[1989] | 1 | SUBROUTINE RRTM_SETCOEF_140GP (KLEV,P_COLDRY,P_WKL,& |
---|
| 2 | & P_FAC00,P_FAC01,P_FAC10,P_FAC11,P_FORFAC,K_JP,K_JT,K_JT1,& |
---|
| 3 | & P_COLH2O,P_COLCO2,P_COLO3,P_COLN2O,P_COLCH4,P_COLO2,P_CO2MULT,& |
---|
| 4 | & K_LAYTROP,K_LAYSWTCH,K_LAYLOW,PAVEL,P_TAVEL,P_SELFFAC,P_SELFFRAC,K_INDSELF) |
---|
| 5 | |
---|
| 6 | ! Reformatted for F90 by JJMorcrette, ECMWF, 980714 |
---|
| 7 | |
---|
| 8 | ! Purpose: For a given atmosphere, calculate the indices and |
---|
| 9 | ! fractions related to the pressure and temperature interpolations. |
---|
| 10 | ! Also calculate the values of the integrated Planck functions |
---|
| 11 | ! for each band at the level and layer temperatures. |
---|
| 12 | |
---|
| 13 | USE PARKIND1 ,ONLY : JPIM ,JPRB |
---|
| 14 | USE YOMHOOK ,ONLY : LHOOK, DR_HOOK |
---|
| 15 | |
---|
| 16 | USE PARRRTM , ONLY : JPLAY ,JPINPX |
---|
| 17 | USE YOERRTRF , ONLY : PREFLOG ,TREF |
---|
| 18 | |
---|
| 19 | IMPLICIT NONE |
---|
| 20 | |
---|
| 21 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV |
---|
| 22 | REAL(KIND=JPRB) ,INTENT(IN) :: P_COLDRY(JPLAY) |
---|
| 23 | REAL(KIND=JPRB) ,INTENT(IN) :: P_WKL(JPINPX,JPLAY) |
---|
| 24 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_FAC00(JPLAY) |
---|
| 25 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_FAC01(JPLAY) |
---|
| 26 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_FAC10(JPLAY) |
---|
| 27 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_FAC11(JPLAY) |
---|
| 28 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_FORFAC(JPLAY) |
---|
| 29 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_JP(JPLAY) |
---|
| 30 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_JT(JPLAY) |
---|
| 31 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_JT1(JPLAY) |
---|
| 32 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_COLH2O(JPLAY) |
---|
| 33 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_COLCO2(JPLAY) |
---|
| 34 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_COLO3(JPLAY) |
---|
| 35 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_COLN2O(JPLAY) |
---|
| 36 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_COLCH4(JPLAY) |
---|
| 37 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_COLO2(JPLAY) |
---|
| 38 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_CO2MULT(JPLAY) |
---|
| 39 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_LAYTROP |
---|
| 40 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_LAYSWTCH |
---|
| 41 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_LAYLOW |
---|
| 42 | REAL(KIND=JPRB) ,INTENT(IN) :: PAVEL(JPLAY) |
---|
| 43 | REAL(KIND=JPRB) ,INTENT(IN) :: P_TAVEL(JPLAY) |
---|
| 44 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_SELFFAC(JPLAY) |
---|
| 45 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_SELFFRAC(JPLAY) |
---|
| 46 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_INDSELF(JPLAY) |
---|
| 47 | !- from INTFAC |
---|
| 48 | !- from INTIND |
---|
| 49 | !- from PROFDATA |
---|
| 50 | !- from PROFILE |
---|
| 51 | !- from SELF |
---|
| 52 | INTEGER(KIND=JPIM) :: JP1, I_LAY |
---|
| 53 | |
---|
| 54 | REAL(KIND=JPRB) :: Z_CO2REG, Z_COMPFP, Z_FACTOR, Z_FP, Z_FT, Z_FT1, Z_PLOG, Z_SCALEFAC, Z_STPFAC, Z_WATER |
---|
| 55 | REAL(KIND=JPRB) :: ZHOOK_HANDLE |
---|
| 56 | |
---|
| 57 | !#include "yoeratm.h" |
---|
| 58 | |
---|
| 59 | IF (LHOOK) CALL DR_HOOK('RRTM_SETCOEF_140GP',0,ZHOOK_HANDLE) |
---|
| 60 | Z_STPFAC = 296._JPRB/1013._JPRB |
---|
| 61 | |
---|
| 62 | K_LAYTROP = 0 |
---|
| 63 | K_LAYSWTCH = 0 |
---|
| 64 | K_LAYLOW = 0 |
---|
| 65 | DO I_LAY = 1, KLEV |
---|
| 66 | ! Find the two reference pressures on either side of the |
---|
| 67 | ! layer pressure. Store them in JP and JP1. Store in FP the |
---|
| 68 | ! fraction of the difference (in ln(pressure)) between these |
---|
| 69 | ! two values that the layer pressure lies. |
---|
| 70 | Z_PLOG = LOG(PAVEL(I_LAY)) |
---|
| 71 | K_JP(I_LAY) = INT(36._JPRB - 5*(Z_PLOG+0.04_JPRB)) |
---|
| 72 | IF (K_JP(I_LAY) < 1) THEN |
---|
| 73 | K_JP(I_LAY) = 1 |
---|
| 74 | ELSEIF (K_JP(I_LAY) > 58) THEN |
---|
| 75 | K_JP(I_LAY) = 58 |
---|
| 76 | ENDIF |
---|
| 77 | JP1 = K_JP(I_LAY) + 1 |
---|
| 78 | Z_FP = 5._JPRB * (PREFLOG(K_JP(I_LAY)) - Z_PLOG) |
---|
| 79 | |
---|
| 80 | ! Determine, for each reference pressure (JP and JP1), which |
---|
| 81 | ! reference temperature (these are different for each |
---|
| 82 | ! reference pressure) is nearest the layer temperature but does |
---|
| 83 | ! not exceed it. Store these indices in JT and JT1, resp. |
---|
| 84 | ! Store in FT (resp. FT1) the fraction of the way between JT |
---|
| 85 | ! (JT1) and the next highest reference temperature that the |
---|
| 86 | ! layer temperature falls. |
---|
| 87 | |
---|
| 88 | K_JT(I_LAY) = INT(3._JPRB + (P_TAVEL(I_LAY)-TREF(K_JP(I_LAY)))/15._JPRB) |
---|
| 89 | IF (K_JT(I_LAY) < 1) THEN |
---|
| 90 | K_JT(I_LAY) = 1 |
---|
| 91 | ELSEIF (K_JT(I_LAY) > 4) THEN |
---|
| 92 | K_JT(I_LAY) = 4 |
---|
| 93 | ENDIF |
---|
| 94 | Z_FT = ((P_TAVEL(I_LAY)-TREF(K_JP(I_LAY)))/15._JPRB) - REAL(K_JT(I_LAY)-3) |
---|
| 95 | K_JT1(I_LAY) = INT(3._JPRB + (P_TAVEL(I_LAY)-TREF(JP1))/15._JPRB) |
---|
| 96 | IF (K_JT1(I_LAY) < 1) THEN |
---|
| 97 | K_JT1(I_LAY) = 1 |
---|
| 98 | ELSEIF (K_JT1(I_LAY) > 4) THEN |
---|
| 99 | K_JT1(I_LAY) = 4 |
---|
| 100 | ENDIF |
---|
| 101 | Z_FT1 = ((P_TAVEL(I_LAY)-TREF(JP1))/15._JPRB) - REAL(K_JT1(I_LAY)-3) |
---|
| 102 | |
---|
| 103 | Z_WATER = P_WKL(1,I_LAY)/P_COLDRY(I_LAY) |
---|
| 104 | Z_SCALEFAC = PAVEL(I_LAY) * Z_STPFAC / P_TAVEL(I_LAY) |
---|
| 105 | |
---|
| 106 | ! If the pressure is less than ~100mb, perform a different |
---|
| 107 | ! set of species interpolations. |
---|
| 108 | ! IF (PLOG .LE. 4.56) GO TO 5300 |
---|
| 109 | !-------------------------------------- |
---|
| 110 | IF (Z_PLOG > 4.56_JPRB) THEN |
---|
| 111 | K_LAYTROP = K_LAYTROP + 1 |
---|
| 112 | ! For one band, the "switch" occurs at ~300 mb. |
---|
| 113 | IF (Z_PLOG >= 5.76_JPRB) K_LAYSWTCH = K_LAYSWTCH + 1 |
---|
| 114 | IF (Z_PLOG >= 6.62_JPRB) K_LAYLOW = K_LAYLOW + 1 |
---|
| 115 | |
---|
| 116 | P_FORFAC(I_LAY) = Z_SCALEFAC / (1.0_JPRB+Z_WATER) |
---|
| 117 | |
---|
| 118 | ! Set up factors needed to separately include the water vapor |
---|
| 119 | ! self-continuum in the calculation of absorption coefficient. |
---|
| 120 | !C SELFFAC(LAY) = WATER * SCALEFAC / (1.+WATER) |
---|
| 121 | P_SELFFAC(I_LAY) = Z_WATER * P_FORFAC(I_LAY) |
---|
| 122 | Z_FACTOR = (P_TAVEL(I_LAY)-188.0_JPRB)/7.2_JPRB |
---|
| 123 | K_INDSELF(I_LAY) = MIN(9, MAX(1, INT(Z_FACTOR)-7)) |
---|
| 124 | P_SELFFRAC(I_LAY) = Z_FACTOR - REAL(K_INDSELF(I_LAY) + 7) |
---|
| 125 | |
---|
| 126 | ! Calculate needed column amounts. |
---|
| 127 | P_COLH2O(I_LAY) = 1.E-20_JPRB * P_WKL(1,I_LAY) |
---|
| 128 | P_COLCO2(I_LAY) = 1.E-20_JPRB * P_WKL(2,I_LAY) |
---|
| 129 | P_COLO3(I_LAY) = 1.E-20_JPRB * P_WKL(3,I_LAY) |
---|
| 130 | P_COLN2O(I_LAY) = 1.E-20_JPRB * P_WKL(4,I_LAY) |
---|
| 131 | P_COLCH4(I_LAY) = 1.E-20_JPRB * P_WKL(6,I_LAY) |
---|
| 132 | P_COLO2(I_LAY) = 1.E-20_JPRB * P_WKL(7,I_LAY) |
---|
| 133 | IF (P_COLCO2(I_LAY) == 0.0_JPRB) P_COLCO2(I_LAY) = 1.E-32_JPRB * P_COLDRY(I_LAY) |
---|
| 134 | IF (P_COLN2O(I_LAY) == 0.0_JPRB) P_COLN2O(I_LAY) = 1.E-32_JPRB * P_COLDRY(I_LAY) |
---|
| 135 | IF (P_COLCH4(I_LAY) == 0.0_JPRB) P_COLCH4(I_LAY) = 1.E-32_JPRB * P_COLDRY(I_LAY) |
---|
| 136 | ! Using E = 1334.2 cm-1. |
---|
| 137 | Z_CO2REG = 3.55E-24_JPRB * P_COLDRY(I_LAY) |
---|
| 138 | P_CO2MULT(I_LAY)= (P_COLCO2(I_LAY) - Z_CO2REG) *& |
---|
| 139 | & 272.63_JPRB*EXP(-1919.4_JPRB/P_TAVEL(I_LAY))/(8.7604E-4_JPRB*P_TAVEL(I_LAY)) |
---|
| 140 | ! GO TO 5400 |
---|
| 141 | !------------------ |
---|
| 142 | ELSE |
---|
| 143 | ! Above LAYTROP. |
---|
| 144 | ! 5300 CONTINUE |
---|
| 145 | |
---|
| 146 | ! Calculate needed column amounts. |
---|
| 147 | P_FORFAC(I_LAY) = Z_SCALEFAC / (1.0_JPRB+Z_WATER) |
---|
| 148 | |
---|
| 149 | P_COLH2O(I_LAY) = 1.E-20_JPRB * P_WKL(1,I_LAY) |
---|
| 150 | P_COLCO2(I_LAY) = 1.E-20_JPRB * P_WKL(2,I_LAY) |
---|
| 151 | P_COLO3(I_LAY) = 1.E-20_JPRB * P_WKL(3,I_LAY) |
---|
| 152 | P_COLN2O(I_LAY) = 1.E-20_JPRB * P_WKL(4,I_LAY) |
---|
| 153 | P_COLCH4(I_LAY) = 1.E-20_JPRB * P_WKL(6,I_LAY) |
---|
| 154 | P_COLO2(I_LAY) = 1.E-20_JPRB * P_WKL(7,I_LAY) |
---|
| 155 | IF (P_COLCO2(I_LAY) == 0.0_JPRB) P_COLCO2(I_LAY) = 1.E-32_JPRB * P_COLDRY(I_LAY) |
---|
| 156 | IF (P_COLN2O(I_LAY) == 0.0_JPRB) P_COLN2O(I_LAY) = 1.E-32_JPRB * P_COLDRY(I_LAY) |
---|
| 157 | IF (P_COLCH4(I_LAY) == 0.0_JPRB) P_COLCH4(I_LAY) = 1.E-32_JPRB * P_COLDRY(I_LAY) |
---|
| 158 | Z_CO2REG = 3.55E-24_JPRB * P_COLDRY(I_LAY) |
---|
| 159 | P_CO2MULT(I_LAY)= (P_COLCO2(I_LAY) - Z_CO2REG) *& |
---|
| 160 | & 272.63_JPRB*EXP(-1919.4_JPRB/P_TAVEL(I_LAY))/(8.7604E-4_JPRB*P_TAVEL(I_LAY)) |
---|
| 161 | !---------------- |
---|
| 162 | ENDIF |
---|
| 163 | ! 5400 CONTINUE |
---|
| 164 | |
---|
| 165 | ! We have now isolated the layer ln pressure and temperature, |
---|
| 166 | ! between two reference pressures and two reference temperatures |
---|
| 167 | ! (for each reference pressure). We multiply the pressure |
---|
| 168 | ! fraction FP with the appropriate temperature fractions to get |
---|
| 169 | ! the factors that will be needed for the interpolation that yields |
---|
| 170 | ! the optical depths (performed in routines TAUGBn for band n). |
---|
| 171 | |
---|
| 172 | Z_COMPFP = 1.0_JPRB - Z_FP |
---|
| 173 | P_FAC10(I_LAY) = Z_COMPFP * Z_FT |
---|
| 174 | P_FAC00(I_LAY) = Z_COMPFP * (1.0_JPRB - Z_FT) |
---|
| 175 | P_FAC11(I_LAY) = Z_FP * Z_FT1 |
---|
| 176 | P_FAC01(I_LAY) = Z_FP * (1.0_JPRB - Z_FT1) |
---|
| 177 | |
---|
| 178 | ENDDO |
---|
| 179 | |
---|
| 180 | ! MT 981104 |
---|
| 181 | !-- Set LAYLOW for profiles with surface pressure less than 750 hPa. |
---|
| 182 | IF (K_LAYLOW == 0) K_LAYLOW=1 |
---|
| 183 | |
---|
| 184 | IF (LHOOK) CALL DR_HOOK('RRTM_SETCOEF_140GP',1,ZHOOK_HANDLE) |
---|
| 185 | END SUBROUTINE RRTM_SETCOEF_140GP |
---|