[1989] | 1 | MODULE SUPOL_MOD |
---|
| 2 | CONTAINS |
---|
| 3 | SUBROUTINE SUPOL(KNSMAX,DDMU,DDPOL,DDA,DDB,DDC,DDD,DDE,DDF,DDG,DDH,DDI) |
---|
| 4 | |
---|
| 5 | !**** *SUPOL * - Routine to compute the Legendre polynomials |
---|
| 6 | |
---|
| 7 | ! Purpose. |
---|
| 8 | ! -------- |
---|
| 9 | ! For a given value of mu, computes the Legendre |
---|
| 10 | ! polynomials. |
---|
| 11 | |
---|
| 12 | !** Interface. |
---|
| 13 | ! ---------- |
---|
| 14 | ! *CALL* *SUPOL(KNSMAX,DDMU,DDPOL,DDA,DDB,DDC,DDD,DDE |
---|
| 15 | ! ,DDF,DDG,DDH,DDI) |
---|
| 16 | |
---|
| 17 | ! Explicit arguments : |
---|
| 18 | ! -------------------- |
---|
| 19 | ! KNSMAX : Truncation (triangular) |
---|
| 20 | ! DDMU : Abscissa at which the polynomials are computed (mu) |
---|
| 21 | ! DDPOL : Polynomials (the first index is m and the second n) |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | ! Implicit arguments : None |
---|
| 25 | ! -------------------- |
---|
| 26 | |
---|
| 27 | ! Method. |
---|
| 28 | ! ------- |
---|
| 29 | ! See documentation |
---|
| 30 | |
---|
| 31 | ! Externals. |
---|
| 32 | ! ---------- |
---|
| 33 | |
---|
| 34 | ! Reference. |
---|
| 35 | ! ---------- |
---|
| 36 | ! ECMWF Research Department documentation of the IFS |
---|
| 37 | |
---|
| 38 | ! Author. |
---|
| 39 | ! ------- |
---|
| 40 | ! Mats Hamrud and Philippe Courtier *ECMWF* |
---|
| 41 | |
---|
| 42 | ! Modifications. |
---|
| 43 | ! -------------- |
---|
| 44 | ! Original : 87-10-15 |
---|
| 45 | ! K. YESSAD (MAY 1998): modification to avoid underflow. |
---|
| 46 | ! ------------------------------------------------------------------ |
---|
| 47 | |
---|
| 48 | USE PARKIND1 ,ONLY : JPIM ,JPRB |
---|
| 49 | USE PARKIND2 ,ONLY : JPRH |
---|
| 50 | |
---|
| 51 | IMPLICIT NONE |
---|
| 52 | |
---|
| 53 | INTEGER(KIND=JPIM),INTENT(IN) :: KNSMAX |
---|
| 54 | REAL(KIND=JPRH) ,INTENT(IN) :: DDMU |
---|
| 55 | REAL(KIND=JPRH) ,INTENT(IN) :: DDC(0:KNSMAX,0:KNSMAX) |
---|
| 56 | REAL(KIND=JPRH) ,INTENT(IN) :: DDD(0:KNSMAX,0:KNSMAX) |
---|
| 57 | REAL(KIND=JPRH) ,INTENT(IN) :: DDE(0:KNSMAX,0:KNSMAX) |
---|
| 58 | REAL(KIND=JPRH) ,INTENT(IN) :: DDA(0:KNSMAX),DDB(0:KNSMAX),DDF(0:KNSMAX) |
---|
| 59 | REAL(KIND=JPRH) ,INTENT(IN) :: DDG(0:KNSMAX),DDH(0:KNSMAX),DDI(0:KNSMAX) |
---|
| 60 | REAL(KIND=JPRH) ,INTENT(OUT) :: DDPOL(0:KNSMAX,0:KNSMAX) |
---|
| 61 | |
---|
| 62 | REAL(KIND=JPRH) :: DLX,DLSITA,DL1SITA,DLKM2,DLKM1,DLK,DL1,DLS |
---|
| 63 | |
---|
| 64 | INTEGER(KIND=JPIM) :: JM, JN |
---|
| 65 | REAL(KIND=JPRB) :: Z |
---|
| 66 | |
---|
| 67 | ! ------------------------------------------------------------------ |
---|
| 68 | |
---|
| 69 | !* 1. First two columns. |
---|
| 70 | ! ------------------ |
---|
| 71 | |
---|
| 72 | DLX=DDMU |
---|
| 73 | DLSITA=SQRT(1.0_JPRB-DLX*DLX) |
---|
| 74 | |
---|
| 75 | ! IF WE ARE LESS THAN 1Meter FROM THE POLE, |
---|
| 76 | IF(ABS(REAL(DLSITA,KIND(Z))) <= SQRT(EPSILON(Z)))THEN |
---|
| 77 | DLX=1._JPRB |
---|
| 78 | DLSITA=0._JPRB |
---|
| 79 | DL1SITA=0._JPRB |
---|
| 80 | ELSE |
---|
| 81 | DL1SITA=1.0_JPRB/DLSITA |
---|
| 82 | ENDIF |
---|
| 83 | DLKM2=1._JPRB |
---|
| 84 | DLKM1=DLX |
---|
| 85 | DDPOL(0,0)=DLKM2 |
---|
| 86 | DDPOL(0,1)=DLKM1*DDA(1) |
---|
| 87 | DDPOL(1,1)=DLSITA*DDB(1) |
---|
| 88 | DO JN=2,KNSMAX |
---|
| 89 | DLK=DDF(JN)*DLX*DLKM1-DDG(JN)*DLKM2 |
---|
| 90 | DL1=DDI(JN)*(DLKM1-DLX*DLK)*DL1SITA |
---|
| 91 | DDPOL(0,JN)=DLK*DDA(JN) |
---|
| 92 | DDPOL(1,JN)=DL1*DDB(JN) |
---|
| 93 | DLKM2=DLKM1 |
---|
| 94 | DLKM1=DLK |
---|
| 95 | ENDDO |
---|
| 96 | |
---|
| 97 | ! ------------------------------------------------------------------ |
---|
| 98 | |
---|
| 99 | !* 2. Diagonal (the terms 0,0 and 1,1 have already been computed) |
---|
| 100 | ! ----------------------------------------------------------- |
---|
| 101 | |
---|
| 102 | DLS=DL1SITA*TINY(DLS) |
---|
| 103 | |
---|
| 104 | !OCL SCALAR |
---|
| 105 | DO JN=2,KNSMAX |
---|
| 106 | DDPOL(JN,JN)=DDPOL(JN-1,JN-1)*DLSITA*DDH(JN) |
---|
| 107 | IF ( ABS(DDPOL(JN,JN)) < DLS ) DDPOL(JN,JN)=0.0_JPRB |
---|
| 108 | ENDDO |
---|
| 109 | |
---|
| 110 | ! ------------------------------------------------------------------ |
---|
| 111 | |
---|
| 112 | !* 3. General recurrence. |
---|
| 113 | ! ------------------- |
---|
| 114 | |
---|
| 115 | DO JN=3,KNSMAX |
---|
| 116 | !DIR$ IVDEP |
---|
| 117 | !OCL NOVREC |
---|
| 118 | DO JM=2,JN-1 |
---|
| 119 | DDPOL(JM,JN)=DDC(JM,JN)*DDPOL(JM-2,JN-2)& |
---|
| 120 | &-DDD(JM,JN)*DDPOL(JM-2,JN-1)*DLX & |
---|
| 121 | &+DDE(JM,JN)*DDPOL(JM ,JN-1)*DLX |
---|
| 122 | ENDDO |
---|
| 123 | ENDDO |
---|
| 124 | |
---|
| 125 | ! ------------------------------------------------------------------ |
---|
| 126 | |
---|
| 127 | END SUBROUTINE SUPOL |
---|
| 128 | END MODULE SUPOL_MOD |
---|
| 129 | |
---|
| 130 | |
---|