[996] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE soil(ptimestep, indice, knon, snow, ptsrf, & |
---|
| 5 | ptsoil, pcapcal, pfluxgrd) |
---|
| 6 | |
---|
| 7 | USE dimphy |
---|
| 8 | USE mod_phys_lmdz_para |
---|
[1785] | 9 | USE indice_sol_mod |
---|
[2311] | 10 | USE print_control_mod, ONLY: lunout |
---|
[1785] | 11 | |
---|
[996] | 12 | IMPLICIT NONE |
---|
| 13 | |
---|
| 14 | !======================================================================= |
---|
| 15 | ! |
---|
| 16 | ! Auteur: Frederic Hourdin 30/01/92 |
---|
| 17 | ! ------- |
---|
| 18 | ! |
---|
| 19 | ! Object: Computation of : the soil temperature evolution |
---|
| 20 | ! ------- the surfacic heat capacity "Capcal" |
---|
| 21 | ! the surface conduction flux pcapcal |
---|
| 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Method: Implicit time integration |
---|
| 25 | ! ------- |
---|
| 26 | ! Consecutive ground temperatures are related by: |
---|
| 27 | ! T(k+1) = C(k) + D(k)*T(k) (*) |
---|
| 28 | ! The coefficients C and D are computed at the t-dt time-step. |
---|
| 29 | ! Routine structure: |
---|
| 30 | ! 1) C and D coefficients are computed from the old temperature |
---|
| 31 | ! 2) new temperatures are computed using (*) |
---|
| 32 | ! 3) C and D coefficients are computed from the new temperature |
---|
| 33 | ! profile for the t+dt time-step |
---|
| 34 | ! 4) the coefficients A and B are computed where the diffusive |
---|
| 35 | ! fluxes at the t+dt time-step is given by |
---|
| 36 | ! Fdiff = A + B Ts(t+dt) |
---|
| 37 | ! or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt |
---|
| 38 | ! with F0 = A + B (Ts(t)) |
---|
| 39 | ! Capcal = B*dt |
---|
| 40 | ! |
---|
| 41 | ! Interface: |
---|
| 42 | ! ---------- |
---|
| 43 | ! |
---|
| 44 | ! Arguments: |
---|
| 45 | ! ---------- |
---|
| 46 | ! ptimestep physical timestep (s) |
---|
| 47 | ! indice sub-surface index |
---|
| 48 | ! snow(klon) snow |
---|
| 49 | ! ptsrf(klon) surface temperature at time-step t (K) |
---|
| 50 | ! ptsoil(klon,nsoilmx) temperature inside the ground (K) |
---|
| 51 | ! pcapcal(klon) surfacic specific heat (W*m-2*s*K-1) |
---|
| 52 | ! pfluxgrd(klon) surface diffusive flux from ground (Wm-2) |
---|
| 53 | ! |
---|
| 54 | !======================================================================= |
---|
| 55 | INCLUDE "YOMCST.h" |
---|
| 56 | INCLUDE "dimsoil.h" |
---|
| 57 | INCLUDE "comsoil.h" |
---|
| 58 | !----------------------------------------------------------------------- |
---|
| 59 | ! Arguments |
---|
| 60 | ! --------- |
---|
| 61 | REAL, INTENT(IN) :: ptimestep |
---|
| 62 | INTEGER, INTENT(IN) :: indice, knon |
---|
| 63 | REAL, DIMENSION(klon), INTENT(IN) :: snow |
---|
| 64 | REAL, DIMENSION(klon), INTENT(IN) :: ptsrf |
---|
| 65 | |
---|
| 66 | REAL, DIMENSION(klon,nsoilmx), INTENT(INOUT) :: ptsoil |
---|
| 67 | REAL, DIMENSION(klon), INTENT(OUT) :: pcapcal |
---|
| 68 | REAL, DIMENSION(klon), INTENT(OUT) :: pfluxgrd |
---|
| 69 | |
---|
| 70 | !----------------------------------------------------------------------- |
---|
| 71 | ! Local variables |
---|
| 72 | ! --------------- |
---|
| 73 | INTEGER :: ig, jk, ierr |
---|
| 74 | REAL :: min_period,dalph_soil |
---|
| 75 | REAL, DIMENSION(nsoilmx) :: zdz2 |
---|
| 76 | REAL :: z1s |
---|
| 77 | REAL, DIMENSION(klon) :: ztherm_i |
---|
| 78 | REAL, DIMENSION(klon,nsoilmx,nbsrf) :: C_coef, D_coef |
---|
| 79 | |
---|
| 80 | ! Local saved variables |
---|
| 81 | ! --------------------- |
---|
| 82 | REAL, SAVE :: lambda |
---|
| 83 | !$OMP THREADPRIVATE(lambda) |
---|
| 84 | REAL, DIMENSION(nsoilmx), SAVE :: dz1, dz2 |
---|
| 85 | !$OMP THREADPRIVATE(dz1,dz2) |
---|
| 86 | LOGICAL, SAVE :: firstcall=.TRUE. |
---|
| 87 | !$OMP THREADPRIVATE(firstcall) |
---|
| 88 | |
---|
| 89 | !----------------------------------------------------------------------- |
---|
| 90 | ! Depthts: |
---|
| 91 | ! -------- |
---|
| 92 | REAL fz,rk,fz1,rk1,rk2 |
---|
| 93 | fz(rk)=fz1*(dalph_soil**rk-1.)/(dalph_soil-1.) |
---|
| 94 | |
---|
| 95 | |
---|
| 96 | !----------------------------------------------------------------------- |
---|
| 97 | ! Calculation of some constants |
---|
| 98 | ! NB! These constants do not depend on the sub-surfaces |
---|
| 99 | !----------------------------------------------------------------------- |
---|
| 100 | |
---|
| 101 | IF (firstcall) THEN |
---|
| 102 | !----------------------------------------------------------------------- |
---|
| 103 | ! ground levels |
---|
| 104 | ! grnd=z/l where l is the skin depth of the diurnal cycle: |
---|
| 105 | !----------------------------------------------------------------------- |
---|
| 106 | |
---|
| 107 | min_period=1800. ! en secondes |
---|
| 108 | dalph_soil=2. ! rapport entre les epaisseurs de 2 couches succ. |
---|
| 109 | !$OMP MASTER |
---|
| 110 | IF (is_mpi_root) THEN |
---|
| 111 | OPEN(99,file='soil.def',status='old',form='formatted',iostat=ierr) |
---|
| 112 | IF (ierr == 0) THEN ! Read file only if it exists |
---|
| 113 | READ(99,*) min_period |
---|
| 114 | READ(99,*) dalph_soil |
---|
[1575] | 115 | WRITE(lunout,*)'Discretization for the soil model' |
---|
| 116 | WRITE(lunout,*)'First level e-folding depth',min_period, & |
---|
[996] | 117 | ' dalph',dalph_soil |
---|
| 118 | CLOSE(99) |
---|
| 119 | END IF |
---|
| 120 | ENDIF |
---|
| 121 | !$OMP END MASTER |
---|
| 122 | CALL bcast(min_period) |
---|
| 123 | CALL bcast(dalph_soil) |
---|
| 124 | |
---|
| 125 | ! la premiere couche represente un dixieme de cycle diurne |
---|
| 126 | fz1=SQRT(min_period/3.14) |
---|
| 127 | |
---|
| 128 | DO jk=1,nsoilmx |
---|
| 129 | rk1=jk |
---|
| 130 | rk2=jk-1 |
---|
| 131 | dz2(jk)=fz(rk1)-fz(rk2) |
---|
| 132 | ENDDO |
---|
| 133 | DO jk=1,nsoilmx-1 |
---|
| 134 | rk1=jk+.5 |
---|
| 135 | rk2=jk-.5 |
---|
| 136 | dz1(jk)=1./(fz(rk1)-fz(rk2)) |
---|
| 137 | ENDDO |
---|
| 138 | lambda=fz(.5)*dz1(1) |
---|
[1575] | 139 | WRITE(lunout,*)'full layers, intermediate layers (seconds)' |
---|
[996] | 140 | DO jk=1,nsoilmx |
---|
| 141 | rk=jk |
---|
| 142 | rk1=jk+.5 |
---|
| 143 | rk2=jk-.5 |
---|
[1575] | 144 | WRITE(lunout,*)'fz=', & |
---|
[996] | 145 | fz(rk1)*fz(rk2)*3.14,fz(rk)*fz(rk)*3.14 |
---|
| 146 | ENDDO |
---|
| 147 | |
---|
| 148 | firstcall =.FALSE. |
---|
| 149 | END IF |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | !----------------------------------------------------------------------- |
---|
| 153 | ! Calcul de l'inertie thermique a partir de la variable rnat. |
---|
[2915] | 154 | ! on initialise a inertie_sic meme au-dessus d'un point de mer au cas |
---|
[996] | 155 | ! ou le point de mer devienne point de glace au pas suivant |
---|
| 156 | ! on corrige si on a un point de terre avec ou sans glace |
---|
| 157 | ! |
---|
[2915] | 158 | ! iophys can be used to write the ztherm_i variable in a phys.nc file |
---|
| 159 | ! and check the results; to do so, add "CALL iophys_ini" in physiq_mod |
---|
| 160 | ! and add knindex to the list of inputs in all the calls to soil.F90 |
---|
| 161 | ! (and to soil.F90 itself !) |
---|
[996] | 162 | !----------------------------------------------------------------------- |
---|
[2915] | 163 | |
---|
[996] | 164 | IF (indice == is_sic) THEN |
---|
| 165 | DO ig = 1, knon |
---|
[2915] | 166 | ztherm_i(ig) = inertie_sic |
---|
[996] | 167 | ENDDO |
---|
[2915] | 168 | IF (iflag_sic == 0) THEN |
---|
| 169 | DO ig = 1, knon |
---|
| 170 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
---|
| 171 | ENDDO |
---|
| 172 | ! Otherwise sea-ice keeps the same inertia, even when covered by snow |
---|
| 173 | ENDIF |
---|
| 174 | ! CALL iophys_ecrit_index('ztherm_sic', 1, 'ztherm_sic', 'USI', & |
---|
| 175 | ! knon, knindex, ztherm_i) |
---|
[996] | 176 | ELSE IF (indice == is_lic) THEN |
---|
| 177 | DO ig = 1, knon |
---|
[2915] | 178 | ztherm_i(ig) = inertie_lic |
---|
[996] | 179 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
---|
| 180 | ENDDO |
---|
[2915] | 181 | ! CALL iophys_ecrit_index('ztherm_lic', 1, 'ztherm_lic', 'USI', & |
---|
| 182 | ! knon, knindex, ztherm_i) |
---|
[996] | 183 | ELSE IF (indice == is_ter) THEN |
---|
| 184 | DO ig = 1, knon |
---|
| 185 | ztherm_i(ig) = inertie_sol |
---|
| 186 | IF (snow(ig) > 0.0) ztherm_i(ig) = inertie_sno |
---|
| 187 | ENDDO |
---|
[2915] | 188 | ! CALL iophys_ecrit_index('ztherm_ter', 1, 'ztherm_ter', 'USI', & |
---|
| 189 | ! knon, knindex, ztherm_i) |
---|
[996] | 190 | ELSE IF (indice == is_oce) THEN |
---|
| 191 | DO ig = 1, knon |
---|
[2915] | 192 | ! This is just in case, but SST should be used by the model anyway |
---|
| 193 | ztherm_i(ig) = inertie_sic |
---|
[996] | 194 | ENDDO |
---|
[2915] | 195 | ! CALL iophys_ecrit_index('ztherm_oce', 1, 'ztherm_oce', 'USI', & |
---|
| 196 | ! knon, knindex, ztherm_i) |
---|
[996] | 197 | ELSE |
---|
[1575] | 198 | WRITE(lunout,*) "valeur d indice non prevue", indice |
---|
[2311] | 199 | call abort_physic("soil", "", 1) |
---|
[996] | 200 | ENDIF |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | !----------------------------------------------------------------------- |
---|
| 204 | ! 1) |
---|
| 205 | ! Calculation of Cgrf and Dgrd coefficients using soil temperature from |
---|
| 206 | ! previous time step. |
---|
| 207 | ! |
---|
| 208 | ! These variables are recalculated on the local compressed grid instead |
---|
| 209 | ! of saved in restart file. |
---|
| 210 | !----------------------------------------------------------------------- |
---|
| 211 | DO jk=1,nsoilmx |
---|
| 212 | zdz2(jk)=dz2(jk)/ptimestep |
---|
| 213 | ENDDO |
---|
| 214 | |
---|
| 215 | DO ig=1,knon |
---|
| 216 | z1s = zdz2(nsoilmx)+dz1(nsoilmx-1) |
---|
| 217 | C_coef(ig,nsoilmx-1,indice)= & |
---|
| 218 | zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1s |
---|
| 219 | D_coef(ig,nsoilmx-1,indice)=dz1(nsoilmx-1)/z1s |
---|
| 220 | ENDDO |
---|
| 221 | |
---|
| 222 | DO jk=nsoilmx-1,2,-1 |
---|
| 223 | DO ig=1,knon |
---|
| 224 | z1s = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk) & |
---|
| 225 | *(1.-D_coef(ig,jk,indice))) |
---|
| 226 | C_coef(ig,jk-1,indice)= & |
---|
| 227 | (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*C_coef(ig,jk,indice)) * z1s |
---|
| 228 | D_coef(ig,jk-1,indice)=dz1(jk-1)*z1s |
---|
| 229 | ENDDO |
---|
| 230 | ENDDO |
---|
| 231 | |
---|
| 232 | !----------------------------------------------------------------------- |
---|
| 233 | ! 2) |
---|
| 234 | ! Computation of the soil temperatures using the Cgrd and Dgrd |
---|
| 235 | ! coefficient computed above |
---|
| 236 | ! |
---|
| 237 | !----------------------------------------------------------------------- |
---|
| 238 | |
---|
| 239 | ! Surface temperature |
---|
| 240 | DO ig=1,knon |
---|
| 241 | ptsoil(ig,1)=(lambda*C_coef(ig,1,indice)+ptsrf(ig))/ & |
---|
| 242 | (lambda*(1.-D_coef(ig,1,indice))+1.) |
---|
| 243 | ENDDO |
---|
| 244 | |
---|
| 245 | ! Other temperatures |
---|
| 246 | DO jk=1,nsoilmx-1 |
---|
| 247 | DO ig=1,knon |
---|
| 248 | ptsoil(ig,jk+1)=C_coef(ig,jk,indice)+D_coef(ig,jk,indice) & |
---|
| 249 | *ptsoil(ig,jk) |
---|
| 250 | ENDDO |
---|
| 251 | ENDDO |
---|
| 252 | |
---|
| 253 | IF (indice == is_sic) THEN |
---|
| 254 | DO ig = 1 , knon |
---|
| 255 | ptsoil(ig,nsoilmx) = RTT - 1.8 |
---|
| 256 | END DO |
---|
| 257 | ENDIF |
---|
| 258 | |
---|
| 259 | !----------------------------------------------------------------------- |
---|
| 260 | ! 3) |
---|
| 261 | ! Calculate the Cgrd and Dgrd coefficient corresponding to actual soil |
---|
| 262 | ! temperature |
---|
| 263 | !----------------------------------------------------------------------- |
---|
| 264 | DO ig=1,knon |
---|
| 265 | z1s = zdz2(nsoilmx)+dz1(nsoilmx-1) |
---|
| 266 | C_coef(ig,nsoilmx-1,indice) = zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1s |
---|
| 267 | D_coef(ig,nsoilmx-1,indice) = dz1(nsoilmx-1)/z1s |
---|
| 268 | ENDDO |
---|
| 269 | |
---|
| 270 | DO jk=nsoilmx-1,2,-1 |
---|
| 271 | DO ig=1,knon |
---|
| 272 | z1s = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk) & |
---|
| 273 | *(1.-D_coef(ig,jk,indice))) |
---|
| 274 | C_coef(ig,jk-1,indice) = & |
---|
| 275 | (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*C_coef(ig,jk,indice)) * z1s |
---|
| 276 | D_coef(ig,jk-1,indice) = dz1(jk-1)*z1s |
---|
| 277 | ENDDO |
---|
| 278 | ENDDO |
---|
| 279 | |
---|
| 280 | !----------------------------------------------------------------------- |
---|
| 281 | ! 4) |
---|
| 282 | ! Computation of the surface diffusive flux from ground and |
---|
| 283 | ! calorific capacity of the ground |
---|
| 284 | !----------------------------------------------------------------------- |
---|
| 285 | DO ig=1,knon |
---|
| 286 | pfluxgrd(ig) = ztherm_i(ig)*dz1(1)* & |
---|
| 287 | (C_coef(ig,1,indice)+(D_coef(ig,1,indice)-1.)*ptsoil(ig,1)) |
---|
| 288 | pcapcal(ig) = ztherm_i(ig)* & |
---|
| 289 | (dz2(1)+ptimestep*(1.-D_coef(ig,1,indice))*dz1(1)) |
---|
| 290 | z1s = lambda*(1.-D_coef(ig,1,indice))+1. |
---|
| 291 | pcapcal(ig) = pcapcal(ig)/z1s |
---|
| 292 | pfluxgrd(ig) = pfluxgrd(ig) & |
---|
| 293 | + pcapcal(ig) * (ptsoil(ig,1) * z1s & |
---|
| 294 | - lambda * C_coef(ig,1,indice) & |
---|
| 295 | - ptsrf(ig)) & |
---|
| 296 | /ptimestep |
---|
| 297 | ENDDO |
---|
| 298 | |
---|
| 299 | END SUBROUTINE soil |
---|