[2027] | 1 | ! |
---|
| 2 | ! $Id: rrtm_ecrt_140gp.F90 2152 2014-11-19 16:52:35Z oboucher $ |
---|
| 3 | ! |
---|
[1989] | 4 | !****************** SUBROUTINE RRTM_ECRT_140GP ************************** |
---|
| 5 | |
---|
| 6 | SUBROUTINE RRTM_ECRT_140GP & |
---|
| 7 | & ( K_IPLON, klon , klev, kcld,& |
---|
| 8 | & paer , paph , pap,& |
---|
| 9 | & pts , pth , pt,& |
---|
| 10 | & P_ZEMIS, P_ZEMIW,& |
---|
| 11 | & pq , pcco2, pozn, pcldf, ptaucld, ptclear,& |
---|
[2146] | 12 | & P_CLDFRAC,P_TAUCLD,& |
---|
| 13 | & PTAU_LW,& |
---|
| 14 | & P_COLDRY,P_WKL,P_WX,& |
---|
| 15 | & P_TAUAERL,PAVEL,P_TAVEL,PZ,P_TZ,P_TBOUND,K_NLAYERS,P_SEMISS,K_IREFLECT ) |
---|
[1989] | 16 | |
---|
| 17 | ! Reformatted for F90 by JJMorcrette, ECMWF, 980714 |
---|
| 18 | |
---|
| 19 | ! Read in atmospheric profile from ECMWF radiation code, and prepare it |
---|
| 20 | ! for use in RRTM. Set other RRTM input parameters. Values are passed |
---|
| 21 | ! back through existing RRTM arrays and commons. |
---|
| 22 | |
---|
| 23 | !- Modifications |
---|
| 24 | |
---|
| 25 | ! 2000-05-15 Deborah Salmond Speed-up |
---|
| 26 | |
---|
| 27 | USE PARKIND1 ,ONLY : JPIM ,JPRB |
---|
| 28 | USE YOMHOOK ,ONLY : LHOOK, DR_HOOK |
---|
| 29 | |
---|
| 30 | USE PARRRTM , ONLY : JPBAND ,JPXSEC ,JPLAY ,& |
---|
| 31 | & JPINPX |
---|
[2146] | 32 | USE YOERAD , ONLY : NLW ,NOVLP |
---|
| 33 | USE YOERDI , ONLY : RCH4 ,RN2O ,RCFC11 ,RCFC12 |
---|
[1989] | 34 | USE YOESW , ONLY : RAER |
---|
| 35 | |
---|
| 36 | !------------------------------Arguments-------------------------------- |
---|
| 37 | |
---|
[2146] | 38 | IMPLICIT NONE |
---|
[2027] | 39 | |
---|
| 40 | |
---|
[1989] | 41 | INTEGER(KIND=JPIM),INTENT(IN) :: KLON! Number of atmospheres (longitudes) |
---|
| 42 | INTEGER(KIND=JPIM),INTENT(IN) :: KLEV! Number of atmospheric layers |
---|
| 43 | INTEGER(KIND=JPIM),INTENT(IN) :: K_IPLON |
---|
| 44 | INTEGER(KIND=JPIM),INTENT(OUT) :: KCLD |
---|
| 45 | REAL(KIND=JPRB) ,INTENT(IN) :: PAER(KLON,6,KLEV) ! Aerosol optical thickness |
---|
| 46 | REAL(KIND=JPRB) ,INTENT(IN) :: PAPH(KLON,KLEV+1) ! Interface pressures (Pa) |
---|
| 47 | REAL(KIND=JPRB) ,INTENT(IN) :: PAP(KLON,KLEV) ! Layer pressures (Pa) |
---|
| 48 | REAL(KIND=JPRB) ,INTENT(IN) :: PTS(KLON) ! Surface temperature (K) |
---|
| 49 | REAL(KIND=JPRB) ,INTENT(IN) :: PTH(KLON,KLEV+1) ! Interface temperatures (K) |
---|
| 50 | REAL(KIND=JPRB) ,INTENT(IN) :: PT(KLON,KLEV) ! Layer temperature (K) |
---|
| 51 | REAL(KIND=JPRB) ,INTENT(IN) :: P_ZEMIS(KLON) ! Non-window surface emissivity |
---|
| 52 | REAL(KIND=JPRB) ,INTENT(IN) :: P_ZEMIW(KLON) ! Window surface emissivity |
---|
| 53 | REAL(KIND=JPRB) ,INTENT(IN) :: PQ(KLON,KLEV) ! H2O specific humidity (mmr) |
---|
| 54 | REAL(KIND=JPRB) ,INTENT(IN) :: PCCO2 ! CO2 mass mixing ratio |
---|
| 55 | REAL(KIND=JPRB) ,INTENT(IN) :: POZN(KLON,KLEV) ! O3 mass mixing ratio |
---|
| 56 | REAL(KIND=JPRB) ,INTENT(IN) :: PCLDF(KLON,KLEV) ! Cloud fraction |
---|
| 57 | REAL(KIND=JPRB) ,INTENT(IN) :: PTAUCLD(KLON,KLEV,JPBAND) ! Cloud optical depth |
---|
[2146] | 58 | !--C.Kleinschmitt |
---|
| 59 | REAL(KIND=JPRB) ,INTENT(IN) :: PTAU_LW(KLON,KLEV,NLW) ! LW Optical depth of aerosols |
---|
| 60 | !--end |
---|
[1989] | 61 | REAL(KIND=JPRB) ,INTENT(OUT) :: PTCLEAR |
---|
| 62 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_CLDFRAC(JPLAY) ! Cloud fraction |
---|
| 63 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUCLD(JPLAY,JPBAND) ! Spectral optical thickness |
---|
| 64 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_COLDRY(JPLAY) |
---|
| 65 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_WKL(JPINPX,JPLAY) |
---|
| 66 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_WX(JPXSEC,JPLAY) ! Amount of trace gases |
---|
| 67 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAUAERL(JPLAY,JPBAND) |
---|
| 68 | REAL(KIND=JPRB) ,INTENT(OUT) :: PAVEL(JPLAY) |
---|
| 69 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TAVEL(JPLAY) |
---|
| 70 | REAL(KIND=JPRB) ,INTENT(OUT) :: PZ(0:JPLAY) |
---|
| 71 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TZ(0:JPLAY) |
---|
| 72 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_TBOUND |
---|
| 73 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_NLAYERS |
---|
| 74 | REAL(KIND=JPRB) ,INTENT(OUT) :: P_SEMISS(JPBAND) |
---|
| 75 | INTEGER(KIND=JPIM),INTENT(OUT) :: K_IREFLECT |
---|
| 76 | ! real rch4 ! CH4 mass mixing ratio |
---|
| 77 | ! real rn2o ! N2O mass mixing ratio |
---|
| 78 | ! real rcfc11 ! CFC11 mass mixing ratio |
---|
| 79 | ! real rcfc12 ! CFC12 mass mixing ratio |
---|
| 80 | !- from AER |
---|
| 81 | !- from PROFILE |
---|
| 82 | !- from SURFACE |
---|
| 83 | REAL(KIND=JPRB) :: ztauaer(5) |
---|
| 84 | REAL(KIND=JPRB) :: zc1j(0:klev) ! total cloud from top and level k |
---|
| 85 | REAL(KIND=JPRB) :: Z_AMD ! Effective molecular weight of dry air (g/mol) |
---|
| 86 | REAL(KIND=JPRB) :: Z_AMW ! Molecular weight of water vapor (g/mol) |
---|
| 87 | REAL(KIND=JPRB) :: Z_AMCO2 ! Molecular weight of carbon dioxide (g/mol) |
---|
| 88 | REAL(KIND=JPRB) :: Z_AMO ! Molecular weight of ozone (g/mol) |
---|
| 89 | REAL(KIND=JPRB) :: Z_AMCH4 ! Molecular weight of methane (g/mol) |
---|
| 90 | REAL(KIND=JPRB) :: Z_AMN2O ! Molecular weight of nitrous oxide (g/mol) |
---|
| 91 | REAL(KIND=JPRB) :: Z_AMC11 ! Molecular weight of CFC11 (g/mol) - CFCL3 |
---|
| 92 | REAL(KIND=JPRB) :: Z_AMC12 ! Molecular weight of CFC12 (g/mol) - CF2CL2 |
---|
| 93 | REAL(KIND=JPRB) :: Z_AVGDRO ! Avogadro's number (molecules/mole) |
---|
| 94 | REAL(KIND=JPRB) :: Z_GRAVIT ! Gravitational acceleration (cm/sec2) |
---|
| 95 | |
---|
| 96 | ! Atomic weights for conversion from mass to volume mixing ratios; these |
---|
| 97 | ! are the same values used in ECRT to assure accurate conversion to vmr |
---|
| 98 | data Z_AMD / 28.970_JPRB / |
---|
| 99 | data Z_AMW / 18.0154_JPRB / |
---|
| 100 | data Z_AMCO2 / 44.011_JPRB / |
---|
| 101 | data Z_AMO / 47.9982_JPRB / |
---|
| 102 | data Z_AMCH4 / 16.043_JPRB / |
---|
| 103 | data Z_AMN2O / 44.013_JPRB / |
---|
| 104 | data Z_AMC11 / 137.3686_JPRB / |
---|
| 105 | data Z_AMC12 / 120.9140_JPRB / |
---|
| 106 | data Z_AVGDRO/ 6.02214E23_JPRB / |
---|
| 107 | data Z_GRAVIT/ 9.80665E02_JPRB / |
---|
| 108 | |
---|
| 109 | INTEGER(KIND=JPIM) :: IATM, IMOL, IXMAX, J1, J2, JAE, JB, JK, JL, I_L |
---|
| 110 | INTEGER(KIND=JPIM) :: I_NMOL, I_NXMOL |
---|
| 111 | |
---|
| 112 | REAL(KIND=JPRB) :: Z_AMM, ZCLDLY, ZCLEAR, ZCLOUD, ZEPSEC |
---|
| 113 | REAL(KIND=JPRB) :: ZHOOK_HANDLE |
---|
| 114 | |
---|
| 115 | ! *** |
---|
| 116 | |
---|
| 117 | ! *** mji |
---|
| 118 | ! Initialize all molecular amounts and aerosol optical depths to zero here, |
---|
| 119 | ! then pass ECRT amounts into RRTM arrays below. |
---|
| 120 | |
---|
| 121 | ! DATA ZWKL /MAXPRDW*0.0/ |
---|
| 122 | ! DATA ZWX /MAXPROD*0.0/ |
---|
| 123 | ! DATA KREFLECT /0/ |
---|
| 124 | |
---|
| 125 | ! Activate cross section molecules: |
---|
| 126 | ! NXMOL - number of cross-sections input by user |
---|
| 127 | ! IXINDX(I) - index of cross-section molecule corresponding to Ith |
---|
| 128 | ! cross-section specified by user |
---|
| 129 | ! = 0 -- not allowed in RRTM |
---|
| 130 | ! = 1 -- CCL4 |
---|
| 131 | ! = 2 -- CFC11 |
---|
| 132 | ! = 3 -- CFC12 |
---|
| 133 | ! = 4 -- CFC22 |
---|
| 134 | ! DATA KXMOL /2/ |
---|
| 135 | ! DATA KXINDX /0,2,3,0,31*0/ |
---|
| 136 | |
---|
| 137 | ! IREFLECT=KREFLECT |
---|
| 138 | ! NXMOL=KXMOL |
---|
| 139 | |
---|
| 140 | IF (LHOOK) CALL DR_HOOK('RRTM_ECRT_140GP',0,ZHOOK_HANDLE) |
---|
| 141 | K_IREFLECT=0 |
---|
| 142 | I_NXMOL=2 |
---|
| 143 | |
---|
| 144 | DO J1=1,35 |
---|
| 145 | ! IXINDX(J1)=0 |
---|
| 146 | DO J2=1,KLEV |
---|
| 147 | P_WKL(J1,J2)=0.0_JPRB |
---|
| 148 | ENDDO |
---|
| 149 | ENDDO |
---|
| 150 | !IXINDX(2)=2 |
---|
| 151 | !IXINDX(3)=3 |
---|
| 152 | |
---|
| 153 | ! Set parameters needed for RRTM execution: |
---|
| 154 | IATM = 0 |
---|
| 155 | ! IXSECT = 1 |
---|
| 156 | ! NUMANGS = 0 |
---|
| 157 | ! IOUT = -1 |
---|
| 158 | IXMAX = 4 |
---|
| 159 | |
---|
| 160 | ! Bands 6,7,8 are considered the 'window' and allowed to have a |
---|
| 161 | ! different surface emissivity (as in ECMWF). Eli wrote this part.... |
---|
| 162 | P_SEMISS(1) = P_ZEMIS(K_IPLON) |
---|
| 163 | P_SEMISS(2) = P_ZEMIS(K_IPLON) |
---|
| 164 | P_SEMISS(3) = P_ZEMIS(K_IPLON) |
---|
| 165 | P_SEMISS(4) = P_ZEMIS(K_IPLON) |
---|
| 166 | P_SEMISS(5) = P_ZEMIS(K_IPLON) |
---|
| 167 | P_SEMISS(6) = P_ZEMIW(K_IPLON) |
---|
| 168 | P_SEMISS(7) = P_ZEMIW(K_IPLON) |
---|
| 169 | P_SEMISS(8) = P_ZEMIW(K_IPLON) |
---|
| 170 | P_SEMISS(9) = P_ZEMIS(K_IPLON) |
---|
| 171 | P_SEMISS(10) = P_ZEMIS(K_IPLON) |
---|
| 172 | P_SEMISS(11) = P_ZEMIS(K_IPLON) |
---|
| 173 | P_SEMISS(12) = P_ZEMIS(K_IPLON) |
---|
| 174 | P_SEMISS(13) = P_ZEMIS(K_IPLON) |
---|
| 175 | P_SEMISS(14) = P_ZEMIS(K_IPLON) |
---|
| 176 | P_SEMISS(15) = P_ZEMIS(K_IPLON) |
---|
| 177 | P_SEMISS(16) = P_ZEMIS(K_IPLON) |
---|
| 178 | |
---|
| 179 | ! Set surface temperature. |
---|
| 180 | |
---|
| 181 | P_TBOUND = pts(K_IPLON) |
---|
| 182 | |
---|
| 183 | ! Install ECRT arrays into RRTM arrays for pressure, temperature, |
---|
| 184 | ! and molecular amounts. Pressures are converted from Pascals |
---|
| 185 | ! (ECRT) to mb (RRTM). H2O, CO2, O3 and trace gas amounts are |
---|
| 186 | ! converted from mass mixing ratio to volume mixing ratio. CO2 |
---|
| 187 | ! converted with same dry air and CO2 molecular weights used in |
---|
| 188 | ! ECRT to assure correct conversion back to the proper CO2 vmr. |
---|
| 189 | ! The dry air column COLDRY (in molec/cm2) is calculated from |
---|
| 190 | ! the level pressures PZ (in mb) based on the hydrostatic equation |
---|
| 191 | ! and includes a correction to account for H2O in the layer. The |
---|
| 192 | ! molecular weight of moist air (amm) is calculated for each layer. |
---|
| 193 | ! Note: RRTM levels count from bottom to top, while the ECRT input |
---|
| 194 | ! variables count from the top down and must be reversed here. |
---|
| 195 | |
---|
| 196 | K_NLAYERS = klev |
---|
| 197 | I_NMOL = 6 |
---|
| 198 | PZ(0) = paph(K_IPLON,klev+1)/100._JPRB |
---|
| 199 | P_TZ(0) = pth(K_IPLON,klev+1) |
---|
| 200 | DO I_L = 1, KLEV |
---|
| 201 | PAVEL(I_L) = pap(K_IPLON,KLEV-I_L+1)/100._JPRB |
---|
| 202 | P_TAVEL(I_L) = pt(K_IPLON,KLEV-I_L+1) |
---|
| 203 | PZ(I_L) = paph(K_IPLON,KLEV-I_L+1)/100._JPRB |
---|
| 204 | P_TZ(I_L) = pth(K_IPLON,KLEV-I_L+1) |
---|
| 205 | P_WKL(1,I_L) = pq(K_IPLON,KLEV-I_L+1)*Z_AMD/Z_AMW |
---|
| 206 | P_WKL(2,I_L) = pcco2*Z_AMD/Z_AMCO2 |
---|
| 207 | P_WKL(3,I_L) = pozn(K_IPLON,KLEV-I_L+1)*Z_AMD/Z_AMO |
---|
| 208 | P_WKL(4,I_L) = rn2o*Z_AMD/Z_AMN2O |
---|
| 209 | P_WKL(6,I_L) = rch4*Z_AMD/Z_AMCH4 |
---|
| 210 | Z_AMM = (1-P_WKL(1,I_L))*Z_AMD + P_WKL(1,I_L)*Z_AMW |
---|
| 211 | P_COLDRY(I_L) = (PZ(I_L-1)-PZ(I_L))*1.E3_JPRB*Z_AVGDRO/(Z_GRAVIT*Z_AMM*(1+P_WKL(1,I_L))) |
---|
| 212 | ENDDO |
---|
| 213 | |
---|
| 214 | !- Fill RRTM aerosol arrays with operational ECMWF aerosols, |
---|
| 215 | ! do the mixing and distribute over the 16 spectral intervals |
---|
| 216 | |
---|
| 217 | DO I_L=1,KLEV |
---|
| 218 | JK=KLEV-I_L+1 |
---|
| 219 | ! DO JAE=1,5 |
---|
| 220 | JAE=1 |
---|
| 221 | ZTAUAER(JAE) =& |
---|
| 222 | & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& |
---|
| 223 | & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& |
---|
| 224 | & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) |
---|
| 225 | P_TAUAERL(I_L, 1)=ZTAUAER(1) |
---|
| 226 | P_TAUAERL(I_L, 2)=ZTAUAER(1) |
---|
| 227 | JAE=2 |
---|
| 228 | ZTAUAER(JAE) =& |
---|
| 229 | & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& |
---|
| 230 | & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& |
---|
| 231 | & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) |
---|
| 232 | P_TAUAERL(I_L, 3)=ZTAUAER(2) |
---|
| 233 | P_TAUAERL(I_L, 4)=ZTAUAER(2) |
---|
| 234 | P_TAUAERL(I_L, 5)=ZTAUAER(2) |
---|
| 235 | JAE=3 |
---|
| 236 | ZTAUAER(JAE) =& |
---|
| 237 | & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& |
---|
| 238 | & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& |
---|
| 239 | & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) |
---|
| 240 | P_TAUAERL(I_L, 6)=ZTAUAER(3) |
---|
| 241 | P_TAUAERL(I_L, 8)=ZTAUAER(3) |
---|
| 242 | P_TAUAERL(I_L, 9)=ZTAUAER(3) |
---|
| 243 | JAE=4 |
---|
| 244 | ZTAUAER(JAE) =& |
---|
| 245 | & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& |
---|
| 246 | & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& |
---|
| 247 | & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) |
---|
| 248 | P_TAUAERL(I_L, 7)=ZTAUAER(4) |
---|
| 249 | JAE=5 |
---|
| 250 | ZTAUAER(JAE) =& |
---|
| 251 | & RAER(JAE,1)*PAER(K_IPLON,1,JK)+RAER(JAE,2)*PAER(K_IPLON,2,JK)& |
---|
| 252 | & +RAER(JAE,3)*PAER(K_IPLON,3,JK)+RAER(JAE,4)*PAER(K_IPLON,4,JK)& |
---|
| 253 | & +RAER(JAE,5)*PAER(K_IPLON,5,JK)+RAER(JAE,6)*PAER(K_IPLON,6,JK) |
---|
| 254 | ! END DO |
---|
| 255 | P_TAUAERL(I_L,10)=ZTAUAER(5) |
---|
| 256 | P_TAUAERL(I_L,11)=ZTAUAER(5) |
---|
| 257 | P_TAUAERL(I_L,12)=ZTAUAER(5) |
---|
| 258 | P_TAUAERL(I_L,13)=ZTAUAER(5) |
---|
| 259 | P_TAUAERL(I_L,14)=ZTAUAER(5) |
---|
| 260 | P_TAUAERL(I_L,15)=ZTAUAER(5) |
---|
| 261 | P_TAUAERL(I_L,16)=ZTAUAER(5) |
---|
| 262 | ENDDO |
---|
[2146] | 263 | !--Use LW AOD from own Mie calculations (C. Kleinschmitt) |
---|
| 264 | DO I_L=1,KLEV |
---|
| 265 | JK=KLEV-I_L+1 |
---|
[2152] | 266 | DO JAE=1, NLW |
---|
[2146] | 267 | P_TAUAERL(I_L,JAE) = MAX( PTAU_LW(K_IPLON, JK, JAE), 1e-30 ) |
---|
| 268 | ENDDO |
---|
| 269 | ENDDO |
---|
| 270 | !--end C. Kleinschmitt |
---|
[1989] | 271 | |
---|
| 272 | DO J2=1,KLEV |
---|
| 273 | DO J1=1,JPXSEC |
---|
| 274 | P_WX(J1,J2)=0.0_JPRB |
---|
| 275 | ENDDO |
---|
| 276 | ENDDO |
---|
| 277 | |
---|
| 278 | DO I_L = 1, KLEV |
---|
| 279 | !- Set cross section molecule amounts from ECRT; convert to vmr |
---|
| 280 | P_WX(2,I_L) = rcfc11*Z_AMD/Z_AMC11 |
---|
| 281 | P_WX(3,I_L) = rcfc12*Z_AMD/Z_AMC12 |
---|
| 282 | P_WX(2,I_L) = P_COLDRY(I_L) * P_WX(2,I_L) * 1.E-20_JPRB |
---|
| 283 | P_WX(3,I_L) = P_COLDRY(I_L) * P_WX(3,I_L) * 1.E-20_JPRB |
---|
| 284 | |
---|
| 285 | !- Here, all molecules in WKL and WX are in volume mixing ratio; convert to |
---|
| 286 | ! molec/cm2 based on COLDRY for use in RRTM |
---|
| 287 | |
---|
| 288 | DO IMOL = 1, I_NMOL |
---|
| 289 | P_WKL(IMOL,I_L) = P_COLDRY(I_L) * P_WKL(IMOL,I_L) |
---|
| 290 | ENDDO |
---|
| 291 | |
---|
| 292 | ! DO IX = 1,JPXSEC |
---|
| 293 | ! IF (IXINDX(IX) /= 0) THEN |
---|
| 294 | ! WX(IXINDX(IX),L) = COLDRY(L) * WX(IX,L) * 1.E-20_JPRB |
---|
| 295 | ! ENDIF |
---|
| 296 | ! END DO |
---|
| 297 | |
---|
| 298 | ENDDO |
---|
| 299 | |
---|
| 300 | !- Approximate treatment for various cloud overlaps |
---|
| 301 | ZCLEAR=1.0_JPRB |
---|
| 302 | ZCLOUD=0.0_JPRB |
---|
| 303 | ZC1J(0)=0.0_JPRB |
---|
| 304 | ZEPSEC=1.E-03_JPRB |
---|
| 305 | JL=K_IPLON |
---|
| 306 | |
---|
| 307 | !++MODIFCODE |
---|
| 308 | IF ((NOVLP == 1).OR.(NOVLP ==6).OR.(NOVLP ==8)) THEN |
---|
| 309 | !--MODIFCODE |
---|
| 310 | |
---|
| 311 | DO JK=1,KLEV |
---|
| 312 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
| 313 | ZCLDLY=pcldf(JL,JK) |
---|
| 314 | ZCLEAR=ZCLEAR & |
---|
| 315 | & *(1.0_JPRB-MAX( ZCLDLY , ZCLOUD ))& |
---|
| 316 | & /(1.0_JPRB-MIN( ZCLOUD , 1.0_JPRB-ZEPSEC )) |
---|
| 317 | ZCLOUD = ZCLDLY |
---|
| 318 | ZC1J(JK)= 1.0_JPRB - ZCLEAR |
---|
| 319 | ELSE |
---|
| 320 | ZCLDLY=0.0_JPRB |
---|
| 321 | ZCLEAR=ZCLEAR & |
---|
| 322 | & *(1.0_JPRB-MAX( ZCLDLY , ZCLOUD ))& |
---|
| 323 | & /(1.0_JPRB-MIN( ZCLOUD , 1.0_JPRB-ZEPSEC )) |
---|
| 324 | ZCLOUD = ZCLDLY |
---|
| 325 | ZC1J(JK)= 1.0_JPRB - ZCLEAR |
---|
| 326 | ENDIF |
---|
| 327 | ENDDO |
---|
| 328 | |
---|
| 329 | !++MODIFCODE |
---|
| 330 | ELSEIF ((NOVLP == 2).OR.(NOVLP ==7)) THEN |
---|
| 331 | !--MODIFCODE |
---|
| 332 | |
---|
| 333 | DO JK=1,KLEV |
---|
| 334 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
| 335 | ZCLDLY=pcldf(JL,JK) |
---|
| 336 | ZCLOUD = MAX( ZCLDLY , ZCLOUD ) |
---|
| 337 | ZC1J(JK) = ZCLOUD |
---|
| 338 | ELSE |
---|
| 339 | ZCLDLY=0.0_JPRB |
---|
| 340 | ZCLOUD = MAX( ZCLDLY , ZCLOUD ) |
---|
| 341 | ZC1J(JK) = ZCLOUD |
---|
| 342 | ENDIF |
---|
| 343 | ENDDO |
---|
| 344 | |
---|
| 345 | !++MODIFCODE |
---|
| 346 | ELSEIF ((NOVLP == 3).OR.(NOVLP ==5)) THEN |
---|
| 347 | !--MODIFCODE |
---|
| 348 | |
---|
| 349 | DO JK=1,KLEV |
---|
| 350 | IF (pcldf(JL,JK) > ZEPSEC) THEN |
---|
| 351 | ZCLDLY=pcldf(JL,JK) |
---|
| 352 | ZCLEAR = ZCLEAR * (1.0_JPRB-ZCLDLY) |
---|
| 353 | ZCLOUD = 1.0_JPRB - ZCLEAR |
---|
| 354 | ZC1J(JK) = ZCLOUD |
---|
| 355 | ELSE |
---|
| 356 | ZCLDLY=0.0_JPRB |
---|
| 357 | ZCLEAR = ZCLEAR * (1.0_JPRB-ZCLDLY) |
---|
| 358 | ZCLOUD = 1.0_JPRB - ZCLEAR |
---|
| 359 | ZC1J(JK) = ZCLOUD |
---|
| 360 | ENDIF |
---|
| 361 | ENDDO |
---|
| 362 | |
---|
| 363 | ELSEIF (NOVLP == 4) THEN |
---|
| 364 | |
---|
| 365 | ENDIF |
---|
| 366 | PTCLEAR=1.0_JPRB-ZC1J(KLEV) |
---|
| 367 | |
---|
| 368 | ! Transfer cloud fraction and cloud optical depth to RRTM arrays; |
---|
| 369 | ! invert array index for pcldf to go from bottom to top for RRTM |
---|
| 370 | |
---|
| 371 | !- clear-sky column |
---|
| 372 | IF (PTCLEAR > 1.0_JPRB-ZEPSEC) THEN |
---|
| 373 | KCLD=0 |
---|
| 374 | DO I_L = 1, KLEV |
---|
| 375 | P_CLDFRAC(I_L) = 0.0_JPRB |
---|
| 376 | ENDDO |
---|
| 377 | DO JB=1,JPBAND |
---|
| 378 | DO I_L=1,KLEV |
---|
| 379 | P_TAUCLD(I_L,JB) = 0.0_JPRB |
---|
| 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | |
---|
| 383 | ELSE |
---|
| 384 | |
---|
| 385 | !- cloudy column |
---|
| 386 | ! The diffusivity factor (Savijarvi, 1997) on the cloud optical |
---|
| 387 | ! thickness TAUCLD has already been applied in RADLSW |
---|
| 388 | |
---|
| 389 | KCLD=1 |
---|
| 390 | DO I_L=1,KLEV |
---|
| 391 | P_CLDFRAC(I_L) = pcldf(K_IPLON,I_L) |
---|
| 392 | ENDDO |
---|
| 393 | DO JB=1,JPBAND |
---|
| 394 | DO I_L=1,KLEV |
---|
| 395 | P_TAUCLD(I_L,JB) = ptaucld(K_IPLON,I_L,JB) |
---|
| 396 | ENDDO |
---|
| 397 | ENDDO |
---|
| 398 | |
---|
| 399 | ENDIF |
---|
| 400 | |
---|
| 401 | ! ------------------------------------------------------------------ |
---|
| 402 | |
---|
| 403 | IF (LHOOK) CALL DR_HOOK('RRTM_ECRT_140GP',1,ZHOOK_HANDLE) |
---|
| 404 | END SUBROUTINE RRTM_ECRT_140GP |
---|