[781] | 1 | ! |
---|
[1279] | 2 | ! $Id: pbl_surface_mod.F90 2126 2014-10-15 00:03:57Z lguez $ |
---|
| 3 | ! |
---|
[781] | 4 | MODULE pbl_surface_mod |
---|
| 5 | ! |
---|
| 6 | ! Planetary Boundary Layer and Surface module |
---|
| 7 | ! |
---|
| 8 | ! This module manage the calculation of turbulent diffusion in the boundary layer |
---|
| 9 | ! and all interactions towards the differents sub-surfaces. |
---|
| 10 | ! |
---|
| 11 | ! |
---|
| 12 | USE dimphy |
---|
| 13 | USE mod_phys_lmdz_para, ONLY : mpi_size |
---|
| 14 | USE ioipsl |
---|
[996] | 15 | USE surface_data, ONLY : type_ocean, ok_veget |
---|
[781] | 16 | USE surf_land_mod, ONLY : surf_land |
---|
| 17 | USE surf_landice_mod, ONLY : surf_landice |
---|
| 18 | USE surf_ocean_mod, ONLY : surf_ocean |
---|
| 19 | USE surf_seaice_mod, ONLY : surf_seaice |
---|
| 20 | USE cpl_mod, ONLY : gath2cpl |
---|
| 21 | USE climb_hq_mod, ONLY : climb_hq_down, climb_hq_up |
---|
| 22 | USE climb_wind_mod, ONLY : climb_wind_down, climb_wind_up |
---|
| 23 | USE coef_diff_turb_mod, ONLY : coef_diff_turb |
---|
[1403] | 24 | USE control_mod |
---|
[781] | 25 | |
---|
[1403] | 26 | |
---|
[781] | 27 | IMPLICIT NONE |
---|
| 28 | |
---|
| 29 | ! Declaration of variables saved in restart file |
---|
[888] | 30 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: qsol ! water height in the soil (mm) |
---|
[781] | 31 | !$OMP THREADPRIVATE(qsol) |
---|
[888] | 32 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: fder ! flux drift |
---|
[781] | 33 | !$OMP THREADPRIVATE(fder) |
---|
[888] | 34 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: snow ! snow at surface |
---|
[781] | 35 | !$OMP THREADPRIVATE(snow) |
---|
[888] | 36 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: qsurf ! humidity at surface |
---|
[781] | 37 | !$OMP THREADPRIVATE(qsurf) |
---|
[888] | 38 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: evap ! evaporation at surface |
---|
[781] | 39 | !$OMP THREADPRIVATE(evap) |
---|
[888] | 40 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: rugos ! rugosity at surface (m) |
---|
[781] | 41 | !$OMP THREADPRIVATE(rugos) |
---|
[888] | 42 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: agesno ! age of snow at surface |
---|
[781] | 43 | !$OMP THREADPRIVATE(agesno) |
---|
[1787] | 44 | ! Correction pour le cas AMMA (PRIVATE) |
---|
| 45 | REAL, ALLOCATABLE, DIMENSION(:,:,:), SAVE :: ftsoil ! soil temperature |
---|
[781] | 46 | !$OMP THREADPRIVATE(ftsoil) |
---|
| 47 | |
---|
| 48 | CONTAINS |
---|
| 49 | ! |
---|
| 50 | !**************************************************************************************** |
---|
| 51 | ! |
---|
| 52 | SUBROUTINE pbl_surface_init(qsol_rst, fder_rst, snow_rst, qsurf_rst,& |
---|
| 53 | evap_rst, rugos_rst, agesno_rst, ftsoil_rst) |
---|
| 54 | |
---|
| 55 | ! This routine should be called after the restart file has been read. |
---|
| 56 | ! This routine initialize the restart variables and does some validation tests |
---|
| 57 | ! for the index of the different surfaces and tests the choice of type of ocean. |
---|
| 58 | |
---|
[1785] | 59 | USE indice_sol_mod |
---|
| 60 | |
---|
[781] | 61 | INCLUDE "dimsoil.h" |
---|
| 62 | INCLUDE "iniprint.h" |
---|
| 63 | |
---|
| 64 | ! Input variables |
---|
| 65 | !**************************************************************************************** |
---|
| 66 | REAL, DIMENSION(klon), INTENT(IN) :: qsol_rst |
---|
| 67 | REAL, DIMENSION(klon), INTENT(IN) :: fder_rst |
---|
| 68 | REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: snow_rst |
---|
| 69 | REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: qsurf_rst |
---|
| 70 | REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: evap_rst |
---|
| 71 | REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: rugos_rst |
---|
| 72 | REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: agesno_rst |
---|
| 73 | REAL, DIMENSION(klon, nsoilmx, nbsrf), INTENT(IN) :: ftsoil_rst |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | ! Local variables |
---|
| 77 | !**************************************************************************************** |
---|
| 78 | INTEGER :: ierr |
---|
| 79 | CHARACTER(len=80) :: abort_message |
---|
| 80 | CHARACTER(len = 20) :: modname = 'pbl_surface_init' |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | !**************************************************************************************** |
---|
| 84 | ! Allocate and initialize module variables with fields read from restart file. |
---|
| 85 | ! |
---|
| 86 | !**************************************************************************************** |
---|
| 87 | ALLOCATE(qsol(klon), stat=ierr) |
---|
| 88 | IF (ierr /= 0) CALL abort_gcm('pbl_surface_init', 'pb in allocation',1) |
---|
| 89 | |
---|
| 90 | ALLOCATE(fder(klon), stat=ierr) |
---|
| 91 | IF (ierr /= 0) CALL abort_gcm('pbl_surface_init', 'pb in allocation',1) |
---|
| 92 | |
---|
| 93 | ALLOCATE(snow(klon,nbsrf), stat=ierr) |
---|
| 94 | IF (ierr /= 0) CALL abort_gcm('pbl_surface_init', 'pb in allocation',1) |
---|
| 95 | |
---|
| 96 | ALLOCATE(qsurf(klon,nbsrf), stat=ierr) |
---|
| 97 | IF (ierr /= 0) CALL abort_gcm('pbl_surface_init', 'pb in allocation',1) |
---|
| 98 | |
---|
| 99 | ALLOCATE(evap(klon,nbsrf), stat=ierr) |
---|
| 100 | IF (ierr /= 0) CALL abort_gcm('pbl_surface_init', 'pb in allocation',1) |
---|
| 101 | |
---|
| 102 | ALLOCATE(rugos(klon,nbsrf), stat=ierr) |
---|
| 103 | IF (ierr /= 0) CALL abort_gcm('pbl_surface_init', 'pb in allocation',1) |
---|
| 104 | |
---|
| 105 | ALLOCATE(agesno(klon,nbsrf), stat=ierr) |
---|
| 106 | IF (ierr /= 0) CALL abort_gcm('pbl_surface_init', 'pb in allocation',1) |
---|
| 107 | |
---|
| 108 | ALLOCATE(ftsoil(klon,nsoilmx,nbsrf), stat=ierr) |
---|
| 109 | IF (ierr /= 0) CALL abort_gcm('pbl_surface_init', 'pb in allocation',1) |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | qsol(:) = qsol_rst(:) |
---|
| 113 | fder(:) = fder_rst(:) |
---|
| 114 | snow(:,:) = snow_rst(:,:) |
---|
| 115 | qsurf(:,:) = qsurf_rst(:,:) |
---|
| 116 | evap(:,:) = evap_rst(:,:) |
---|
| 117 | rugos(:,:) = rugos_rst(:,:) |
---|
| 118 | agesno(:,:) = agesno_rst(:,:) |
---|
| 119 | ftsoil(:,:,:) = ftsoil_rst(:,:,:) |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | !**************************************************************************************** |
---|
| 123 | ! Test for sub-surface indices |
---|
| 124 | ! |
---|
| 125 | !**************************************************************************************** |
---|
| 126 | IF (is_ter /= 1) THEN |
---|
| 127 | WRITE(lunout,*)" *** Warning ***" |
---|
| 128 | WRITE(lunout,*)" is_ter n'est pas le premier surface, is_ter = ",is_ter |
---|
| 129 | WRITE(lunout,*)"or on doit commencer par les surfaces continentales" |
---|
| 130 | abort_message="voir ci-dessus" |
---|
| 131 | CALL abort_gcm(modname,abort_message,1) |
---|
| 132 | ENDIF |
---|
| 133 | |
---|
| 134 | IF ( is_oce > is_sic ) THEN |
---|
| 135 | WRITE(lunout,*)' *** Warning ***' |
---|
| 136 | WRITE(lunout,*)' Pour des raisons de sequencement dans le code' |
---|
| 137 | WRITE(lunout,*)' l''ocean doit etre traite avant la banquise' |
---|
| 138 | WRITE(lunout,*)' or is_oce = ',is_oce, '> is_sic = ',is_sic |
---|
| 139 | abort_message='voir ci-dessus' |
---|
| 140 | CALL abort_gcm(modname,abort_message,1) |
---|
| 141 | ENDIF |
---|
| 142 | |
---|
| 143 | IF ( is_lic > is_sic ) THEN |
---|
| 144 | WRITE(lunout,*)' *** Warning ***' |
---|
| 145 | WRITE(lunout,*)' Pour des raisons de sequencement dans le code' |
---|
| 146 | WRITE(lunout,*)' la glace contineltalle doit etre traite avant la glace de mer' |
---|
| 147 | WRITE(lunout,*)' or is_lic = ',is_lic, '> is_sic = ',is_sic |
---|
| 148 | abort_message='voir ci-dessus' |
---|
| 149 | CALL abort_gcm(modname,abort_message,1) |
---|
| 150 | ENDIF |
---|
| 151 | |
---|
| 152 | !**************************************************************************************** |
---|
| 153 | ! Validation of ocean mode |
---|
| 154 | ! |
---|
| 155 | !**************************************************************************************** |
---|
| 156 | |
---|
[996] | 157 | IF (type_ocean /= 'slab ' .AND. type_ocean /= 'force ' .AND. type_ocean /= 'couple') THEN |
---|
[1064] | 158 | WRITE(lunout,*)' *** Warning ***' |
---|
| 159 | WRITE(lunout,*)'Option couplage pour l''ocean = ', type_ocean |
---|
| 160 | abort_message='option pour l''ocean non valable' |
---|
| 161 | CALL abort_gcm(modname,abort_message,1) |
---|
[781] | 162 | ENDIF |
---|
| 163 | |
---|
| 164 | END SUBROUTINE pbl_surface_init |
---|
| 165 | ! |
---|
| 166 | !**************************************************************************************** |
---|
| 167 | ! |
---|
| 168 | |
---|
| 169 | SUBROUTINE pbl_surface( & |
---|
| 170 | dtime, date0, itap, jour, & |
---|
| 171 | debut, lafin, & |
---|
| 172 | rlon, rlat, rugoro, rmu0, & |
---|
[1865] | 173 | zsig, sollwd_m, pphi, cldt, & |
---|
[781] | 174 | rain_f, snow_f, solsw_m, sollw_m, & |
---|
| 175 | t, q, u, v, & |
---|
| 176 | pplay, paprs, pctsrf, & |
---|
[1816] | 177 | ts, alb1, alb2,ustar, u10m, v10m,wstar, & |
---|
[888] | 178 | lwdown_m, cdragh, cdragm, zu1, zv1, & |
---|
| 179 | alb1_m, alb2_m, zxsens, zxevap, & |
---|
[1865] | 180 | alb3_lic, runoff, snowhgt, qsnow, to_ice, sissnow, & |
---|
[781] | 181 | zxtsol, zxfluxlat, zt2m, qsat2m, & |
---|
[1761] | 182 | d_t, d_q, d_u, d_v, d_t_diss, & |
---|
[1539] | 183 | zcoefh, zcoefm, slab_wfbils, & |
---|
[781] | 184 | qsol_d, zq2m, s_pblh, s_plcl, & |
---|
| 185 | s_capCL, s_oliqCL, s_cteiCL, s_pblT, & |
---|
| 186 | s_therm, s_trmb1, s_trmb2, s_trmb3, & |
---|
[1670] | 187 | zxrugs,zustar,zu10m, zv10m, fder_print, & |
---|
[781] | 188 | zxqsurf, rh2m, zxfluxu, zxfluxv, & |
---|
| 189 | rugos_d, agesno_d, sollw, solsw, & |
---|
| 190 | d_ts, evap_d, fluxlat, t2m, & |
---|
| 191 | wfbils, wfbilo, flux_t, flux_u, flux_v,& |
---|
| 192 | dflux_t, dflux_q, zxsnow, & |
---|
[878] | 193 | zxfluxt, zxfluxq, q2m, flux_q, tke ) |
---|
[781] | 194 | !**************************************************************************************** |
---|
| 195 | ! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 196 | ! Objet: interface de "couche limite" (diffusion verticale) |
---|
| 197 | ! |
---|
| 198 | !AA REM: |
---|
| 199 | !AA----- |
---|
| 200 | !AA Tout ce qui a trait au traceurs est dans phytrac maintenant |
---|
| 201 | !AA pour l'instant le calcul de la couche limite pour les traceurs |
---|
| 202 | !AA se fait avec cltrac et ne tient pas compte de la differentiation |
---|
| 203 | !AA des sous-fraction de sol. |
---|
| 204 | !AA REM bis : |
---|
| 205 | !AA---------- |
---|
| 206 | !AA Pour pouvoir extraire les coefficient d'echanges et le vent |
---|
| 207 | !AA dans la premiere couche, 3 champs supplementaires ont ete crees |
---|
| 208 | !AA zcoefh, zu1 et zv1. Pour l'instant nous avons moyenne les valeurs |
---|
| 209 | !AA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir |
---|
| 210 | !AA si les informations des subsurfaces doivent etre prises en compte |
---|
| 211 | !AA il faudra sortir ces memes champs en leur ajoutant une dimension, |
---|
| 212 | !AA c'est a dire nbsrf (nbre de subsurface). |
---|
| 213 | ! |
---|
| 214 | ! Arguments: |
---|
| 215 | ! |
---|
| 216 | ! dtime----input-R- interval du temps (secondes) |
---|
| 217 | ! itap-----input-I- numero du pas de temps |
---|
| 218 | ! date0----input-R- jour initial |
---|
| 219 | ! t--------input-R- temperature (K) |
---|
| 220 | ! q--------input-R- vapeur d'eau (kg/kg) |
---|
| 221 | ! u--------input-R- vitesse u |
---|
| 222 | ! v--------input-R- vitesse v |
---|
| 223 | ! ts-------input-R- temperature du sol (en Kelvin) |
---|
| 224 | ! paprs----input-R- pression a intercouche (Pa) |
---|
| 225 | ! pplay----input-R- pression au milieu de couche (Pa) |
---|
| 226 | ! rlat-----input-R- latitude en degree |
---|
| 227 | ! rugos----input-R- longeur de rugosite (en m) |
---|
[1865] | 228 | ! Martin |
---|
| 229 | ! zsig-----input-R- slope |
---|
| 230 | ! cldt-----input-R- total cloud fraction |
---|
| 231 | ! pphi-----input-R- geopotentiel de chaque couche (g z) (reference sol) |
---|
| 232 | ! Martin |
---|
[781] | 233 | ! |
---|
| 234 | ! d_t------output-R- le changement pour "t" |
---|
| 235 | ! d_q------output-R- le changement pour "q" |
---|
| 236 | ! d_u------output-R- le changement pour "u" |
---|
| 237 | ! d_v------output-R- le changement pour "v" |
---|
| 238 | ! d_ts-----output-R- le changement pour "ts" |
---|
| 239 | ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) |
---|
| 240 | ! (orientation positive vers le bas) |
---|
[878] | 241 | ! tke---input/output-R- tke (kg/m**2/s) |
---|
[781] | 242 | ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) |
---|
| 243 | ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal |
---|
| 244 | ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal |
---|
| 245 | ! dflux_t--output-R- derive du flux sensible |
---|
| 246 | ! dflux_q--output-R- derive du flux latent |
---|
| 247 | ! zu1------output-R- le vent dans la premiere couche |
---|
| 248 | ! zv1------output-R- le vent dans la premiere couche |
---|
| 249 | ! trmb1----output-R- deep_cape |
---|
| 250 | ! trmb2----output-R- inhibition |
---|
| 251 | ! trmb3----output-R- Point Omega |
---|
| 252 | ! cteiCL---output-R- Critere d'instab d'entrainmt des nuages de CL |
---|
| 253 | ! plcl-----output-R- Niveau de condensation |
---|
| 254 | ! pblh-----output-R- HCL |
---|
| 255 | ! pblT-----output-R- T au nveau HCL |
---|
| 256 | ! |
---|
[1279] | 257 | USE carbon_cycle_mod, ONLY : carbon_cycle_cpl, co2_send |
---|
[1785] | 258 | USE indice_sol_mod |
---|
| 259 | |
---|
[1279] | 260 | IMPLICIT NONE |
---|
| 261 | |
---|
[781] | 262 | INCLUDE "dimsoil.h" |
---|
[793] | 263 | INCLUDE "YOMCST.h" |
---|
[781] | 264 | INCLUDE "iniprint.h" |
---|
[1932] | 265 | INCLUDE "YOETHF.h" |
---|
[793] | 266 | INCLUDE "FCTTRE.h" |
---|
| 267 | INCLUDE "clesphys.h" |
---|
[781] | 268 | INCLUDE "compbl.h" |
---|
[793] | 269 | INCLUDE "dimensions.h" |
---|
| 270 | INCLUDE "temps.h" |
---|
[1887] | 271 | INCLUDE "flux_arp.h" |
---|
[781] | 272 | !**************************************************************************************** |
---|
[888] | 273 | REAL, INTENT(IN) :: dtime ! time interval (s) |
---|
| 274 | REAL, INTENT(IN) :: date0 ! initial day |
---|
| 275 | INTEGER, INTENT(IN) :: itap ! time step |
---|
| 276 | INTEGER, INTENT(IN) :: jour ! current day of the year |
---|
| 277 | LOGICAL, INTENT(IN) :: debut ! true if first run step |
---|
| 278 | LOGICAL, INTENT(IN) :: lafin ! true if last run step |
---|
| 279 | REAL, DIMENSION(klon), INTENT(IN) :: rlon ! longitudes in degrees |
---|
| 280 | REAL, DIMENSION(klon), INTENT(IN) :: rlat ! latitudes in degrees |
---|
| 281 | REAL, DIMENSION(klon), INTENT(IN) :: rugoro ! rugosity length |
---|
| 282 | REAL, DIMENSION(klon), INTENT(IN) :: rmu0 ! cosine of solar zenith angle |
---|
| 283 | REAL, DIMENSION(klon), INTENT(IN) :: rain_f ! rain fall |
---|
| 284 | REAL, DIMENSION(klon), INTENT(IN) :: snow_f ! snow fall |
---|
| 285 | REAL, DIMENSION(klon), INTENT(IN) :: solsw_m ! net shortwave radiation at mean surface |
---|
| 286 | REAL, DIMENSION(klon), INTENT(IN) :: sollw_m ! net longwave radiation at mean surface |
---|
| 287 | REAL, DIMENSION(klon,klev), INTENT(IN) :: t ! temperature (K) |
---|
| 288 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q ! water vapour (kg/kg) |
---|
| 289 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u ! u speed |
---|
| 290 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v ! v speed |
---|
| 291 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! mid-layer pression (Pa) |
---|
| 292 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! pression between layers (Pa) |
---|
| 293 | REAL, DIMENSION(klon, nbsrf), INTENT(IN) :: pctsrf ! sub-surface fraction |
---|
[1865] | 294 | ! Martin |
---|
| 295 | REAL, DIMENSION(klon), INTENT(IN) :: zsig ! slope |
---|
| 296 | REAL, DIMENSION(klon), INTENT(IN) :: sollwd_m ! net longwave radiation at mean s |
---|
| 297 | REAL, DIMENSION(klon), INTENT(IN) :: cldt ! total cloud fraction |
---|
| 298 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pphi ! geopotential (m2/s2) |
---|
| 299 | ! Martin |
---|
[781] | 300 | |
---|
| 301 | ! Input/Output variables |
---|
| 302 | !**************************************************************************************** |
---|
[888] | 303 | REAL, DIMENSION(klon, nbsrf), INTENT(INOUT) :: ts ! temperature at surface (K) |
---|
| 304 | REAL, DIMENSION(klon, nbsrf), INTENT(INOUT) :: alb1 ! albedo in visible SW interval |
---|
| 305 | REAL, DIMENSION(klon, nbsrf), INTENT(INOUT) :: alb2 ! albedo in near infra-red SW interval |
---|
[1670] | 306 | REAL, DIMENSION(klon, nbsrf), INTENT(INOUT) :: ustar ! u* (m/s) |
---|
[1816] | 307 | REAL, DIMENSION(klon, nbsrf+1), INTENT(INOUT) :: wstar ! w* (m/s) |
---|
[888] | 308 | REAL, DIMENSION(klon, nbsrf), INTENT(INOUT) :: u10m ! u speed at 10m |
---|
| 309 | REAL, DIMENSION(klon, nbsrf), INTENT(INOUT) :: v10m ! v speed at 10m |
---|
[1761] | 310 | REAL, DIMENSION(klon, klev+1, nbsrf+1), INTENT(INOUT) :: tke |
---|
[781] | 311 | ! Output variables |
---|
| 312 | !**************************************************************************************** |
---|
[888] | 313 | REAL, DIMENSION(klon), INTENT(OUT) :: lwdown_m ! Downcoming longwave radiation |
---|
| 314 | REAL, DIMENSION(klon), INTENT(OUT) :: cdragh ! drag coefficient for T and Q |
---|
| 315 | REAL, DIMENSION(klon), INTENT(OUT) :: cdragm ! drag coefficient for wind |
---|
| 316 | REAL, DIMENSION(klon), INTENT(OUT) :: zu1 ! u wind speed in first layer |
---|
| 317 | REAL, DIMENSION(klon), INTENT(OUT) :: zv1 ! v wind speed in first layer |
---|
| 318 | REAL, DIMENSION(klon), INTENT(OUT) :: alb1_m ! mean albedo in visible SW interval |
---|
| 319 | REAL, DIMENSION(klon), INTENT(OUT) :: alb2_m ! mean albedo in near IR SW interval |
---|
[1865] | 320 | ! Martin |
---|
[2126] | 321 | REAL, DIMENSION(klon), INTENT(OUT) :: alb3_lic |
---|
[1865] | 322 | ! Martin |
---|
[888] | 323 | REAL, DIMENSION(klon), INTENT(OUT) :: zxsens ! sensible heat flux at surface with inversed sign |
---|
| 324 | ! (=> positive sign upwards) |
---|
| 325 | REAL, DIMENSION(klon), INTENT(OUT) :: zxevap ! water vapour flux at surface, positiv upwards |
---|
| 326 | REAL, DIMENSION(klon), INTENT(OUT) :: zxtsol ! temperature at surface, mean for each grid point |
---|
| 327 | REAL, DIMENSION(klon), INTENT(OUT) :: zxfluxlat ! latent flux, mean for each grid point |
---|
| 328 | REAL, DIMENSION(klon), INTENT(OUT) :: zt2m ! temperature at 2m, mean for each grid point |
---|
[781] | 329 | REAL, DIMENSION(klon), INTENT(OUT) :: qsat2m |
---|
[888] | 330 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_t ! change in temperature |
---|
[1761] | 331 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_t_diss ! change in temperature |
---|
[888] | 332 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_q ! change in water vapour |
---|
| 333 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_u ! change in u speed |
---|
| 334 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: d_v ! change in v speed |
---|
[781] | 335 | |
---|
[1919] | 336 | REAL, INTENT(OUT):: zcoefh(:, :, :) ! (klon, klev, nbsrf + 1) |
---|
| 337 | ! coef for turbulent diffusion of T and Q, mean for each grid point |
---|
| 338 | |
---|
| 339 | REAL, INTENT(OUT):: zcoefm(:, :, :) ! (klon, klev, nbsrf + 1) |
---|
| 340 | ! coef for turbulent diffusion of U and V (?), mean for each grid point |
---|
| 341 | |
---|
[781] | 342 | ! Output only for diagnostics |
---|
[996] | 343 | REAL, DIMENSION(klon), INTENT(OUT) :: slab_wfbils! heat balance at surface only for slab at ocean points |
---|
[888] | 344 | REAL, DIMENSION(klon), INTENT(OUT) :: qsol_d ! water height in the soil (mm) |
---|
| 345 | REAL, DIMENSION(klon), INTENT(OUT) :: zq2m ! water vapour at 2m, mean for each grid point |
---|
| 346 | REAL, DIMENSION(klon), INTENT(OUT) :: s_pblh ! height of the planetary boundary layer(HPBL) |
---|
| 347 | REAL, DIMENSION(klon), INTENT(OUT) :: s_plcl ! condensation level |
---|
| 348 | REAL, DIMENSION(klon), INTENT(OUT) :: s_capCL ! CAPE of PBL |
---|
| 349 | REAL, DIMENSION(klon), INTENT(OUT) :: s_oliqCL ! liquid water intergral of PBL |
---|
| 350 | REAL, DIMENSION(klon), INTENT(OUT) :: s_cteiCL ! cloud top instab. crit. of PBL |
---|
| 351 | REAL, DIMENSION(klon), INTENT(OUT) :: s_pblT ! temperature at PBLH |
---|
| 352 | REAL, DIMENSION(klon), INTENT(OUT) :: s_therm ! thermal virtual temperature excess |
---|
| 353 | REAL, DIMENSION(klon), INTENT(OUT) :: s_trmb1 ! deep cape, mean for each grid point |
---|
| 354 | REAL, DIMENSION(klon), INTENT(OUT) :: s_trmb2 ! inhibition, mean for each grid point |
---|
| 355 | REAL, DIMENSION(klon), INTENT(OUT) :: s_trmb3 ! point Omega, mean for each grid point |
---|
| 356 | REAL, DIMENSION(klon), INTENT(OUT) :: zxrugs ! rugosity at surface (m), mean for each grid point |
---|
[1670] | 357 | REAL, DIMENSION(klon), INTENT(OUT) :: zustar ! u* |
---|
[888] | 358 | REAL, DIMENSION(klon), INTENT(OUT) :: zu10m ! u speed at 10m, mean for each grid point |
---|
| 359 | REAL, DIMENSION(klon), INTENT(OUT) :: zv10m ! v speed at 10m, mean for each grid point |
---|
| 360 | REAL, DIMENSION(klon), INTENT(OUT) :: fder_print ! fder for printing (=fder(i) + dflux_t(i) + dflux_q(i)) |
---|
| 361 | REAL, DIMENSION(klon), INTENT(OUT) :: zxqsurf ! humidity at surface, mean for each grid point |
---|
| 362 | REAL, DIMENSION(klon), INTENT(OUT) :: rh2m ! relative humidity at 2m |
---|
| 363 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: zxfluxu ! u wind tension, mean for each grid point |
---|
| 364 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: zxfluxv ! v wind tension, mean for each grid point |
---|
| 365 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: rugos_d ! rugosity length (m) |
---|
| 366 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: agesno_d ! age of snow at surface |
---|
| 367 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: solsw ! net shortwave radiation at surface |
---|
| 368 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: sollw ! net longwave radiation at surface |
---|
| 369 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: d_ts ! change in temperature at surface |
---|
| 370 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: evap_d ! evaporation at surface |
---|
| 371 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: fluxlat ! latent flux |
---|
| 372 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: t2m ! temperature at 2 meter height |
---|
| 373 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: wfbils ! heat balance at surface |
---|
| 374 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: wfbilo ! water balance at surface |
---|
| 375 | REAL, DIMENSION(klon, klev, nbsrf), INTENT(OUT) :: flux_t ! sensible heat flux (CpT) J/m**2/s (W/m**2) |
---|
| 376 | ! positve orientation downwards |
---|
| 377 | REAL, DIMENSION(klon, klev, nbsrf), INTENT(OUT) :: flux_u ! u wind tension (kg m/s)/(m**2 s) or Pascal |
---|
| 378 | REAL, DIMENSION(klon, klev, nbsrf), INTENT(OUT) :: flux_v ! v wind tension (kg m/s)/(m**2 s) or Pascal |
---|
[781] | 379 | |
---|
| 380 | ! Output not needed |
---|
[888] | 381 | REAL, DIMENSION(klon), INTENT(OUT) :: dflux_t ! change of sensible heat flux |
---|
| 382 | REAL, DIMENSION(klon), INTENT(OUT) :: dflux_q ! change of water vapour flux |
---|
| 383 | REAL, DIMENSION(klon), INTENT(OUT) :: zxsnow ! snow at surface, mean for each grid point |
---|
| 384 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: zxfluxt ! sensible heat flux, mean for each grid point |
---|
| 385 | REAL, DIMENSION(klon, klev), INTENT(OUT) :: zxfluxq ! water vapour flux, mean for each grid point |
---|
| 386 | REAL, DIMENSION(klon, nbsrf),INTENT(OUT) :: q2m ! water vapour at 2 meter height |
---|
| 387 | REAL, DIMENSION(klon, klev, nbsrf), INTENT(OUT) :: flux_q ! water vapour flux(latent flux) (kg/m**2/s) |
---|
[781] | 388 | |
---|
[1865] | 389 | ! Martin |
---|
| 390 | ! sisvat |
---|
| 391 | REAL, DIMENSION(klon), INTENT(OUT) :: qsnow ! snow water content |
---|
| 392 | REAL, DIMENSION(klon), INTENT(OUT) :: snowhgt ! snow height |
---|
| 393 | REAL, DIMENSION(klon), INTENT(OUT) :: to_ice ! snow passed to ice |
---|
| 394 | REAL, DIMENSION(klon), INTENT(OUT) :: sissnow ! snow in snow model |
---|
| 395 | REAL, DIMENSION(klon), INTENT(OUT) :: runoff ! runoff on land ice |
---|
| 396 | ! Martin |
---|
[781] | 397 | |
---|
| 398 | ! Local variables with attribute SAVE |
---|
| 399 | !**************************************************************************************** |
---|
[888] | 400 | INTEGER, SAVE :: nhoridbg, nidbg ! variables for IOIPSL |
---|
[781] | 401 | !$OMP THREADPRIVATE(nhoridbg, nidbg) |
---|
| 402 | LOGICAL, SAVE :: debugindex=.FALSE. |
---|
| 403 | !$OMP THREADPRIVATE(debugindex) |
---|
| 404 | LOGICAL, SAVE :: first_call=.TRUE. |
---|
| 405 | !$OMP THREADPRIVATE(first_call) |
---|
| 406 | CHARACTER(len=8), DIMENSION(nbsrf), SAVE :: cl_surf |
---|
| 407 | !$OMP THREADPRIVATE(cl_surf) |
---|
| 408 | |
---|
| 409 | ! Other local variables |
---|
| 410 | !**************************************************************************************** |
---|
| 411 | INTEGER :: i, k, nsrf |
---|
| 412 | INTEGER :: knon, j |
---|
| 413 | INTEGER :: idayref |
---|
| 414 | INTEGER , DIMENSION(klon) :: ni |
---|
| 415 | REAL :: zx_alf1, zx_alf2 !valeur ambiante par extrapola |
---|
| 416 | REAL :: amn, amx |
---|
[888] | 417 | REAL :: f1 ! fraction de longeurs visibles parmi tout SW intervalle |
---|
[781] | 418 | REAL, DIMENSION(klon) :: r_co2_ppm ! taux CO2 atmosphere |
---|
| 419 | REAL, DIMENSION(klon) :: yts, yrugos, ypct, yz0_new |
---|
[888] | 420 | REAL, DIMENSION(klon) :: yalb, yalb1, yalb2 |
---|
[1555] | 421 | REAL, DIMENSION(klon) :: yu1, yv1,ytoto |
---|
[781] | 422 | REAL, DIMENSION(klon) :: ysnow, yqsurf, yagesno, yqsol |
---|
| 423 | REAL, DIMENSION(klon) :: yrain_f, ysnow_f |
---|
[888] | 424 | REAL, DIMENSION(klon) :: ysolsw, ysollw |
---|
[781] | 425 | REAL, DIMENSION(klon) :: yfder |
---|
[888] | 426 | REAL, DIMENSION(klon) :: yrugoro |
---|
[781] | 427 | REAL, DIMENSION(klon) :: yfluxlat |
---|
| 428 | REAL, DIMENSION(klon) :: y_d_ts |
---|
| 429 | REAL, DIMENSION(klon) :: y_flux_t1, y_flux_q1 |
---|
| 430 | REAL, DIMENSION(klon) :: y_dflux_t, y_dflux_q |
---|
[1067] | 431 | REAL, DIMENSION(klon) :: y_flux_u1, y_flux_v1 |
---|
[781] | 432 | REAL, DIMENSION(klon) :: yt2m, yq2m, yu10m |
---|
| 433 | REAL, DIMENSION(klon) :: yustar |
---|
[1816] | 434 | REAL, DIMENSION(klon) :: ywstar |
---|
[781] | 435 | REAL, DIMENSION(klon) :: ywindsp |
---|
| 436 | REAL, DIMENSION(klon) :: yt10m, yq10m |
---|
| 437 | REAL, DIMENSION(klon) :: ypblh |
---|
| 438 | REAL, DIMENSION(klon) :: ylcl |
---|
| 439 | REAL, DIMENSION(klon) :: ycapCL |
---|
| 440 | REAL, DIMENSION(klon) :: yoliqCL |
---|
| 441 | REAL, DIMENSION(klon) :: ycteiCL |
---|
| 442 | REAL, DIMENSION(klon) :: ypblT |
---|
| 443 | REAL, DIMENSION(klon) :: ytherm |
---|
| 444 | REAL, DIMENSION(klon) :: ytrmb1 |
---|
| 445 | REAL, DIMENSION(klon) :: ytrmb2 |
---|
| 446 | REAL, DIMENSION(klon) :: ytrmb3 |
---|
| 447 | REAL, DIMENSION(klon) :: uzon, vmer |
---|
| 448 | REAL, DIMENSION(klon) :: tair1, qair1, tairsol |
---|
| 449 | REAL, DIMENSION(klon) :: psfce, patm |
---|
| 450 | REAL, DIMENSION(klon) :: qairsol, zgeo1 |
---|
| 451 | REAL, DIMENSION(klon) :: rugo1 |
---|
[888] | 452 | REAL, DIMENSION(klon) :: yfluxsens |
---|
[1067] | 453 | REAL, DIMENSION(klon) :: AcoefH, AcoefQ, BcoefH, BcoefQ |
---|
| 454 | REAL, DIMENSION(klon) :: AcoefU, AcoefV, BcoefU, BcoefV |
---|
[888] | 455 | REAL, DIMENSION(klon) :: ypsref |
---|
[1865] | 456 | REAL, DIMENSION(klon) :: yevap, ytsurf_new, yalb1_new, yalb2_new, yalb3_new |
---|
[781] | 457 | REAL, DIMENSION(klon) :: ztsol |
---|
[888] | 458 | REAL, DIMENSION(klon) :: alb_m ! mean albedo for whole SW interval |
---|
[1761] | 459 | REAL, DIMENSION(klon,klev) :: y_d_t, y_d_q, y_d_t_diss |
---|
[781] | 460 | REAL, DIMENSION(klon,klev) :: y_d_u, y_d_v |
---|
| 461 | REAL, DIMENSION(klon,klev) :: y_flux_t, y_flux_q |
---|
| 462 | REAL, DIMENSION(klon,klev) :: y_flux_u, y_flux_v |
---|
[1761] | 463 | REAL, DIMENSION(klon,klev) :: ycoefh, ycoefm,ycoefq |
---|
[1067] | 464 | REAL, DIMENSION(klon) :: ycdragh, ycdragm |
---|
[781] | 465 | REAL, DIMENSION(klon,klev) :: yu, yv |
---|
| 466 | REAL, DIMENSION(klon,klev) :: yt, yq |
---|
| 467 | REAL, DIMENSION(klon,klev) :: ypplay, ydelp |
---|
| 468 | REAL, DIMENSION(klon,klev) :: delp |
---|
| 469 | REAL, DIMENSION(klon,klev+1) :: ypaprs |
---|
[878] | 470 | REAL, DIMENSION(klon,klev+1) :: ytke |
---|
[781] | 471 | REAL, DIMENSION(klon,nsoilmx) :: ytsoil |
---|
| 472 | CHARACTER(len=80) :: abort_message |
---|
| 473 | CHARACTER(len=20) :: modname = 'pbl_surface' |
---|
| 474 | LOGICAL, PARAMETER :: zxli=.FALSE. ! utiliser un jeu de fonctions simples |
---|
| 475 | LOGICAL, PARAMETER :: check=.FALSE. |
---|
[1555] | 476 | REAL, DIMENSION(klon) :: Kech_h ! Coefficient d'echange pour l'energie |
---|
[2126] | 477 | REAL :: vent |
---|
[781] | 478 | |
---|
| 479 | ! For debugging with IOIPSL |
---|
| 480 | INTEGER, DIMENSION(iim*(jjm+1)) :: ndexbg |
---|
| 481 | REAL :: zjulian |
---|
| 482 | REAL, DIMENSION(klon) :: tabindx |
---|
| 483 | REAL, DIMENSION(iim,jjm+1) :: zx_lon, zx_lat |
---|
| 484 | REAL, DIMENSION(iim,jjm+1) :: debugtab |
---|
| 485 | |
---|
| 486 | |
---|
[888] | 487 | REAL, DIMENSION(klon,nbsrf) :: pblh ! height of the planetary boundary layer |
---|
| 488 | REAL, DIMENSION(klon,nbsrf) :: plcl ! condensation level |
---|
[781] | 489 | REAL, DIMENSION(klon,nbsrf) :: capCL |
---|
| 490 | REAL, DIMENSION(klon,nbsrf) :: oliqCL |
---|
| 491 | REAL, DIMENSION(klon,nbsrf) :: cteiCL |
---|
| 492 | REAL, DIMENSION(klon,nbsrf) :: pblT |
---|
| 493 | REAL, DIMENSION(klon,nbsrf) :: therm |
---|
[888] | 494 | REAL, DIMENSION(klon,nbsrf) :: trmb1 ! deep cape |
---|
| 495 | REAL, DIMENSION(klon,nbsrf) :: trmb2 ! inhibition |
---|
| 496 | REAL, DIMENSION(klon,nbsrf) :: trmb3 ! point Omega |
---|
[1067] | 497 | REAL, DIMENSION(klon,nbsrf) :: zx_rh2m, zx_qsat2m |
---|
[996] | 498 | REAL, DIMENSION(klon,nbsrf) :: zx_t1 |
---|
[888] | 499 | REAL, DIMENSION(klon, nbsrf) :: alb ! mean albedo for whole SW interval |
---|
| 500 | REAL, DIMENSION(klon) :: ylwdown ! jg : temporary (ysollwdown) |
---|
[781] | 501 | |
---|
[996] | 502 | REAL :: zx_qs1, zcor1, zdelta1 |
---|
[781] | 503 | |
---|
[1865] | 504 | ! Martin |
---|
| 505 | REAL, DIMENSION(klon, nbsrf) :: sollwd ! net longwave radiation at surface |
---|
| 506 | REAL, DIMENSION(klon) :: ysollwd |
---|
| 507 | REAL, DIMENSION(klon) :: ytoice |
---|
| 508 | REAL, DIMENSION(klon) :: ysnowhgt, yqsnow, ysissnow, yrunoff |
---|
| 509 | REAL, DIMENSION(klon) :: yzsig |
---|
| 510 | REAL, DIMENSION(klon,klev) :: ypphi |
---|
| 511 | REAL, DIMENSION(klon) :: ycldt |
---|
| 512 | REAL, DIMENSION(klon) :: yrmu0 |
---|
| 513 | ! Martin |
---|
| 514 | |
---|
[781] | 515 | !**************************************************************************************** |
---|
[1894] | 516 | |
---|
[781] | 517 | ! End of declarations |
---|
| 518 | !**************************************************************************************** |
---|
| 519 | |
---|
| 520 | |
---|
| 521 | !**************************************************************************************** |
---|
| 522 | ! 1) Initialisation and validation tests |
---|
| 523 | ! Only done first time entering this subroutine |
---|
| 524 | ! |
---|
| 525 | !**************************************************************************************** |
---|
| 526 | |
---|
| 527 | IF (first_call) THEN |
---|
| 528 | first_call=.FALSE. |
---|
| 529 | |
---|
[1282] | 530 | ! Initialize ok_flux_surf (for 1D model) |
---|
[1403] | 531 | if (klon>1) ok_flux_surf=.FALSE. |
---|
[1282] | 532 | |
---|
[781] | 533 | ! Initilize debug IO |
---|
| 534 | IF (debugindex .AND. mpi_size==1) THEN |
---|
| 535 | ! initialize IOIPSL output |
---|
| 536 | idayref = day_ini |
---|
| 537 | CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian) |
---|
| 538 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlon,zx_lon) |
---|
| 539 | DO i = 1, iim |
---|
| 540 | zx_lon(i,1) = rlon(i+1) |
---|
| 541 | zx_lon(i,jjm+1) = rlon(i+1) |
---|
| 542 | ENDDO |
---|
| 543 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlat,zx_lat) |
---|
| 544 | CALL histbeg("sous_index", iim,zx_lon(:,1),jjm+1,zx_lat(1,:), & |
---|
| 545 | 1,iim,1,jjm+1, & |
---|
| 546 | itau_phy,zjulian,dtime,nhoridbg,nidbg) |
---|
| 547 | ! no vertical axis |
---|
| 548 | cl_surf(1)='ter' |
---|
| 549 | cl_surf(2)='lic' |
---|
| 550 | cl_surf(3)='oce' |
---|
| 551 | cl_surf(4)='sic' |
---|
| 552 | DO nsrf=1,nbsrf |
---|
| 553 | CALL histdef(nidbg, cl_surf(nsrf),cl_surf(nsrf), "-",iim, & |
---|
| 554 | jjm+1,nhoridbg, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
| 555 | END DO |
---|
| 556 | |
---|
| 557 | CALL histend(nidbg) |
---|
| 558 | CALL histsync(nidbg) |
---|
| 559 | |
---|
| 560 | END IF |
---|
| 561 | |
---|
| 562 | ENDIF |
---|
| 563 | |
---|
| 564 | !**************************************************************************************** |
---|
[889] | 565 | ! Force soil water content to qsol0 if qsol0>0 and VEGET=F (use bucket |
---|
| 566 | ! instead of ORCHIDEE) |
---|
[1894] | 567 | IF (qsol0>=0.) THEN |
---|
[1067] | 568 | PRINT*,'WARNING : On impose qsol=',qsol0 |
---|
[889] | 569 | qsol(:)=qsol0 |
---|
[1067] | 570 | ENDIF |
---|
[889] | 571 | !**************************************************************************************** |
---|
| 572 | |
---|
| 573 | !**************************************************************************************** |
---|
[781] | 574 | ! 2) Initialization to zero |
---|
| 575 | ! Done for all local variables that will be compressed later |
---|
| 576 | ! and argument with INTENT(OUT) |
---|
| 577 | !**************************************************************************************** |
---|
| 578 | cdragh = 0.0 ; cdragm = 0.0 ; dflux_t = 0.0 ; dflux_q = 0.0 |
---|
[1067] | 579 | ypct = 0.0 ; yts = 0.0 ; ysnow = 0.0 |
---|
[888] | 580 | zv1 = 0.0 ; yqsurf = 0.0 ; yalb1 = 0.0 ; yalb2 = 0.0 |
---|
[781] | 581 | yrain_f = 0.0 ; ysnow_f = 0.0 ; yfder = 0.0 ; ysolsw = 0.0 |
---|
[888] | 582 | ysollw = 0.0 ; yrugos = 0.0 ; yu1 = 0.0 |
---|
| 583 | yv1 = 0.0 ; ypaprs = 0.0 ; ypplay = 0.0 |
---|
[781] | 584 | ydelp = 0.0 ; yu = 0.0 ; yv = 0.0 ; yt = 0.0 |
---|
[996] | 585 | yq = 0.0 ; y_dflux_t = 0.0 ; y_dflux_q = 0.0 |
---|
[1067] | 586 | yrugoro = 0.0 ; ywindsp = 0.0 |
---|
[781] | 587 | d_ts = 0.0 ; yfluxlat=0.0 ; flux_t = 0.0 ; flux_q = 0.0 |
---|
| 588 | flux_u = 0.0 ; flux_v = 0.0 ; d_t = 0.0 ; d_q = 0.0 |
---|
[1761] | 589 | d_t_diss= 0.0 ;d_u = 0.0 ; d_v = 0.0 ; yqsol = 0.0 |
---|
[878] | 590 | ytherm = 0.0 ; ytke=0. |
---|
[1865] | 591 | ! Martin |
---|
| 592 | ysnowhgt = 0.0; yqsnow = 0.0 ; yrunoff = 0.0 ; ytoice =0.0 |
---|
| 593 | yalb3_new = 0.0 ; ysissnow = 0.0 ; ysollwd = 0.0 |
---|
| 594 | ypphi = 0.0 ; ycldt = 0.0 ; yrmu0 = 0.0 |
---|
| 595 | ! Martin |
---|
[1067] | 596 | |
---|
[1761] | 597 | tke(:,:,is_ave)=0. |
---|
| 598 | IF (iflag_pbl<20.or.iflag_pbl>=30) THEN |
---|
| 599 | zcoefh(:,:,:) = 0.0 |
---|
| 600 | zcoefh(:,1,:) = 999999. ! zcoefh(:,k=1) should never be used |
---|
| 601 | zcoefm(:,:,:) = 0.0 |
---|
| 602 | zcoefm(:,1,:) = 999999. ! |
---|
| 603 | ELSE |
---|
| 604 | zcoefm(:,:,is_ave)=0. |
---|
| 605 | zcoefh(:,:,is_ave)=0. |
---|
| 606 | ENDIF |
---|
[781] | 607 | ytsoil = 999999. |
---|
| 608 | |
---|
[1064] | 609 | rh2m(:) = 0. |
---|
| 610 | qsat2m(:) = 0. |
---|
[781] | 611 | !**************************************************************************************** |
---|
| 612 | ! 3) - Calculate pressure thickness of each layer |
---|
| 613 | ! - Calculate the wind at first layer |
---|
[888] | 614 | ! - Mean calculations of albedo |
---|
| 615 | ! - Calculate net radiance at sub-surface |
---|
[781] | 616 | !**************************************************************************************** |
---|
| 617 | DO k = 1, klev |
---|
| 618 | DO i = 1, klon |
---|
| 619 | delp(i,k) = paprs(i,k)-paprs(i,k+1) |
---|
| 620 | ENDDO |
---|
| 621 | ENDDO |
---|
| 622 | |
---|
| 623 | !**************************************************************************************** |
---|
| 624 | ! Test for rugos........ from physiq.. A la fin plutot??? |
---|
[888] | 625 | ! |
---|
[781] | 626 | !**************************************************************************************** |
---|
| 627 | |
---|
| 628 | zxrugs(:) = 0.0 |
---|
| 629 | DO nsrf = 1, nbsrf |
---|
| 630 | DO i = 1, klon |
---|
| 631 | rugos(i,nsrf) = MAX(rugos(i,nsrf),0.000015) |
---|
| 632 | zxrugs(i) = zxrugs(i) + rugos(i,nsrf)*pctsrf(i,nsrf) |
---|
| 633 | ENDDO |
---|
| 634 | ENDDO |
---|
| 635 | |
---|
[888] | 636 | ! Mean calculations of albedo |
---|
| 637 | ! |
---|
| 638 | ! Albedo at sub-surface |
---|
| 639 | ! * alb1 : albedo in visible SW interval |
---|
| 640 | ! * alb2 : albedo in near infrared SW interval |
---|
| 641 | ! * alb : mean albedo for whole SW interval |
---|
| 642 | ! |
---|
| 643 | ! Mean albedo for grid point |
---|
| 644 | ! * alb1_m : albedo in visible SW interval |
---|
| 645 | ! * alb2_m : albedo in near infrared SW interval |
---|
| 646 | ! * alb_m : mean albedo at whole SW interval |
---|
| 647 | |
---|
| 648 | alb1_m(:) = 0.0 |
---|
| 649 | alb2_m(:) = 0.0 |
---|
[781] | 650 | DO nsrf = 1, nbsrf |
---|
| 651 | DO i = 1, klon |
---|
[888] | 652 | alb1_m(i) = alb1_m(i) + alb1(i,nsrf) * pctsrf(i,nsrf) |
---|
| 653 | alb2_m(i) = alb2_m(i) + alb2(i,nsrf) * pctsrf(i,nsrf) |
---|
[781] | 654 | ENDDO |
---|
| 655 | ENDDO |
---|
| 656 | |
---|
[888] | 657 | ! We here suppose the fraction f1 of incoming radiance of visible radiance |
---|
| 658 | ! as a fraction of all shortwave radiance |
---|
[1069] | 659 | f1 = 0.5 |
---|
| 660 | ! f1 = 1 ! put f1=1 to recreate old calculations |
---|
[781] | 661 | |
---|
[888] | 662 | DO nsrf = 1, nbsrf |
---|
| 663 | DO i = 1, klon |
---|
| 664 | alb(i,nsrf) = f1*alb1(i,nsrf) + (1-f1)*alb2(i,nsrf) |
---|
| 665 | ENDDO |
---|
| 666 | ENDDO |
---|
[781] | 667 | |
---|
[888] | 668 | DO i = 1, klon |
---|
| 669 | alb_m(i) = f1*alb1_m(i) + (1-f1)*alb2_m(i) |
---|
| 670 | END DO |
---|
| 671 | |
---|
| 672 | ! Calculation of mean temperature at surface grid points |
---|
[781] | 673 | ztsol(:) = 0.0 |
---|
| 674 | DO nsrf = 1, nbsrf |
---|
| 675 | DO i = 1, klon |
---|
| 676 | ztsol(i) = ztsol(i) + ts(i,nsrf)*pctsrf(i,nsrf) |
---|
| 677 | ENDDO |
---|
| 678 | ENDDO |
---|
| 679 | |
---|
[888] | 680 | ! Linear distrubution on sub-surface of long- and shortwave net radiance |
---|
[781] | 681 | DO nsrf = 1, nbsrf |
---|
| 682 | DO i = 1, klon |
---|
| 683 | sollw(i,nsrf) = sollw_m(i) + 4.0*RSIGMA*ztsol(i)**3 * (ztsol(i)-ts(i,nsrf)) |
---|
[1865] | 684 | ! Martin |
---|
| 685 | sollwd(i,nsrf)= sollwd_m(i) |
---|
| 686 | ! Martin |
---|
[888] | 687 | solsw(i,nsrf) = solsw_m(i) * (1.-alb(i,nsrf)) / (1.-alb_m(i)) |
---|
[781] | 688 | ENDDO |
---|
| 689 | ENDDO |
---|
| 690 | |
---|
| 691 | |
---|
[888] | 692 | ! Downwelling longwave radiation at mean surface |
---|
| 693 | lwdown_m(:) = 0.0 |
---|
[781] | 694 | DO i = 1, klon |
---|
[888] | 695 | lwdown_m(i) = sollw_m(i) + RSIGMA*ztsol(i)**4 |
---|
[781] | 696 | ENDDO |
---|
| 697 | |
---|
| 698 | !**************************************************************************************** |
---|
| 699 | ! 4) Loop over different surfaces |
---|
| 700 | ! |
---|
[996] | 701 | ! Only points containing a fraction of the sub surface will be threated. |
---|
[781] | 702 | ! |
---|
| 703 | !**************************************************************************************** |
---|
[1064] | 704 | |
---|
[781] | 705 | loop_nbsrf: DO nsrf = 1, nbsrf |
---|
| 706 | |
---|
| 707 | ! Search for index(ni) and size(knon) of domaine to treat |
---|
| 708 | ni(:) = 0 |
---|
| 709 | knon = 0 |
---|
| 710 | DO i = 1, klon |
---|
[996] | 711 | IF (pctsrf(i,nsrf) > 0.) THEN |
---|
[781] | 712 | knon = knon + 1 |
---|
| 713 | ni(knon) = i |
---|
| 714 | ENDIF |
---|
| 715 | ENDDO |
---|
| 716 | |
---|
| 717 | ! write index, with IOIPSL |
---|
| 718 | IF (debugindex .AND. mpi_size==1) THEN |
---|
| 719 | tabindx(:)=0. |
---|
| 720 | DO i=1,knon |
---|
[1403] | 721 | tabindx(i)=REAL(i) |
---|
[781] | 722 | END DO |
---|
| 723 | debugtab(:,:) = 0. |
---|
| 724 | ndexbg(:) = 0 |
---|
| 725 | CALL gath2cpl(tabindx,debugtab,knon,ni) |
---|
| 726 | CALL histwrite(nidbg,cl_surf(nsrf),itap,debugtab,iim*(jjm+1), ndexbg) |
---|
| 727 | ENDIF |
---|
| 728 | |
---|
| 729 | !**************************************************************************************** |
---|
| 730 | ! 5) Compress variables |
---|
| 731 | ! |
---|
| 732 | !**************************************************************************************** |
---|
| 733 | |
---|
| 734 | DO j = 1, knon |
---|
| 735 | i = ni(j) |
---|
[888] | 736 | ypct(j) = pctsrf(i,nsrf) |
---|
| 737 | yts(j) = ts(i,nsrf) |
---|
| 738 | ysnow(j) = snow(i,nsrf) |
---|
| 739 | yqsurf(j) = qsurf(i,nsrf) |
---|
| 740 | yalb(j) = alb(i,nsrf) |
---|
| 741 | yalb1(j) = alb1(i,nsrf) |
---|
| 742 | yalb2(j) = alb2(i,nsrf) |
---|
[781] | 743 | yrain_f(j) = rain_f(i) |
---|
| 744 | ysnow_f(j) = snow_f(i) |
---|
| 745 | yagesno(j) = agesno(i,nsrf) |
---|
[888] | 746 | yfder(j) = fder(i) |
---|
| 747 | ysolsw(j) = solsw(i,nsrf) |
---|
| 748 | ysollw(j) = sollw(i,nsrf) |
---|
| 749 | yrugos(j) = rugos(i,nsrf) |
---|
[781] | 750 | yrugoro(j) = rugoro(i) |
---|
[1067] | 751 | yu1(j) = u(i,1) |
---|
| 752 | yv1(j) = v(i,1) |
---|
[781] | 753 | ypaprs(j,klev+1) = paprs(i,klev+1) |
---|
[1067] | 754 | ywindsp(j) = SQRT(u10m(i,nsrf)**2 + v10m(i,nsrf)**2 ) |
---|
[1865] | 755 | ! Martin |
---|
| 756 | yzsig(j) = zsig(i) |
---|
| 757 | ycldt(j) = cldt(i) |
---|
| 758 | yrmu0(j) = rmu0(i) |
---|
| 759 | ! Martin |
---|
[781] | 760 | END DO |
---|
| 761 | |
---|
| 762 | DO k = 1, klev |
---|
| 763 | DO j = 1, knon |
---|
| 764 | i = ni(j) |
---|
| 765 | ypaprs(j,k) = paprs(i,k) |
---|
| 766 | ypplay(j,k) = pplay(i,k) |
---|
[996] | 767 | ydelp(j,k) = delp(i,k) |
---|
| 768 | ytke(j,k) = tke(i,k,nsrf) |
---|
[781] | 769 | yu(j,k) = u(i,k) |
---|
| 770 | yv(j,k) = v(i,k) |
---|
| 771 | yt(j,k) = t(i,k) |
---|
| 772 | yq(j,k) = q(i,k) |
---|
| 773 | ENDDO |
---|
| 774 | ENDDO |
---|
[1761] | 775 | |
---|
[781] | 776 | DO k = 1, nsoilmx |
---|
| 777 | DO j = 1, knon |
---|
| 778 | i = ni(j) |
---|
| 779 | ytsoil(j,k) = ftsoil(i,k,nsrf) |
---|
| 780 | END DO |
---|
| 781 | END DO |
---|
| 782 | |
---|
| 783 | ! qsol(water height in soil) only for bucket continental model |
---|
| 784 | IF ( nsrf .EQ. is_ter .AND. .NOT. ok_veget ) THEN |
---|
| 785 | DO j = 1, knon |
---|
| 786 | i = ni(j) |
---|
| 787 | yqsol(j) = qsol(i) |
---|
| 788 | END DO |
---|
| 789 | ENDIF |
---|
| 790 | |
---|
| 791 | !**************************************************************************************** |
---|
[1067] | 792 | ! 6a) Calculate coefficients for turbulent diffusion at surface, cdragh et cdragm. |
---|
[781] | 793 | ! |
---|
| 794 | !**************************************************************************************** |
---|
| 795 | |
---|
[1067] | 796 | CALL clcdrag( knon, nsrf, ypaprs, ypplay, & |
---|
| 797 | yu(:,1), yv(:,1), yt(:,1), yq(:,1), & |
---|
| 798 | yts, yqsurf, yrugos, & |
---|
| 799 | ycdragm, ycdragh ) |
---|
[2126] | 800 | ! --- special Dice: on force cdragm ( a defaut de forcer ustar) MPL 05082013 |
---|
| 801 | IF (ok_prescr_ust) then |
---|
| 802 | DO i = 1, knon |
---|
| 803 | print *,'ycdragm avant=',ycdragm(i) |
---|
| 804 | vent= sqrt(yu(i,1)*yu(i,1)+yv(i,1)*yv(i,1)) |
---|
| 805 | ! ycdragm(i) = ust*ust/(1.+(yu(i,1)*yu(i,1)+yv(i,1)*yv(i,1))) |
---|
| 806 | ! ycdragm(i) = ust*ust/((1.+sqrt(yu(i,1)*yu(i,1)+yv(i,1)*yv(i,1))) & |
---|
| 807 | ! *sqrt(yu(i,1)*yu(i,1)+yv(i,1)*yv(i,1))) |
---|
| 808 | ycdragm(i) = ust*ust/(1.+vent)/vent |
---|
| 809 | print *,'ycdragm ust yu yv apres=',ycdragm(i),ust,yu(i,1),yv(i,1) |
---|
| 810 | ENDDO |
---|
| 811 | ENDIF |
---|
[1067] | 812 | |
---|
[2126] | 813 | |
---|
[1067] | 814 | !**************************************************************************************** |
---|
| 815 | ! 6b) Calculate coefficients for turbulent diffusion in the atmosphere, ycoefm et ycoefm. |
---|
| 816 | ! |
---|
| 817 | !**************************************************************************************** |
---|
| 818 | |
---|
[781] | 819 | CALL coef_diff_turb(dtime, nsrf, knon, ni, & |
---|
[1067] | 820 | ypaprs, ypplay, yu, yv, yq, yt, yts, yrugos, yqsurf, ycdragm, & |
---|
[996] | 821 | ycoefm, ycoefh, ytke) |
---|
[1761] | 822 | |
---|
| 823 | IF (iflag_pbl>=20.AND.iflag_pbl<30) THEN |
---|
| 824 | ! In this case, coef_diff_turb is called for the Cd only |
---|
| 825 | DO k = 2, klev |
---|
| 826 | DO j = 1, knon |
---|
| 827 | i = ni(j) |
---|
| 828 | ycoefh(j,k) = zcoefh(i,k,nsrf) |
---|
| 829 | ycoefm(j,k) = zcoefm(i,k,nsrf) |
---|
| 830 | ENDDO |
---|
| 831 | ENDDO |
---|
| 832 | ENDIF |
---|
[781] | 833 | |
---|
| 834 | !**************************************************************************************** |
---|
| 835 | ! |
---|
| 836 | ! 8) "La descente" - "The downhill" |
---|
| 837 | ! |
---|
| 838 | ! climb_hq_down and climb_wind_down calculate the coefficients |
---|
| 839 | ! Ccoef_X et Dcoef_X for X=[H, Q, U, V]. |
---|
| 840 | ! Only the coefficients at surface for H and Q are returned. |
---|
| 841 | ! |
---|
| 842 | !**************************************************************************************** |
---|
| 843 | |
---|
| 844 | ! - Calculate the coefficients Ccoef_H, Ccoef_Q, Dcoef_H and Dcoef_Q |
---|
| 845 | CALL climb_hq_down(knon, ycoefh, ypaprs, ypplay, & |
---|
| 846 | ydelp, yt, yq, dtime, & |
---|
[1067] | 847 | AcoefH, AcoefQ, BcoefH, BcoefQ) |
---|
[781] | 848 | |
---|
| 849 | ! - Calculate the coefficients Ccoef_U, Ccoef_V, Dcoef_U and Dcoef_V |
---|
[1067] | 850 | CALL climb_wind_down(knon, dtime, ycoefm, ypplay, ypaprs, yt, ydelp, yu, yv, & |
---|
| 851 | AcoefU, AcoefV, BcoefU, BcoefV) |
---|
[781] | 852 | |
---|
| 853 | |
---|
| 854 | !**************************************************************************************** |
---|
| 855 | ! 9) Small calculations |
---|
| 856 | ! |
---|
| 857 | !**************************************************************************************** |
---|
[888] | 858 | |
---|
| 859 | ! - Reference pressure is given the values at surface level |
---|
[781] | 860 | ypsref(:) = ypaprs(:,1) |
---|
| 861 | |
---|
[1279] | 862 | ! - CO2 field on 2D grid to be sent to ORCHIDEE |
---|
| 863 | ! Transform to compressed field |
---|
| 864 | IF (carbon_cycle_cpl) THEN |
---|
| 865 | DO i=1,knon |
---|
| 866 | r_co2_ppm(i) = co2_send(ni(i)) |
---|
| 867 | END DO |
---|
| 868 | ELSE |
---|
| 869 | r_co2_ppm(:) = co2_ppm ! Constant field |
---|
| 870 | END IF |
---|
[781] | 871 | |
---|
| 872 | !**************************************************************************************** |
---|
| 873 | ! |
---|
[1146] | 874 | ! Calulate t2m and q2m for the case of calculation at land grid points |
---|
| 875 | ! t2m and q2m are needed as input to ORCHIDEE |
---|
| 876 | ! |
---|
| 877 | !**************************************************************************************** |
---|
| 878 | IF (nsrf == is_ter) THEN |
---|
| 879 | |
---|
| 880 | DO i = 1, knon |
---|
| 881 | zgeo1(i) = RD * yt(i,1) / (0.5*(ypaprs(i,1)+ypplay(i,1))) & |
---|
| 882 | * (ypaprs(i,1)-ypplay(i,1)) |
---|
| 883 | END DO |
---|
| 884 | |
---|
| 885 | ! Calculate the temperature et relative humidity at 2m and the wind at 10m |
---|
| 886 | CALL stdlevvar(klon, knon, is_ter, zxli, & |
---|
| 887 | yu(:,1), yv(:,1), yt(:,1), yq(:,1), zgeo1, & |
---|
| 888 | yts, yqsurf, yrugos, ypaprs(:,1), ypplay(:,1), & |
---|
| 889 | yt2m, yq2m, yt10m, yq10m, yu10m, yustar) |
---|
| 890 | |
---|
| 891 | END IF |
---|
| 892 | |
---|
| 893 | !**************************************************************************************** |
---|
| 894 | ! |
---|
[781] | 895 | ! 10) Switch selon current surface |
---|
| 896 | ! It is necessary to start with the continental surfaces because the ocean |
---|
| 897 | ! needs their run-off. |
---|
| 898 | ! |
---|
| 899 | !**************************************************************************************** |
---|
| 900 | SELECT CASE(nsrf) |
---|
| 901 | |
---|
| 902 | CASE(is_ter) |
---|
[888] | 903 | ! ylwdown : to be removed, calculation is now done at land surface in surf_land |
---|
| 904 | ylwdown(:)=0.0 |
---|
| 905 | DO i=1,knon |
---|
| 906 | ylwdown(i)=lwdown_m(ni(i)) |
---|
| 907 | END DO |
---|
[781] | 908 | CALL surf_land(itap, dtime, date0, jour, knon, ni,& |
---|
| 909 | rlon, rlat, & |
---|
[888] | 910 | debut, lafin, ydelp(:,1), r_co2_ppm, ysolsw, ysollw, yalb, & |
---|
[1067] | 911 | yts, ypplay(:,1), ycdragh, ycdragm, yrain_f, ysnow_f, yt(:,1), yq(:,1),& |
---|
| 912 | AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 913 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
[781] | 914 | ypsref, yu1, yv1, yrugoro, pctsrf, & |
---|
[1146] | 915 | ylwdown, yq2m, yt2m, & |
---|
[888] | 916 | ysnow, yqsol, yagesno, ytsoil, & |
---|
| 917 | yz0_new, yalb1_new, yalb2_new, yevap, yfluxsens, yfluxlat, & |
---|
[996] | 918 | yqsurf, ytsurf_new, y_dflux_t, y_dflux_q, & |
---|
[1146] | 919 | y_flux_u1, y_flux_v1 ) |
---|
| 920 | |
---|
[2126] | 921 | ! Special DICE MPL 05082013 |
---|
| 922 | IF (ok_prescr_ust) THEN |
---|
| 923 | ! ysnow(:)=0. |
---|
| 924 | ! yqsol(:)=0. |
---|
| 925 | ! yagesno(:)=50. |
---|
| 926 | ! ytsoil(:,:)=300. |
---|
| 927 | ! yz0_new(:)=0.001 |
---|
| 928 | ! yalb1_new(:)=0.22 |
---|
| 929 | ! yalb2_new(:)=0.22 |
---|
| 930 | ! yevap(:)=flat/RLVTT |
---|
| 931 | ! yfluxlat(:)=-flat |
---|
| 932 | ! yfluxsens(:)=-fsens |
---|
| 933 | ! yqsurf(:)=0. |
---|
| 934 | ! ytsurf_new(:)=tg |
---|
| 935 | ! y_dflux_t(:)=0. |
---|
| 936 | ! y_dflux_q(:)=0. |
---|
| 937 | y_flux_u1(:)=ycdragm(:)*(1.+sqrt(yu(:,1)*yu(:,1)+yv(:,1)*yv(:,1)))*yu(:,1)*ypplay(:,1)/RD/yt(:,1) |
---|
| 938 | y_flux_v1(:)=ycdragm(:)*(1.+sqrt(yu(:,1)*yu(:,1)+yv(:,1)*yv(:,1)))*yv(:,1)*ypplay(:,1)/RD/yt(:,1) |
---|
| 939 | ENDIF |
---|
| 940 | |
---|
[781] | 941 | |
---|
| 942 | CASE(is_lic) |
---|
[1865] | 943 | ! Martin |
---|
[781] | 944 | CALL surf_landice(itap, dtime, knon, ni, & |
---|
[1865] | 945 | rlon, rlat, debut, lafin, & |
---|
| 946 | yrmu0, ysollwd, yalb, ypphi(:,1), & |
---|
[888] | 947 | ysolsw, ysollw, yts, ypplay(:,1), & |
---|
[1067] | 948 | ycdragh, ycdragm, yrain_f, ysnow_f, yt(:,1), yq(:,1),& |
---|
| 949 | AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 950 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
[781] | 951 | ypsref, yu1, yv1, yrugoro, pctsrf, & |
---|
[888] | 952 | ysnow, yqsurf, yqsol, yagesno, & |
---|
| 953 | ytsoil, yz0_new, yalb1_new, yalb2_new, yevap, yfluxsens, yfluxlat, & |
---|
[1067] | 954 | ytsurf_new, y_dflux_t, y_dflux_q, & |
---|
[1865] | 955 | yzsig, ycldt, & |
---|
| 956 | ysnowhgt, yqsnow, ytoice, ysissnow, & |
---|
| 957 | yalb3_new, yrunoff, & |
---|
[1067] | 958 | y_flux_u1, y_flux_v1) |
---|
[1865] | 959 | !CALL surf_landice(itap, dtime, knon, ni, & |
---|
| 960 | ! ysolsw, ysollw, yts, ypplay(:,1), & |
---|
| 961 | ! ycdragh, ycdragm, yrain_f, ysnow_f, yt(:,1), yq(:,1),& |
---|
| 962 | ! AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 963 | ! AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
| 964 | ! ypsref, yu1, yv1, yrugoro, pctsrf, & |
---|
| 965 | ! ysnow, yqsurf, yqsol, yagesno, & |
---|
| 966 | ! ytsoil, yz0_new, yalb1_new, yalb2_new, yevap, yfluxsens, yfluxlat, & |
---|
| 967 | ! ytsurf_new, y_dflux_t, y_dflux_q, & |
---|
| 968 | ! y_flux_u1, y_flux_v1) |
---|
| 969 | |
---|
[1872] | 970 | alb3_lic(:)=0. |
---|
[1865] | 971 | DO j = 1, knon |
---|
| 972 | i = ni(j) |
---|
| 973 | alb3_lic(i) = yalb3_new(j) |
---|
| 974 | snowhgt(i) = ysnowhgt(j) |
---|
| 975 | qsnow(i) = yqsnow(j) |
---|
| 976 | to_ice(i) = ytoice(j) |
---|
| 977 | sissnow(i) = ysissnow(j) |
---|
| 978 | runoff(i) = yrunoff(j) |
---|
| 979 | END DO |
---|
| 980 | ! Martin |
---|
[781] | 981 | |
---|
| 982 | CASE(is_oce) |
---|
[888] | 983 | CALL surf_ocean(rlon, rlat, ysolsw, ysollw, yalb1, & |
---|
[996] | 984 | yrugos, ywindsp, rmu0, yfder, yts, & |
---|
[781] | 985 | itap, dtime, jour, knon, ni, & |
---|
[1067] | 986 | ypplay(:,1), ycdragh, ycdragm, yrain_f, ysnow_f, yt(:,1), yq(:,1),& |
---|
| 987 | AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 988 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
[781] | 989 | ypsref, yu1, yv1, yrugoro, pctsrf, & |
---|
[888] | 990 | ysnow, yqsurf, yagesno, & |
---|
| 991 | yz0_new, yalb1_new, yalb2_new, yevap, yfluxsens, yfluxlat, & |
---|
[1067] | 992 | ytsurf_new, y_dflux_t, y_dflux_q, slab_wfbils, & |
---|
| 993 | y_flux_u1, y_flux_v1) |
---|
[781] | 994 | |
---|
| 995 | CASE(is_sic) |
---|
| 996 | CALL surf_seaice( & |
---|
[888] | 997 | rlon, rlat, ysolsw, ysollw, yalb1, yfder, & |
---|
[781] | 998 | itap, dtime, jour, knon, ni, & |
---|
[1067] | 999 | lafin, & |
---|
| 1000 | yts, ypplay(:,1), ycdragh, ycdragm, yrain_f, ysnow_f, yt(:,1), yq(:,1),& |
---|
| 1001 | AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 1002 | AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
[781] | 1003 | ypsref, yu1, yv1, yrugoro, pctsrf, & |
---|
[888] | 1004 | ysnow, yqsurf, yqsol, yagesno, ytsoil, & |
---|
| 1005 | yz0_new, yalb1_new, yalb2_new, yevap, yfluxsens, yfluxlat, & |
---|
[1067] | 1006 | ytsurf_new, y_dflux_t, y_dflux_q, & |
---|
| 1007 | y_flux_u1, y_flux_v1) |
---|
[781] | 1008 | |
---|
| 1009 | |
---|
| 1010 | CASE DEFAULT |
---|
| 1011 | WRITE(lunout,*) 'Surface index = ', nsrf |
---|
| 1012 | abort_message = 'Surface index not valid' |
---|
| 1013 | CALL abort_gcm(modname,abort_message,1) |
---|
| 1014 | END SELECT |
---|
| 1015 | |
---|
| 1016 | |
---|
| 1017 | !**************************************************************************************** |
---|
| 1018 | ! 11) - Calcul the increment of surface temperature |
---|
| 1019 | ! |
---|
| 1020 | !**************************************************************************************** |
---|
[1894] | 1021 | |
---|
| 1022 | if (evap0>=0.) then |
---|
| 1023 | yevap(:)=evap0 |
---|
| 1024 | yevap(:)=RLVTT*evap0 |
---|
| 1025 | endif |
---|
| 1026 | |
---|
| 1027 | |
---|
[781] | 1028 | y_d_ts(1:knon) = ytsurf_new(1:knon) - yts(1:knon) |
---|
| 1029 | |
---|
| 1030 | !**************************************************************************************** |
---|
| 1031 | ! |
---|
| 1032 | ! 12) "La remontee" - "The uphill" |
---|
| 1033 | ! |
---|
| 1034 | ! The fluxes (y_flux_X) and tendancy (y_d_X) are calculated |
---|
| 1035 | ! for X=H, Q, U and V, for all vertical levels. |
---|
| 1036 | ! |
---|
| 1037 | !**************************************************************************************** |
---|
| 1038 | ! H and Q |
---|
[1067] | 1039 | IF (ok_flux_surf) THEN |
---|
| 1040 | PRINT *,'pbl_surface: fsens flat RLVTT=',fsens,flat,RLVTT |
---|
[882] | 1041 | y_flux_t1(:) = fsens |
---|
| 1042 | y_flux_q1(:) = flat/RLVTT |
---|
| 1043 | yfluxlat(:) = flat |
---|
[1555] | 1044 | |
---|
| 1045 | Kech_h(:) = ycdragh(:) * (1.0+SQRT(yu(:,1)**2+yv(:,1)**2)) * & |
---|
| 1046 | ypplay(:,1)/(RD*yt(:,1)) |
---|
| 1047 | ytoto(:)=(1./RCPD)*(AcoefH(:)+BcoefH(:)*y_flux_t1(:)*dtime) |
---|
| 1048 | ytsurf_new(:)=ytoto(:)-y_flux_t1(:)/(Kech_h(:)*RCPD) |
---|
| 1049 | y_d_ts(:) = ytsurf_new(:) - yts(:) |
---|
| 1050 | |
---|
[1067] | 1051 | ELSE |
---|
[882] | 1052 | y_flux_t1(:) = yfluxsens(:) |
---|
| 1053 | y_flux_q1(:) = -yevap(:) |
---|
[1067] | 1054 | ENDIF |
---|
[781] | 1055 | |
---|
| 1056 | CALL climb_hq_up(knon, dtime, yt, yq, & |
---|
| 1057 | y_flux_q1, y_flux_t1, ypaprs, ypplay, & |
---|
| 1058 | y_flux_q(:,:), y_flux_t(:,:), y_d_q(:,:), y_d_t(:,:)) |
---|
| 1059 | |
---|
[1067] | 1060 | |
---|
| 1061 | CALL climb_wind_up(knon, dtime, yu, yv, y_flux_u1, y_flux_v1, & |
---|
[781] | 1062 | y_flux_u, y_flux_v, y_d_u, y_d_v) |
---|
| 1063 | |
---|
[1067] | 1064 | |
---|
[1761] | 1065 | y_d_t_diss(:,:)=0. |
---|
| 1066 | IF (iflag_pbl>=20 .and. iflag_pbl<30) THEN |
---|
| 1067 | CALL yamada_c(knon,dtime,ypaprs,ypplay & |
---|
| 1068 | & ,yu,yv,yt,y_d_u,y_d_v,y_d_t,ycdragm,ytke,ycoefm,ycoefh,ycoefq,y_d_t_diss,yustar & |
---|
| 1069 | & ,iflag_pbl,nsrf) |
---|
| 1070 | ENDIF |
---|
| 1071 | ! print*,'yamada_c OK' |
---|
| 1072 | |
---|
[781] | 1073 | DO j = 1, knon |
---|
| 1074 | y_dflux_t(j) = y_dflux_t(j) * ypct(j) |
---|
| 1075 | y_dflux_q(j) = y_dflux_q(j) * ypct(j) |
---|
| 1076 | ENDDO |
---|
| 1077 | |
---|
| 1078 | !**************************************************************************************** |
---|
| 1079 | ! 13) Transform variables for output format : |
---|
| 1080 | ! - Decompress |
---|
| 1081 | ! - Multiply with pourcentage of current surface |
---|
| 1082 | ! - Cumulate in global variable |
---|
| 1083 | ! |
---|
| 1084 | !**************************************************************************************** |
---|
| 1085 | |
---|
| 1086 | DO k = 1, klev |
---|
| 1087 | DO j = 1, knon |
---|
| 1088 | i = ni(j) |
---|
[1761] | 1089 | y_d_t_diss(j,k) = y_d_t_diss(j,k) * ypct(j) |
---|
[996] | 1090 | y_d_t(j,k) = y_d_t(j,k) * ypct(j) |
---|
| 1091 | y_d_q(j,k) = y_d_q(j,k) * ypct(j) |
---|
| 1092 | y_d_u(j,k) = y_d_u(j,k) * ypct(j) |
---|
| 1093 | y_d_v(j,k) = y_d_v(j,k) * ypct(j) |
---|
[781] | 1094 | |
---|
| 1095 | flux_t(i,k,nsrf) = y_flux_t(j,k) |
---|
| 1096 | flux_q(i,k,nsrf) = y_flux_q(j,k) |
---|
| 1097 | flux_u(i,k,nsrf) = y_flux_u(j,k) |
---|
| 1098 | flux_v(i,k,nsrf) = y_flux_v(j,k) |
---|
[878] | 1099 | |
---|
| 1100 | |
---|
[781] | 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
[1067] | 1103 | |
---|
[1761] | 1104 | ! print*,'Dans pbl OK1' |
---|
| 1105 | |
---|
[781] | 1106 | evap(:,nsrf) = - flux_q(:,1,nsrf) |
---|
| 1107 | |
---|
[888] | 1108 | alb1(:, nsrf) = 0. |
---|
| 1109 | alb2(:, nsrf) = 0. |
---|
[781] | 1110 | snow(:, nsrf) = 0. |
---|
| 1111 | qsurf(:, nsrf) = 0. |
---|
| 1112 | rugos(:, nsrf) = 0. |
---|
| 1113 | fluxlat(:,nsrf) = 0. |
---|
| 1114 | DO j = 1, knon |
---|
| 1115 | i = ni(j) |
---|
| 1116 | d_ts(i,nsrf) = y_d_ts(j) |
---|
[888] | 1117 | alb1(i,nsrf) = yalb1_new(j) |
---|
| 1118 | alb2(i,nsrf) = yalb2_new(j) |
---|
[781] | 1119 | snow(i,nsrf) = ysnow(j) |
---|
| 1120 | qsurf(i,nsrf) = yqsurf(j) |
---|
| 1121 | rugos(i,nsrf) = yz0_new(j) |
---|
| 1122 | fluxlat(i,nsrf) = yfluxlat(j) |
---|
| 1123 | agesno(i,nsrf) = yagesno(j) |
---|
[1067] | 1124 | cdragh(i) = cdragh(i) + ycdragh(j)*ypct(j) |
---|
| 1125 | cdragm(i) = cdragm(i) + ycdragm(j)*ypct(j) |
---|
[781] | 1126 | dflux_t(i) = dflux_t(i) + y_dflux_t(j) |
---|
| 1127 | dflux_q(i) = dflux_q(i) + y_dflux_q(j) |
---|
| 1128 | END DO |
---|
| 1129 | |
---|
[1761] | 1130 | ! print*,'Dans pbl OK2' |
---|
| 1131 | |
---|
[1067] | 1132 | DO k = 2, klev |
---|
| 1133 | DO j = 1, knon |
---|
| 1134 | i = ni(j) |
---|
[1761] | 1135 | tke(i,k,nsrf) = ytke(j,k) |
---|
| 1136 | zcoefh(i,k,nsrf) = ycoefh(j,k) |
---|
| 1137 | zcoefm(i,k,nsrf) = ycoefm(j,k) |
---|
| 1138 | tke(i,k,is_ave) = tke(i,k,is_ave) + ytke(j,k)*ypct(j) |
---|
| 1139 | zcoefh(i,k,is_ave) = zcoefh(i,k,is_ave) + ycoefh(j,k)*ypct(j) |
---|
| 1140 | zcoefm(i,k,is_ave) = zcoefm(i,k,is_ave) + ycoefm(j,k)*ypct(j) |
---|
[1067] | 1141 | END DO |
---|
| 1142 | END DO |
---|
| 1143 | |
---|
[1761] | 1144 | ! print*,'Dans pbl OK3' |
---|
| 1145 | |
---|
[781] | 1146 | IF ( nsrf .EQ. is_ter ) THEN |
---|
| 1147 | DO j = 1, knon |
---|
| 1148 | i = ni(j) |
---|
| 1149 | qsol(i) = yqsol(j) |
---|
| 1150 | END DO |
---|
| 1151 | END IF |
---|
| 1152 | |
---|
| 1153 | ftsoil(:,:,nsrf) = 0. |
---|
| 1154 | DO k = 1, nsoilmx |
---|
| 1155 | DO j = 1, knon |
---|
| 1156 | i = ni(j) |
---|
| 1157 | ftsoil(i, k, nsrf) = ytsoil(j,k) |
---|
| 1158 | END DO |
---|
| 1159 | END DO |
---|
| 1160 | |
---|
| 1161 | |
---|
| 1162 | DO k = 1, klev |
---|
| 1163 | DO j = 1, knon |
---|
| 1164 | i = ni(j) |
---|
[1761] | 1165 | d_t_diss(i,k) = d_t_diss(i,k) + y_d_t_diss(j,k) |
---|
[781] | 1166 | d_t(i,k) = d_t(i,k) + y_d_t(j,k) |
---|
| 1167 | d_q(i,k) = d_q(i,k) + y_d_q(j,k) |
---|
| 1168 | d_u(i,k) = d_u(i,k) + y_d_u(j,k) |
---|
| 1169 | d_v(i,k) = d_v(i,k) + y_d_v(j,k) |
---|
| 1170 | END DO |
---|
| 1171 | END DO |
---|
| 1172 | |
---|
[1761] | 1173 | ! print*,'Dans pbl OK4' |
---|
| 1174 | |
---|
[781] | 1175 | !**************************************************************************************** |
---|
| 1176 | ! 14) Calculate the temperature et relative humidity at 2m and the wind at 10m |
---|
| 1177 | ! Call HBTM |
---|
| 1178 | ! |
---|
| 1179 | !**************************************************************************************** |
---|
| 1180 | t2m(:,nsrf) = 0. |
---|
| 1181 | q2m(:,nsrf) = 0. |
---|
[1670] | 1182 | ustar(:,nsrf) = 0. |
---|
[1816] | 1183 | wstar(:,nsrf) = 0. |
---|
[781] | 1184 | u10m(:,nsrf) = 0. |
---|
| 1185 | v10m(:,nsrf) = 0. |
---|
| 1186 | pblh(:,nsrf) = 0. ! Hauteur de couche limite |
---|
| 1187 | plcl(:,nsrf) = 0. ! Niveau de condensation de la CLA |
---|
| 1188 | capCL(:,nsrf) = 0. ! CAPE de couche limite |
---|
| 1189 | oliqCL(:,nsrf) = 0. ! eau_liqu integree de couche limite |
---|
| 1190 | cteiCL(:,nsrf) = 0. ! cloud top instab. crit. couche limite |
---|
| 1191 | pblt(:,nsrf) = 0. ! T a la Hauteur de couche limite |
---|
| 1192 | therm(:,nsrf) = 0. |
---|
| 1193 | trmb1(:,nsrf) = 0. ! deep_cape |
---|
| 1194 | trmb2(:,nsrf) = 0. ! inhibition |
---|
| 1195 | trmb3(:,nsrf) = 0. ! Point Omega |
---|
| 1196 | |
---|
| 1197 | #undef T2m |
---|
| 1198 | #define T2m |
---|
| 1199 | #ifdef T2m |
---|
[996] | 1200 | ! Calculations of diagnostic t,q at 2m and u, v at 10m |
---|
[781] | 1201 | |
---|
[1761] | 1202 | ! print*,'Dans pbl OK41' |
---|
| 1203 | ! print*,'tair1,yt(:,1),y_d_t(:,1)' |
---|
| 1204 | ! print*, tair1,yt(:,1),y_d_t(:,1) |
---|
[781] | 1205 | DO j=1, knon |
---|
| 1206 | i = ni(j) |
---|
| 1207 | uzon(j) = yu(j,1) + y_d_u(j,1) |
---|
| 1208 | vmer(j) = yv(j,1) + y_d_v(j,1) |
---|
[1761] | 1209 | tair1(j) = yt(j,1) + y_d_t(j,1) + y_d_t_diss(j,1) |
---|
[781] | 1210 | qair1(j) = yq(j,1) + y_d_q(j,1) |
---|
| 1211 | zgeo1(j) = RD * tair1(j) / (0.5*(ypaprs(j,1)+ypplay(j,1))) & |
---|
| 1212 | * (ypaprs(j,1)-ypplay(j,1)) |
---|
| 1213 | tairsol(j) = yts(j) + y_d_ts(j) |
---|
| 1214 | rugo1(j) = yrugos(j) |
---|
| 1215 | IF(nsrf.EQ.is_oce) THEN |
---|
| 1216 | rugo1(j) = rugos(i,nsrf) |
---|
| 1217 | ENDIF |
---|
| 1218 | psfce(j)=ypaprs(j,1) |
---|
| 1219 | patm(j)=ypplay(j,1) |
---|
| 1220 | qairsol(j) = yqsurf(j) |
---|
| 1221 | END DO |
---|
| 1222 | |
---|
[1761] | 1223 | ! print*,'Dans pbl OK42A' |
---|
| 1224 | ! print*,'tair1,yt(:,1),y_d_t(:,1)' |
---|
| 1225 | ! print*, tair1,yt(:,1),y_d_t(:,1) |
---|
[781] | 1226 | |
---|
| 1227 | ! Calculate the temperature et relative humidity at 2m and the wind at 10m |
---|
| 1228 | CALL stdlevvar(klon, knon, nsrf, zxli, & |
---|
| 1229 | uzon, vmer, tair1, qair1, zgeo1, & |
---|
| 1230 | tairsol, qairsol, rugo1, psfce, patm, & |
---|
| 1231 | yt2m, yq2m, yt10m, yq10m, yu10m, yustar) |
---|
[1761] | 1232 | ! print*,'Dans pbl OK42B' |
---|
[781] | 1233 | |
---|
| 1234 | DO j=1, knon |
---|
| 1235 | i = ni(j) |
---|
| 1236 | t2m(i,nsrf)=yt2m(j) |
---|
[996] | 1237 | q2m(i,nsrf)=yq2m(j) |
---|
[781] | 1238 | |
---|
[996] | 1239 | ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman |
---|
[1670] | 1240 | ustar(i,nsrf)=yustar(j) |
---|
[781] | 1241 | u10m(i,nsrf)=(yu10m(j) * uzon(j))/SQRT(uzon(j)**2+vmer(j)**2) |
---|
| 1242 | v10m(i,nsrf)=(yu10m(j) * vmer(j))/SQRT(uzon(j)**2+vmer(j)**2) |
---|
[1670] | 1243 | |
---|
[781] | 1244 | END DO |
---|
| 1245 | |
---|
[1761] | 1246 | ! print*,'Dans pbl OK43' |
---|
[996] | 1247 | !IM Calcule de l'humidite relative a 2m (rh2m) pour diagnostique |
---|
| 1248 | !IM Ajoute dependance type surface |
---|
| 1249 | IF (thermcep) THEN |
---|
| 1250 | DO j = 1, knon |
---|
| 1251 | i=ni(j) |
---|
| 1252 | zdelta1 = MAX(0.,SIGN(1., rtt-yt2m(j) )) |
---|
| 1253 | zx_qs1 = r2es * FOEEW(yt2m(j),zdelta1)/paprs(i,1) |
---|
| 1254 | zx_qs1 = MIN(0.5,zx_qs1) |
---|
| 1255 | zcor1 = 1./(1.-RETV*zx_qs1) |
---|
| 1256 | zx_qs1 = zx_qs1*zcor1 |
---|
| 1257 | |
---|
| 1258 | rh2m(i) = rh2m(i) + yq2m(j)/zx_qs1 * pctsrf(i,nsrf) |
---|
| 1259 | qsat2m(i) = qsat2m(i) + zx_qs1 * pctsrf(i,nsrf) |
---|
| 1260 | END DO |
---|
| 1261 | END IF |
---|
[781] | 1262 | |
---|
[1761] | 1263 | ! print*,'OK pbl 5' |
---|
[1816] | 1264 | CALL hbtm(knon, ypaprs, ypplay, & |
---|
| 1265 | yt2m,yt10m,yq2m,yq10m,yustar,ywstar, & |
---|
[781] | 1266 | y_flux_t,y_flux_q,yu,yv,yt,yq, & |
---|
| 1267 | ypblh,ycapCL,yoliqCL,ycteiCL,ypblT, & |
---|
| 1268 | ytherm,ytrmb1,ytrmb2,ytrmb3,ylcl) |
---|
| 1269 | |
---|
| 1270 | DO j=1, knon |
---|
| 1271 | i = ni(j) |
---|
| 1272 | pblh(i,nsrf) = ypblh(j) |
---|
[1816] | 1273 | wstar(i,nsrf) = ywstar(j) |
---|
[781] | 1274 | plcl(i,nsrf) = ylcl(j) |
---|
| 1275 | capCL(i,nsrf) = ycapCL(j) |
---|
| 1276 | oliqCL(i,nsrf) = yoliqCL(j) |
---|
| 1277 | cteiCL(i,nsrf) = ycteiCL(j) |
---|
| 1278 | pblT(i,nsrf) = ypblT(j) |
---|
| 1279 | therm(i,nsrf) = ytherm(j) |
---|
| 1280 | trmb1(i,nsrf) = ytrmb1(j) |
---|
| 1281 | trmb2(i,nsrf) = ytrmb2(j) |
---|
| 1282 | trmb3(i,nsrf) = ytrmb3(j) |
---|
| 1283 | END DO |
---|
| 1284 | |
---|
[1761] | 1285 | ! print*,'OK pbl 6' |
---|
[781] | 1286 | #else |
---|
[996] | 1287 | ! T2m not defined |
---|
[781] | 1288 | ! No calculation |
---|
[996] | 1289 | PRINT*,' Warning !!! No T2m calculation. Output is set to zero.' |
---|
[781] | 1290 | #endif |
---|
| 1291 | |
---|
| 1292 | !**************************************************************************************** |
---|
| 1293 | ! 15) End of loop over different surfaces |
---|
| 1294 | ! |
---|
| 1295 | !**************************************************************************************** |
---|
| 1296 | END DO loop_nbsrf |
---|
| 1297 | |
---|
| 1298 | !**************************************************************************************** |
---|
| 1299 | ! 16) Calculate the mean value over all sub-surfaces for som variables |
---|
| 1300 | ! |
---|
| 1301 | !**************************************************************************************** |
---|
| 1302 | |
---|
[1761] | 1303 | ! print*,'OK pbl 7' |
---|
[781] | 1304 | zxfluxt(:,:) = 0.0 ; zxfluxq(:,:) = 0.0 |
---|
| 1305 | zxfluxu(:,:) = 0.0 ; zxfluxv(:,:) = 0.0 |
---|
| 1306 | DO nsrf = 1, nbsrf |
---|
| 1307 | DO k = 1, klev |
---|
| 1308 | DO i = 1, klon |
---|
[996] | 1309 | zxfluxt(i,k) = zxfluxt(i,k) + flux_t(i,k,nsrf) * pctsrf(i,nsrf) |
---|
| 1310 | zxfluxq(i,k) = zxfluxq(i,k) + flux_q(i,k,nsrf) * pctsrf(i,nsrf) |
---|
| 1311 | zxfluxu(i,k) = zxfluxu(i,k) + flux_u(i,k,nsrf) * pctsrf(i,nsrf) |
---|
| 1312 | zxfluxv(i,k) = zxfluxv(i,k) + flux_v(i,k,nsrf) * pctsrf(i,nsrf) |
---|
[781] | 1313 | END DO |
---|
| 1314 | END DO |
---|
| 1315 | END DO |
---|
| 1316 | |
---|
[1761] | 1317 | ! print*,'OK pbl 8' |
---|
[781] | 1318 | DO i = 1, klon |
---|
| 1319 | zxsens(i) = - zxfluxt(i,1) ! flux de chaleur sensible au sol |
---|
| 1320 | zxevap(i) = - zxfluxq(i,1) ! flux d'evaporation au sol |
---|
| 1321 | fder_print(i) = fder(i) + dflux_t(i) + dflux_q(i) |
---|
| 1322 | ENDDO |
---|
| 1323 | |
---|
| 1324 | ! |
---|
| 1325 | ! Incrementer la temperature du sol |
---|
| 1326 | ! |
---|
| 1327 | zxtsol(:) = 0.0 ; zxfluxlat(:) = 0.0 |
---|
| 1328 | zt2m(:) = 0.0 ; zq2m(:) = 0.0 |
---|
[1670] | 1329 | zustar(:)=0.0 ; zu10m(:) = 0.0 ; zv10m(:) = 0.0 |
---|
[781] | 1330 | s_pblh(:) = 0.0 ; s_plcl(:) = 0.0 |
---|
| 1331 | s_capCL(:) = 0.0 ; s_oliqCL(:) = 0.0 |
---|
| 1332 | s_cteiCL(:) = 0.0; s_pblT(:) = 0.0 |
---|
| 1333 | s_therm(:) = 0.0 ; s_trmb1(:) = 0.0 |
---|
| 1334 | s_trmb2(:) = 0.0 ; s_trmb3(:) = 0.0 |
---|
[1816] | 1335 | wstar(:,is_ave)=0. |
---|
[781] | 1336 | |
---|
[1761] | 1337 | ! print*,'OK pbl 9' |
---|
[781] | 1338 | |
---|
| 1339 | DO nsrf = 1, nbsrf |
---|
| 1340 | DO i = 1, klon |
---|
| 1341 | ts(i,nsrf) = ts(i,nsrf) + d_ts(i,nsrf) |
---|
| 1342 | |
---|
| 1343 | wfbils(i,nsrf) = ( solsw(i,nsrf) + sollw(i,nsrf) & |
---|
[996] | 1344 | + flux_t(i,1,nsrf) + fluxlat(i,nsrf) ) * pctsrf(i,nsrf) |
---|
[781] | 1345 | wfbilo(i,nsrf) = (evap(i,nsrf) - (rain_f(i) + snow_f(i))) * & |
---|
[996] | 1346 | pctsrf(i,nsrf) |
---|
[781] | 1347 | |
---|
[996] | 1348 | zxtsol(i) = zxtsol(i) + ts(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1349 | zxfluxlat(i) = zxfluxlat(i) + fluxlat(i,nsrf) * pctsrf(i,nsrf) |
---|
[781] | 1350 | |
---|
[996] | 1351 | zt2m(i) = zt2m(i) + t2m(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1352 | zq2m(i) = zq2m(i) + q2m(i,nsrf) * pctsrf(i,nsrf) |
---|
[1670] | 1353 | zustar(i) = zustar(i) + ustar(i,nsrf) * pctsrf(i,nsrf) |
---|
[1816] | 1354 | wstar(i,is_ave)=wstar(i,is_ave)+wstar(i,nsrf)*pctsrf(i,nsrf) |
---|
[996] | 1355 | zu10m(i) = zu10m(i) + u10m(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1356 | zv10m(i) = zv10m(i) + v10m(i,nsrf) * pctsrf(i,nsrf) |
---|
[781] | 1357 | |
---|
[996] | 1358 | s_pblh(i) = s_pblh(i) + pblh(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1359 | s_plcl(i) = s_plcl(i) + plcl(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1360 | s_capCL(i) = s_capCL(i) + capCL(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1361 | s_oliqCL(i) = s_oliqCL(i) + oliqCL(i,nsrf)* pctsrf(i,nsrf) |
---|
| 1362 | s_cteiCL(i) = s_cteiCL(i) + cteiCL(i,nsrf)* pctsrf(i,nsrf) |
---|
| 1363 | s_pblT(i) = s_pblT(i) + pblT(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1364 | s_therm(i) = s_therm(i) + therm(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1365 | s_trmb1(i) = s_trmb1(i) + trmb1(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1366 | s_trmb2(i) = s_trmb2(i) + trmb2(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1367 | s_trmb3(i) = s_trmb3(i) + trmb3(i,nsrf) * pctsrf(i,nsrf) |
---|
[781] | 1368 | END DO |
---|
| 1369 | END DO |
---|
[1761] | 1370 | ! print*,'OK pbl 10' |
---|
[781] | 1371 | |
---|
| 1372 | IF (check) THEN |
---|
| 1373 | amn=MIN(ts(1,is_ter),1000.) |
---|
| 1374 | amx=MAX(ts(1,is_ter),-1000.) |
---|
| 1375 | DO i=2, klon |
---|
| 1376 | amn=MIN(ts(i,is_ter),amn) |
---|
| 1377 | amx=MAX(ts(i,is_ter),amx) |
---|
| 1378 | ENDDO |
---|
| 1379 | PRINT*,' debut apres d_ts min max ftsol(ts)',itap,amn,amx |
---|
| 1380 | ENDIF |
---|
[1067] | 1381 | |
---|
| 1382 | !jg ? |
---|
[996] | 1383 | !!$! |
---|
| 1384 | !!$! If a sub-surface does not exsist for a grid point, the mean value for all |
---|
| 1385 | !!$! sub-surfaces is distributed. |
---|
| 1386 | !!$! |
---|
| 1387 | !!$ DO nsrf = 1, nbsrf |
---|
| 1388 | !!$ DO i = 1, klon |
---|
| 1389 | !!$ IF ((pctsrf_new(i,nsrf) .LT. epsfra) .OR. (t2m(i,nsrf).EQ.0.)) THEN |
---|
| 1390 | !!$ ts(i,nsrf) = zxtsol(i) |
---|
| 1391 | !!$ t2m(i,nsrf) = zt2m(i) |
---|
| 1392 | !!$ q2m(i,nsrf) = zq2m(i) |
---|
| 1393 | !!$ u10m(i,nsrf) = zu10m(i) |
---|
| 1394 | !!$ v10m(i,nsrf) = zv10m(i) |
---|
| 1395 | !!$ |
---|
| 1396 | !!$! Les variables qui suivent sont plus utilise, donc peut-etre pas la peine a les mettre ajour |
---|
| 1397 | !!$ pblh(i,nsrf) = s_pblh(i) |
---|
| 1398 | !!$ plcl(i,nsrf) = s_plcl(i) |
---|
| 1399 | !!$ capCL(i,nsrf) = s_capCL(i) |
---|
| 1400 | !!$ oliqCL(i,nsrf) = s_oliqCL(i) |
---|
| 1401 | !!$ cteiCL(i,nsrf) = s_cteiCL(i) |
---|
| 1402 | !!$ pblT(i,nsrf) = s_pblT(i) |
---|
| 1403 | !!$ therm(i,nsrf) = s_therm(i) |
---|
| 1404 | !!$ trmb1(i,nsrf) = s_trmb1(i) |
---|
| 1405 | !!$ trmb2(i,nsrf) = s_trmb2(i) |
---|
| 1406 | !!$ trmb3(i,nsrf) = s_trmb3(i) |
---|
| 1407 | !!$ ENDIF |
---|
| 1408 | !!$ ENDDO |
---|
| 1409 | !!$ ENDDO |
---|
[781] | 1410 | |
---|
| 1411 | |
---|
| 1412 | DO i = 1, klon |
---|
| 1413 | fder(i) = - 4.0*RSIGMA*zxtsol(i)**3 |
---|
| 1414 | ENDDO |
---|
| 1415 | |
---|
| 1416 | zxqsurf(:) = 0.0 |
---|
| 1417 | zxsnow(:) = 0.0 |
---|
| 1418 | DO nsrf = 1, nbsrf |
---|
| 1419 | DO i = 1, klon |
---|
[996] | 1420 | zxqsurf(i) = zxqsurf(i) + qsurf(i,nsrf) * pctsrf(i,nsrf) |
---|
| 1421 | zxsnow(i) = zxsnow(i) + snow(i,nsrf) * pctsrf(i,nsrf) |
---|
[781] | 1422 | END DO |
---|
| 1423 | END DO |
---|
| 1424 | |
---|
[1067] | 1425 | ! Premier niveau de vent sortie dans physiq.F |
---|
| 1426 | zu1(:) = u(:,1) |
---|
| 1427 | zv1(:) = v(:,1) |
---|
[781] | 1428 | |
---|
| 1429 | ! Some of the module declared variables are returned for printing in physiq.F |
---|
| 1430 | qsol_d(:) = qsol(:) |
---|
| 1431 | evap_d(:,:) = evap(:,:) |
---|
| 1432 | rugos_d(:,:) = rugos(:,:) |
---|
| 1433 | agesno_d(:,:) = agesno(:,:) |
---|
| 1434 | |
---|
| 1435 | |
---|
| 1436 | END SUBROUTINE pbl_surface |
---|
| 1437 | ! |
---|
| 1438 | !**************************************************************************************** |
---|
| 1439 | ! |
---|
| 1440 | SUBROUTINE pbl_surface_final(qsol_rst, fder_rst, snow_rst, qsurf_rst, & |
---|
| 1441 | evap_rst, rugos_rst, agesno_rst, ftsoil_rst) |
---|
| 1442 | |
---|
[1785] | 1443 | USE indice_sol_mod |
---|
| 1444 | |
---|
[781] | 1445 | INCLUDE "dimsoil.h" |
---|
| 1446 | |
---|
| 1447 | ! Ouput variables |
---|
| 1448 | !**************************************************************************************** |
---|
| 1449 | REAL, DIMENSION(klon), INTENT(OUT) :: qsol_rst |
---|
| 1450 | REAL, DIMENSION(klon), INTENT(OUT) :: fder_rst |
---|
| 1451 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: snow_rst |
---|
| 1452 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: qsurf_rst |
---|
| 1453 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: evap_rst |
---|
| 1454 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: rugos_rst |
---|
| 1455 | REAL, DIMENSION(klon, nbsrf), INTENT(OUT) :: agesno_rst |
---|
| 1456 | REAL, DIMENSION(klon, nsoilmx, nbsrf), INTENT(OUT) :: ftsoil_rst |
---|
| 1457 | |
---|
| 1458 | |
---|
| 1459 | !**************************************************************************************** |
---|
| 1460 | ! Return module variables for writing to restart file |
---|
| 1461 | ! |
---|
| 1462 | !**************************************************************************************** |
---|
| 1463 | qsol_rst(:) = qsol(:) |
---|
| 1464 | fder_rst(:) = fder(:) |
---|
| 1465 | snow_rst(:,:) = snow(:,:) |
---|
| 1466 | qsurf_rst(:,:) = qsurf(:,:) |
---|
| 1467 | evap_rst(:,:) = evap(:,:) |
---|
| 1468 | rugos_rst(:,:) = rugos(:,:) |
---|
| 1469 | agesno_rst(:,:) = agesno(:,:) |
---|
| 1470 | ftsoil_rst(:,:,:) = ftsoil(:,:,:) |
---|
| 1471 | |
---|
| 1472 | !**************************************************************************************** |
---|
| 1473 | ! Deallocate module variables |
---|
| 1474 | ! |
---|
| 1475 | !**************************************************************************************** |
---|
[1413] | 1476 | ! DEALLOCATE(qsol, fder, snow, qsurf, evap, rugos, agesno, ftsoil) |
---|
| 1477 | IF (ALLOCATED(qsol)) DEALLOCATE(qsol) |
---|
| 1478 | IF (ALLOCATED(fder)) DEALLOCATE(fder) |
---|
| 1479 | IF (ALLOCATED(snow)) DEALLOCATE(snow) |
---|
| 1480 | IF (ALLOCATED(qsurf)) DEALLOCATE(qsurf) |
---|
| 1481 | IF (ALLOCATED(evap)) DEALLOCATE(evap) |
---|
| 1482 | IF (ALLOCATED(rugos)) DEALLOCATE(rugos) |
---|
| 1483 | IF (ALLOCATED(agesno)) DEALLOCATE(agesno) |
---|
| 1484 | IF (ALLOCATED(ftsoil)) DEALLOCATE(ftsoil) |
---|
[781] | 1485 | |
---|
| 1486 | END SUBROUTINE pbl_surface_final |
---|
| 1487 | ! |
---|
| 1488 | !**************************************************************************************** |
---|
[996] | 1489 | ! |
---|
[1670] | 1490 | SUBROUTINE pbl_surface_newfrac(itime, pctsrf_new, pctsrf_old, tsurf, alb1, alb2, ustar, u10m, v10m, tke) |
---|
[996] | 1491 | |
---|
| 1492 | ! Give default values where new fraction has appread |
---|
| 1493 | |
---|
[1785] | 1494 | USE indice_sol_mod |
---|
| 1495 | |
---|
[996] | 1496 | INCLUDE "dimsoil.h" |
---|
| 1497 | INCLUDE "clesphys.h" |
---|
[1236] | 1498 | INCLUDE "compbl.h" |
---|
[996] | 1499 | |
---|
| 1500 | ! Input variables |
---|
| 1501 | !**************************************************************************************** |
---|
| 1502 | INTEGER, INTENT(IN) :: itime |
---|
| 1503 | REAL, DIMENSION(klon,nbsrf), INTENT(IN) :: pctsrf_new, pctsrf_old |
---|
| 1504 | |
---|
| 1505 | ! InOutput variables |
---|
| 1506 | !**************************************************************************************** |
---|
| 1507 | REAL, DIMENSION(klon,nbsrf), INTENT(INOUT) :: tsurf |
---|
| 1508 | REAL, DIMENSION(klon,nbsrf), INTENT(INOUT) :: alb1, alb2 |
---|
[1670] | 1509 | REAL, DIMENSION(klon,nbsrf), INTENT(INOUT) :: ustar,u10m, v10m |
---|
[996] | 1510 | REAL, DIMENSION(klon,klev+1,nbsrf), INTENT(INOUT) :: tke |
---|
| 1511 | |
---|
| 1512 | ! Local variables |
---|
| 1513 | !**************************************************************************************** |
---|
| 1514 | INTEGER :: nsrf, nsrf_comp1, nsrf_comp2, nsrf_comp3, i |
---|
| 1515 | CHARACTER(len=80) :: abort_message |
---|
| 1516 | CHARACTER(len=20) :: modname = 'pbl_surface_newfrac' |
---|
| 1517 | INTEGER, DIMENSION(nbsrf) :: nfois=0, mfois=0, pfois=0 |
---|
| 1518 | ! |
---|
| 1519 | ! All at once !! |
---|
| 1520 | !**************************************************************************************** |
---|
| 1521 | |
---|
| 1522 | DO nsrf = 1, nbsrf |
---|
| 1523 | ! First decide complement sub-surfaces |
---|
| 1524 | SELECT CASE (nsrf) |
---|
| 1525 | CASE(is_oce) |
---|
| 1526 | nsrf_comp1=is_sic |
---|
| 1527 | nsrf_comp2=is_ter |
---|
| 1528 | nsrf_comp3=is_lic |
---|
| 1529 | CASE(is_sic) |
---|
| 1530 | nsrf_comp1=is_oce |
---|
| 1531 | nsrf_comp2=is_ter |
---|
| 1532 | nsrf_comp3=is_lic |
---|
| 1533 | CASE(is_ter) |
---|
| 1534 | nsrf_comp1=is_lic |
---|
| 1535 | nsrf_comp2=is_oce |
---|
| 1536 | nsrf_comp3=is_sic |
---|
| 1537 | CASE(is_lic) |
---|
| 1538 | nsrf_comp1=is_ter |
---|
| 1539 | nsrf_comp2=is_oce |
---|
| 1540 | nsrf_comp3=is_sic |
---|
| 1541 | END SELECT |
---|
| 1542 | |
---|
| 1543 | ! Initialize all new fractions |
---|
| 1544 | DO i=1, klon |
---|
| 1545 | IF (pctsrf_new(i,nsrf) > 0. .AND. pctsrf_old(i,nsrf) == 0.) THEN |
---|
[1067] | 1546 | |
---|
[996] | 1547 | IF (pctsrf_old(i,nsrf_comp1) > 0.) THEN |
---|
| 1548 | ! Use the complement sub-surface, keeping the continents unchanged |
---|
| 1549 | qsurf(i,nsrf) = qsurf(i,nsrf_comp1) |
---|
| 1550 | evap(i,nsrf) = evap(i,nsrf_comp1) |
---|
| 1551 | rugos(i,nsrf) = rugos(i,nsrf_comp1) |
---|
| 1552 | tsurf(i,nsrf) = tsurf(i,nsrf_comp1) |
---|
| 1553 | alb1(i,nsrf) = alb1(i,nsrf_comp1) |
---|
| 1554 | alb2(i,nsrf) = alb2(i,nsrf_comp1) |
---|
[1670] | 1555 | ustar(i,nsrf) = ustar(i,nsrf_comp1) |
---|
[996] | 1556 | u10m(i,nsrf) = u10m(i,nsrf_comp1) |
---|
| 1557 | v10m(i,nsrf) = v10m(i,nsrf_comp1) |
---|
[1236] | 1558 | if (iflag_pbl > 1) then |
---|
| 1559 | tke(i,:,nsrf) = tke(i,:,nsrf_comp1) |
---|
| 1560 | endif |
---|
[996] | 1561 | mfois(nsrf) = mfois(nsrf) + 1 |
---|
| 1562 | ELSE |
---|
| 1563 | ! The continents have changed. The new fraction receives the mean sum of the existent fractions |
---|
| 1564 | qsurf(i,nsrf) = qsurf(i,nsrf_comp2)*pctsrf_old(i,nsrf_comp2) + qsurf(i,nsrf_comp3)*pctsrf_old(i,nsrf_comp3) |
---|
| 1565 | evap(i,nsrf) = evap(i,nsrf_comp2) *pctsrf_old(i,nsrf_comp2) + evap(i,nsrf_comp3) *pctsrf_old(i,nsrf_comp3) |
---|
| 1566 | rugos(i,nsrf) = rugos(i,nsrf_comp2)*pctsrf_old(i,nsrf_comp2) + rugos(i,nsrf_comp3)*pctsrf_old(i,nsrf_comp3) |
---|
| 1567 | tsurf(i,nsrf) = tsurf(i,nsrf_comp2)*pctsrf_old(i,nsrf_comp2) + tsurf(i,nsrf_comp3)*pctsrf_old(i,nsrf_comp3) |
---|
| 1568 | alb1(i,nsrf) = alb1(i,nsrf_comp2) *pctsrf_old(i,nsrf_comp2) + alb1(i,nsrf_comp3) *pctsrf_old(i,nsrf_comp3) |
---|
| 1569 | alb2(i,nsrf) = alb2(i,nsrf_comp2) *pctsrf_old(i,nsrf_comp2) + alb2(i,nsrf_comp3) *pctsrf_old(i,nsrf_comp3) |
---|
[1670] | 1570 | ustar(i,nsrf) = ustar(i,nsrf_comp2) *pctsrf_old(i,nsrf_comp2) + ustar(i,nsrf_comp3) *pctsrf_old(i,nsrf_comp3) |
---|
[996] | 1571 | u10m(i,nsrf) = u10m(i,nsrf_comp2) *pctsrf_old(i,nsrf_comp2) + u10m(i,nsrf_comp3) *pctsrf_old(i,nsrf_comp3) |
---|
| 1572 | v10m(i,nsrf) = v10m(i,nsrf_comp2) *pctsrf_old(i,nsrf_comp2) + v10m(i,nsrf_comp3) *pctsrf_old(i,nsrf_comp3) |
---|
[1236] | 1573 | if (iflag_pbl > 1) then |
---|
| 1574 | tke(i,:,nsrf) = tke(i,:,nsrf_comp2)*pctsrf_old(i,nsrf_comp2) + tke(i,:,nsrf_comp3)*pctsrf_old(i,nsrf_comp3) |
---|
| 1575 | endif |
---|
[996] | 1576 | |
---|
| 1577 | ! Security abort. This option has never been tested. To test, comment the following line. |
---|
| 1578 | ! abort_message='The fraction of the continents have changed!' |
---|
| 1579 | ! CALL abort_gcm(modname,abort_message,1) |
---|
| 1580 | nfois(nsrf) = nfois(nsrf) + 1 |
---|
| 1581 | END IF |
---|
| 1582 | snow(i,nsrf) = 0. |
---|
| 1583 | agesno(i,nsrf) = 0. |
---|
| 1584 | ftsoil(i,:,nsrf) = tsurf(i,nsrf) |
---|
| 1585 | ELSE |
---|
| 1586 | pfois(nsrf) = pfois(nsrf)+ 1 |
---|
| 1587 | END IF |
---|
| 1588 | END DO |
---|
| 1589 | |
---|
| 1590 | END DO |
---|
| 1591 | |
---|
| 1592 | END SUBROUTINE pbl_surface_newfrac |
---|
| 1593 | |
---|
[781] | 1594 | ! |
---|
[996] | 1595 | !**************************************************************************************** |
---|
| 1596 | ! |
---|
[781] | 1597 | |
---|
| 1598 | END MODULE pbl_surface_mod |
---|