source: LMDZ5/trunk/libf/phylmd/phys_output_ctrlout_mod.F90 @ 1856

Last change on this file since 1856 was 1852, checked in by Ehouarn Millour, 11 years ago

Implémentation des sorties XIOS dans LMDZ. Activation via -cpp CPP_XIOS.
ATTENTION: un problème de raccord subsiste en mode MPI !
UG
................................
Adding XIOS output to LMDZ. Activated by the CPP_XIOS key.
WARNING: buggy for now in MPI mode.
UG

File size: 89.2 KB
Line 
1MODULE phys_output_ctrlout_mod
2
3  USE phys_output_var_mod
4  USE indice_sol_mod
5  USE aero_mod, only : naero_spc,name_aero
6
7
8
9  IMPLICIT NONE
10      INTEGER, PRIVATE :: i
11
12!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13!! Definition pour chaque variable du niveau d ecriture dans chaque fichier,
14!! de son nom, de sa description, de son unité et du type d'écriture.
15!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!/ histmth, histday, histhf, histins /),'!!!!!!!!!!!!
16!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17!  CHARACTER(len=20), dimension(nfiles) :: TEF = type_ecri_files
18
19!!! Comosantes de la coordonnee sigma-hybride
20!!! Ap et Bp
21  TYPE(ctrl_out), SAVE :: o_Ahyb = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11 /), &
22    'Ap', '', '', (/ ('', i=1, 9) /))
23  TYPE(ctrl_out), SAVE :: o_Bhyb = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11 /), &
24    'Bp', '', '', (/ ('', i=1, 9) /))
25  TYPE(ctrl_out), SAVE :: o_Alt = ctrl_out((/ 1, 1, 1, 1, 1, 1, 11, 11, 11 /), &
26    'Alt', '', '', (/ ('', i=1, 9) /))
27
28!!! 1D
29  TYPE(ctrl_out), SAVE :: o_phis = ctrl_out((/ 1, 1, 10, 5, 1, 1, 11, 11, 11 /), &
30    'phis', 'Surface geop.height', 'm2/s2', (/ ('', i=1, 9) /))
31  TYPE(ctrl_out), SAVE :: o_aire = ctrl_out((/ 1, 1, 10,  10, 1, 1, 11, 11, 11 /), &
32    'aire', 'Grid area', '-', (/ 'once', 'once', 'once', 'once', 'once', 'once', &
33                                     'once', 'once', 'once' /))
34  TYPE(ctrl_out), SAVE :: o_contfracATM = ctrl_out((/ 10, 1,  1, 10, 10, 10, 11, 11, 11 /), &
35    'contfracATM', '% sfce ter+lic', '-', &
36       (/ 'once', 'once', 'once', 'once', 'once', 'once', 'once', 'once', 'once' /))
37  TYPE(ctrl_out), SAVE :: o_contfracOR = ctrl_out((/ 10, 1,  10, 10, 10, 10, 11, 11, 11 /), &
38    'contfracOR', '% sfce terre OR', '-', (/ ('', i=1, 9) /))
39  TYPE(ctrl_out), SAVE :: o_aireTER = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
40    'aireTER', 'Grid area CONT', '-', (/ ('', i=1, 9) /))
41
42!!! 2D
43  TYPE(ctrl_out), SAVE :: o_flat = ctrl_out((/ 5, 1, 10, 10, 5, 10, 11, 11, 11 /), &
44    'flat', 'Latent heat flux', 'W/m2', (/ ('', i=1, 9) /))
45  TYPE(ctrl_out), SAVE :: o_slp = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
46    'slp', 'Sea Level Pressure', 'Pa', (/ ('', i=1, 9) /))
47  TYPE(ctrl_out), SAVE :: o_tsol = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11 /), &
48    'tsol', 'Surface Temperature', 'K', (/ ('', i=1, 9) /))
49  TYPE(ctrl_out), SAVE :: o_t2m = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11 /), &
50    't2m', 'Temperature 2m', 'K', (/ ('', i=1, 9) /))
51  TYPE(ctrl_out), SAVE :: o_t2m_min = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
52    't2m_min', 'Temp 2m min', 'K', &
53      (/ "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)" /))
54  TYPE(ctrl_out), SAVE :: o_t2m_max = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
55    't2m_max', 'Temp 2m max', 'K', &
56      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", &
57         "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /))
58
59  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_t2m_srf = (/ &
60      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /), &
61    't2m_ter', "Temp 2m "//clnsurf(1), "K", (/ ('', i=1, 9) /)), &
62      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /), &
63    't2m_lic', "Temp 2m "//clnsurf(2), "K", (/ ('', i=1, 9) /)), &
64      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /), &
65    't2m_oce', "Temp 2m "//clnsurf(3), "K", (/ ('', i=1, 9) /)), &
66      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /), &
67    't2m_sic', "Temp 2m "//clnsurf(4), "K", (/ ('', i=1, 9) /)) /)
68
69  TYPE(ctrl_out), SAVE :: o_wind10m = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
70    'wind10m', '10-m wind speed', 'm/s', (/ ('', i=1, 9) /))
71  TYPE(ctrl_out), SAVE :: o_wind10max = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11 /), &
72    'wind10max', '10m wind speed max', 'm/s', (/ ('', i=1, 9) /))
73  TYPE(ctrl_out), SAVE :: o_sicf = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
74    'sicf', 'Sea-ice fraction', '-', (/ ('', i=1, 9) /))
75  TYPE(ctrl_out), SAVE :: o_q2m = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11 /), &
76    'q2m', 'Specific humidity 2m', 'kg/kg', (/ ('', i=1, 9) /))
77  TYPE(ctrl_out), SAVE :: o_ustar = ctrl_out((/ 1, 1, 10, 5, 10, 10, 11, 11, 11 /), &
78    'ustar', 'Friction velocity', 'm/s', (/ ('', i=1, 9) /))
79  TYPE(ctrl_out), SAVE :: o_u10m = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11 /), &
80    'u10m', 'Vent zonal 10m', 'm/s', (/ ('', i=1, 9) /))
81  TYPE(ctrl_out), SAVE :: o_v10m = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11 /), &
82    'v10m', 'Vent meridien 10m', 'm/s', (/ ('', i=1, 9) /))
83  TYPE(ctrl_out), SAVE :: o_psol = ctrl_out((/ 1, 1, 1, 5, 10, 10, 11, 11, 11 /), &
84    'psol', 'Surface Pressure', 'Pa', (/ ('', i=1, 9) /))
85  TYPE(ctrl_out), SAVE :: o_qsurf = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
86    'qsurf', 'Surface Air humidity', 'kg/kg', (/ ('', i=1, 9) /))
87
88  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_ustar_srf     = (/ &
89      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'ustar_ter', &
90      "Friction velocity "//clnsurf(1),"m/s", (/ ('', i=1, 9) /)), &
91      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'ustar_lic', &
92      "Friction velocity "//clnsurf(2),"m/s", (/ ('', i=1, 9) /)), &
93      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'ustar_oce', &
94      "Friction velocity "//clnsurf(3),"m/s", (/ ('', i=1, 9) /)), &
95      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'ustar_sic', &
96      "Friction velocity "//clnsurf(4),"m/s", (/ ('', i=1, 9) /)) /)
97
98  TYPE(ctrl_out), SAVE, DIMENSION(5) :: o_wstar         = (/ &
99      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'wstar_ter', &
100      "Friction velocity "//clnsurf(1),"m/s", (/ ('', i=1, 9) /)), &
101      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'wstar_lic', &
102      "Friction velocity "//clnsurf(2),"m/s", (/ ('', i=1, 9) /)), &
103      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'wstar_oce', &
104      "Friction velocity "//clnsurf(3),"m/s", (/ ('', i=1, 9) /)), &
105      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'wstar_sic', &
106      "Friction velocity "//clnsurf(4),"m/s", (/ ('', i=1, 9) /)), &
107      ctrl_out((/ 5, 5, 10, 10, 10, 10, 11, 11, 11 /),'wstar', &
108      "w* convective velocity "//clnsurf(4),"m/s", (/ ('', i=1, 9) /)) /)
109
110  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_u10m_srf     = (/ &
111      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'u10m_ter', &
112      "Vent Zonal 10m "//clnsurf(1),"m/s", (/ ('', i=1, 9) /)), &
113      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'u10m_lic', &
114      "Vent Zonal 10m "//clnsurf(2),"m/s", (/ ('', i=1, 9) /)), &
115      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'u10m_oce', &
116      "Vent Zonal 10m "//clnsurf(3),"m/s", (/ ('', i=1, 9) /)), &
117      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'u10m_sic', &
118      "Vent Zonal 10m "//clnsurf(4),"m/s", (/ ('', i=1, 9) /)) /)
119
120  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_v10m_srf     = (/ &
121      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'v10m_ter', &
122      "Vent meredien 10m "//clnsurf(1),"m/s", (/ ('', i=1, 9) /)), &
123      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'v10m_lic', &
124      "Vent meredien 10m "//clnsurf(2),"m/s", (/ ('', i=1, 9) /)), &
125      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'v10m_oce', &
126      "Vent meredien 10m "//clnsurf(3),"m/s", (/ ('', i=1, 9) /)), &
127      ctrl_out((/ 10, 6, 10, 10, 10, 10, 11, 11, 11 /),'v10m_sic', &
128      "Vent meredien 10m "//clnsurf(4),"m/s", (/ ('', i=1, 9) /)) /)
129
130  TYPE(ctrl_out), SAVE :: o_qsol = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
131    'qsol', 'Soil watter content', 'mm', (/ ('', i=1, 9) /))
132  TYPE(ctrl_out), SAVE :: o_ndayrain = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
133    'ndayrain', 'Number of dayrain(liq+sol)', '-', &
134      (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /))
135  TYPE(ctrl_out), SAVE :: o_precip = ctrl_out((/ 1, 1, 1, 10, 5, 10, 11, 11, 11 /), &
136    'precip', 'Precip Totale liq+sol', 'kg/(s*m2)', (/ ('', i=1, 9) /))
137  TYPE(ctrl_out), SAVE :: o_plul = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
138    'plul', 'Large-scale Precip.', 'kg/(s*m2)', (/ ('', i=1, 9) /))
139  TYPE(ctrl_out), SAVE :: o_pluc = ctrl_out((/ 1, 1, 1, 10, 5, 10, 11, 11, 11 /), &
140    'pluc', 'Convective Precip.', 'kg/(s*m2)', (/ ('', i=1, 9) /))
141  TYPE(ctrl_out), SAVE :: o_snow = ctrl_out((/ 1, 1, 10, 10, 5, 10, 11, 11, 11 /), &
142    'snow', 'Snow fall', 'kg/(s*m2)', (/ ('', i=1, 9) /))
143  TYPE(ctrl_out), SAVE :: o_evap = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
144    'evap', 'Evaporat', 'kg/(s*m2)', (/ ('', i=1, 9) /))
145
146  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_evap_srf     = (/ &
147      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'evap_ter', &
148      "evaporation at surface "//clnsurf(1),"kg/(s*m2)", (/ ('', i=1, 9) /)), &
149      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'evap_lic', &
150      "evaporation at surface "//clnsurf(2),"kg/(s*m2)", (/ ('', i=1, 9) /)), &
151      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'evap_oce', &
152      "evaporation at surface "//clnsurf(3),"kg/(s*m2)", (/ ('', i=1, 9) /)), &
153      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'evap_sic', &
154      "evaporation at surface "//clnsurf(4),"kg/(s*m2)", (/ ('', i=1, 9) /)) /)
155
156  TYPE(ctrl_out), SAVE :: o_msnow = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
157    'msnow', 'Surface snow amount', 'kg/m2', (/ ('', i=1, 9) /))
158  TYPE(ctrl_out), SAVE :: o_fsnow = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
159    'fsnow', 'Surface snow area fraction', '-', (/ ('', i=1, 9) /))
160  TYPE(ctrl_out), SAVE :: o_tops = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
161    'tops', 'Solar rad. at TOA', 'W/m2', (/ ('', i=1, 9) /))
162  TYPE(ctrl_out), SAVE :: o_tops0 = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11 /), &
163    'tops0', 'CS Solar rad. at TOA', 'W/m2', (/ ('', i=1, 9) /))
164  TYPE(ctrl_out), SAVE :: o_topl = ctrl_out((/ 1, 1, 10, 5, 10, 10, 11, 11, 11 /), &
165    'topl', 'IR rad. at TOA', 'W/m2', (/ ('', i=1, 9) /))
166  TYPE(ctrl_out), SAVE :: o_topl0 = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11 /), &
167    'topl0', 'IR rad. at TOA', 'W/m2', (/ ('', i=1, 9) /))
168  TYPE(ctrl_out), SAVE :: o_SWupTOA = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /), &
169    'SWupTOA', 'SWup at TOA', 'W/m2', (/ ('', i=1, 9) /))
170  TYPE(ctrl_out), SAVE :: o_SWupTOAclr = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /), &
171    'SWupTOAclr', 'SWup clear sky at TOA', 'W/m2', (/ ('', i=1, 9) /))
172  TYPE(ctrl_out), SAVE :: o_SWdnTOA = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /), &
173    'SWdnTOA', 'SWdn at TOA', 'W/m2', (/ ('', i=1, 9) /))
174  TYPE(ctrl_out), SAVE :: o_SWdnTOAclr = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /), &
175    'SWdnTOAclr', 'SWdn clear sky at TOA', 'W/m2', (/ ('', i=1, 9) /))
176  TYPE(ctrl_out), SAVE :: o_nettop = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /), &
177    'nettop', 'Net dn radiatif flux at TOA', 'W/m2', (/ ('', i=1, 9) /))
178  TYPE(ctrl_out), SAVE :: o_SWup200 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
179    'SWup200', 'SWup at 200mb', 'W/m2', (/ ('', i=1, 9) /))
180  TYPE(ctrl_out), SAVE :: o_SWup200clr = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11 /), &
181    'SWup200clr', 'SWup clear sky at 200mb', 'W/m2', (/ ('', i=1, 9) /))
182  TYPE(ctrl_out), SAVE :: o_SWdn200 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
183    'SWdn200', 'SWdn at 200mb', 'W/m2', (/ ('', i=1, 9) /))
184  TYPE(ctrl_out), SAVE :: o_SWdn200clr = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11 /), &
185    'SWdn200clr', 'SWdn clear sky at 200mb', 'W/m2', (/ ('', i=1, 9) /))
186
187  ! arajouter
188  !  type(ctrl_out),save :: o_LWupTOA     = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /),'LWupTOA', &
189  !    (/ ('', i=1, 9) /))
190  !  type(ctrl_out),save :: o_LWupTOAclr  = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /),'LWupTOAclr', &
191  !    (/ ('', i=1, 9) /))
192  !  type(ctrl_out),save :: o_LWdnTOA     = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /),'LWdnTOA', &
193  !    (/ ('', i=1, 9) /))
194  !  type(ctrl_out),save :: o_LWdnTOAclr  = ctrl_out((/ 1, 4, 10, 10, 10, 10, 11, 11, 11 /),'LWdnTOAclr', &
195  !    (/ ('', i=1, 9) /))
196  TYPE(ctrl_out), SAVE :: o_LWup200 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
197    'LWup200', 'LWup at 200mb', 'W/m2', (/ ('', i=1, 9) /))
198  TYPE(ctrl_out), SAVE :: o_LWup200clr = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
199    'LWup200clr', 'LWup clear sky at 200mb', 'W/m2', (/ ('', i=1, 9) /))
200  TYPE(ctrl_out), SAVE :: o_LWdn200 = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
201    'LWdn200', 'LWdn at 200mb', 'W/m2', (/ ('', i=1, 9) /))
202  TYPE(ctrl_out), SAVE :: o_LWdn200clr = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
203    'LWdn200clr', 'LWdn clear sky at 200mb', 'W/m2', (/ ('', i=1, 9) /))
204  TYPE(ctrl_out), SAVE :: o_sols = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
205    'sols', 'Solar rad. at surf.', 'W/m2', (/ ('', i=1, 9) /))
206  TYPE(ctrl_out), SAVE :: o_sols0 = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11 /), &
207    'sols0', 'Solar rad. at surf.', 'W/m2', (/ ('', i=1, 9) /))
208  TYPE(ctrl_out), SAVE :: o_soll = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
209    'soll', 'IR rad. at surface', 'W/m2', (/ ('', i=1, 9) /))
210  TYPE(ctrl_out), SAVE :: o_soll0 = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11 /), &
211    'soll0', 'IR rad. at surface', 'W/m2', (/ ('', i=1, 9) /))
212  TYPE(ctrl_out), SAVE :: o_radsol = ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11 /), &
213    'radsol', 'Rayonnement au sol', 'W/m2', (/ ('', i=1, 9) /))
214  TYPE(ctrl_out), SAVE :: o_SWupSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11 /), &
215    'SWupSFC', 'SWup at surface', 'W/m2', (/ ('', i=1, 9) /))
216  TYPE(ctrl_out), SAVE :: o_SWupSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11 /), &
217    'SWupSFCclr', 'SWup clear sky at surface', 'W/m2', (/ ('', i=1, 9) /))
218  TYPE(ctrl_out), SAVE :: o_SWdnSFC = ctrl_out((/ 1, 1, 10, 10, 5, 10, 11, 11, 11 /), &
219    'SWdnSFC', 'SWdn at surface', 'W/m2', (/ ('', i=1, 9) /))
220  TYPE(ctrl_out), SAVE :: o_SWdnSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11 /), &
221    'SWdnSFCclr', 'SWdn clear sky at surface', 'W/m2', (/ ('', i=1, 9) /))
222  TYPE(ctrl_out), SAVE :: o_LWupSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11 /), &
223    'LWupSFC', 'Upwd. IR rad. at surface', 'W/m2', (/ ('', i=1, 9) /))
224  TYPE(ctrl_out), SAVE :: o_LWupSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11 /), &
225    'LWupSFCclr', 'CS Upwd. IR rad. at surface', 'W/m2', (/ ('', i=1, 9) /))
226  TYPE(ctrl_out), SAVE :: o_LWdnSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11 /), &
227    'LWdnSFC', 'Down. IR rad. at surface', 'W/m2', (/ ('', i=1, 9) /))
228  TYPE(ctrl_out), SAVE :: o_LWdnSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10, 11, 11, 11 /), &
229    'LWdnSFCclr', 'Down. CS IR rad. at surface', 'W/m2', (/ ('', i=1, 9) /))
230  TYPE(ctrl_out), SAVE :: o_bils = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11 /), &
231    'bils', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 9) /))
232  TYPE(ctrl_out), SAVE :: o_bils_tke = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11 /), &
233    'bils_tke', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 9) /))
234  TYPE(ctrl_out), SAVE :: o_bils_diss = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11 /), &
235    'bils_diss', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 9) /))
236  TYPE(ctrl_out), SAVE :: o_bils_ec = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11 /), &
237    'bils_ec', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 9) /))
238  TYPE(ctrl_out), SAVE :: o_bils_kinetic = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11 /), &
239    'bils_kinetic', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 9) /))
240  TYPE(ctrl_out), SAVE :: o_bils_enthalp = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11 /), &
241    'bils_enthalp', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 9) /))
242  TYPE(ctrl_out), SAVE :: o_bils_latent = ctrl_out((/ 1, 2, 10, 5, 10, 10, 11, 11, 11 /), &
243    'bils_latent', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 9) /))
244  TYPE(ctrl_out), SAVE :: o_sens = ctrl_out((/ 1, 1, 10, 10, 5, 10, 11, 11, 11 /), &
245    'sens', 'Sensible heat flux', 'W/m2', (/ ('', i=1, 9) /))
246  TYPE(ctrl_out), SAVE :: o_fder = ctrl_out((/ 1, 2, 10, 10, 10, 10, 11, 11, 11 /), &
247    'fder', 'Heat flux derivation', 'W/m2', (/ ('', i=1, 9) /))
248  TYPE(ctrl_out), SAVE :: o_ffonte = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
249    'ffonte', 'Thermal flux for snow melting', 'W/m2', (/ ('', i=1, 9) /))
250  TYPE(ctrl_out), SAVE :: o_fqcalving = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
251    'fqcalving', 'Ice Calving', 'kg/m2/s', (/ ('', i=1, 9) /))
252  TYPE(ctrl_out), SAVE :: o_fqfonte = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
253    'fqfonte', 'Land ice melt', 'kg/m2/s', (/ ('', i=1, 9) /))
254  TYPE(ctrl_out), SAVE :: o_taux = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
255    'taux', 'Zonal wind stress', 'Pa', (/ ('', i=1, 9) /))
256  TYPE(ctrl_out), SAVE :: o_tauy = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
257    'tauy', 'Meridional wind stress', 'Pa', (/ ('', i=1, 9) /))
258
259  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_taux_srf = (/           &
260      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'taux_ter',             &
261      "Zonal wind stress"//clnsurf(1), "Pa", (/ ('', i=1, 9) /)), &
262      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'taux_lic',             &
263      "Zonal wind stress"//clnsurf(2), "Pa", (/ ('', i=1, 9) /)), &
264      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'taux_oce',             &
265      "Zonal wind stress"//clnsurf(3), "Pa", (/ ('', i=1, 9) /)), &
266      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'taux_sic',             &
267      "Zonal wind stress"//clnsurf(4), "Pa", (/ ('', i=1, 9) /)) /)
268
269  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tauy_srf     = (/             &
270      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'tauy_ter',                   &
271      "Meridional wind stress "//clnsurf(1),"Pa", (/ ('', i=1, 9) /)),  &
272      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'tauy_lic',                   &
273      "Meridional wind stress "//clnsurf(2),"Pa", (/ ('', i=1, 9) /)),  &
274      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'tauy_oce',                   &
275      "Meridional wind stress "//clnsurf(3),"Pa", (/ ('', i=1, 9) /)),  &
276      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'tauy_sic',                   &
277      "Meridional wind stress "//clnsurf(4),"Pa", (/ ('', i=1, 9) /)) /)
278
279  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_pourc_srf    = (/ &
280      ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11 /),'pourc_ter',      &
281      "% "//clnsurf(1),"%", (/ ('', i=1, 9) /)),            &
282      ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11 /),'pourc_lic',      &
283      "% "//clnsurf(2),"%", (/ ('', i=1, 9) /)),            &
284      ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11 /),'pourc_oce',      &
285      "% "//clnsurf(3),"%", (/ ('', i=1, 9) /)),            &
286      ctrl_out((/ 1, 7, 10, 10, 10, 10, 11, 11, 11 /),'pourc_sic',      &
287      "% "//clnsurf(4),"%", (/ ('', i=1, 9) /)) /)
288
289  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_fract_srf    = (/ &
290      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'fract_ter',      &
291      "Fraction "//clnsurf(1),"1", (/ ('', i=1, 9) /)),     &
292      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'fract_lic',      &
293      "Fraction "//clnsurf(2),"1", (/ ('', i=1, 9) /)),     &
294      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'fract_oce',      &
295      "Fraction "//clnsurf(3),"1", (/ ('', i=1, 9) /)),     &
296      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'fract_sic',      &
297      "Fraction "//clnsurf(4),"1", (/ ('', i=1, 9) /)) /)
298
299  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tsol_srf     = (/ &
300      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'tsol_ter',       &
301      "Temperature "//clnsurf(1),"K", (/ ('', i=1, 9) /)),  &
302      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'tsol_lic',       &
303      "Temperature "//clnsurf(2),"K", (/ ('', i=1, 9) /)),  &
304      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'tsol_oce',       &
305      "Temperature "//clnsurf(3),"K", (/ ('', i=1, 9) /)),  &
306      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'tsol_sic',       &
307      "Temperature "//clnsurf(4),"K", (/ ('', i=1, 9) /)) /)
308
309  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_evappot_srf  = (/ &
310      ctrl_out((/ 1, 6, 10, 10, 10, 10, 11, 11, 11 /),'evappot_ter',    &
311      "Temperature"//clnsurf(1),"K", (/ ('', i=1, 9) /)),   &
312      ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /),'evappot_lic',    &
313      "Temperature"//clnsurf(2),"K", (/ ('', i=1, 9) /)),   &
314      ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /),'evappot_oce',    &
315      "Temperature"//clnsurf(3),"K", (/ ('', i=1, 9) /)),   &
316      ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /),'evappot_sic',    &
317      "Temperature"//clnsurf(4),"K", (/ ('', i=1, 9) /)) /)
318
319  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_sens_srf     = (/          &
320      ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11 /),'sens_ter',                 &
321      "Sensible heat flux "//clnsurf(1),"W/m2", (/ ('', i=1, 9) /)), &
322      ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11 /),'sens_lic',                 &
323      "Sensible heat flux "//clnsurf(2),"W/m2", (/ ('', i=1, 9) /)), &
324      ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11 /),'sens_oce',                 &
325      "Sensible heat flux "//clnsurf(3),"W/m2", (/ ('', i=1, 9) /)), &
326      ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11 /),'sens_sic',                 &
327      "Sensible heat flux "//clnsurf(4),"W/m2", (/ ('', i=1, 9) /)) /)
328
329  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_lat_srf      = (/        &
330      ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11 /),'lat_ter',                &
331      "Latent heat flux "//clnsurf(1),"W/m2", (/ ('', i=1, 9) /)), &
332      ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11 /),'lat_lic',                &
333      "Latent heat flux "//clnsurf(2),"W/m2", (/ ('', i=1, 9) /)), &
334      ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11 /),'lat_oce',                &
335      "Latent heat flux "//clnsurf(3),"W/m2", (/ ('', i=1, 9) /)), &
336      ctrl_out((/ 1, 6, 10, 7, 10, 10, 11, 11, 11 /),'lat_sic',                &
337      "Latent heat flux "//clnsurf(4),"W/m2", (/ ('', i=1, 9) /)) /)
338
339  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_flw_srf      = (/ &
340      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'flw_ter',       &
341      "LW "//clnsurf(1),"W/m2", (/ ('', i=1, 9) /)),        &
342      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'flw_lic',       &
343      "LW "//clnsurf(2),"W/m2", (/ ('', i=1, 9) /)),        &
344      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'flw_oce',       &
345      "LW "//clnsurf(3),"W/m2", (/ ('', i=1, 9) /)),        &
346      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'flw_sic',       &
347      "LW "//clnsurf(4),"W/m2", (/ ('', i=1, 9) /)) /)
348
349  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_fsw_srf      = (/ &
350      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'fsw_ter',       &
351      "SW "//clnsurf(1),"W/m2", (/ ('', i=1, 9) /)),        &
352      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'fsw_lic',       &
353      "SW "//clnsurf(2),"W/m2", (/ ('', i=1, 9) /)),        &
354      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'fsw_oce',       &
355      "SW "//clnsurf(3),"W/m2", (/ ('', i=1, 9) /)),        &
356      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'fsw_sic',       &
357      "SW "//clnsurf(4),"W/m2", (/ ('', i=1, 9) /)) /)
358
359  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wbils_srf    = (/ &
360      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'wbils_ter',     &
361      "Bilan sol "//clnsurf(1),"W/m2", (/ ('', i=1, 9) /)), &
362      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'wbils_lic',     &
363      "Bilan sol "//clnsurf(2),"W/m2", (/ ('', i=1, 9) /)), &
364      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'wbils_oce',     &
365      "Bilan sol "//clnsurf(3),"W/m2", (/ ('', i=1, 9) /)), &
366      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'wbils_sic',     &
367      "Bilan sol "//clnsurf(4),"W/m2", (/ ('', i=1, 9) /)) /)
368
369  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wbilo_srf    = (/      &
370      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'wbilo_ter',          &
371      "Bilan eau "//clnsurf(1),"kg/(m2*s)", (/ ('', i=1, 9) /)), &
372      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'wbilo_lic',          &
373      "Bilan eau "//clnsurf(2),"kg/(m2*s)", (/ ('', i=1, 9) /)), &
374      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'wbilo_oce',          &
375      "Bilan eau "//clnsurf(3),"kg/(m2*s)", (/ ('', i=1, 9) /)), &
376      ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'wbilo_sic',          &
377      "Bilan eau "//clnsurf(4),"kg/(m2*s)", (/ ('', i=1, 9) /)) /)
378
379  TYPE(ctrl_out), SAVE :: o_cdrm = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
380    'cdrm', 'Momentum drag coef.', '-', (/ ('', i=1, 9) /))
381  TYPE(ctrl_out), SAVE :: o_cdrh = ctrl_out((/ 1, 10, 10, 7, 10, 10, 11, 11, 11 /), &
382    'cdrh', 'Heat drag coef.', '-', (/ ('', i=1, 9) /))
383  TYPE(ctrl_out), SAVE :: o_cldl = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
384    'cldl', 'Low-level cloudiness', '-', (/ ('', i=1, 9) /))
385  TYPE(ctrl_out), SAVE :: o_cldm = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
386    'cldm', 'Mid-level cloudiness', '-', (/ ('', i=1, 9) /))
387  TYPE(ctrl_out), SAVE :: o_cldh = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
388    'cldh', 'High-level cloudiness', '-', (/ ('', i=1, 9) /))
389  TYPE(ctrl_out), SAVE :: o_cldt = ctrl_out((/ 1, 1, 2, 10, 5, 10, 11, 11, 11 /), &
390    'cldt', 'Total cloudiness', '-', (/ ('', i=1, 9) /))
391  TYPE(ctrl_out), SAVE :: o_cldq = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
392    'cldq', 'Cloud liquid water path', 'kg/m2', (/ ('', i=1, 9) /))
393  TYPE(ctrl_out), SAVE :: o_lwp = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11 /), &
394    'lwp', 'Cloud water path', 'kg/m2', (/ ('', i=1, 9) /))
395  TYPE(ctrl_out), SAVE :: o_iwp = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11 /), &
396    'iwp', 'Cloud ice water path', 'kg/m2', (/ ('', i=1, 9) /))
397  TYPE(ctrl_out), SAVE :: o_ue = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
398    'ue', 'Zonal energy transport', '-', (/ ('', i=1, 9) /))
399  TYPE(ctrl_out), SAVE :: o_ve = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
400    've', 'Merid energy transport', '-', (/ ('', i=1, 9) /))
401  TYPE(ctrl_out), SAVE :: o_uq = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
402    'uq', 'Zonal humidity transport', '-', (/ ('', i=1, 9) /))
403  TYPE(ctrl_out), SAVE :: o_vq = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
404    'vq', 'Merid humidity transport', '-', (/ ('', i=1, 9) /))
405  TYPE(ctrl_out), SAVE :: o_cape = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
406    'cape', 'Conv avlbl pot ener', 'J/kg', (/ ('', i=1, 9) /))
407  TYPE(ctrl_out), SAVE :: o_pbase = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11 /), &
408    'pbase', 'Cld base pressure', 'Pa', (/ ('', i=1, 9) /))
409  TYPE(ctrl_out), SAVE :: o_ptop = ctrl_out((/ 1, 5, 10, 10, 10, 10, 11, 11, 11 /), &
410    'ptop', 'Cld top pressure', 'Pa', (/ ('', i=1, 9) /))
411  TYPE(ctrl_out), SAVE :: o_fbase = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
412    'fbase', 'Cld base mass flux', 'kg/m2/s', (/ ('', i=1, 9) /))
413  TYPE(ctrl_out), SAVE :: o_plcl = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
414    'plcl', 'Lifting Condensation Level', 'hPa', (/ ('', i=1, 9) /))
415  TYPE(ctrl_out), SAVE :: o_plfc = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
416    'plfc', 'Level of Free Convection', 'hPa', (/ ('', i=1, 9) /))
417  TYPE(ctrl_out), SAVE :: o_wbeff = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
418    'wbeff', 'Conv. updraft velocity at LFC (<100)', 'm/s', (/ ('', i=1, 9) /))
419  TYPE(ctrl_out), SAVE :: o_prw = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
420    'prw', 'Precipitable water', 'kg/m2', (/ ('', i=1, 9) /))
421  TYPE(ctrl_out), SAVE :: o_s_pblh = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
422    's_pblh', 'Boundary Layer Height', 'm', (/ ('', i=1, 9) /))
423  TYPE(ctrl_out), SAVE :: o_s_pblt = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
424    's_pblt', 't at Boundary Layer Height', 'K', (/ ('', i=1, 9) /))
425  TYPE(ctrl_out), SAVE :: o_s_lcl = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
426    's_lcl', 'Condensation level', 'm', (/ ('', i=1, 9) /))
427  TYPE(ctrl_out), SAVE :: o_s_therm = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
428    's_therm', 'Exces du thermique', 'K', (/ ('', i=1, 9) /))
429  !IM : Les champs suivants (s_capCL, s_oliqCL, s_cteiCL, s_trmb1, s_trmb2, s_trmb3) ne sont pas definis dans HBTM.F
430  ! type(ctrl_out),save :: o_s_capCL      = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'s_capCL', &
431!    (/ ('', i=1, 9) /))
432  ! type(ctrl_out),save :: o_s_oliqCL     = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'s_oliqCL', &
433!    (/ ('', i=1, 9) /))
434  ! type(ctrl_out),save :: o_s_cteiCL     = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'s_cteiCL', &
435!    (/ ('', i=1, 9) /))
436  ! type(ctrl_out),save :: o_s_trmb1      = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'s_trmb1', &
437!    (/ ('', i=1, 9) /))
438  ! type(ctrl_out),save :: o_s_trmb2      = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'s_trmb2', &
439!    (/ ('', i=1, 9) /))
440  ! type(ctrl_out),save :: o_s_trmb3      = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /),'s_trmb3', &
441    !(/ ('', i=1, 9) /))
442  TYPE(ctrl_out), SAVE :: o_slab_bils = ctrl_out((/ 1, 1, 10, 10, 10, 10, 11, 11, 11 /), &
443    'slab_bils_oce', 'Bilan au sol sur ocean slab', 'W/m2', (/ ('', i=1, 9) /))
444  TYPE(ctrl_out), SAVE :: o_ale_bl = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
445    'ale_bl', 'ALE BL', 'm2/s2', (/ ('', i=1, 9) /))
446  TYPE(ctrl_out), SAVE :: o_alp_bl = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
447    'alp_bl', 'ALP BL', 'm2/s2', (/ ('', i=1, 9) /))
448  TYPE(ctrl_out), SAVE :: o_ale_wk = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
449    'ale_wk', 'ALE WK', 'm2/s2', (/ ('', i=1, 9) /))
450  TYPE(ctrl_out), SAVE :: o_alp_wk = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
451    'alp_wk', 'ALP WK', 'm2/s2', (/ ('', i=1, 9) /))
452  TYPE(ctrl_out), SAVE :: o_ale = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
453    'ale', 'ALE', 'm2/s2', (/ ('', i=1, 9) /))
454  TYPE(ctrl_out), SAVE :: o_alp = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
455    'alp', 'ALP', 'W/m2', (/ ('', i=1, 9) /))
456  TYPE(ctrl_out), SAVE :: o_cin = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
457    'cin', 'Convective INhibition', 'm2/s2', (/ ('', i=1, 9) /))
458  TYPE(ctrl_out), SAVE :: o_wape = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
459    'wape', '', '', (/ ('', i=1, 9) /))
460
461!!! nrlmd le 10/04/2012
462
463!-------Spectre de thermiques de type 2 au LCL
464  TYPE(ctrl_out), SAVE :: o_n2 = ctrl_out((/ 1, 1, 1, 6, 10, 10, 11, 11, 11 /), &
465    'n2', 'Nombre de panaches de type 2', ' ', (/ ('', i=1, 9) /))
466  TYPE(ctrl_out), SAVE :: o_s2 = ctrl_out((/ 1, 1, 1, 6, 10, 10, 11, 11, 11 /), &
467    's2', 'Surface moyenne des panaches de type 2', 'm2', (/ ('', i=1, 9) /))
468                                                                             
469!-------Déclenchement stochastique                                           
470  TYPE(ctrl_out), SAVE :: o_proba_notrig = ctrl_out((/ 1, 1, 1, 6, 10, 10, 11, 11, 11 /), &
471    'proba_notrig', &
472                         'Probabilité de non-déclenchement', ' ', (/ ('', i=1, 9) /))
473  TYPE(ctrl_out), SAVE :: o_random_notrig = ctrl_out((/ 1, 1, 1, 6, 10, 10, 11, 11, 11 /), &
474    'random_notrig', &
475                         'Tirage aléatoire de non-déclenchement', ' ', (/ ('', i=1, 9) /))
476  TYPE(ctrl_out), SAVE :: o_ale_bl_stat = ctrl_out((/ 1, 1, 1, 6, 10, 10, 11, 11, 11 /), &
477    'ale_bl_stat', &
478       'ALE_BL_STAT', 'm2/s2', (/ ('', i=1, 9) /))
479  TYPE(ctrl_out), SAVE :: o_ale_bl_trig = ctrl_out((/ 1, 1, 1, 6, 10, 10, 11, 11, 11 /), &
480    'ale_bl_trig', &
481       'ALE_BL_STAT + Condition P>Pseuil', 'm2/s2', (/ ('', i=1, 9) /))
482
483!-------Fermeture statistique
484  TYPE(ctrl_out), SAVE :: o_alp_bl_det = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
485    'alp_bl_det', 'ALP_BL_DET', 'W/m2', (/ ('', i=1, 9) /))
486  TYPE(ctrl_out), SAVE :: o_alp_bl_fluct_m = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
487    'alp_bl_fluct_m', 'ALP_BL_FLUCT_M', 'W/m2', (/ ('', i=1, 9) /))
488  TYPE(ctrl_out), SAVE :: o_alp_bl_fluct_tke = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
489    'alp_bl_fluct_tke', 'ALP_BL_FLUCT_TKE', 'W/m2', (/ ('', i=1, 9) /))
490  TYPE(ctrl_out), SAVE :: o_alp_bl_conv = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
491    'alp_bl_conv', 'ALP_BL_CONV', 'W/m2', (/ ('', i=1, 9) /))
492  TYPE(ctrl_out), SAVE :: o_alp_bl_stat = ctrl_out((/ 1, 1, 1, 10, 10, 10, 11, 11, 11 /), &
493    'alp_bl_stat', 'ALP_BL_STAT', 'W/m2', (/ ('', i=1, 9) /))
494
495!!! fin nrlmd le 10/04/2012
496
497  ! Champs interpolles sur des niveaux de pression ??? a faire correctement
498
499  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_uSTDlevs     = (/                    &
500      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'u850', "Zonal wind 1hPa", "m/s",     &
501      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
502      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'u700', "Zonal wind 2hPa", "m/s",     &
503      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
504      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'u500', "Zonal wind 3hPa", "m/s",     &
505      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
506      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'u200', "Zonal wind 4hPa", "m/s",     &
507      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
508      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'u100', "Zonal wind 5hPa", "m/s",     &
509      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
510      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'u50', "Zonal wind 6hPa", "m/s",     &
511      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
512      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'u10', "Zonal wind 7hPa", "m/s",     &
513      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
514
515  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_vSTDlevs     = (/                     &
516      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'v850', "Meridional wind 1hPa", "m/s", &
517      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
518      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'v700', "Meridional wind 2hPa", "m/s", &
519      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
520      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'v500', "Meridional wind 3hPa", "m/s", &
521      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
522      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'v200', "Meridional wind 4hPa", "m/s", &
523      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
524      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'v100', "Meridional wind 5hPa", "m/s", &
525      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
526      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'v50', "Meridional wind 6hPa", "m/s",  &
527      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
528      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'v10', "Meridional wind 7hPa", "m/s",  &
529      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
530
531  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_wSTDlevs     = (/                    &
532      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'w850', "Vertical wind 1hPa", "Pa/s", &
533      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
534      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'w700', "Vertical wind 2hPa", "Pa/s", &
535      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
536      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'w500', "Vertical wind 3hPa", "Pa/s", &
537      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
538      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'w200', "Vertical wind 4hPa", "Pa/s", &
539      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
540      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'w100', "Vertical wind 5hPa", "Pa/s", &
541      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
542      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'w50', "Vertical wind 6hPa", "Pa/s",  &
543      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
544      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'w10', "Vertical wind 7hPa", "Pa/s",  &
545      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
546
547  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_tSTDlevs     = (/                    &
548      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'t850', "Temperature 1hPa", "K",      &
549      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
550      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'t700', "Temperature 2hPa", "K",      &
551      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
552      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'t500', "Temperature 3hPa", "K",      &
553      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
554      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'t200', "Temperature 4hPa", "K",      &
555      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
556      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'t100', "Temperature 5hPa", "K",      &
557      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
558      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'t50',  "Temperature 6hPa", "K",      &
559      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
560      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'t10',  "Temperature 7hPa", "K",      &
561      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
562
563  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_qSTDlevs     = (/                             &
564      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'q850', "Specific humidity 1hPa", &
565      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
566      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'q700', "Specific humidity 2hPa", &
567      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
568      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'q500', "Specific humidity 3hPa", &
569      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
570      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'q200', "Specific humidity 4hPa", &
571      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
572      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'q100', "Specific humidity 5hPa", &
573      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
574      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'q50', "Specific humidity 6hPa",  &
575      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
576      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'q10', "Specific humidity 7hPa", &
577      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
578
579  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_zSTDlevs   = (/                           &
580      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'z850', "Geopotential height 1hPa",        &
581      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
582      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'z700', "Geopotential height 2hPa",        &
583      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
584      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'z500', "Geopotential height 3hPa",        &
585      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
586      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'z200', "Geopotential height 4hPa",        &
587      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
588      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'z100', "Geopotential height 5hPa",        &
589      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
590      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'z50', "Geopotential height 6hPa",         &
591      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
592      ctrl_out((/ 1, 7, 7, 10, 10, 10, 11, 11, 11 /),'z10', "Geopotential height 7hPa",         &
593      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
594
595  TYPE(ctrl_out), SAVE :: o_t_oce_sic = ctrl_out((/ 1, 10, 10, 10, 10, 10, 11, 11, 11 /), &
596    't_oce_sic', 'Temp mixte oce-sic', 'K', (/ ('', i=1, 9) /))
597  TYPE(ctrl_out), SAVE :: o_weakinv = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11 /), &
598    'weakinv', 'Weak inversion', '-', (/ ('', i=1, 9) /))
599  TYPE(ctrl_out), SAVE :: o_dthmin = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11 /), &
600    'dthmin', 'dTheta mini', 'K/m', (/ ('', i=1, 9) /))
601
602  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_u10_srf      = (/ &
603      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'u10_ter', "", "", (/ ('', i=1, 9) /)), &
604      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'u10_lic', "", "", (/ ('', i=1, 9) /)), &
605      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'u10_oce', "", "", (/ ('', i=1, 9) /)), &
606      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'u10_sic', "", "", (/ ('', i=1, 9) /)) /)
607
608  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_v10_srf      = (/ &
609      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'v10_ter', "", "", (/ ('', i=1, 9) /)), &
610      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'v10_lic', "", "", (/ ('', i=1, 9) /)), &
611      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'v10_oce', "", "", (/ ('', i=1, 9) /)), &
612      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'v10_sic', "", "", (/ ('', i=1, 9) /)) /)
613
614  TYPE(ctrl_out), SAVE :: o_cldtau = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11 /), &
615    'cldtau', 'Cloud optical thickness', '1', (/ ('', i=1, 9) /))
616  TYPE(ctrl_out), SAVE :: o_cldemi = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11 /), &
617    'cldemi', 'Cloud optical emissivity', '1', (/ ('', i=1, 9) /))
618  TYPE(ctrl_out), SAVE :: o_rh2m = ctrl_out((/ 5, 5, 10, 10, 10, 10, 11, 11, 11 /), &
619    'rh2m', 'Relative humidity at 2m', '%', (/ ('', i=1, 9) /))
620  TYPE(ctrl_out), SAVE :: o_rh2m_min = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11 /), &
621    'rh2m_min', 'Min Relative humidity at 2m', '%',                        &
622      (/ 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)' /))
623  TYPE(ctrl_out), SAVE :: o_rh2m_max = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11 /), &
624    'rh2m_max', 'Max Relative humidity at 2m', '%',                        &
625      (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', &
626         't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)' /))
627  TYPE(ctrl_out), SAVE :: o_qsat2m = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11 /), &
628    'qsat2m', 'Saturant humidity at 2m', '%', (/ ('', i=1, 9) /))
629  TYPE(ctrl_out), SAVE :: o_tpot = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11 /), &
630    'tpot', 'Surface air potential temperature', 'K', (/ ('', i=1, 9) /))
631  TYPE(ctrl_out), SAVE :: o_tpote = ctrl_out((/ 10, 5, 10, 10, 10, 10, 11, 11, 11 /), &
632    'tpote', &
633      'Surface air equivalent potential temperature', 'K', (/ ('', i=1, 9) /))
634  TYPE(ctrl_out), SAVE :: o_tke = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
635    'tke ', 'TKE', 'm2/s2', (/ ('', i=1, 9) /))
636  TYPE(ctrl_out), SAVE :: o_tke_max = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
637    'tke_max', 'TKE max', 'm2/s2',                                        &
638      (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', &
639         't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)' /))
640
641  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tke_srf      = (/             &
642      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'tke_ter',       &
643      "Max Turb. Kinetic Energy "//clnsurf(1),"-", (/ ('', i=1, 9) /)), &
644      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'tke_lic',       &
645      "Max Turb. Kinetic Energy "//clnsurf(2),"-", (/ ('', i=1, 9) /)), &
646      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'tke_oce',       &
647      "Max Turb. Kinetic Energy "//clnsurf(3),"-", (/ ('', i=1, 9) /)), &
648      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'tke_sic',       &
649      "Max Turb. Kinetic Energy "//clnsurf(4),"-", (/ ('', i=1, 9) /)) /)
650
651  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tke_max_srf  = (/                          &
652      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'tke_max_ter',                &
653      "Max Turb. Kinetic Energy "//clnsurf(1),"-",                                   &
654      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", &
655         "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), &
656      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'tke_max_lic',                &
657      "Max Turb. Kinetic Energy "//clnsurf(2),"-",                                   &
658      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", &
659         "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), &
660      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'tke_max_oce',                &
661      "Max Turb. Kinetic Energy "//clnsurf(3),"-",                                   &
662      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", &
663         "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), &
664      ctrl_out((/ 10, 4, 10, 10, 10, 10, 11, 11, 11 /),'tke_max_sic',                &
665      "Max Turb. Kinetic Energy "//clnsurf(4),"-",                                   &
666      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", &
667         "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)) /)
668
669  TYPE(ctrl_out), SAVE :: o_kz = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
670    'kz', 'Kz melange', 'm2/s', (/ ('', i=1, 9) /))
671  TYPE(ctrl_out), SAVE :: o_kz_max = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
672    'kz_max', 'Kz melange max', 'm2/s',                                  &
673      (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', &
674         't_max(X)', "t_max(X)", "t_max(X)", "t_max(X)" /))
675  TYPE(ctrl_out), SAVE :: o_SWnetOR = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
676    'SWnetOR', 'Sfce net SW radiation OR', 'W/m2', (/ ('', i=1, 9) /))
677  TYPE(ctrl_out), SAVE :: o_SWdownOR = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
678    'SWdownOR', 'Sfce incident SW radiation OR', 'W/m2', (/ ('', i=1, 9) /))
679  TYPE(ctrl_out), SAVE :: o_LWdownOR = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
680    'LWdownOR', 'Sfce incident LW radiation OR', 'W/m2', (/ ('', i=1, 9) /))
681  TYPE(ctrl_out), SAVE :: o_snowl = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11 /), &
682    'snowl', 'Solid Large-scale Precip.', 'kg/(m2*s)', (/ ('', i=1, 9) /))
683  TYPE(ctrl_out), SAVE :: o_cape_max = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11 /), &
684    'cape_max', 'CAPE max.', 'J/kg',                                       &
685      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", &
686         "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /))
687  TYPE(ctrl_out), SAVE :: o_solldown = ctrl_out((/ 10, 1, 10, 10, 10, 10, 11, 11, 11 /), &
688    'solldown', 'Down. IR rad. at surface', 'W/m2', (/ ('', i=1, 9) /))
689  TYPE(ctrl_out), SAVE :: o_dtsvdfo = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
690    'dtsvdfo', 'Boundary-layer dTs(o)', 'K/s', (/ ('', i=1, 9) /))
691  TYPE(ctrl_out), SAVE :: o_dtsvdft = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
692    'dtsvdft', 'Boundary-layer dTs(t)', 'K/s', (/ ('', i=1, 9) /))
693  TYPE(ctrl_out), SAVE :: o_dtsvdfg = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
694    'dtsvdfg', 'Boundary-layer dTs(g)', 'K/s', (/ ('', i=1, 9) /))
695  TYPE(ctrl_out), SAVE :: o_dtsvdfi = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
696    'dtsvdfi', 'Boundary-layer dTs(g)', 'K/s', (/ ('', i=1, 9) /))
697  TYPE(ctrl_out), SAVE :: o_rugs = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
698    'rugs', 'rugosity', '-', (/ ('', i=1, 9) /))
699  TYPE(ctrl_out), SAVE :: o_topswad = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
700    'topswad', 'ADE at TOA', 'W/m2', (/ ('', i=1, 9) /))
701  TYPE(ctrl_out), SAVE :: o_topswad0 = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
702    'topswad0', 'ADE clear-sky at TOA', 'W/m2', (/ ('', i=1, 9) /))
703  TYPE(ctrl_out), SAVE :: o_topswai = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
704    'topswai', 'AIE at TOA', 'W/m2', (/ ('', i=1, 9) /))
705  TYPE(ctrl_out), SAVE :: o_solswad = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
706    'solswad', 'ADE at SRF', 'W/m2', (/ ('', i=1, 9) /))
707  TYPE(ctrl_out), SAVE :: o_solswad0 = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
708    'solswad0', 'ADE clear-sky at SRF', 'W/m2', (/ ('', i=1, 9) /))
709  TYPE(ctrl_out), SAVE :: o_solswai = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
710    'solswai', 'AIE at SFR', 'W/m2', (/ ('', i=1, 9) /))
711
712!  type(ctrl_out),save,dimension(10) :: o_tausumaero  = (/ ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_ASBCM', &
713!    (/ ('', i=1, 9) /)), &
714  type(ctrl_out),save,dimension(11) :: o_tausumaero  =                           &
715    (/ ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_ASBCM',                        &
716      "Aerosol Optical depth at 550 nm "//name_aero(1),"1", (/ ('', i=1, 9) /)), &
717       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_ASPOMM',                       &
718      "Aerosol Optical depth at 550 nm "//name_aero(2),"1", (/ ('', i=1, 9) /)), &
719       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_ASSO4M',                       &
720      "Aerosol Optical depth at 550 nm "//name_aero(3),"1", (/ ('', i=1, 9) /)), &
721       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_CSSO4M',                       &
722      "Aerosol Optical depth at 550 nm "//name_aero(4),"1", (/ ('', i=1, 9) /)), &
723       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_SSSSM',                        &
724      "Aerosol Optical depth at 550 nm "//name_aero(5),"1", (/ ('', i=1, 9) /)), &
725       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_ASSSM',                        &
726      "Aerosol Optical depth at 550 nm "//name_aero(6),"1", (/ ('', i=1, 9) /)), &
727       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_CSSSM',                        &
728      "Aerosol Optical depth at 550 nm "//name_aero(7),"1", (/ ('', i=1, 9) /)), &
729       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_CIDUSTM',                      &
730      "Aerosol Optical depth at 550 nm "//name_aero(8),"1", (/ ('', i=1, 9) /)), &
731       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_AIBCM',                        &
732      "Aerosol Optical depth at 550 nm "//name_aero(9),"1", (/ ('', i=1, 9) /)), &
733       ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /),'OD550_AIPOMM',                       &
734      "Aerosol Optical depth at 550 nm "//name_aero(10),"1", (/ ('', i=1, 9) /)),&
735       ctrl_out((/ 2, 2, 10, 10, 10, 10, 11, 11, 11 /),'OD550_STRAT',                        &
736      "Aerosol Optical depth at 550 nm "//name_aero(11),"1", (/ ('', i=1, 9) /)) /)
737  TYPE(ctrl_out), SAVE :: o_od550aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
738    'od550aer', 'Total aerosol optical depth at 550nm', '-', (/ ('', i=1, 9) /))
739  TYPE(ctrl_out), SAVE :: o_od865aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
740    'od865aer', 'Total aerosol optical depth at 870nm', '-', (/ ('', i=1, 9) /))
741  TYPE(ctrl_out), SAVE :: o_absvisaer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
742    'absvisaer', 'Absorption aerosol visible optical depth', '-', (/ ('', i=1, 9) /))
743  TYPE(ctrl_out), SAVE :: o_od550lt1aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
744    'od550lt1aer', 'Fine mode optical depth', '-', (/ ('', i=1, 9) /))
745  TYPE(ctrl_out), SAVE :: o_sconcso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
746    'sconcso4', 'Surface Concentration of Sulfate ', 'kg/m3', (/ ('', i=1, 9) /))
747  TYPE(ctrl_out), SAVE :: o_sconcoa = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
748    'sconcoa', 'Surface Concentration of Organic Aerosol ', 'kg/m3', (/ ('', i=1, 9) /))
749  TYPE(ctrl_out), SAVE :: o_sconcbc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
750    'sconcbc', 'Surface Concentration of Black Carbon ', 'kg/m3', (/ ('', i=1, 9) /))
751  TYPE(ctrl_out), SAVE :: o_sconcss = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
752    'sconcss', 'Surface Concentration of Sea Salt ', 'kg/m3', (/ ('', i=1, 9) /))
753  TYPE(ctrl_out), SAVE :: o_sconcdust = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
754    'sconcdust', 'Surface Concentration of Dust ', 'kg/m3', (/ ('', i=1, 9) /))
755  TYPE(ctrl_out), SAVE :: o_concso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
756    'concso4', 'Concentration of Sulfate ', 'kg/m3', (/ ('', i=1, 9) /))
757  TYPE(ctrl_out), SAVE :: o_concoa = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
758    'concoa', 'Concentration of Organic Aerosol ', 'kg/m3', (/ ('', i=1, 9) /))
759  TYPE(ctrl_out), SAVE :: o_concbc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
760    'concbc', 'Concentration of Black Carbon ', 'kg/m3', (/ ('', i=1, 9) /))
761  TYPE(ctrl_out), SAVE :: o_concss = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
762    'concss', 'Concentration of Sea Salt ', 'kg/m3', (/ ('', i=1, 9) /))
763  TYPE(ctrl_out), SAVE :: o_concdust = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
764    'concdust', 'Concentration of Dust ', 'kg/m3', (/ ('', i=1, 9) /))
765  TYPE(ctrl_out), SAVE :: o_loadso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
766    'loadso4', 'Column Load of Sulfate ', 'kg/m2', (/ ('', i=1, 9) /))
767  TYPE(ctrl_out), SAVE :: o_loadoa = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
768    'loadoa', 'Column Load of Organic Aerosol ', 'kg/m2', (/ ('', i=1, 9) /))
769  TYPE(ctrl_out), SAVE :: o_loadbc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
770    'loadbc', 'Column Load of Black Carbon ', 'kg/m2', (/ ('', i=1, 9) /))
771  TYPE(ctrl_out), SAVE :: o_loadss = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
772    'loadss', 'Column Load of Sea Salt ', 'kg/m2', (/ ('', i=1, 9) /))
773  TYPE(ctrl_out), SAVE :: o_loaddust = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
774    'loaddust', 'Column Load of Dust ', 'kg/m2', (/ ('', i=1, 9) /))
775  TYPE(ctrl_out), SAVE :: o_swtoaas_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
776    'swtoaas_nat', 'Natural aerosol radiative forcing all-sky at TOA', 'W/m2', (/ ('', i=1, 9) /))
777  TYPE(ctrl_out), SAVE :: o_swsrfas_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
778    'swsrfas_nat', 'Natural aerosol radiative forcing all-sky at SRF', 'W/m2', (/ ('', i=1, 9) /))
779  TYPE(ctrl_out), SAVE :: o_swtoacs_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
780    'swtoacs_nat', 'Natural aerosol radiative forcing clear-sky at TOA', 'W/m2', (/ ('', i=1, 9) /))
781  TYPE(ctrl_out), SAVE :: o_swsrfcs_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
782    'swsrfcs_nat', 'Natural aerosol radiative forcing clear-sky at SRF', 'W/m2', (/ ('', i=1, 9) /))
783  TYPE(ctrl_out), SAVE :: o_swtoaas_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
784    'swtoaas_ant', 'Anthropogenic aerosol radiative forcing all-sky at TOA', 'W/m2', (/ ('', i=1, 9) /))
785  TYPE(ctrl_out), SAVE :: o_swsrfas_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
786    'swsrfas_ant', 'Anthropogenic aerosol radiative forcing all-sky at SRF', 'W/m2', (/ ('', i=1, 9) /))
787  TYPE(ctrl_out), SAVE :: o_swtoacs_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
788    'swtoacs_ant', 'Anthropogenic aerosol radiative forcing clear-sky at TOA', 'W/m2', (/ ('', i=1, 9) /))
789  TYPE(ctrl_out), SAVE :: o_swsrfcs_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
790    'swsrfcs_ant', 'Anthropogenic aerosol radiative forcing clear-sky at SRF', 'W/m2', (/ ('', i=1, 9) /))
791  TYPE(ctrl_out), SAVE :: o_swtoacf_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
792    'swtoacf_nat', 'Natural aerosol impact on cloud radiative forcing at TOA', 'W/m2', (/ ('', i=1, 9) /))
793  TYPE(ctrl_out), SAVE :: o_swsrfcf_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
794    'swsrfcf_nat', 'Natural aerosol impact on cloud radiative forcing  at SRF', 'W/m2', (/ ('', i=1, 9) /))
795  TYPE(ctrl_out), SAVE :: o_swtoacf_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
796    'swtoacf_ant', 'Anthropogenic aerosol impact on cloud radiative forcing at TOA', 'W/m2', (/ ('', i=1, 9) /))
797  TYPE(ctrl_out), SAVE :: o_swsrfcf_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
798    'swsrfcf_ant', 'Anthropogenic aerosol impact on cloud radiative forcing at SRF', 'W/m2', (/ ('', i=1, 9) /))
799  TYPE(ctrl_out), SAVE :: o_swtoacf_zero = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
800    'swtoacf_zero', 'Cloud radiative forcing (allsky-clearsky fluxes) at TOA', 'W/m2', (/ ('', i=1, 9) /))
801  TYPE(ctrl_out), SAVE :: o_swsrfcf_zero = ctrl_out((/ 4, 6, 10, 10, 10, 10, 11, 11, 11 /), &
802    'swsrfcf_zero', 'Cloud radiative forcing (allsky-clearsky fluxes) at SRF', 'W/m2', (/ ('', i=1, 9) /))
803  TYPE(ctrl_out), SAVE :: o_cldncl = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
804    'cldncl', 'CDNC at top of liquid water cloud', 'm-3', (/ ('', i=1, 9) /))
805  TYPE(ctrl_out), SAVE :: o_reffclwtop = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
806    'reffclwtop', 'Droplet effective radius at top of liquid water cloud', 'm', (/ ('', i=1, 9) /))
807  TYPE(ctrl_out), SAVE :: o_cldnvi = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
808    'cldnvi', 'Column Integrated Cloud Droplet Number', 'm-2', (/ ('', i=1, 9) /))
809  TYPE(ctrl_out), SAVE :: o_lcc = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
810    'lcc', 'Cloud liquid fraction at top of cloud', '1', (/ ('', i=1, 9) /))
811
812
813!!!!!!!!!!!!!!!!!!!!!! 3D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
814  TYPE(ctrl_out), SAVE :: o_ec550aer = ctrl_out((/ 2, 6, 10, 10, 10, 10, 11, 11, 11 /), &
815    'ec550aer', 'Extinction at 550nm', 'm^-1', (/ ('', i=1, 9) /))
816  TYPE(ctrl_out), SAVE :: o_lwcon = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11 /), &
817    'lwcon', 'Cloud liquid water content', 'kg/kg', (/ ('', i=1, 9) /))
818  TYPE(ctrl_out), SAVE :: o_iwcon = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11 /), &
819    'iwcon', 'Cloud ice water content', 'kg/kg', (/ ('', i=1, 9) /))
820  TYPE(ctrl_out), SAVE :: o_temp = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11 /), &
821    'temp', 'Air temperature', 'K', (/ ('', i=1, 9) /))
822  TYPE(ctrl_out), SAVE :: o_theta = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11 /), &
823    'theta', 'Potential air temperature', 'K', (/ ('', i=1, 9) /))
824  TYPE(ctrl_out), SAVE :: o_ovap = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11 /), &
825    'ovap', 'Specific humidity', 'kg/kg', (/ ('', i=1, 9) /))
826  TYPE(ctrl_out), SAVE :: o_ovapinit = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
827    'ovapinit', 'Specific humidity (begin of timestep)', 'kg/kg', (/ ('', i=1, 9) /))
828  TYPE(ctrl_out), SAVE :: o_oliq = ctrl_out((/ 2, 3, 4, 10, 10, 10, 11, 11, 11 /), &
829    'oliq', 'Condensed water', 'kg/kg', (/ ('', i=1, 9) /))
830  TYPE(ctrl_out), SAVE :: o_wvapp = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
831    'wvapp', '', '', (/ ('', i=1, 9) /))
832  TYPE(ctrl_out), SAVE :: o_geop = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11 /), &
833    'geop', 'Geopotential height', 'm2/s2', (/ ('', i=1, 9) /))
834  TYPE(ctrl_out), SAVE :: o_vitu = ctrl_out((/ 2, 3, 4, 6, 10, 10, 11, 11, 11 /), &
835    'vitu', 'Zonal wind', 'm/s', (/ ('', i=1, 9) /))
836  TYPE(ctrl_out), SAVE :: o_vitv = ctrl_out((/ 2, 3, 4, 6, 10, 10, 11, 11, 11 /), &
837    'vitv', 'Meridional wind', 'm/s', (/ ('', i=1, 9) /))
838  TYPE(ctrl_out), SAVE :: o_vitw = ctrl_out((/ 2, 3, 10, 6, 10, 10, 11, 11, 11 /), &
839    'vitw', 'Vertical wind', 'Pa/s', (/ ('', i=1, 9) /))
840  TYPE(ctrl_out), SAVE :: o_pres = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11 /), &
841    'pres', 'Air pressure', 'Pa', (/ ('', i=1, 9) /))
842  TYPE(ctrl_out), SAVE :: o_paprs = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11 /), &
843    'paprs', 'Air pressure Inter-Couches', 'Pa', (/ ('', i=1, 9) /))
844  TYPE(ctrl_out), SAVE :: o_mass = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11 /), &
845    'mass', 'Masse Couches', 'kg/m2', (/ ('', i=1, 9) /))
846  TYPE(ctrl_out), SAVE :: o_zfull = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11 /), &
847    'zfull', 'Altitude of full pressure levels', 'm', (/ ('', i=1, 9) /))
848  TYPE(ctrl_out), SAVE :: o_zhalf = ctrl_out((/ 2, 3, 10, 10, 10, 10, 11, 11, 11 /), &
849    'zhalf', 'Altitude of half pressure levels', 'm', (/ ('', i=1, 9) /))
850  TYPE(ctrl_out), SAVE :: o_rneb = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11 /), &
851    'rneb', 'Cloud fraction', '-', (/ ('', i=1, 9) /))
852  TYPE(ctrl_out), SAVE :: o_rnebcon = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11 /), &
853    'rnebcon', 'Convective Cloud Fraction', '-', (/ ('', i=1, 9) /))
854  TYPE(ctrl_out), SAVE :: o_rnebls = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11 /), &
855    'rnebls', 'LS Cloud fraction', '-', (/ ('', i=1, 9) /))
856  TYPE(ctrl_out), SAVE :: o_rhum = ctrl_out((/ 2, 5, 10, 10, 10, 10, 11, 11, 11 /), &
857    'rhum', 'Relative humidity', '-', (/ ('', i=1, 9) /))
858  TYPE(ctrl_out), SAVE :: o_ozone = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
859    'ozone', 'Ozone mole fraction', '-', (/ ('', i=1, 9) /))
860  TYPE(ctrl_out), SAVE :: o_ozone_light = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
861    'ozone_daylight', 'Daylight ozone mole fraction', '-', (/ ('', i=1, 9) /))
862  TYPE(ctrl_out), SAVE :: o_upwd = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
863    'upwd', 'saturated updraft', 'kg/m2/s', (/ ('', i=1, 9) /))
864  TYPE(ctrl_out), SAVE :: o_dtphy = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
865    'dtphy', 'Physics dT', 'K/s', (/ ('', i=1, 9) /))
866  TYPE(ctrl_out), SAVE :: o_dqphy = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
867    'dqphy', 'Physics dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
868  TYPE(ctrl_out), SAVE :: o_pr_con_l = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
869    'pr_con_l', 'Convective precipitation lic', ' ', (/ ('', i=1, 9) /))
870  TYPE(ctrl_out), SAVE :: o_pr_con_i = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
871    'pr_con_i', 'Convective precipitation ice', ' ', (/ ('', i=1, 9) /))
872  TYPE(ctrl_out), SAVE :: o_pr_lsc_l = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
873    'pr_lsc_l', 'Large scale precipitation lic', ' ', (/ ('', i=1, 9) /))
874  TYPE(ctrl_out), SAVE :: o_pr_lsc_i = ctrl_out((/ 2, 10, 10, 10, 10, 10, 11, 11, 11 /), &
875    'pr_lsc_i', 'Large scale precipitation ice', ' ', (/ ('', i=1, 9) /))
876  TYPE(ctrl_out), SAVE :: o_re = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
877    're', 'Cloud droplet effective radius', 'um', (/ ('', i=1, 9) /))
878  TYPE(ctrl_out), SAVE :: o_fl = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
879    'fl', 'Denominator of Cloud droplet effective radius', ' ', (/ ('', i=1, 9) /))
880  TYPE(ctrl_out), SAVE :: o_scdnc = ctrl_out((/ 2,  6, 10, 10, 10, 10, 11, 11, 11 /), &
881    'scdnc', 'Cloud droplet number concentration', 'm-3', (/ ('', i=1, 9) /))
882  TYPE(ctrl_out), SAVE :: o_reffclws = ctrl_out((/ 2,  6, 10, 10, 10, 10, 11, 11, 11 /), &
883    'reffclws', 'Stratiform Cloud Droplet Effective Radius (aerosol diags.)', 'm', (/ ('', i=1, 9) /))
884  TYPE(ctrl_out), SAVE :: o_reffclwc = ctrl_out((/ 2,  6, 10, 10, 10, 10, 11, 11, 11 /), &
885    'reffclwc', 'Convective Cloud Droplet Effective Radius (aerosol diags.)', 'm', (/ ('', i=1, 9) /))
886  TYPE(ctrl_out), SAVE :: o_lcc3d = ctrl_out((/ 2,  6, 10, 10, 10, 10, 11, 11, 11 /), &
887    'lcc3d', 'Cloud liquid fraction', '1', (/ ('', i=1, 9) /))
888  TYPE(ctrl_out), SAVE :: o_lcc3dcon = ctrl_out((/ 2,  6, 10, 10, 10, 10, 11, 11, 11 /), &
889    'lcc3dcon', 'Convective cloud liquid fraction', '1', (/ ('', i=1, 9) /))
890  TYPE(ctrl_out), SAVE :: o_lcc3dstra = ctrl_out((/ 2,  6, 10, 10, 10, 10, 11, 11, 11 /), &
891    'lcc3dstra', 'Stratiform cloud liquid fraction', '1', (/ ('', i=1, 9) /))
892!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
893
894  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_albe_srf     = (/ &
895      ctrl_out((/ 3, 7, 10, 7, 10, 10, 11, 11, 11 /),'albe_ter', "Albedo VIS surf. "//clnsurf(1),"-", (/ ('', i=1, 9) /)), &
896      ctrl_out((/ 3, 7, 10, 7, 10, 10, 11, 11, 11 /),'albe_lic', "Albedo VIS surf. "//clnsurf(2),"-", (/ ('', i=1, 9) /)), &
897      ctrl_out((/ 3, 7, 10, 7, 10, 10, 11, 11, 11 /),'albe_oce', "Albedo VIS surf. "//clnsurf(3),"-", (/ ('', i=1, 9) /)), &
898      ctrl_out((/ 3, 7, 10, 7, 10, 10, 11, 11, 11 /),'albe_sic', "Albedo VIS surf. "//clnsurf(4),"-", (/ ('', i=1, 9) /)) /)
899
900  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_ages_srf     = (/ &
901      ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /),'ages_ter', "Snow age", "day", (/ ('', i=1, 9) /)), &
902      ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11 /),'ages_lic', "Snow age", "day", (/ ('', i=1, 9) /)), &
903      ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /),'ages_oce',"Snow age", "day", (/ ('', i=1, 9) /)), &
904      ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11 /),'ages_sic',"Snow age", "day", (/ ('', i=1, 9) /)) /)
905
906  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_rugs_srf     = (/ &
907      ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11 /),'rugs_ter', "Surface roughness "//clnsurf(1),"m", (/ ('', i=1, 9) /)), &
908      ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11 /),'rugs_lic', "Surface roughness "//clnsurf(2),"m", (/ ('', i=1, 9) /)), &
909      ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11 /),'rugs_oce', "Surface roughness "//clnsurf(3),"m", (/ ('', i=1, 9) /)), &
910      ctrl_out((/ 3, 6, 10, 10, 10, 10, 11, 11, 11 /),'rugs_sic', "Surface roughness "//clnsurf(4),"m", (/ ('', i=1, 9) /)) /)
911
912  TYPE(ctrl_out), SAVE :: o_alb1 = ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11 /), &
913    'alb1', 'Surface VIS albedo', '-', (/ ('', i=1, 9) /))
914  TYPE(ctrl_out), SAVE :: o_alb2 = ctrl_out((/ 3, 10, 10, 10, 10, 10, 11, 11, 11 /), &
915    'alb2', 'Surface Near IR albedo', '-', (/ ('', i=1, 9) /))
916  TYPE(ctrl_out), SAVE :: o_clwcon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
917    'clwcon', 'Convective Cloud Liquid water content', 'kg/kg', (/ ('', i=1, 9) /))
918  TYPE(ctrl_out), SAVE :: o_Ma = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
919    'Ma', 'undilute adiab updraft', 'kg/m2/s', (/ ('', i=1, 9) /))
920  TYPE(ctrl_out), SAVE :: o_dnwd = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
921    'dnwd', 'saturated downdraft', 'kg/m2/s', (/ ('', i=1, 9) /))
922  TYPE(ctrl_out), SAVE :: o_dnwd0 = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
923    'dnwd0', 'unsat. downdraft', 'kg/m2/s', (/ ('', i=1, 9) /))
924  TYPE(ctrl_out), SAVE :: o_mc = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
925    'mc', 'Convective mass flux', 'kg/m2/s', (/ ('', i=1, 9) /))
926  TYPE(ctrl_out), SAVE :: o_ftime_con = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
927    'ftime_con', 'Fraction of time convection Occurs', ' ',                 &
928      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /))
929  TYPE(ctrl_out), SAVE :: o_dtdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
930    'dtdyn', 'Dynamics dT', 'K/s', (/ ('', i=1, 9) /))
931  TYPE(ctrl_out), SAVE :: o_dqdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
932    'dqdyn', 'Dynamics dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
933  TYPE(ctrl_out), SAVE :: o_dudyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
934    'dudyn', 'Dynamics dU', 'm/s2', (/ ('', i=1, 9) /))
935  TYPE(ctrl_out), SAVE :: o_dvdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
936    'dvdyn', 'Dynamics dV', 'm/s2', (/ ('', i=1, 9) /))
937  TYPE(ctrl_out), SAVE :: o_dtcon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
938    'dtcon', 'Convection dT', 'K/s', (/ ('', i=1, 9) /))
939  TYPE(ctrl_out), SAVE :: o_ducon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
940    'ducon', 'Convection du', 'm/s2', (/ ('', i=1, 9) /))
941  TYPE(ctrl_out), SAVE :: o_dvcon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
942    'dvcon', 'Convection dv', 'm/s2', (/ ('', i=1, 9) /))
943  TYPE(ctrl_out), SAVE :: o_dqcon = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
944    'dqcon', 'Convection dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
945  TYPE(ctrl_out), SAVE :: o_dtwak = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
946    'dtwak', 'Wake dT', 'K/s', (/ ('', i=1, 9) /))
947  TYPE(ctrl_out), SAVE :: o_dqwak = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
948    'dqwak', 'Wake dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
949  TYPE(ctrl_out), SAVE :: o_wake_h = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
950    'wake_h', 'wake_h', '-', (/ ('', i=1, 9) /))
951  TYPE(ctrl_out), SAVE :: o_wake_s = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
952    'wake_s', 'wake_s', '-', (/ ('', i=1, 9) /))
953  TYPE(ctrl_out), SAVE :: o_wake_deltat = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
954    'wake_deltat', 'wake_deltat', ' ', (/ ('', i=1, 9) /))
955  TYPE(ctrl_out), SAVE :: o_wake_deltaq = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
956    'wake_deltaq', 'wake_deltaq', ' ', (/ ('', i=1, 9) /))
957  TYPE(ctrl_out), SAVE :: o_wake_omg = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
958    'wake_omg', 'wake_omg', ' ', (/ ('', i=1, 9) /))
959  TYPE(ctrl_out), SAVE :: o_wdtrainA = ctrl_out((/ 4, 1, 10,  4,  1, 10, 11, 11, 110 /), &
960    'wdtrainA', 'precipitation from AA', '-', (/ ('', i=1, 9) /))
961  TYPE(ctrl_out), SAVE :: o_wdtrainM = ctrl_out((/ 4, 1, 10,  4,  1, 10, 11, 11, 110 /), &
962    'wdtrainM', 'precipitation from mixture', '-', (/ ('', i=1, 9) /))
963  TYPE(ctrl_out), SAVE :: o_Vprecip = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
964    'Vprecip', 'precipitation vertical profile', '-', (/ ('', i=1, 9) /))
965  TYPE(ctrl_out), SAVE :: o_ftd = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
966    'ftd', 'tend temp due aux descentes precip', '-', (/ ('', i=1, 9) /))
967  TYPE(ctrl_out), SAVE :: o_fqd = ctrl_out((/ 4, 5, 10, 10, 10, 10, 11, 11, 11 /), &
968    'fqd', 'tend vap eau due aux descentes precip', '-', (/ ('', i=1, 9) /))
969  TYPE(ctrl_out), SAVE :: o_dtlsc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
970    'dtlsc', 'Condensation dT', 'K/s', (/ ('', i=1, 9) /))
971  TYPE(ctrl_out), SAVE :: o_dtlschr = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
972    'dtlschr', 'Large-scale condensational heating rate', 'K/s', (/ ('', i=1, 9) /))
973  TYPE(ctrl_out), SAVE :: o_dqlsc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
974    'dqlsc', 'Condensation dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
975  TYPE(ctrl_out), SAVE :: o_beta_prec = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
976    'beta_prec', 'LS Conversion rate to prec', '(kg/kg)/s', (/ ('', i=1, 9) /))
977  TYPE(ctrl_out), SAVE :: o_dtvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
978    'dtvdf', 'Boundary-layer dT', 'K/s', (/ ('', i=1, 9) /))
979  TYPE(ctrl_out), SAVE :: o_dtdis = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
980    'dtdis', 'TKE dissipation dT', 'K/s', (/ ('', i=1, 9) /))
981  TYPE(ctrl_out), SAVE :: o_dqvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
982    'dqvdf', 'Boundary-layer dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
983  TYPE(ctrl_out), SAVE :: o_dteva = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
984    'dteva', 'Reevaporation dT', 'K/s', (/ ('', i=1, 9) /))
985  TYPE(ctrl_out), SAVE :: o_dqeva = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
986    'dqeva', 'Reevaporation dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
987
988!!!!!!!!!!!!!!!! Specifique thermiques
989  TYPE(ctrl_out), SAVE :: o_dqlscth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
990    'dqlscth', 'dQ therm.', '(kg/kg)/s', (/ ('', i=1, 9) /))
991  TYPE(ctrl_out), SAVE :: o_dqlscst = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
992    'dqlscst', 'dQ strat.', '(kg/kg)/s', (/ ('', i=1, 9) /))
993  TYPE(ctrl_out), SAVE :: o_dtlscth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
994    'dtlscth', 'dQ therm.', 'K/s', (/ ('', i=1, 9) /))
995  TYPE(ctrl_out), SAVE :: o_dtlscst = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
996    'dtlscst', 'dQ strat.', 'K/s', (/ ('', i=1, 9) /))
997  TYPE(ctrl_out), SAVE :: o_plulth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
998    'plulth', 'Rainfall therm.', 'K/s', (/ ('', i=1, 9) /))
999  TYPE(ctrl_out), SAVE :: o_plulst = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1000    'plulst', 'Rainfall strat.', 'K/s', (/ ('', i=1, 9) /))
1001  TYPE(ctrl_out), SAVE :: o_lmaxth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1002    'lmaxth', "Upper level thermals", "", (/ ('', i=1, 9) /))
1003  TYPE(ctrl_out), SAVE :: o_ptconvth = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1004    'ptconvth', 'POINTS CONVECTIFS therm.', ' ', (/ ('', i=1, 9) /))
1005!!!!!!!!!!!!!!!!!!!!!!!!
1006  TYPE(ctrl_out), SAVE :: o_ptconv = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1007    'ptconv', 'POINTS CONVECTIFS', ' ', (/ ('', i=1, 9) /))
1008  TYPE(ctrl_out), SAVE :: o_ratqs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1009    'ratqs', 'RATQS', ' ', (/ ('', i=1, 9) /))
1010  TYPE(ctrl_out), SAVE :: o_dtthe = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1011    'dtthe', 'Thermal dT', 'K/s', (/ ('', i=1, 9) /))
1012  TYPE(ctrl_out), SAVE :: o_f_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1013    'f_th', 'Thermal plume mass flux', 'kg/(m2*s)', (/ ('', i=1, 9) /))
1014  TYPE(ctrl_out), SAVE :: o_e_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1015    'e_th', 'Thermal plume entrainment', 'K/s', (/ ('', i=1, 9) /))
1016  TYPE(ctrl_out), SAVE :: o_w_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1017    'w_th', 'Thermal plume vertical velocity', 'm/s', (/ ('', i=1, 9) /))
1018  TYPE(ctrl_out), SAVE :: o_lambda_th = ctrl_out((/ 10, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1019    'lambda_th', 'Thermal plume vertical velocity', 'm/s', (/ ('', i=1, 9) /))
1020  TYPE(ctrl_out), SAVE :: o_ftime_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1021    'ftime_th', 'Fraction of time Shallow convection occurs', ' ', (/ ('', i=1, 9) /))
1022  TYPE(ctrl_out), SAVE :: o_q_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1023    'q_th', 'Thermal plume total humidity', 'kg/kg', (/ ('', i=1, 9) /))
1024  TYPE(ctrl_out), SAVE :: o_a_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1025    'a_th', "Thermal plume fraction", "", (/ ('', i=1, 9) /))
1026  TYPE(ctrl_out), SAVE :: o_d_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1027    'd_th', 'Thermal plume detrainment', 'K/s', (/ ('', i=1, 9) /))
1028  TYPE(ctrl_out), SAVE :: o_f0_th = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1029    'f0_th', 'Thermal closure mass flux', 'K/s', (/ ('', i=1, 9) /))
1030  TYPE(ctrl_out), SAVE :: o_zmax_th = ctrl_out((/ 4,  4,  4,  5, 10, 10, 11, 11, 11 /), &
1031    'zmax_th', 'Thermal plume height', 'K/s', (/ ('', i=1, 9) /))
1032  TYPE(ctrl_out), SAVE :: o_dqthe = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1033    'dqthe', 'Thermal dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
1034  TYPE(ctrl_out), SAVE :: o_dtajs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1035    'dtajs', 'Dry adjust. dT', 'K/s', (/ ('', i=1, 9) /))
1036  TYPE(ctrl_out), SAVE :: o_dqajs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1037    'dqajs', 'Dry adjust. dQ', '(kg/kg)/s', (/ ('', i=1, 9) /))
1038  TYPE(ctrl_out), SAVE :: o_dtswr = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1039    'dtswr', 'SW radiation dT', 'K/s', (/ ('', i=1, 9) /))
1040  TYPE(ctrl_out), SAVE :: o_dtsw0 = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1041    'dtsw0', 'CS SW radiation dT', 'K/s', (/ ('', i=1, 9) /))
1042  TYPE(ctrl_out), SAVE :: o_dtlwr = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1043    'dtlwr', 'LW radiation dT', 'K/s', (/ ('', i=1, 9) /))
1044  TYPE(ctrl_out), SAVE :: o_dtlw0 = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1045    'dtlw0', 'CS LW radiation dT', 'K/s', (/ ('', i=1, 9) /))
1046  TYPE(ctrl_out), SAVE :: o_dtec = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1047    'dtec', 'Cinetic dissip dT', 'K/s', (/ ('', i=1, 9) /))
1048  TYPE(ctrl_out), SAVE :: o_duvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1049    'duvdf', 'Boundary-layer dU', 'm/s2', (/ ('', i=1, 9) /))
1050  TYPE(ctrl_out), SAVE :: o_dvvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1051    'dvvdf', 'Boundary-layer dV', 'm/s2', (/ ('', i=1, 9) /))
1052  TYPE(ctrl_out), SAVE :: o_duoro = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1053    'duoro', 'Orography dU', 'm/s2', (/ ('', i=1, 9) /))
1054  TYPE(ctrl_out), SAVE :: o_dvoro = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1055    'dvoro', 'Orography dV', 'm/s2', (/ ('', i=1, 9) /))
1056  TYPE(ctrl_out), SAVE :: o_dulif = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1057    'dulif', 'Orography dU', 'm/s2', (/ ('', i=1, 9) /))
1058  TYPE(ctrl_out), SAVE :: o_dvlif = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1059    'dvlif', 'Orography dV', 'm/s2', (/ ('', i=1, 9) /))
1060  TYPE(ctrl_out), SAVE :: o_duhin = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1061    'duhin', 'Hines GWD dU', 'm/s2', (/ ('', i=1, 9) /))
1062  TYPE(ctrl_out), SAVE :: o_dvhin = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1063    'dvhin', 'Hines GWD dV', 'm/s2', (/ ('', i=1, 9) /))
1064  TYPE(ctrl_out), SAVE :: o_dtoro = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1065    'dtoro', 'Orography dT', 'K/s', (/ ('', i=1, 9) /))
1066  TYPE(ctrl_out), SAVE :: o_dtlif = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1067    'dtlif', 'Orography dT', 'K/s', (/ ('', i=1, 9) /))
1068  TYPE(ctrl_out), SAVE :: o_dthin = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1069    'dthin', 'Hines GWD dT', 'K/s', (/ ('', i=1, 9) /))
1070
1071  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_trac(:)
1072  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_trac_cum(:)
1073  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_vdf(:)
1074  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_the(:)
1075  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_con(:)
1076  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_lessi_impa(:)
1077  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_lessi_nucl(:)
1078  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_insc(:)
1079  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_bcscav(:)
1080  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_evapls(:)
1081  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_ls(:)
1082  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_trsp(:)
1083  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_sscav(:)
1084  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_sat(:)
1085  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_uscav(:)
1086  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_dtr_dry(:)
1087
1088  TYPE(ctrl_out), SAVE :: o_rsu = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1089    'rsu', 'SW upward radiation', 'W m-2', (/ ('', i=1, 9) /))
1090  TYPE(ctrl_out), SAVE :: o_rsd = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1091    'rsd', 'SW downward radiation', 'W m-2', (/ ('', i=1, 9) /))
1092  TYPE(ctrl_out), SAVE :: o_rlu = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1093    'rlu', 'LW upward radiation', 'W m-2', (/ ('', i=1, 9) /))
1094  TYPE(ctrl_out), SAVE :: o_rld = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1095    'rld', 'LW downward radiation', 'W m-2', (/ ('', i=1, 9) /))
1096  TYPE(ctrl_out), SAVE :: o_rsucs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1097    'rsucs', 'SW CS upward radiation', 'W m-2', (/ ('', i=1, 9) /))
1098  TYPE(ctrl_out), SAVE :: o_rsdcs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1099    'rsdcs', 'SW CS downward radiation', 'W m-2', (/ ('', i=1, 9) /))
1100  TYPE(ctrl_out), SAVE :: o_rlucs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1101    'rlucs', 'LW CS upward radiation', 'W m-2', (/ ('', i=1, 9) /))
1102  TYPE(ctrl_out), SAVE :: o_rldcs = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1103    'rldcs', 'LW CS downward radiation', 'W m-2', (/ ('', i=1, 9) /))
1104  TYPE(ctrl_out), SAVE :: o_tnt = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1105    'tnt', 'Tendency of air temperature', 'K s-1', (/ ('', i=1, 9) /))
1106  TYPE(ctrl_out), SAVE :: o_tntc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1107    'tntc', 'Tendency of air temperature due to Moist Convection', 'K s-1', (/ ('', i=1, 9) /))
1108  TYPE(ctrl_out), SAVE :: o_tntr = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1109    'tntr', 'Air temperature tendency due to Radiative heating', 'K s-1', (/ ('', i=1, 9) /))
1110  TYPE(ctrl_out), SAVE :: o_tntscpbl = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /),                  &
1111    'tntscpbl', 'Air temperature tendency due to St cloud and precipitation and BL mixing', &
1112      'K s-1', (/ ('', i=1, 9) /))
1113  TYPE(ctrl_out), SAVE :: o_tnhus = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1114    'tnhus', 'Tendency of specific humidity', 's-1', (/ ('', i=1, 9) /))
1115  TYPE(ctrl_out), SAVE :: o_tnhusc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1116    'tnhusc', 'Tendency of specific humidity due to convection', 's-1', (/ ('', i=1, 9) /))
1117  TYPE(ctrl_out), SAVE :: o_tnhusscpbl = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1118    'tnhusscpbl', 'Tendency of Specific humidity due to ST cl, precip and BL mixing', 's-1', (/ ('', i=1, 9) /))
1119  TYPE(ctrl_out), SAVE :: o_evu = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1120    'evu', 'Eddy viscosity coefficient for Momentum Variables', 'm2 s-1', (/ ('', i=1, 9) /))
1121  TYPE(ctrl_out), SAVE :: o_h2o = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1122    'h2o', 'Mass Fraction of Water', '1', (/ ('', i=1, 9) /))
1123  TYPE(ctrl_out), SAVE :: o_mcd = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1124    'mcd', 'Downdraft COnvective Mass Flux', 'kg/(m2*s)', (/ ('', i=1, 9) /))
1125  TYPE(ctrl_out), SAVE :: o_dmc = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1126    'dmc', 'Deep COnvective Mass Flux', 'kg/(m2*s)', (/ ('', i=1, 9) /))
1127  TYPE(ctrl_out), SAVE :: o_ref_liq = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1128    'ref_liq', 'Effective radius of convective cloud liquid water particle', 'm', (/ ('', i=1, 9) /))
1129  TYPE(ctrl_out), SAVE :: o_ref_ice = ctrl_out((/ 4, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1130    'ref_ice', 'Effective radius of startiform cloud ice particle', 'm', (/ ('', i=1, 9) /))
1131  TYPE(ctrl_out), SAVE :: o_rsut4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1132    'rsut4co2', 'TOA Out SW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1133  TYPE(ctrl_out), SAVE :: o_rlut4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1134    'rlut4co2', 'TOA Out LW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1135  TYPE(ctrl_out), SAVE :: o_rsutcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1136    'rsutcs4co2', 'TOA Out CS SW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1137  TYPE(ctrl_out), SAVE :: o_rlutcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1138    'rlutcs4co2', 'TOA Out CS LW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1139  TYPE(ctrl_out), SAVE :: o_rsu4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1140    'rsu4co2', 'Upwelling SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1141  TYPE(ctrl_out), SAVE :: o_rlu4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1142    'rlu4co2', 'Upwelling LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1143  TYPE(ctrl_out), SAVE :: o_rsucs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1144    'rsucs4co2', 'Upwelling CS SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1145  TYPE(ctrl_out), SAVE :: o_rlucs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1146    'rlucs4co2', 'Upwelling CS LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1147  TYPE(ctrl_out), SAVE :: o_rsd4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1148    'rsd4co2', 'Downwelling SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1149  TYPE(ctrl_out), SAVE :: o_rld4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1150    'rld4co2', 'Downwelling LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1151  TYPE(ctrl_out), SAVE :: o_rsdcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1152    'rsdcs4co2', 'Downwelling CS SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1153  TYPE(ctrl_out), SAVE :: o_rldcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10, 11, 11, 11 /), &
1154    'rldcs4co2', 'Downwelling CS LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 9) /))
1155
1156!!!!!!!!!!!!! Sorties niveaux standards de pression NMC
1157  TYPE(ctrl_out), SAVE :: o_tnondef = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1158       'tnondef', 'Undefined value of T', 'K', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", &
1159       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1160  TYPE(ctrl_out), SAVE :: o_ta = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1161       'ta', 'Air temperature', 'K', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", &
1162       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1163  TYPE(ctrl_out), SAVE :: o_zg  = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1164       'zg', 'Geopotential height', 'm', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", &
1165       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1166  TYPE(ctrl_out), SAVE :: o_hus = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1167       'hus', 'Specific humidity', '1', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", &
1168       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                                   
1169  TYPE(ctrl_out), SAVE :: o_hur = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1170       'hur', 'Relative humidity', '%', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", &
1171       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1172  TYPE(ctrl_out), SAVE :: o_ua = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1173       'ua', 'Eastward wind', 'm s-1', (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", &
1174       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1175  TYPE(ctrl_out), SAVE :: o_va = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1176       'va', 'Northward wind', 'm s-1', (/ ('', i=1, 9)/))
1177  TYPE(ctrl_out), SAVE :: o_wap = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1178       'wap', 'Lagrangian tendency of air pressure', 'Pa s-1', (/ "inst(X)", "inst(X)", "inst(X)", &
1179       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1180  TYPE(ctrl_out), SAVE :: o_psbg = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1181       'psbg', 'Lagrangian tendency of air pressure', 'Pa s-1', (/ "inst(X)", "inst(X)", "inst(X)", &
1182       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1183  TYPE(ctrl_out), SAVE :: o_tro3 = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1184       'tro3', 'Ozone mole fraction', '1e-9', (/ "inst(X)", "inst(X)", "inst(X)", &
1185       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1186  TYPE(ctrl_out), SAVE :: o_tro3_daylight = ctrl_out((/ 11, 11, 11, 11, 11, 11, 5, 5, 5 /), &
1187       'tro3_daylight', 'Daylight ozone mole fraction', '1e-9', (/ "inst(X)", "inst(X)", "inst(X)", &
1188       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1189  TYPE(ctrl_out), SAVE :: o_uxv = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1190       'uv', 'uv', 'm2/s2', (/ "inst(X)", "inst(X)", "inst(X)", &
1191       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))
1192  TYPE(ctrl_out), SAVE :: o_vxq = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1193       'vq', 'vq', 'm/s * (kg/kg)', (/ "inst(X)", "inst(X)", "inst(X)", &
1194       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                                                   
1195  TYPE(ctrl_out), SAVE :: o_vxT = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1196       'vT', 'vT', 'mK/s', (/ "inst(X)", "inst(X)", "inst(X)", &
1197       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                                     
1198  TYPE(ctrl_out), SAVE :: o_wxq = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1199       'wq', 'wq', '(Pa/s)*(kg/kg)', (/ "inst(X)", "inst(X)", "inst(X)", &
1200       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                               
1201  TYPE(ctrl_out), SAVE :: o_vxphi = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1202       'vphi', 'vphi', 'm2/s', (/ "inst(X)", "inst(X)", "inst(X)", &
1203       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                                 
1204  TYPE(ctrl_out), SAVE :: o_wxT = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1205       'wT', 'wT', '"K*Pa/s', (/ "inst(X)", "inst(X)", "inst(X)", &
1206       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                                     
1207  TYPE(ctrl_out), SAVE :: o_uxu = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1208       'u2', 'u2', 'm2/s2', (/ "inst(X)", "inst(X)", "inst(X)", &
1209       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                                                                                         
1210  TYPE(ctrl_out), SAVE :: o_vxv = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1211       'v2', 'v2', 'm2/s2', (/ "inst(X)", "inst(X)", "inst(X)", &
1212       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                               
1213   TYPE(ctrl_out), SAVE :: o_TxT = ctrl_out((/ 11, 11, 11, 11, 11, 11, 6, 6, 6 /), &
1214       'T2', 'T2', 'K2', (/ "inst(X)", "inst(X)", "inst(X)", &
1215       "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)"  /))                                                                                 
1216
1217END MODULE phys_output_ctrlout_mod
Note: See TracBrowser for help on using the repository browser.