 | endif |
---|
| 480 | |
---|
| 481 | !------------------------------------------------------------------------------- |
---|
| 482 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
| 483 | !------------------------------------------------------------------------------- |
---|
| 484 | ! |
---|
| 485 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
| 486 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
[1403] | 487 | ! Attention, w2 est transforme en sa racine carree dans cette routine |
---|
| 488 | ! Le probleme vient du fait que linter et lmix sont souvent égaux à 1. |
---|
| 489 | wmax_tmp=0. |
---|
| 490 | do l=1,nlay |
---|
| 491 | wmax_tmp(:)=max(wmax_tmp(:),zw2(:,l)) |
---|
| 492 | enddo |
---|
| 493 | ! print*,"ZMAX ",lalim,lmin,linter,lmix,lmax,zmax,zmax0,zmix,wmax |
---|
[878] | 494 | |
---|
| 495 | |
---|
[1403] | 496 | |
---|
[878] | 497 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lalim ') |
---|
| 498 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmin ') |
---|
| 499 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmix ') |
---|
| 500 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmax ') |
---|
| 501 | |
---|
[938] | 502 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
[878] | 503 | |
---|
| 504 | !------------------------------------------------------------------------------- |
---|
| 505 | ! Fermeture,determination de f |
---|
| 506 | !------------------------------------------------------------------------------- |
---|
[1026] | 507 | ! |
---|
[1403] | 508 | ! |
---|
| 509 | !! write(lunout,*)'THERM NOUVEAU XXXXX' |
---|
| 510 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
| 511 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
[878] | 512 | |
---|
[1998] | 513 | |
---|
[1403] | 514 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lmin ') |
---|
| 515 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lalim ') |
---|
| 516 | |
---|
| 517 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
| 518 | if (prt_level.ge.10) then |
---|
| 519 | write(lunout1,*) 'Dans thermcell_main 1b' |
---|
| 520 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 521 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 522 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 523 | write(lunout1,'(i6,i4,e15.5)') (igout,l,alim_star(igout,l) & |
---|
| 524 | & ,l=1,lalim(igout)+4) |
---|
| 525 | endif |
---|
| 526 | |
---|
| 527 | |
---|
| 528 | |
---|
| 529 | |
---|
| 530 | ! Choix de la fonction d'alimentation utilisee pour la fermeture. |
---|
| 531 | ! Apparemment sans importance |
---|
| 532 | alim_star_clos(:,:)=alim_star(:,:) |
---|
| 533 | alim_star_clos(:,:)=entr_star(:,:)+alim_star(:,:) |
---|
[1998] | 534 | ! |
---|
| 535 | !CR Appel de la fermeture seche |
---|
| 536 | if (iflag_thermals_closure.eq.1) then |
---|
[1403] | 537 | |
---|
[1496] | 538 | CALL thermcell_closure(ngrid,nlay,r_aspect_thermals,ptimestep,rho, & |
---|
[1403] | 539 | & zlev,lalim,alim_star_clos,f_star,zmax_sec,wmax_sec,f,lev_out) |
---|
[878] | 540 | |
---|
[1403] | 541 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 542 | ! Appel avec les zmax et wmax tenant compte de la condensation |
---|
| 543 | ! Semble moins bien marcher |
---|
[1998] | 544 | else if (iflag_thermals_closure.eq.2) then |
---|
| 545 | |
---|
| 546 | CALL thermcell_closure(ngrid,nlay,r_aspect_thermals,ptimestep,rho, & |
---|
| 547 | & zlev,lalim,alim_star,f_star,zmax,wmax,f,lev_out) |
---|
| 548 | |
---|
| 549 | endif |
---|
| 550 | |
---|
[1403] | 551 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 552 | |
---|
[938] | 553 | if(prt_level.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
[878] | 554 | |
---|
[972] | 555 | if (tau_thermals>1.) then |
---|
| 556 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 557 | f0=(1.-lambda)*f+lambda*f0 |
---|
| 558 | else |
---|
| 559 | f0=f |
---|
| 560 | endif |
---|
| 561 | |
---|
| 562 | ! Test valable seulement en 1D mais pas genant |
---|
| 563 | if (.not. (f0(1).ge.0.) ) then |
---|
[1403] | 564 | abort_message = '.not. (f0(1).ge.0.)' |
---|
[2311] | 565 | CALL abort_physic (modname,abort_message,1) |
---|
[972] | 566 | endif |
---|
| 567 | |
---|
[878] | 568 | !------------------------------------------------------------------------------- |
---|
| 569 | !deduction des flux |
---|
| 570 | !------------------------------------------------------------------------------- |
---|
| 571 | |
---|
[972] | 572 | CALL thermcell_flux2(ngrid,nlay,ptimestep,masse, & |
---|
[878] | 573 | & lalim,lmax,alim_star, & |
---|
| 574 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
[972] | 575 | & detr,zqla,lev_out,lunout1,igout) |
---|
| 576 | !IM 060508 & detr,zqla,zmax,lev_out,lunout,igout) |
---|
[878] | 577 | |
---|
[938] | 578 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
[878] | 579 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lalim ') |
---|
| 580 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lmax ') |
---|
| 581 | |
---|
| 582 | !------------------------------------------------------------------ |
---|
[972] | 583 | ! On ne prend pas directement les profils issus des calculs precedents |
---|
| 584 | ! mais on s'autorise genereusement une relaxation vers ceci avec |
---|
| 585 | ! une constante de temps tau_thermals (typiquement 1800s). |
---|
| 586 | !------------------------------------------------------------------ |
---|
[878] | 587 | |
---|
[972] | 588 | if (tau_thermals>1.) then |
---|
| 589 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 590 | fm0=(1.-lambda)*fm+lambda*fm0 |
---|
| 591 | entr0=(1.-lambda)*entr+lambda*entr0 |
---|
[1403] | 592 | detr0=(1.-lambda)*detr+lambda*detr0 |
---|
[878] | 593 | else |
---|
| 594 | fm0=fm |
---|
| 595 | entr0=entr |
---|
| 596 | detr0=detr |
---|
| 597 | endif |
---|
| 598 | |
---|
[972] | 599 | !c------------------------------------------------------------------ |
---|
| 600 | ! calcul du transport vertical |
---|
| 601 | !------------------------------------------------------------------ |
---|
| 602 | |
---|
[1738] | 603 | call thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse, & |
---|
[878] | 604 | & zthl,zdthladj,zta,lev_out) |
---|
[1738] | 605 | call thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse, & |
---|
[878] | 606 | & po,pdoadj,zoa,lev_out) |
---|
| 607 | |
---|
[883] | 608 | !------------------------------------------------------------------ |
---|
| 609 | ! Calcul de la fraction de l'ascendance |
---|
| 610 | !------------------------------------------------------------------ |
---|
| 611 | do ig=1,klon |
---|
| 612 | fraca(ig,1)=0. |
---|
| 613 | fraca(ig,nlay+1)=0. |
---|
| 614 | enddo |
---|
| 615 | do l=2,nlay |
---|
| 616 | do ig=1,klon |
---|
| 617 | if (zw2(ig,l).gt.1.e-10) then |
---|
| 618 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 619 | else |
---|
| 620 | fraca(ig,l)=0. |
---|
| 621 | endif |
---|
| 622 | enddo |
---|
| 623 | enddo |
---|
| 624 | |
---|
| 625 | !------------------------------------------------------------------ |
---|
| 626 | ! calcul du transport vertical du moment horizontal |
---|
| 627 | !------------------------------------------------------------------ |
---|
[878] | 628 | |
---|
[972] | 629 | !IM 090508 |
---|
[1738] | 630 | if (dvdq == 0 ) then |
---|
[883] | 631 | |
---|
[878] | 632 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
| 633 | ! de pression horizontal avec l'environnement |
---|
| 634 | |
---|
| 635 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
[1738] | 636 | ! & ,fraca*dvdq,zmax & |
---|
| 637 | & ,fraca,zmax & |
---|
[972] | 638 | & ,zu,zv,pduadj,pdvadj,zua,zva,lev_out) |
---|
[1403] | 639 | |
---|
[878] | 640 | else |
---|
| 641 | |
---|
| 642 | ! calcul purement conservatif pour le transport de V |
---|
[1738] | 643 | call thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse & |
---|
[878] | 644 | & ,zu,pduadj,zua,lev_out) |
---|
[1738] | 645 | call thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse & |
---|
[878] | 646 | & ,zv,pdvadj,zva,lev_out) |
---|
[1738] | 647 | |
---|
[878] | 648 | endif |
---|
| 649 | |
---|
| 650 | ! print*,'13 OK convect8' |
---|
| 651 | do l=1,nlay |
---|
| 652 | do ig=1,ngrid |
---|
| 653 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
| 654 | enddo |
---|
| 655 | enddo |
---|
| 656 | |
---|
[972] | 657 | if (prt_level.ge.1) print*,'14 OK convect8' |
---|
[878] | 658 | !------------------------------------------------------------------ |
---|
| 659 | ! Calculs de diagnostiques pour les sorties |
---|
| 660 | !------------------------------------------------------------------ |
---|
| 661 | !calcul de fraca pour les sorties |
---|
| 662 | |
---|
| 663 | if (sorties) then |
---|
[972] | 664 | if (prt_level.ge.1) print*,'14a OK convect8' |
---|
[878] | 665 | ! calcul du niveau de condensation |
---|
| 666 | ! initialisation |
---|
| 667 | do ig=1,ngrid |
---|
[879] | 668 | nivcon(ig)=0 |
---|
[878] | 669 | zcon(ig)=0. |
---|
| 670 | enddo |
---|
| 671 | !nouveau calcul |
---|
| 672 | do ig=1,ngrid |
---|
| 673 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
| 674 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
| 675 | enddo |
---|
[1403] | 676 | !IM do k=1,nlay |
---|
| 677 | do k=1,nlay-1 |
---|
[878] | 678 | do ig=1,ngrid |
---|
| 679 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
| 680 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
| 681 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
| 682 | endif |
---|
| 683 | enddo |
---|
| 684 | enddo |
---|
[1403] | 685 | !IM |
---|
[1494] | 686 | ierr=0 |
---|
[1403] | 687 | do ig=1,ngrid |
---|
| 688 | if (pcon(ig).le.pplay(ig,nlay)) then |
---|
| 689 | zcon2(ig)=zlay(ig,nlay)-(pcon(ig)-pplay(ig,nlay))/(RG*rho(ig,nlay))/100. |
---|
[1494] | 690 | ierr=1 |
---|
| 691 | endif |
---|
| 692 | enddo |
---|
| 693 | if (ierr==1) then |
---|
[1403] | 694 | abort_message = 'thermcellV0_main: les thermiques vont trop haut ' |
---|
[2311] | 695 | CALL abort_physic (modname,abort_message,1) |
---|
[1494] | 696 | endif |
---|
| 697 | |
---|
[972] | 698 | if (prt_level.ge.1) print*,'14b OK convect8' |
---|
[878] | 699 | do k=nlay,1,-1 |
---|
| 700 | do ig=1,ngrid |
---|
| 701 | if (zqla(ig,k).gt.1e-10) then |
---|
| 702 | nivcon(ig)=k |
---|
| 703 | zcon(ig)=zlev(ig,k) |
---|
| 704 | endif |
---|
| 705 | enddo |
---|
| 706 | enddo |
---|
[972] | 707 | if (prt_level.ge.1) print*,'14c OK convect8' |
---|
[878] | 708 | !calcul des moments |
---|
| 709 | !initialisation |
---|
| 710 | do l=1,nlay |
---|
| 711 | do ig=1,ngrid |
---|
| 712 | q2(ig,l)=0. |
---|
| 713 | wth2(ig,l)=0. |
---|
| 714 | wth3(ig,l)=0. |
---|
| 715 | ratqscth(ig,l)=0. |
---|
| 716 | ratqsdiff(ig,l)=0. |
---|
| 717 | enddo |
---|
| 718 | enddo |
---|
[972] | 719 | if (prt_level.ge.1) print*,'14d OK convect8' |
---|
[1146] | 720 | if (prt_level.ge.10)write(lunout,*) & |
---|
| 721 | & 'WARNING thermcell_main wth2=0. si zw2 > 1.e-10' |
---|
[878] | 722 | do l=1,nlay |
---|
| 723 | do ig=1,ngrid |
---|
| 724 | zf=fraca(ig,l) |
---|
| 725 | zf2=zf/(1.-zf) |
---|
[972] | 726 | ! |
---|
[1403] | 727 | thetath2(ig,l)=zf2*(ztla(ig,l)-zthl(ig,l))**2 |
---|
[972] | 728 | if(zw2(ig,l).gt.1.e-10) then |
---|
| 729 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
| 730 | else |
---|
| 731 | wth2(ig,l)=0. |
---|
| 732 | endif |
---|
[878] | 733 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
| 734 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
| 735 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 736 | !test: on calcul q2/po=ratqsc |
---|
| 737 | ratqscth(ig,l)=sqrt(max(q2(ig,l),1.e-6)/(po(ig,l)*1000.)) |
---|
| 738 | enddo |
---|
| 739 | enddo |
---|
[1403] | 740 | !calcul des flux: q, thetal et thetav |
---|
| 741 | do l=1,nlay |
---|
| 742 | do ig=1,ngrid |
---|
| 743 | wq(ig,l)=fraca(ig,l)*zw2(ig,l)*(zqta(ig,l)*1000.-po(ig,l)*1000.) |
---|
| 744 | wthl(ig,l)=fraca(ig,l)*zw2(ig,l)*(ztla(ig,l)-zthl(ig,l)) |
---|
| 745 | wthv(ig,l)=fraca(ig,l)*zw2(ig,l)*(ztva(ig,l)-ztv(ig,l)) |
---|
| 746 | enddo |
---|
[879] | 747 | enddo |
---|
[972] | 748 | ! |
---|
[2384] | 749 | ! $Id: thermcell_main.F90 2387 2015-11-07 09:27:40Z adurocher $ |
---|
| 750 | ! |
---|
| 751 | CALL thermcell_alp(ngrid,nlay,ptimestep & |
---|
| 752 | & ,pplay,pplev & |
---|
| 753 | & ,fm0,entr0,lmax & |
---|
| 754 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th & |
---|
| 755 | & ,zw2,fraca & |
---|
| 756 | !!! necessire en plus |
---|
| 757 | & ,pcon,rhobarz,wth3,wmax_sec,lalim,fm,alim_star,zmax & |
---|
[1638] | 758 | !!! nrlmd le 10/04/2012 |
---|
[2384] | 759 | & ,pbl_tke,pctsrf,omega,airephy & |
---|
| 760 | & ,zlcl,fraca0,w0,w_conv,therm_tke_max0,env_tke_max0 & |
---|
| 761 | & ,n2,s2,ale_bl_stat & |
---|
| 762 | & ,therm_tke_max,env_tke_max & |
---|
| 763 | & ,alp_bl_det,alp_bl_fluct_m,alp_bl_fluct_tke & |
---|
| 764 | & ,alp_bl_conv,alp_bl_stat & |
---|
[1638] | 765 | !!! fin nrlmd le 10/04/2012 |
---|
[2384] | 766 | & ) |
---|
[1638] | 767 | |
---|
[1494] | 768 | |
---|
[1403] | 769 | |
---|
[878] | 770 | !calcul du ratqscdiff |
---|
[972] | 771 | if (prt_level.ge.1) print*,'14e OK convect8' |
---|
[878] | 772 | var=0. |
---|
| 773 | vardiff=0. |
---|
| 774 | ratqsdiff(:,:)=0. |
---|
[1494] | 775 | |
---|
| 776 | do l=1,klev |
---|
| 777 | do ig=1,ngrid |
---|
| 778 | if (l<=lalim(ig)) then |
---|
[878] | 779 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
[1494] | 780 | endif |
---|
[878] | 781 | enddo |
---|
| 782 | enddo |
---|
[1494] | 783 | |
---|
[972] | 784 | if (prt_level.ge.1) print*,'14f OK convect8' |
---|
[1494] | 785 | |
---|
| 786 | do l=1,klev |
---|
| 787 | do ig=1,ngrid |
---|
| 788 | if (l<=lalim(ig)) then |
---|
| 789 | zf=fraca(ig,l) |
---|
| 790 | zf2=zf/(1.-zf) |
---|
| 791 | vardiff=vardiff+alim_star(ig,l)*(zqta(ig,l)*1000.-var)**2 |
---|
| 792 | endif |
---|
| 793 | enddo |
---|
[878] | 794 | enddo |
---|
[1494] | 795 | |
---|
[972] | 796 | if (prt_level.ge.1) print*,'14g OK convect8' |
---|
[878] | 797 | do l=1,nlay |
---|
| 798 | do ig=1,ngrid |
---|
| 799 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
| 800 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 801 | enddo |
---|
| 802 | enddo |
---|
| 803 | !-------------------------------------------------------------------- |
---|
| 804 | ! |
---|
| 805 | !ecriture des fichiers sortie |
---|
[1494] | 806 | ! print*,'15 OK convect8 CCCCCCCCCCCCCCCCCCc' |
---|
[878] | 807 | |
---|
| 808 | endif |
---|
| 809 | |
---|
[938] | 810 | if (prt_level.ge.1) print*,'thermcell_main FIN OK' |
---|
[878] | 811 | |
---|
| 812 | return |
---|
| 813 | end |
---|
| 814 | |
---|
| 815 | !----------------------------------------------------------------------------- |
---|
| 816 | |
---|
| 817 | subroutine test_ltherm(klon,klev,pplev,pplay,long,seuil,ztv,po,ztva,zqla,f_star,zw2,comment) |
---|
[2311] | 818 | USE print_control_mod, ONLY: prt_level |
---|
[938] | 819 | IMPLICIT NONE |
---|
[878] | 820 | |
---|
[938] | 821 | integer i, k, klon,klev |
---|
[878] | 822 | real pplev(klon,klev+1),pplay(klon,klev) |
---|
| 823 | real ztv(klon,klev) |
---|
| 824 | real po(klon,klev) |
---|
| 825 | real ztva(klon,klev) |
---|
| 826 | real zqla(klon,klev) |
---|
| 827 | real f_star(klon,klev) |
---|
| 828 | real zw2(klon,klev) |
---|
| 829 | integer long(klon) |
---|
| 830 | real seuil |
---|
| 831 | character*21 comment |
---|
| 832 | |
---|
[938] | 833 | if (prt_level.ge.1) THEN |
---|
| 834 | print*,'WARNING !!! TEST ',comment |
---|
| 835 | endif |
---|
[879] | 836 | return |
---|
| 837 | |
---|
[878] | 838 | ! test sur la hauteur des thermiques ... |
---|
| 839 | do i=1,klon |
---|
[972] | 840 | !IMtemp if (pplay(i,long(i)).lt.seuil*pplev(i,1)) then |
---|
| 841 | if (prt_level.ge.10) then |
---|
[878] | 842 | print*,'WARNING ',comment,' au point ',i,' K= ',long(i) |
---|
| 843 | print*,' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
---|
| 844 | do k=1,klev |
---|
| 845 | write(6,'(i3,7f10.3)') k,pplay(i,k),ztv(i,k),1000*po(i,k),ztva(i,k),1000*zqla(i,k),f_star(i,k),zw2(i,k) |
---|
| 846 | enddo |
---|
[972] | 847 | endif |
---|
[878] | 848 | enddo |
---|
| 849 | |
---|
| 850 | |
---|
| 851 | return |
---|
| 852 | end |
---|
| 853 | |
---|
[1638] | 854 | !!! nrlmd le 10/04/2012 Transport de la TKE par le thermique moyen pour la fermeture en ALP |
---|
| 855 | ! On transporte pbl_tke pour donner therm_tke |
---|
| 856 | ! Copie conforme de la subroutine DTKE dans physiq.F écrite par Frederic Hourdin |
---|
| 857 | subroutine thermcell_tke_transport(ngrid,nlay,ptimestep,fm0,entr0, & |
---|
| 858 | & rg,pplev,therm_tke_max) |
---|
[2311] | 859 | USE print_control_mod, ONLY: prt_level |
---|
[1638] | 860 | implicit none |
---|
| 861 | |
---|
| 862 | !======================================================================= |
---|
| 863 | ! |
---|
| 864 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 865 | ! de "thermiques" explicitement representes |
---|
| 866 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
| 867 | ! |
---|
| 868 | !======================================================================= |
---|
| 869 | |
---|
| 870 | integer ngrid,nlay,nsrf |
---|
| 871 | |
---|
| 872 | real ptimestep |
---|
| 873 | real masse0(ngrid,nlay),fm0(ngrid,nlay+1),pplev(ngrid,nlay+1) |
---|
| 874 | real entr0(ngrid,nlay),rg |
---|
| 875 | real therm_tke_max(ngrid,nlay) |
---|
| 876 | real detr0(ngrid,nlay) |
---|
| 877 | |
---|
| 878 | |
---|
| 879 | real masse(ngrid,nlay),fm(ngrid,nlay+1) |
---|
| 880 | real entr(ngrid,nlay) |
---|
| 881 | real q(ngrid,nlay) |
---|
| 882 | integer lev_out ! niveau pour les print |
---|
| 883 | |
---|
| 884 | real qa(ngrid,nlay),detr(ngrid,nlay),wqd(ngrid,nlay+1) |
---|
| 885 | |
---|
| 886 | real zzm |
---|
| 887 | |
---|
| 888 | integer ig,k |
---|
| 889 | integer isrf |
---|
| 890 | |
---|
| 891 | |
---|
| 892 | lev_out=0 |
---|
| 893 | |
---|
| 894 | |
---|
| 895 | if (prt_level.ge.1) print*,'Q2 THERMCEL_DQ 0' |
---|
| 896 | |
---|
| 897 | ! calcul du detrainement |
---|
| 898 | do k=1,nlay |
---|
| 899 | detr0(:,k)=fm0(:,k)-fm0(:,k+1)+entr0(:,k) |
---|
| 900 | masse0(:,k)=(pplev(:,k)-pplev(:,k+1))/RG |
---|
| 901 | enddo |
---|
| 902 | |
---|
| 903 | |
---|
| 904 | ! Decalage vertical des entrainements et detrainements. |
---|
| 905 | masse(:,1)=0.5*masse0(:,1) |
---|
| 906 | entr(:,1)=0.5*entr0(:,1) |
---|
| 907 | detr(:,1)=0.5*detr0(:,1) |
---|
| 908 | fm(:,1)=0. |
---|
| 909 | do k=1,nlay-1 |
---|
| 910 | masse(:,k+1)=0.5*(masse0(:,k)+masse0(:,k+1)) |
---|
| 911 | entr(:,k+1)=0.5*(entr0(:,k)+entr0(:,k+1)) |
---|
| 912 | detr(:,k+1)=0.5*(detr0(:,k)+detr0(:,k+1)) |
---|
| 913 | fm(:,k+1)=fm(:,k)+entr(:,k)-detr(:,k) |
---|
| 914 | enddo |
---|
| 915 | fm(:,nlay+1)=0. |
---|
| 916 | |
---|
| 917 | !!! nrlmd le 16/09/2010 |
---|
| 918 | ! calcul de la valeur dans les ascendances |
---|
| 919 | ! do ig=1,ngrid |
---|
| 920 | ! qa(ig,1)=q(ig,1) |
---|
| 921 | ! enddo |
---|
| 922 | !!! |
---|
| 923 | |
---|
| 924 | !do isrf=1,nsrf |
---|
| 925 | |
---|
| 926 | ! q(:,:)=therm_tke(:,:,isrf) |
---|
| 927 | q(:,:)=therm_tke_max(:,:) |
---|
| 928 | !!! nrlmd le 16/09/2010 |
---|
| 929 | do ig=1,ngrid |
---|
| 930 | qa(ig,1)=q(ig,1) |
---|
| 931 | enddo |
---|
| 932 | !!! |
---|
| 933 | |
---|
| 934 | if (1==1) then |
---|
| 935 | do k=2,nlay |
---|
| 936 | do ig=1,ngrid |
---|
| 937 | if ((fm(ig,k+1)+detr(ig,k))*ptimestep.gt. & |
---|
| 938 | & 1.e-5*masse(ig,k)) then |
---|
| 939 | qa(ig,k)=(fm(ig,k)*qa(ig,k-1)+entr(ig,k)*q(ig,k)) & |
---|
| 940 | & /(fm(ig,k+1)+detr(ig,k)) |
---|
| 941 | else |
---|
| 942 | qa(ig,k)=q(ig,k) |
---|
| 943 | endif |
---|
| 944 | if (qa(ig,k).lt.0.) then |
---|
| 945 | ! print*,'qa<0!!!' |
---|
| 946 | endif |
---|
| 947 | if (q(ig,k).lt.0.) then |
---|
| 948 | ! print*,'q<0!!!' |
---|
| 949 | endif |
---|
| 950 | enddo |
---|
| 951 | enddo |
---|
| 952 | |
---|
| 953 | ! Calcul du flux subsident |
---|
| 954 | |
---|
| 955 | do k=2,nlay |
---|
| 956 | do ig=1,ngrid |
---|
| 957 | wqd(ig,k)=fm(ig,k)*q(ig,k) |
---|
| 958 | if (wqd(ig,k).lt.0.) then |
---|
| 959 | ! print*,'wqd<0!!!' |
---|
| 960 | endif |
---|
| 961 | enddo |
---|
| 962 | enddo |
---|
| 963 | do ig=1,ngrid |
---|
| 964 | wqd(ig,1)=0. |
---|
| 965 | wqd(ig,nlay+1)=0. |
---|
| 966 | enddo |
---|
| 967 | |
---|
| 968 | ! Calcul des tendances |
---|
| 969 | do k=1,nlay |
---|
| 970 | do ig=1,ngrid |
---|
| 971 | q(ig,k)=q(ig,k)+(detr(ig,k)*qa(ig,k)-entr(ig,k)*q(ig,k) & |
---|
| 972 | & -wqd(ig,k)+wqd(ig,k+1)) & |
---|
| 973 | & *ptimestep/masse(ig,k) |
---|
| 974 | enddo |
---|
| 975 | enddo |
---|
| 976 | |
---|
| 977 | endif |
---|
| 978 | |
---|
| 979 | therm_tke_max(:,:)=q(:,:) |
---|
| 980 | |
---|
| 981 | return |
---|
| 982 | !!! fin nrlmd le 10/04/2012 |
---|
| 983 | end |
---|
| 984 | |
---|