[1992] | 1 | |
---|
[1403] | 2 | ! $Id: orografi.F90 1992 2014-03-05 13:19:12Z fairhead $ |
---|
[524] | 3 | |
---|
[1992] | 4 | SUBROUTINE drag_noro(nlon, nlev, dtime, paprs, pplay, pmea, pstd, psig, pgam, & |
---|
| 5 | pthe, ppic, pval, kgwd, kdx, ktest, t, u, v, pulow, pvlow, pustr, pvstr, & |
---|
| 6 | d_t, d_u, d_v) |
---|
[524] | 7 | |
---|
[1992] | 8 | USE dimphy |
---|
| 9 | IMPLICIT NONE |
---|
| 10 | ! ====================================================================== |
---|
| 11 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
| 12 | ! Objet: Frottement de la montagne Interface |
---|
| 13 | ! ====================================================================== |
---|
| 14 | ! Arguments: |
---|
| 15 | ! dtime---input-R- pas d'integration (s) |
---|
| 16 | ! paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
| 17 | ! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
| 18 | ! t-------input-R-temperature (K) |
---|
| 19 | ! u-------input-R-vitesse horizontale (m/s) |
---|
| 20 | ! v-------input-R-vitesse horizontale (m/s) |
---|
[524] | 21 | |
---|
[1992] | 22 | ! d_t-----output-R-increment de la temperature |
---|
| 23 | ! d_u-----output-R-increment de la vitesse u |
---|
| 24 | ! d_v-----output-R-increment de la vitesse v |
---|
| 25 | ! ====================================================================== |
---|
| 26 | ! ym#include "dimensions.h" |
---|
| 27 | ! ym#include "dimphy.h" |
---|
| 28 | include "YOMCST.h" |
---|
[524] | 29 | |
---|
[1992] | 30 | ! ARGUMENTS |
---|
[524] | 31 | |
---|
[1992] | 32 | INTEGER nlon, nlev |
---|
| 33 | REAL dtime |
---|
| 34 | REAL paprs(klon, klev+1) |
---|
| 35 | REAL pplay(klon, klev) |
---|
| 36 | REAL pmea(nlon), pstd(nlon), psig(nlon), pgam(nlon), pthe(nlon) |
---|
| 37 | REAL ppic(nlon), pval(nlon) |
---|
| 38 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
| 39 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
| 40 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
[524] | 41 | |
---|
[1992] | 42 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
[524] | 43 | |
---|
[1992] | 44 | ! Variables locales: |
---|
[524] | 45 | |
---|
[1992] | 46 | REAL zgeom(klon, klev) |
---|
| 47 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
| 48 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
| 49 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
[524] | 50 | |
---|
[1992] | 51 | ! initialiser les variables de sortie (pour securite) |
---|
[524] | 52 | |
---|
[1992] | 53 | DO i = 1, klon |
---|
| 54 | pulow(i) = 0.0 |
---|
| 55 | pvlow(i) = 0.0 |
---|
| 56 | pustr(i) = 0.0 |
---|
| 57 | pvstr(i) = 0.0 |
---|
| 58 | END DO |
---|
| 59 | DO k = 1, klev |
---|
| 60 | DO i = 1, klon |
---|
| 61 | d_t(i, k) = 0.0 |
---|
| 62 | d_u(i, k) = 0.0 |
---|
| 63 | d_v(i, k) = 0.0 |
---|
| 64 | pdudt(i, k) = 0.0 |
---|
| 65 | pdvdt(i, k) = 0.0 |
---|
| 66 | pdtdt(i, k) = 0.0 |
---|
| 67 | END DO |
---|
| 68 | END DO |
---|
[524] | 69 | |
---|
[1992] | 70 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 71 | ! verticaux augmente du haut vers le bas) |
---|
[524] | 72 | |
---|
[1992] | 73 | DO k = 1, klev |
---|
| 74 | DO i = 1, klon |
---|
| 75 | pt(i, k) = t(i, klev-k+1) |
---|
| 76 | pu(i, k) = u(i, klev-k+1) |
---|
| 77 | pv(i, k) = v(i, klev-k+1) |
---|
| 78 | papmf(i, k) = pplay(i, klev-k+1) |
---|
| 79 | END DO |
---|
| 80 | END DO |
---|
| 81 | DO k = 1, klev + 1 |
---|
| 82 | DO i = 1, klon |
---|
| 83 | papmh(i, k) = paprs(i, klev-k+2) |
---|
| 84 | END DO |
---|
| 85 | END DO |
---|
| 86 | DO i = 1, klon |
---|
| 87 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
| 88 | END DO |
---|
| 89 | DO k = klev - 1, 1, -1 |
---|
| 90 | DO i = 1, klon |
---|
| 91 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
| 92 | 1)/papmf(i,k)) |
---|
| 93 | END DO |
---|
| 94 | END DO |
---|
[524] | 95 | |
---|
[1992] | 96 | ! appeler la routine principale |
---|
[524] | 97 | |
---|
[1992] | 98 | CALL orodrag(klon, klev, kgwd, kdx, ktest, dtime, papmh, papmf, zgeom, pt, & |
---|
| 99 | pu, pv, pmea, pstd, psig, pgam, pthe, ppic, pval, pulow, pvlow, pdudt, & |
---|
| 100 | pdvdt, pdtdt) |
---|
[524] | 101 | |
---|
[1992] | 102 | DO k = 1, klev |
---|
| 103 | DO i = 1, klon |
---|
| 104 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
| 105 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
| 106 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
| 107 | pustr(i) = pustr(i) & ! IM BUG . |
---|
| 108 | ! +rg*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
| 109 | +pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 110 | pvstr(i) = pvstr(i) & ! IM BUG . |
---|
| 111 | ! +rg*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
| 112 | +pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 113 | END DO |
---|
| 114 | END DO |
---|
[524] | 115 | |
---|
[1992] | 116 | RETURN |
---|
| 117 | END SUBROUTINE drag_noro |
---|
| 118 | SUBROUTINE orodrag(nlon, nlev, kgwd, kdx, ktest, ptsphy, paphm1, papm1, & |
---|
| 119 | pgeom1, ptm1, pum1, pvm1, pmea, pstd, psig, pgamma, ptheta, ppic, pval & |
---|
| 120 | ! outputs |
---|
| 121 | , pulow, pvlow, pvom, pvol, pte) |
---|
[524] | 122 | |
---|
[1992] | 123 | USE dimphy |
---|
| 124 | IMPLICIT NONE |
---|
[524] | 125 | |
---|
| 126 | |
---|
| 127 | |
---|
[1992] | 128 | ! **** *gwdrag* - does the gravity wave parametrization. |
---|
[524] | 129 | |
---|
[1992] | 130 | ! purpose. |
---|
| 131 | ! -------- |
---|
[524] | 132 | |
---|
[1992] | 133 | ! this routine computes the physical tendencies of the |
---|
| 134 | ! prognostic variables u,v and t due to vertical transports by |
---|
| 135 | ! subgridscale orographically excited gravity waves |
---|
[524] | 136 | |
---|
[1992] | 137 | ! ** interface. |
---|
| 138 | ! ---------- |
---|
| 139 | ! called from *callpar*. |
---|
[524] | 140 | |
---|
[1992] | 141 | ! the routine takes its input from the long-term storage: |
---|
| 142 | ! u,v,t and p at t-1. |
---|
[524] | 143 | |
---|
[1992] | 144 | ! explicit arguments : |
---|
| 145 | ! -------------------- |
---|
| 146 | ! ==== inputs === |
---|
| 147 | ! ==== outputs === |
---|
[524] | 148 | |
---|
[1992] | 149 | ! implicit arguments : none |
---|
| 150 | ! -------------------- |
---|
[524] | 151 | |
---|
[1992] | 152 | ! implicit logical (l) |
---|
[524] | 153 | |
---|
[1992] | 154 | ! method. |
---|
| 155 | ! ------- |
---|
[524] | 156 | |
---|
[1992] | 157 | ! externals. |
---|
| 158 | ! ---------- |
---|
| 159 | INTEGER ismin, ismax |
---|
| 160 | EXTERNAL ismin, ismax |
---|
[524] | 161 | |
---|
[1992] | 162 | ! reference. |
---|
| 163 | ! ---------- |
---|
[524] | 164 | |
---|
[1992] | 165 | ! author. |
---|
| 166 | ! ------- |
---|
| 167 | ! m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
[524] | 168 | |
---|
[1992] | 169 | ! f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
| 170 | ! ----------------------------------------------------------------------- |
---|
[524] | 171 | |
---|
| 172 | |
---|
[1992] | 173 | ! ym#include "dimensions.h" |
---|
| 174 | ! ym#include "dimphy.h" |
---|
| 175 | include "YOMCST.h" |
---|
| 176 | include "YOEGWD.h" |
---|
| 177 | ! ----------------------------------------------------------------------- |
---|
[524] | 178 | |
---|
[1992] | 179 | ! * 0.1 arguments |
---|
| 180 | ! --------- |
---|
[524] | 181 | |
---|
| 182 | |
---|
[1992] | 183 | ! ym integer nlon, nlev, klevm1 |
---|
| 184 | INTEGER nlon, nlev |
---|
| 185 | INTEGER kgwd, jl, ilevp1, jk, ji |
---|
| 186 | REAL zdelp, ztemp, zforc, ztend |
---|
| 187 | REAL rover, zb, zc, zconb, zabsv |
---|
| 188 | REAL zzd1, ratio, zbet, zust, zvst, zdis |
---|
| 189 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(klon), & |
---|
| 190 | pvlow(klon) |
---|
| 191 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), pmea(nlon), & |
---|
| 192 | pstd(nlon), psig(nlon), pgamma(nlon), ptheta(nlon), ppic(nlon), & |
---|
| 193 | pval(nlon), pgeom1(nlon, nlev), papm1(nlon, nlev), paphm1(nlon, nlev+1) |
---|
[524] | 194 | |
---|
[1992] | 195 | INTEGER kdx(nlon), ktest(nlon) |
---|
| 196 | ! ----------------------------------------------------------------------- |
---|
[524] | 197 | |
---|
[1992] | 198 | ! * 0.2 local arrays |
---|
| 199 | ! ------------ |
---|
| 200 | INTEGER isect(klon), icrit(klon), ikcrith(klon), ikenvh(klon), iknu(klon), & |
---|
| 201 | iknu2(klon), ikcrit(klon), ikhlim(klon) |
---|
[524] | 202 | |
---|
[1992] | 203 | REAL ztau(klon, klev+1), ztauf(klon, klev+1), zstab(klon, klev+1), & |
---|
| 204 | zvph(klon, klev+1), zrho(klon, klev+1), zri(klon, klev+1), & |
---|
| 205 | zpsi(klon, klev+1), zzdep(klon, klev) |
---|
| 206 | REAL zdudt(klon), zdvdt(klon), zdtdt(klon), zdedt(klon), zvidis(klon), & |
---|
| 207 | znu(klon), zd1(klon), zd2(klon), zdmod(klon) |
---|
| 208 | REAL ztmst, ptsphy, zrtmst |
---|
[524] | 209 | |
---|
[1992] | 210 | ! ------------------------------------------------------------------ |
---|
[524] | 211 | |
---|
[1992] | 212 | ! * 1. initialization |
---|
| 213 | ! -------------- |
---|
[524] | 214 | |
---|
| 215 | |
---|
[1992] | 216 | ! ------------------------------------------------------------------ |
---|
[524] | 217 | |
---|
[1992] | 218 | ! * 1.1 computational constants |
---|
| 219 | ! ----------------------- |
---|
[524] | 220 | |
---|
| 221 | |
---|
[1992] | 222 | ! ztmst=twodt |
---|
| 223 | ! if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
| 224 | ! ym klevm1=klev-1 |
---|
| 225 | ztmst = ptsphy |
---|
| 226 | zrtmst = 1./ztmst |
---|
[524] | 227 | |
---|
[1992] | 228 | ! ------------------------------------------------------------------ |
---|
[524] | 229 | |
---|
[1992] | 230 | ! * 1.3 check whether row contains point for printing |
---|
| 231 | ! --------------------------------------------- |
---|
[524] | 232 | |
---|
| 233 | |
---|
[1992] | 234 | ! ------------------------------------------------------------------ |
---|
[524] | 235 | |
---|
[1992] | 236 | ! * 2. precompute basic state variables. |
---|
| 237 | ! * ---------- ----- ----- ---------- |
---|
| 238 | ! * define low level wind, project winds in plane of |
---|
| 239 | ! * low level wind, determine sector in which to take |
---|
| 240 | ! * the variance and set indicator for critical levels. |
---|
[524] | 241 | |
---|
| 242 | |
---|
| 243 | |
---|
| 244 | |
---|
[1992] | 245 | CALL orosetup(nlon, ktest, ikcrit, ikcrith, icrit, ikenvh, iknu, iknu2, & |
---|
| 246 | paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, zrho, zri, zstab, ztau, & |
---|
| 247 | zvph, zpsi, zzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, znu, & |
---|
| 248 | zd1, zd2, zdmod) |
---|
[524] | 249 | |
---|
[1992] | 250 | ! *********************************************************** |
---|
[524] | 251 | |
---|
| 252 | |
---|
[1992] | 253 | ! * 3. compute low level stresses using subcritical and |
---|
| 254 | ! * supercritical forms.computes anisotropy coefficient |
---|
| 255 | ! * as measure of orographic twodimensionality. |
---|
[524] | 256 | |
---|
| 257 | |
---|
[1992] | 258 | CALL gwstress(nlon, nlev, ktest, icrit, ikenvh, iknu, zrho, zstab, zvph, & |
---|
| 259 | pstd, psig, pmea, ppic, ztau, pgeom1, zdmod) |
---|
| 260 | |
---|
| 261 | ! * 4. compute stress profile. |
---|
| 262 | ! * ------- ------ -------- |
---|
| 263 | |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | CALL gwprofil(nlon, nlev, kgwd, kdx, ktest, ikcrith, icrit, paphm1, zrho, & |
---|
| 267 | zstab, zvph, zri, ztau, zdmod, psig, pstd) |
---|
| 268 | |
---|
| 269 | ! * 5. compute tendencies. |
---|
| 270 | ! * ------------------- |
---|
| 271 | |
---|
| 272 | |
---|
| 273 | ! explicit solution at all levels for the gravity wave |
---|
| 274 | ! implicit solution for the blocked levels |
---|
| 275 | |
---|
| 276 | DO jl = kidia, kfdia |
---|
| 277 | zvidis(jl) = 0.0 |
---|
| 278 | zdudt(jl) = 0.0 |
---|
| 279 | zdvdt(jl) = 0.0 |
---|
| 280 | zdtdt(jl) = 0.0 |
---|
| 281 | END DO |
---|
| 282 | |
---|
| 283 | ilevp1 = klev + 1 |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | DO jk = 1, klev |
---|
| 287 | |
---|
| 288 | |
---|
| 289 | ! do 523 jl=1,kgwd |
---|
| 290 | ! ji=kdx(jl) |
---|
| 291 | ! Modif vectorisation 02/04/2004 |
---|
| 292 | DO ji = kidia, kfdia |
---|
| 293 | IF (ktest(ji)==1) THEN |
---|
| 294 | |
---|
| 295 | zdelp = paphm1(ji, jk+1) - paphm1(ji, jk) |
---|
| 296 | ztemp = -rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,ilevp1)*zdelp) |
---|
| 297 | zdudt(ji) = (pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
| 298 | zdvdt(ji) = (pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
| 299 | |
---|
| 300 | ! controle des overshoots: |
---|
| 301 | |
---|
| 302 | zforc = sqrt(zdudt(ji)**2+zdvdt(ji)**2) + 1.E-12 |
---|
| 303 | ztend = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst + 1.E-12 |
---|
| 304 | rover = 0.25 |
---|
| 305 | IF (zforc>=rover*ztend) THEN |
---|
| 306 | zdudt(ji) = rover*ztend/zforc*zdudt(ji) |
---|
| 307 | zdvdt(ji) = rover*ztend/zforc*zdvdt(ji) |
---|
| 308 | END IF |
---|
| 309 | |
---|
| 310 | ! fin du controle des overshoots |
---|
| 311 | |
---|
| 312 | IF (jk>=ikenvh(ji)) THEN |
---|
| 313 | zb = 1.0 - 0.18*pgamma(ji) - 0.04*pgamma(ji)**2 |
---|
| 314 | zc = 0.48*pgamma(ji) + 0.3*pgamma(ji)**2 |
---|
| 315 | zconb = 2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
---|
| 316 | zabsv = sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
| 317 | zzd1 = zb*cos(zpsi(ji,jk))**2 + zc*sin(zpsi(ji,jk))**2 |
---|
| 318 | ratio = (cos(zpsi(ji,jk))**2+pgamma(ji)*sin(zpsi(ji, & |
---|
| 319 | jk))**2)/(pgamma(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
| 320 | zbet = max(0., 2.-1./ratio)*zconb*zzdep(ji, jk)*zzd1*zabsv |
---|
| 321 | |
---|
| 322 | ! simplement oppose au vent |
---|
| 323 | |
---|
| 324 | zdudt(ji) = -pum1(ji, jk)/ztmst |
---|
| 325 | zdvdt(ji) = -pvm1(ji, jk)/ztmst |
---|
| 326 | |
---|
| 327 | ! projection dans la direction de l'axe principal de l'orographie |
---|
| 328 | ! mod zdudt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
| 329 | ! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
| 330 | ! mod * *cos(ptheta(ji)*rpi/180.)/ztmst |
---|
| 331 | ! mod zdvdt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
| 332 | ! mod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
| 333 | ! mod * *sin(ptheta(ji)*rpi/180.)/ztmst |
---|
| 334 | zdudt(ji) = zdudt(ji)*(zbet/(1.+zbet)) |
---|
| 335 | zdvdt(ji) = zdvdt(ji)*(zbet/(1.+zbet)) |
---|
| 336 | END IF |
---|
| 337 | pvom(ji, jk) = zdudt(ji) |
---|
| 338 | pvol(ji, jk) = zdvdt(ji) |
---|
| 339 | zust = pum1(ji, jk) + ztmst*zdudt(ji) |
---|
| 340 | zvst = pvm1(ji, jk) + ztmst*zdvdt(ji) |
---|
| 341 | zdis = 0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
| 342 | zdedt(ji) = zdis/ztmst |
---|
| 343 | zvidis(ji) = zvidis(ji) + zdis*zdelp |
---|
| 344 | zdtdt(ji) = zdedt(ji)/rcpd |
---|
| 345 | ! pte(ji,jk)=zdtdt(ji) |
---|
| 346 | |
---|
| 347 | ! ENCORE UN TRUC POUR EVITER LES EXPLOSIONS |
---|
| 348 | |
---|
| 349 | pte(ji, jk) = 0.0 |
---|
| 350 | |
---|
| 351 | END IF |
---|
| 352 | END DO |
---|
| 353 | |
---|
| 354 | END DO |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | RETURN |
---|
| 358 | END SUBROUTINE orodrag |
---|
| 359 | SUBROUTINE orosetup(nlon, ktest, kkcrit, kkcrith, kcrit, kkenvh, kknu, kknu2, & |
---|
| 360 | paphm1, papm1, pum1, pvm1, ptm1, pgeom1, pstd, prho, pri, pstab, ptau, & |
---|
| 361 | pvph, ppsi, pzdep, pulow, pvlow, ptheta, pgamma, pmea, ppic, pval, pnu, & |
---|
| 362 | pd1, pd2, pdmod) |
---|
| 363 | |
---|
| 364 | ! **** *gwsetup* |
---|
| 365 | |
---|
| 366 | ! purpose. |
---|
| 367 | ! -------- |
---|
| 368 | |
---|
| 369 | ! ** interface. |
---|
| 370 | ! ---------- |
---|
| 371 | ! from *orodrag* |
---|
| 372 | |
---|
| 373 | ! explicit arguments : |
---|
| 374 | ! -------------------- |
---|
| 375 | ! ==== inputs === |
---|
| 376 | ! ==== outputs === |
---|
| 377 | |
---|
| 378 | ! implicit arguments : none |
---|
| 379 | ! -------------------- |
---|
| 380 | |
---|
| 381 | ! method. |
---|
| 382 | ! ------- |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | ! externals. |
---|
| 386 | ! ---------- |
---|
| 387 | |
---|
| 388 | |
---|
| 389 | ! reference. |
---|
| 390 | ! ---------- |
---|
| 391 | |
---|
| 392 | ! see ecmwf research department documentation of the "i.f.s." |
---|
| 393 | |
---|
| 394 | ! author. |
---|
| 395 | ! ------- |
---|
| 396 | |
---|
| 397 | ! modifications. |
---|
| 398 | ! -------------- |
---|
| 399 | ! f.lott for the new-gwdrag scheme november 1993 |
---|
| 400 | |
---|
| 401 | ! ----------------------------------------------------------------------- |
---|
| 402 | USE dimphy |
---|
| 403 | IMPLICIT NONE |
---|
| 404 | |
---|
| 405 | |
---|
| 406 | ! ym#include "dimensions.h" |
---|
| 407 | ! ym#include "dimphy.h" |
---|
| 408 | include "YOMCST.h" |
---|
| 409 | include "YOEGWD.h" |
---|
| 410 | |
---|
| 411 | ! ----------------------------------------------------------------------- |
---|
| 412 | |
---|
| 413 | ! * 0.1 arguments |
---|
| 414 | ! --------- |
---|
| 415 | |
---|
| 416 | INTEGER nlon |
---|
| 417 | INTEGER jl, jk |
---|
| 418 | REAL zdelp |
---|
| 419 | |
---|
| 420 | INTEGER kkcrit(nlon), kkcrith(nlon), kcrit(nlon), ktest(nlon), kkenvh(nlon) |
---|
| 421 | |
---|
| 422 | |
---|
| 423 | REAL paphm1(nlon, klev+1), papm1(nlon, klev), pum1(nlon, klev), & |
---|
| 424 | pvm1(nlon, klev), ptm1(nlon, klev), pgeom1(nlon, klev), & |
---|
| 425 | prho(nlon, klev+1), pri(nlon, klev+1), pstab(nlon, klev+1), & |
---|
| 426 | ptau(nlon, klev+1), pvph(nlon, klev+1), ppsi(nlon, klev+1), & |
---|
| 427 | pzdep(nlon, klev) |
---|
| 428 | REAL pulow(nlon), pvlow(nlon), ptheta(nlon), pgamma(nlon), pnu(nlon), & |
---|
| 429 | pd1(nlon), pd2(nlon), pdmod(nlon) |
---|
| 430 | REAL pstd(nlon), pmea(nlon), ppic(nlon), pval(nlon) |
---|
| 431 | |
---|
| 432 | ! ----------------------------------------------------------------------- |
---|
| 433 | |
---|
| 434 | ! * 0.2 local arrays |
---|
| 435 | ! ------------ |
---|
| 436 | |
---|
| 437 | |
---|
| 438 | INTEGER ilevm1, ilevm2, ilevh |
---|
| 439 | REAL zcons1, zcons2, zcons3, zhgeo |
---|
| 440 | REAL zu, zphi, zvt1, zvt2, zst, zvar, zdwind, zwind |
---|
| 441 | REAL zstabm, zstabp, zrhom, zrhop, alpha |
---|
| 442 | REAL zggeenv, zggeom1, zgvar |
---|
| 443 | LOGICAL lo |
---|
| 444 | LOGICAL ll1(klon, klev+1) |
---|
| 445 | INTEGER kknu(klon), kknu2(klon), kknub(klon), kknul(klon), kentp(klon), & |
---|
| 446 | ncount(klon) |
---|
| 447 | |
---|
| 448 | REAL zhcrit(klon, klev), zvpf(klon, klev), zdp(klon, klev) |
---|
| 449 | REAL znorm(klon), zb(klon), zc(klon), zulow(klon), zvlow(klon), znup(klon), & |
---|
| 450 | znum(klon) |
---|
| 451 | |
---|
| 452 | ! ------------------------------------------------------------------ |
---|
| 453 | |
---|
| 454 | ! * 1. initialization |
---|
| 455 | ! -------------- |
---|
| 456 | |
---|
| 457 | ! print *,' entree gwsetup' |
---|
| 458 | |
---|
| 459 | ! ------------------------------------------------------------------ |
---|
| 460 | |
---|
| 461 | ! * 1.1 computational constants |
---|
| 462 | ! ----------------------- |
---|
| 463 | |
---|
| 464 | |
---|
| 465 | ilevm1 = klev - 1 |
---|
| 466 | ilevm2 = klev - 2 |
---|
| 467 | ilevh = klev/3 |
---|
| 468 | |
---|
| 469 | zcons1 = 1./rd |
---|
| 470 | ! old zcons2=g**2/cpd |
---|
| 471 | zcons2 = rg**2/rcpd |
---|
| 472 | ! old zcons3=1.5*api |
---|
| 473 | zcons3 = 1.5*rpi |
---|
| 474 | |
---|
| 475 | ! ------------------------------------------------------------------ |
---|
| 476 | |
---|
| 477 | ! * 2. |
---|
| 478 | ! -------------- |
---|
| 479 | |
---|
| 480 | |
---|
| 481 | ! ------------------------------------------------------------------ |
---|
| 482 | |
---|
| 483 | ! * 2.1 define low level wind, project winds in plane of |
---|
| 484 | ! * low level wind, determine sector in which to take |
---|
| 485 | ! * the variance and set indicator for critical levels. |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | |
---|
| 489 | DO jl = kidia, kfdia |
---|
| 490 | kknu(jl) = klev |
---|
| 491 | kknu2(jl) = klev |
---|
| 492 | kknub(jl) = klev |
---|
| 493 | kknul(jl) = klev |
---|
| 494 | pgamma(jl) = max(pgamma(jl), gtsec) |
---|
| 495 | ll1(jl, klev+1) = .FALSE. |
---|
| 496 | END DO |
---|
| 497 | |
---|
| 498 | ! Ajouter une initialisation (L. Li, le 23fev99): |
---|
| 499 | |
---|
| 500 | DO jk = klev, ilevh, -1 |
---|
| 501 | DO jl = kidia, kfdia |
---|
| 502 | ll1(jl, jk) = .FALSE. |
---|
| 503 | END DO |
---|
| 504 | END DO |
---|
| 505 | |
---|
| 506 | ! * define top of low level flow |
---|
| 507 | ! ---------------------------- |
---|
| 508 | DO jk = klev, ilevh, -1 |
---|
| 509 | DO jl = kidia, kfdia |
---|
| 510 | lo = (paphm1(jl,jk)/paphm1(jl,klev+1)) >= gsigcr |
---|
| 511 | IF (lo) THEN |
---|
| 512 | kkcrit(jl) = jk |
---|
| 513 | END IF |
---|
| 514 | zhcrit(jl, jk) = ppic(jl) |
---|
| 515 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 516 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 517 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 518 | kknu(jl) = jk |
---|
| 519 | END IF |
---|
| 520 | IF (.NOT. ll1(jl,ilevh)) kknu(jl) = ilevh |
---|
| 521 | END DO |
---|
| 522 | END DO |
---|
| 523 | DO jk = klev, ilevh, -1 |
---|
| 524 | DO jl = kidia, kfdia |
---|
| 525 | zhcrit(jl, jk) = ppic(jl) - pval(jl) |
---|
| 526 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 527 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 528 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 529 | kknu2(jl) = jk |
---|
| 530 | END IF |
---|
| 531 | IF (.NOT. ll1(jl,ilevh)) kknu2(jl) = ilevh |
---|
| 532 | END DO |
---|
| 533 | END DO |
---|
| 534 | DO jk = klev, ilevh, -1 |
---|
| 535 | DO jl = kidia, kfdia |
---|
| 536 | zhcrit(jl, jk) = amax1(ppic(jl)-pmea(jl), pmea(jl)-pval(jl)) |
---|
| 537 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 538 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 539 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 540 | kknub(jl) = jk |
---|
| 541 | END IF |
---|
| 542 | IF (.NOT. ll1(jl,ilevh)) kknub(jl) = ilevh |
---|
| 543 | END DO |
---|
| 544 | END DO |
---|
| 545 | |
---|
| 546 | DO jl = kidia, kfdia |
---|
| 547 | kknu(jl) = min(kknu(jl), nktopg) |
---|
| 548 | kknu2(jl) = min(kknu2(jl), nktopg) |
---|
| 549 | kknub(jl) = min(kknub(jl), nktopg) |
---|
| 550 | kknul(jl) = klev |
---|
| 551 | END DO |
---|
| 552 | |
---|
| 553 | ! c* initialize various arrays |
---|
| 554 | |
---|
| 555 | DO jl = kidia, kfdia |
---|
| 556 | prho(jl, klev+1) = 0.0 |
---|
| 557 | pstab(jl, klev+1) = 0.0 |
---|
| 558 | pstab(jl, 1) = 0.0 |
---|
| 559 | pri(jl, klev+1) = 9999.0 |
---|
| 560 | ppsi(jl, klev+1) = 0.0 |
---|
| 561 | pri(jl, 1) = 0.0 |
---|
| 562 | pvph(jl, 1) = 0.0 |
---|
| 563 | pulow(jl) = 0.0 |
---|
| 564 | pvlow(jl) = 0.0 |
---|
| 565 | zulow(jl) = 0.0 |
---|
| 566 | zvlow(jl) = 0.0 |
---|
| 567 | kkcrith(jl) = klev |
---|
| 568 | kkenvh(jl) = klev |
---|
| 569 | kentp(jl) = klev |
---|
| 570 | kcrit(jl) = 1 |
---|
| 571 | ncount(jl) = 0 |
---|
| 572 | ll1(jl, klev+1) = .FALSE. |
---|
| 573 | END DO |
---|
| 574 | |
---|
| 575 | ! * define low-level flow |
---|
| 576 | ! --------------------- |
---|
| 577 | |
---|
| 578 | DO jk = klev, 2, -1 |
---|
| 579 | DO jl = kidia, kfdia |
---|
| 580 | IF (ktest(jl)==1) THEN |
---|
| 581 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
| 582 | prho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
| 583 | pstab(jl, jk) = 2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* & |
---|
| 584 | (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
| 585 | pstab(jl, jk) = max(pstab(jl,jk), gssec) |
---|
| 586 | END IF |
---|
| 587 | END DO |
---|
| 588 | END DO |
---|
| 589 | |
---|
| 590 | ! ******************************************************************** |
---|
| 591 | |
---|
| 592 | ! * define blocked flow |
---|
| 593 | ! ------------------- |
---|
| 594 | DO jk = klev, ilevh, -1 |
---|
| 595 | DO jl = kidia, kfdia |
---|
| 596 | IF (jk>=kknub(jl) .AND. jk<=kknul(jl)) THEN |
---|
| 597 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
| 598 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
| 599 | END IF |
---|
| 600 | END DO |
---|
| 601 | END DO |
---|
| 602 | DO jl = kidia, kfdia |
---|
| 603 | pulow(jl) = pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
| 604 | pvlow(jl) = pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
| 605 | znorm(jl) = max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 606 | pvph(jl, klev+1) = znorm(jl) |
---|
| 607 | END DO |
---|
| 608 | |
---|
| 609 | ! ******* setup orography axes and define plane of profiles ******* |
---|
| 610 | |
---|
| 611 | DO jl = kidia, kfdia |
---|
| 612 | lo = (pulow(jl)<gvsec) .AND. (pulow(jl)>=-gvsec) |
---|
| 613 | IF (lo) THEN |
---|
| 614 | zu = pulow(jl) + 2.*gvsec |
---|
| 615 | ELSE |
---|
| 616 | zu = pulow(jl) |
---|
| 617 | END IF |
---|
| 618 | zphi = atan(pvlow(jl)/zu) |
---|
| 619 | ppsi(jl, klev+1) = ptheta(jl)*rpi/180. - zphi |
---|
| 620 | zb(jl) = 1. - 0.18*pgamma(jl) - 0.04*pgamma(jl)**2 |
---|
| 621 | zc(jl) = 0.48*pgamma(jl) + 0.3*pgamma(jl)**2 |
---|
| 622 | pd1(jl) = zb(jl) - (zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
| 623 | pd2(jl) = (zb(jl)-zc(jl))*sin(ppsi(jl,klev+1))*cos(ppsi(jl,klev+1)) |
---|
| 624 | pdmod(jl) = sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
| 625 | END DO |
---|
| 626 | |
---|
| 627 | ! ************ define flow in plane of lowlevel stress ************* |
---|
| 628 | |
---|
| 629 | DO jk = 1, klev |
---|
| 630 | DO jl = kidia, kfdia |
---|
| 631 | IF (ktest(jl)==1) THEN |
---|
| 632 | zvt1 = pulow(jl)*pum1(jl, jk) + pvlow(jl)*pvm1(jl, jk) |
---|
| 633 | zvt2 = -pvlow(jl)*pum1(jl, jk) + pulow(jl)*pvm1(jl, jk) |
---|
| 634 | zvpf(jl, jk) = (zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
| 635 | END IF |
---|
| 636 | ptau(jl, jk) = 0.0 |
---|
| 637 | pzdep(jl, jk) = 0.0 |
---|
| 638 | ppsi(jl, jk) = 0.0 |
---|
| 639 | ll1(jl, jk) = .FALSE. |
---|
| 640 | END DO |
---|
| 641 | END DO |
---|
| 642 | DO jk = 2, klev |
---|
| 643 | DO jl = kidia, kfdia |
---|
| 644 | IF (ktest(jl)==1) THEN |
---|
| 645 | zdp(jl, jk) = papm1(jl, jk) - papm1(jl, jk-1) |
---|
| 646 | pvph(jl, jk) = ((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+(papm1(jl, & |
---|
| 647 | jk)-paphm1(jl,jk))*zvpf(jl,jk-1))/zdp(jl, jk) |
---|
| 648 | IF (pvph(jl,jk)<gvsec) THEN |
---|
| 649 | pvph(jl, jk) = gvsec |
---|
| 650 | kcrit(jl) = jk |
---|
| 651 | END IF |
---|
| 652 | END IF |
---|
| 653 | END DO |
---|
| 654 | END DO |
---|
| 655 | |
---|
| 656 | ! * 2.2 brunt-vaisala frequency and density at half levels. |
---|
| 657 | |
---|
| 658 | |
---|
| 659 | DO jk = ilevh, klev |
---|
| 660 | DO jl = kidia, kfdia |
---|
| 661 | IF (ktest(jl)==1) THEN |
---|
| 662 | IF (jk>=(kknub(jl)+1) .AND. jk<=kknul(jl)) THEN |
---|
| 663 | zst = zcons2/ptm1(jl, jk)*(1.-rcpd*prho(jl,jk)*(ptm1(jl, & |
---|
| 664 | jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
| 665 | pstab(jl, klev+1) = pstab(jl, klev+1) + zst*zdp(jl, jk) |
---|
| 666 | pstab(jl, klev+1) = max(pstab(jl,klev+1), gssec) |
---|
| 667 | prho(jl, klev+1) = prho(jl, klev+1) + paphm1(jl, jk)*2.*zdp(jl, jk) & |
---|
| 668 | *zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
| 669 | END IF |
---|
| 670 | END IF |
---|
| 671 | END DO |
---|
| 672 | END DO |
---|
| 673 | |
---|
| 674 | DO jl = kidia, kfdia |
---|
| 675 | pstab(jl, klev+1) = pstab(jl, klev+1)/(papm1(jl,kknul(jl))-papm1(jl,kknub & |
---|
| 676 | (jl))) |
---|
| 677 | prho(jl, klev+1) = prho(jl, klev+1)/(papm1(jl,kknul(jl))-papm1(jl,kknub( & |
---|
| 678 | jl))) |
---|
| 679 | zvar = pstd(jl) |
---|
| 680 | END DO |
---|
| 681 | |
---|
| 682 | ! * 2.3 mean flow richardson number. |
---|
| 683 | ! * and critical height for froude layer |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | DO jk = 2, klev |
---|
| 687 | DO jl = kidia, kfdia |
---|
| 688 | IF (ktest(jl)==1) THEN |
---|
| 689 | zdwind = max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)), gvsec) |
---|
| 690 | pri(jl, jk) = pstab(jl, jk)*(zdp(jl,jk)/(rg*prho(jl,jk)*zdwind))**2 |
---|
| 691 | pri(jl, jk) = max(pri(jl,jk), grcrit) |
---|
| 692 | END IF |
---|
| 693 | END DO |
---|
| 694 | END DO |
---|
| 695 | |
---|
| 696 | |
---|
| 697 | |
---|
| 698 | ! * define top of 'envelope' layer |
---|
| 699 | ! ---------------------------- |
---|
| 700 | |
---|
| 701 | DO jl = kidia, kfdia |
---|
| 702 | pnu(jl) = 0.0 |
---|
| 703 | znum(jl) = 0.0 |
---|
| 704 | END DO |
---|
| 705 | |
---|
| 706 | DO jk = 2, klev - 1 |
---|
| 707 | DO jl = kidia, kfdia |
---|
| 708 | |
---|
| 709 | IF (ktest(jl)==1) THEN |
---|
| 710 | |
---|
| 711 | IF (jk>=kknub(jl)) THEN |
---|
| 712 | |
---|
| 713 | znum(jl) = pnu(jl) |
---|
| 714 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
| 715 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 716 | zwind = max(sqrt(zwind**2), gvsec) |
---|
| 717 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 718 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
| 719 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
| 720 | zrhom = prho(jl, jk) |
---|
| 721 | zrhop = prho(jl, jk+1) |
---|
| 722 | pnu(jl) = pnu(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
| 723 | zwind |
---|
| 724 | IF ((znum(jl)<=gfrcrit) .AND. (pnu(jl)>gfrcrit) .AND. (kkenvh( & |
---|
| 725 | jl)==klev)) kkenvh(jl) = jk |
---|
| 726 | |
---|
| 727 | END IF |
---|
| 728 | |
---|
| 729 | END IF |
---|
| 730 | |
---|
| 731 | END DO |
---|
| 732 | END DO |
---|
| 733 | |
---|
| 734 | ! calculation of a dynamical mixing height for the breaking |
---|
| 735 | ! of gravity waves: |
---|
| 736 | |
---|
| 737 | |
---|
| 738 | DO jl = kidia, kfdia |
---|
| 739 | znup(jl) = 0.0 |
---|
| 740 | znum(jl) = 0.0 |
---|
| 741 | END DO |
---|
| 742 | |
---|
| 743 | DO jk = klev - 1, 2, -1 |
---|
| 744 | DO jl = kidia, kfdia |
---|
| 745 | |
---|
| 746 | IF (ktest(jl)==1) THEN |
---|
| 747 | |
---|
| 748 | znum(jl) = znup(jl) |
---|
| 749 | zwind = (pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ & |
---|
| 750 | max(sqrt(pulow(jl)**2+pvlow(jl)**2), gvsec) |
---|
| 751 | zwind = max(sqrt(zwind**2), gvsec) |
---|
| 752 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 753 | zstabm = sqrt(max(pstab(jl,jk),gssec)) |
---|
| 754 | zstabp = sqrt(max(pstab(jl,jk+1),gssec)) |
---|
| 755 | zrhom = prho(jl, jk) |
---|
| 756 | zrhop = prho(jl, jk+1) |
---|
| 757 | znup(jl) = znup(jl) + (zdelp/rg)*((zstabp/zrhop+zstabm/zrhom)/2.)/ & |
---|
| 758 | zwind |
---|
| 759 | IF ((znum(jl)<=rpi/2.) .AND. (znup(jl)>rpi/2.) .AND. (kkcrith( & |
---|
| 760 | jl)==klev)) kkcrith(jl) = jk |
---|
| 761 | |
---|
| 762 | END IF |
---|
| 763 | |
---|
| 764 | END DO |
---|
| 765 | END DO |
---|
| 766 | |
---|
| 767 | DO jl = kidia, kfdia |
---|
| 768 | kkcrith(jl) = min0(kkcrith(jl), kknu2(jl)) |
---|
| 769 | kkcrith(jl) = max0(kkcrith(jl), ilevh*2) |
---|
| 770 | END DO |
---|
| 771 | |
---|
| 772 | ! directional info for flow blocking ************************* |
---|
| 773 | |
---|
| 774 | DO jk = ilevh, klev |
---|
| 775 | DO jl = kidia, kfdia |
---|
| 776 | IF (jk>=kkenvh(jl)) THEN |
---|
| 777 | lo = (pum1(jl,jk)<gvsec) .AND. (pum1(jl,jk)>=-gvsec) |
---|
| 778 | IF (lo) THEN |
---|
| 779 | zu = pum1(jl, jk) + 2.*gvsec |
---|
| 780 | ELSE |
---|
| 781 | zu = pum1(jl, jk) |
---|
| 782 | END IF |
---|
| 783 | zphi = atan(pvm1(jl,jk)/zu) |
---|
| 784 | ppsi(jl, jk) = ptheta(jl)*rpi/180. - zphi |
---|
| 785 | END IF |
---|
| 786 | END DO |
---|
| 787 | END DO |
---|
| 788 | ! forms the vertical 'leakiness' ************************** |
---|
| 789 | |
---|
| 790 | alpha = 3. |
---|
| 791 | |
---|
| 792 | DO jk = ilevh, klev |
---|
| 793 | DO jl = kidia, kfdia |
---|
| 794 | IF (jk>=kkenvh(jl)) THEN |
---|
| 795 | zggeenv = amax1(1., (pgeom1(jl,kkenvh(jl))+pgeom1(jl, & |
---|
| 796 | kkenvh(jl)-1))/2.) |
---|
| 797 | zggeom1 = amax1(pgeom1(jl,jk), 1.) |
---|
| 798 | zgvar = amax1(pstd(jl)*rg, 1.) |
---|
| 799 | ! mod pzdep(jl,jk)=sqrt((zggeenv-zggeom1)/(zggeom1+zgvar)) |
---|
| 800 | pzdep(jl, jk) = (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,jk))/ & |
---|
| 801 | (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,klev)) |
---|
| 802 | END IF |
---|
| 803 | END DO |
---|
| 804 | END DO |
---|
| 805 | |
---|
| 806 | RETURN |
---|
| 807 | END SUBROUTINE orosetup |
---|
| 808 | SUBROUTINE gwstress(nlon, nlev, ktest, kcrit, kkenvh, kknu, prho, pstab, & |
---|
| 809 | pvph, pstd, psig, pmea, ppic, ptau, pgeom1, pdmod) |
---|
| 810 | |
---|
| 811 | ! **** *gwstress* |
---|
| 812 | |
---|
| 813 | ! purpose. |
---|
| 814 | ! -------- |
---|
| 815 | |
---|
| 816 | ! ** interface. |
---|
| 817 | ! ---------- |
---|
| 818 | ! call *gwstress* from *gwdrag* |
---|
| 819 | |
---|
| 820 | ! explicit arguments : |
---|
| 821 | ! -------------------- |
---|
| 822 | ! ==== inputs === |
---|
| 823 | ! ==== outputs === |
---|
| 824 | |
---|
| 825 | ! implicit arguments : none |
---|
| 826 | ! -------------------- |
---|
| 827 | |
---|
| 828 | ! method. |
---|
| 829 | ! ------- |
---|
| 830 | |
---|
| 831 | |
---|
| 832 | ! externals. |
---|
| 833 | ! ---------- |
---|
| 834 | |
---|
| 835 | |
---|
| 836 | ! reference. |
---|
| 837 | ! ---------- |
---|
| 838 | |
---|
| 839 | ! see ecmwf research department documentation of the "i.f.s." |
---|
| 840 | |
---|
| 841 | ! author. |
---|
| 842 | ! ------- |
---|
| 843 | |
---|
| 844 | ! modifications. |
---|
| 845 | ! -------------- |
---|
| 846 | ! f. lott put the new gwd on ifs 22/11/93 |
---|
| 847 | |
---|
| 848 | ! ----------------------------------------------------------------------- |
---|
| 849 | USE dimphy |
---|
| 850 | IMPLICIT NONE |
---|
| 851 | ! ym#include "dimensions.h" |
---|
| 852 | ! ym#include "dimphy.h" |
---|
| 853 | include "YOMCST.h" |
---|
| 854 | include "YOEGWD.h" |
---|
| 855 | |
---|
| 856 | ! ----------------------------------------------------------------------- |
---|
| 857 | |
---|
| 858 | ! * 0.1 arguments |
---|
| 859 | ! --------- |
---|
| 860 | |
---|
| 861 | INTEGER nlon, nlev |
---|
| 862 | INTEGER kcrit(nlon), ktest(nlon), kkenvh(nlon), kknu(nlon) |
---|
| 863 | |
---|
| 864 | REAL prho(nlon, nlev+1), pstab(nlon, nlev+1), ptau(nlon, nlev+1), & |
---|
| 865 | pvph(nlon, nlev+1), pgeom1(nlon, nlev), pstd(nlon) |
---|
| 866 | |
---|
| 867 | REAL psig(nlon) |
---|
| 868 | REAL pmea(nlon), ppic(nlon) |
---|
| 869 | REAL pdmod(nlon) |
---|
| 870 | |
---|
| 871 | ! ----------------------------------------------------------------------- |
---|
| 872 | |
---|
| 873 | ! * 0.2 local arrays |
---|
| 874 | ! ------------ |
---|
| 875 | INTEGER jl |
---|
| 876 | REAL zblock, zvar, zeff |
---|
| 877 | LOGICAL lo |
---|
| 878 | |
---|
| 879 | ! ----------------------------------------------------------------------- |
---|
| 880 | |
---|
| 881 | ! * 0.3 functions |
---|
| 882 | ! --------- |
---|
| 883 | ! ------------------------------------------------------------------ |
---|
| 884 | |
---|
| 885 | ! * 1. initialization |
---|
| 886 | ! -------------- |
---|
| 887 | |
---|
| 888 | |
---|
| 889 | ! * 3.1 gravity wave stress. |
---|
| 890 | |
---|
| 891 | |
---|
| 892 | |
---|
| 893 | DO jl = kidia, kfdia |
---|
| 894 | IF (ktest(jl)==1) THEN |
---|
| 895 | |
---|
| 896 | ! effective mountain height above the blocked flow |
---|
| 897 | |
---|
| 898 | IF (kkenvh(jl)==klev) THEN |
---|
| 899 | zblock = 0.0 |
---|
[524] | 900 | ELSE |
---|
[1992] | 901 | zblock = (pgeom1(jl,kkenvh(jl))+pgeom1(jl,kkenvh(jl)+1))/2./rg |
---|
| 902 | END IF |
---|
[524] | 903 | |
---|
[1992] | 904 | zvar = ppic(jl) - pmea(jl) |
---|
| 905 | zeff = amax1(0., zvar-zblock) |
---|
| 906 | |
---|
| 907 | ptau(jl, klev+1) = prho(jl, klev+1)*gkdrag*psig(jl)*zeff**2/4./ & |
---|
| 908 | pstd(jl)*pvph(jl, klev+1)*pdmod(jl)*sqrt(pstab(jl,klev+1)) |
---|
| 909 | |
---|
| 910 | ! too small value of stress or low level flow include critical level |
---|
| 911 | ! or low level flow: gravity wave stress nul. |
---|
| 912 | |
---|
| 913 | lo = (ptau(jl,klev+1)<gtsec) .OR. (kcrit(jl)>=kknu(jl)) .OR. & |
---|
| 914 | (pvph(jl,klev+1)<gvcrit) |
---|
| 915 | ! if(lo) ptau(jl,klev+1)=0.0 |
---|
| 916 | |
---|
| 917 | ELSE |
---|
| 918 | |
---|
| 919 | ptau(jl, klev+1) = 0.0 |
---|
| 920 | |
---|
| 921 | END IF |
---|
| 922 | |
---|
| 923 | END DO |
---|
| 924 | |
---|
| 925 | RETURN |
---|
| 926 | END SUBROUTINE gwstress |
---|
| 927 | SUBROUTINE gwprofil(nlon, nlev, kgwd, kdx, ktest, kkcrith, kcrit, paphm1, & |
---|
| 928 | prho, pstab, pvph, pri, ptau, pdmod, psig, pvar) |
---|
| 929 | |
---|
| 930 | ! **** *GWPROFIL* |
---|
| 931 | |
---|
| 932 | ! PURPOSE. |
---|
| 933 | ! -------- |
---|
| 934 | |
---|
| 935 | ! ** INTERFACE. |
---|
| 936 | ! ---------- |
---|
| 937 | ! FROM *GWDRAG* |
---|
| 938 | |
---|
| 939 | ! EXPLICIT ARGUMENTS : |
---|
| 940 | ! -------------------- |
---|
| 941 | ! ==== INPUTS === |
---|
| 942 | ! ==== OUTPUTS === |
---|
| 943 | |
---|
| 944 | ! IMPLICIT ARGUMENTS : NONE |
---|
| 945 | ! -------------------- |
---|
| 946 | |
---|
| 947 | ! METHOD: |
---|
| 948 | ! ------- |
---|
| 949 | ! THE STRESS PROFILE FOR GRAVITY WAVES IS COMPUTED AS FOLLOWS: |
---|
| 950 | ! IT IS CONSTANT (NO GWD) AT THE LEVELS BETWEEN THE GROUND |
---|
| 951 | ! AND THE TOP OF THE BLOCKED LAYER (KKENVH). |
---|
| 952 | ! IT DECREASES LINEARLY WITH HEIGHTS FROM THE TOP OF THE |
---|
| 953 | ! BLOCKED LAYER TO 3*VAROR (kKNU), TO SIMULATES LEE WAVES OR |
---|
| 954 | ! NONLINEAR GRAVITY WAVE BREAKING. |
---|
| 955 | ! ABOVE IT IS CONSTANT, EXCEPT WHEN THE WAVE ENCOUNTERS A CRITICAL |
---|
| 956 | ! LEVEL (KCRIT) OR WHEN IT BREAKS. |
---|
| 957 | |
---|
| 958 | |
---|
| 959 | |
---|
| 960 | ! EXTERNALS. |
---|
| 961 | ! ---------- |
---|
| 962 | |
---|
| 963 | |
---|
| 964 | ! REFERENCE. |
---|
| 965 | ! ---------- |
---|
| 966 | |
---|
| 967 | ! SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
---|
| 968 | |
---|
| 969 | ! AUTHOR. |
---|
| 970 | ! ------- |
---|
| 971 | |
---|
| 972 | ! MODIFICATIONS. |
---|
| 973 | ! -------------- |
---|
| 974 | ! PASSAGE OF THE NEW GWDRAG TO I.F.S. (F. LOTT, 22/11/93) |
---|
| 975 | ! ----------------------------------------------------------------------- |
---|
| 976 | USE dimphy |
---|
| 977 | IMPLICIT NONE |
---|
| 978 | |
---|
| 979 | |
---|
| 980 | |
---|
| 981 | |
---|
| 982 | ! ym#include "dimensions.h" |
---|
| 983 | ! ym#include "dimphy.h" |
---|
| 984 | include "YOMCST.h" |
---|
| 985 | include "YOEGWD.h" |
---|
| 986 | |
---|
| 987 | ! ----------------------------------------------------------------------- |
---|
| 988 | |
---|
| 989 | ! * 0.1 ARGUMENTS |
---|
| 990 | ! --------- |
---|
| 991 | |
---|
| 992 | INTEGER nlon, nlev |
---|
| 993 | INTEGER kkcrith(nlon), kcrit(nlon), kdx(nlon), ktest(nlon) |
---|
| 994 | |
---|
| 995 | |
---|
| 996 | REAL paphm1(nlon, nlev+1), pstab(nlon, nlev+1), prho(nlon, nlev+1), & |
---|
| 997 | pvph(nlon, nlev+1), pri(nlon, nlev+1), ptau(nlon, nlev+1) |
---|
| 998 | |
---|
| 999 | REAL pdmod(nlon), psig(nlon), pvar(nlon) |
---|
| 1000 | |
---|
| 1001 | ! ----------------------------------------------------------------------- |
---|
| 1002 | |
---|
| 1003 | ! * 0.2 LOCAL ARRAYS |
---|
| 1004 | ! ------------ |
---|
| 1005 | |
---|
| 1006 | INTEGER ilevh, ji, kgwd, jl, jk |
---|
| 1007 | REAL zsqr, zalfa, zriw, zdel, zb, zalpha, zdz2n |
---|
| 1008 | REAL zdelp, zdelpt |
---|
| 1009 | REAL zdz2(klon, klev), znorm(klon), zoro(klon) |
---|
| 1010 | REAL ztau(klon, klev+1) |
---|
| 1011 | |
---|
| 1012 | ! ----------------------------------------------------------------------- |
---|
| 1013 | |
---|
| 1014 | ! * 1. INITIALIZATION |
---|
| 1015 | ! -------------- |
---|
| 1016 | |
---|
| 1017 | ! print *,' entree gwprofil' |
---|
| 1018 | |
---|
| 1019 | |
---|
| 1020 | ! * COMPUTATIONAL CONSTANTS. |
---|
| 1021 | ! ------------- ---------- |
---|
| 1022 | |
---|
| 1023 | ilevh = klev/3 |
---|
| 1024 | |
---|
| 1025 | ! DO 400 ji=1,kgwd |
---|
| 1026 | ! jl=kdx(ji) |
---|
| 1027 | ! Modif vectorisation 02/04/2004 |
---|
| 1028 | DO jl = kidia, kfdia |
---|
| 1029 | IF (ktest(jl)==1) THEN |
---|
| 1030 | zoro(jl) = psig(jl)*pdmod(jl)/4./max(pvar(jl), 1.0) |
---|
| 1031 | ztau(jl, klev+1) = ptau(jl, klev+1) |
---|
| 1032 | END IF |
---|
| 1033 | END DO |
---|
| 1034 | |
---|
| 1035 | |
---|
| 1036 | DO jk = klev, 2, -1 |
---|
| 1037 | |
---|
| 1038 | ! * 4.1 CONSTANT WAVE STRESS UNTIL TOP OF THE |
---|
| 1039 | ! BLOCKING LAYER. |
---|
| 1040 | |
---|
| 1041 | ! DO 411 ji=1,kgwd |
---|
| 1042 | ! jl=kdx(ji) |
---|
| 1043 | ! Modif vectorisation 02/04/2004 |
---|
| 1044 | DO jl = kidia, kfdia |
---|
| 1045 | IF (ktest(jl)==1) THEN |
---|
| 1046 | IF (jk>kkcrith(jl)) THEN |
---|
| 1047 | ptau(jl, jk) = ztau(jl, klev+1) |
---|
| 1048 | ! ENDIF |
---|
| 1049 | ! IF(JK.EQ.KKCRITH(JL)) THEN |
---|
[524] | 1050 | ELSE |
---|
[1992] | 1051 | ptau(jl, jk) = grahilo*ztau(jl, klev+1) |
---|
| 1052 | END IF |
---|
| 1053 | END IF |
---|
| 1054 | END DO |
---|
[524] | 1055 | |
---|
[1992] | 1056 | ! * 4.15 CONSTANT SHEAR STRESS UNTIL THE TOP OF THE |
---|
| 1057 | ! LOW LEVEL FLOW LAYER. |
---|
[524] | 1058 | |
---|
[1992] | 1059 | |
---|
| 1060 | ! * 4.2 WAVE DISPLACEMENT AT NEXT LEVEL. |
---|
| 1061 | |
---|
| 1062 | |
---|
| 1063 | ! DO 421 ji=1,kgwd |
---|
| 1064 | ! jl=kdx(ji) |
---|
| 1065 | ! Modif vectorisation 02/04/2004 |
---|
| 1066 | DO jl = kidia, kfdia |
---|
| 1067 | IF (ktest(jl)==1) THEN |
---|
| 1068 | IF (jk<kkcrith(jl)) THEN |
---|
| 1069 | znorm(jl) = gkdrag*prho(jl, jk)*sqrt(pstab(jl,jk))*pvph(jl, jk)* & |
---|
| 1070 | zoro(jl) |
---|
| 1071 | zdz2(jl, jk) = ptau(jl, jk+1)/max(znorm(jl), gssec) |
---|
| 1072 | END IF |
---|
| 1073 | END IF |
---|
| 1074 | END DO |
---|
| 1075 | |
---|
| 1076 | ! * 4.3 WAVE RICHARDSON NUMBER, NEW WAVE DISPLACEMENT |
---|
| 1077 | ! * AND STRESS: BREAKING EVALUATION AND CRITICAL |
---|
| 1078 | ! LEVEL |
---|
| 1079 | |
---|
| 1080 | |
---|
| 1081 | ! DO 431 ji=1,kgwd |
---|
| 1082 | ! jl=Kdx(ji) |
---|
| 1083 | ! Modif vectorisation 02/04/2004 |
---|
| 1084 | DO jl = kidia, kfdia |
---|
| 1085 | IF (ktest(jl)==1) THEN |
---|
| 1086 | |
---|
| 1087 | IF (jk<kkcrith(jl)) THEN |
---|
| 1088 | IF ((ptau(jl,jk+1)<gtsec) .OR. (jk<=kcrit(jl))) THEN |
---|
| 1089 | ptau(jl, jk) = 0.0 |
---|
| 1090 | ELSE |
---|
| 1091 | zsqr = sqrt(pri(jl,jk)) |
---|
| 1092 | zalfa = sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl, jk) |
---|
| 1093 | zriw = pri(jl, jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
---|
| 1094 | IF (zriw<grcrit) THEN |
---|
| 1095 | zdel = 4./zsqr/grcrit + 1./grcrit**2 + 4./grcrit |
---|
| 1096 | zb = 1./grcrit + 2./zsqr |
---|
| 1097 | zalpha = 0.5*(-zb+sqrt(zdel)) |
---|
| 1098 | zdz2n = (pvph(jl,jk)*zalpha)**2/pstab(jl, jk) |
---|
| 1099 | ptau(jl, jk) = znorm(jl)*zdz2n |
---|
| 1100 | ELSE |
---|
| 1101 | ptau(jl, jk) = znorm(jl)*zdz2(jl, jk) |
---|
| 1102 | END IF |
---|
| 1103 | ptau(jl, jk) = min(ptau(jl,jk), ptau(jl,jk+1)) |
---|
| 1104 | END IF |
---|
| 1105 | END IF |
---|
| 1106 | END IF |
---|
| 1107 | END DO |
---|
| 1108 | |
---|
| 1109 | END DO |
---|
| 1110 | |
---|
| 1111 | ! REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
| 1112 | |
---|
| 1113 | ! DO 530 ji=1,kgwd |
---|
| 1114 | ! jl=kdx(ji) |
---|
| 1115 | ! Modif vectorisation 02/04/2004 |
---|
| 1116 | DO jl = kidia, kfdia |
---|
| 1117 | IF (ktest(jl)==1) THEN |
---|
| 1118 | ztau(jl, kkcrith(jl)) = ptau(jl, kkcrith(jl)) |
---|
| 1119 | ztau(jl, nstra) = ptau(jl, nstra) |
---|
| 1120 | END IF |
---|
| 1121 | END DO |
---|
| 1122 | |
---|
| 1123 | DO jk = 1, klev |
---|
| 1124 | |
---|
| 1125 | ! DO 532 ji=1,kgwd |
---|
| 1126 | ! jl=kdx(ji) |
---|
| 1127 | ! Modif vectorisation 02/04/2004 |
---|
| 1128 | DO jl = kidia, kfdia |
---|
| 1129 | IF (ktest(jl)==1) THEN |
---|
| 1130 | |
---|
| 1131 | |
---|
| 1132 | IF (jk>kkcrith(jl)) THEN |
---|
| 1133 | |
---|
| 1134 | zdelp = paphm1(jl, jk) - paphm1(jl, klev+1) |
---|
| 1135 | zdelpt = paphm1(jl, kkcrith(jl)) - paphm1(jl, klev+1) |
---|
| 1136 | ptau(jl, jk) = ztau(jl, klev+1) + (ztau(jl,kkcrith(jl))-ztau(jl, & |
---|
| 1137 | klev+1))*zdelp/zdelpt |
---|
| 1138 | |
---|
| 1139 | END IF |
---|
| 1140 | |
---|
| 1141 | END IF |
---|
| 1142 | END DO |
---|
| 1143 | |
---|
| 1144 | ! REORGANISATION IN THE STRATOSPHERE |
---|
| 1145 | |
---|
| 1146 | ! DO 533 ji=1,kgwd |
---|
| 1147 | ! jl=kdx(ji) |
---|
| 1148 | ! Modif vectorisation 02/04/2004 |
---|
| 1149 | DO jl = kidia, kfdia |
---|
| 1150 | IF (ktest(jl)==1) THEN |
---|
| 1151 | |
---|
| 1152 | |
---|
| 1153 | IF (jk<nstra) THEN |
---|
| 1154 | |
---|
| 1155 | zdelp = paphm1(jl, nstra) |
---|
| 1156 | zdelpt = paphm1(jl, jk) |
---|
| 1157 | ptau(jl, jk) = ztau(jl, nstra)*zdelpt/zdelp |
---|
| 1158 | |
---|
| 1159 | END IF |
---|
| 1160 | |
---|
| 1161 | END IF |
---|
| 1162 | END DO |
---|
| 1163 | |
---|
| 1164 | ! REORGANISATION IN THE TROPOSPHERE |
---|
| 1165 | |
---|
| 1166 | ! DO 534 ji=1,kgwd |
---|
| 1167 | ! jl=kdx(ji) |
---|
| 1168 | ! Modif vectorisation 02/04/2004 |
---|
| 1169 | DO jl = kidia, kfdia |
---|
| 1170 | IF (ktest(jl)==1) THEN |
---|
| 1171 | |
---|
| 1172 | |
---|
| 1173 | IF (jk<kkcrith(jl) .AND. jk>nstra) THEN |
---|
| 1174 | |
---|
| 1175 | zdelp = paphm1(jl, jk) - paphm1(jl, kkcrith(jl)) |
---|
| 1176 | zdelpt = paphm1(jl, nstra) - paphm1(jl, kkcrith(jl)) |
---|
| 1177 | ptau(jl, jk) = ztau(jl, kkcrith(jl)) + (ztau(jl,nstra)-ztau(jl, & |
---|
| 1178 | kkcrith(jl)))*zdelp/zdelpt |
---|
| 1179 | |
---|
| 1180 | END IF |
---|
| 1181 | END IF |
---|
| 1182 | END DO |
---|
| 1183 | |
---|
| 1184 | |
---|
| 1185 | END DO |
---|
| 1186 | |
---|
| 1187 | |
---|
| 1188 | RETURN |
---|
| 1189 | END SUBROUTINE gwprofil |
---|
| 1190 | SUBROUTINE lift_noro(nlon, nlev, dtime, paprs, pplay, plat, pmea, pstd, ppic, & |
---|
| 1191 | ktest, t, u, v, pulow, pvlow, pustr, pvstr, d_t, d_u, d_v) |
---|
| 1192 | |
---|
| 1193 | USE dimphy |
---|
| 1194 | IMPLICIT NONE |
---|
| 1195 | ! ====================================================================== |
---|
| 1196 | ! Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
| 1197 | ! Objet: Frottement de la montagne Interface |
---|
| 1198 | ! ====================================================================== |
---|
| 1199 | ! Arguments: |
---|
| 1200 | ! dtime---input-R- pas d'integration (s) |
---|
| 1201 | ! paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
| 1202 | ! pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
| 1203 | ! t-------input-R-temperature (K) |
---|
| 1204 | ! u-------input-R-vitesse horizontale (m/s) |
---|
| 1205 | ! v-------input-R-vitesse horizontale (m/s) |
---|
| 1206 | |
---|
| 1207 | ! d_t-----output-R-increment de la temperature |
---|
| 1208 | ! d_u-----output-R-increment de la vitesse u |
---|
| 1209 | ! d_v-----output-R-increment de la vitesse v |
---|
| 1210 | ! ====================================================================== |
---|
| 1211 | ! ym#include "dimensions.h" |
---|
| 1212 | ! ym#include "dimphy.h" |
---|
| 1213 | include "YOMCST.h" |
---|
| 1214 | |
---|
| 1215 | ! ARGUMENTS |
---|
| 1216 | |
---|
| 1217 | INTEGER nlon, nlev |
---|
| 1218 | REAL dtime |
---|
| 1219 | REAL paprs(klon, klev+1) |
---|
| 1220 | REAL pplay(klon, klev) |
---|
| 1221 | REAL plat(nlon), pmea(nlon) |
---|
| 1222 | REAL pstd(nlon) |
---|
| 1223 | REAL ppic(nlon) |
---|
| 1224 | REAL pulow(nlon), pvlow(nlon), pustr(nlon), pvstr(nlon) |
---|
| 1225 | REAL t(nlon, nlev), u(nlon, nlev), v(nlon, nlev) |
---|
| 1226 | REAL d_t(nlon, nlev), d_u(nlon, nlev), d_v(nlon, nlev) |
---|
| 1227 | |
---|
| 1228 | INTEGER i, k, ktest(nlon) |
---|
| 1229 | |
---|
| 1230 | ! Variables locales: |
---|
| 1231 | |
---|
| 1232 | REAL zgeom(klon, klev) |
---|
| 1233 | REAL pdtdt(klon, klev), pdudt(klon, klev), pdvdt(klon, klev) |
---|
| 1234 | REAL pt(klon, klev), pu(klon, klev), pv(klon, klev) |
---|
| 1235 | REAL papmf(klon, klev), papmh(klon, klev+1) |
---|
| 1236 | |
---|
| 1237 | ! initialiser les variables de sortie (pour securite) |
---|
| 1238 | |
---|
| 1239 | DO i = 1, klon |
---|
| 1240 | pulow(i) = 0.0 |
---|
| 1241 | pvlow(i) = 0.0 |
---|
| 1242 | pustr(i) = 0.0 |
---|
| 1243 | pvstr(i) = 0.0 |
---|
| 1244 | END DO |
---|
| 1245 | DO k = 1, klev |
---|
| 1246 | DO i = 1, klon |
---|
| 1247 | d_t(i, k) = 0.0 |
---|
| 1248 | d_u(i, k) = 0.0 |
---|
| 1249 | d_v(i, k) = 0.0 |
---|
| 1250 | pdudt(i, k) = 0.0 |
---|
| 1251 | pdvdt(i, k) = 0.0 |
---|
| 1252 | pdtdt(i, k) = 0.0 |
---|
| 1253 | END DO |
---|
| 1254 | END DO |
---|
| 1255 | |
---|
| 1256 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 1257 | ! verticaux augmente du haut vers le bas) |
---|
| 1258 | |
---|
| 1259 | DO k = 1, klev |
---|
| 1260 | DO i = 1, klon |
---|
| 1261 | pt(i, k) = t(i, klev-k+1) |
---|
| 1262 | pu(i, k) = u(i, klev-k+1) |
---|
| 1263 | pv(i, k) = v(i, klev-k+1) |
---|
| 1264 | papmf(i, k) = pplay(i, klev-k+1) |
---|
| 1265 | END DO |
---|
| 1266 | END DO |
---|
| 1267 | DO k = 1, klev + 1 |
---|
| 1268 | DO i = 1, klon |
---|
| 1269 | papmh(i, k) = paprs(i, klev-k+2) |
---|
| 1270 | END DO |
---|
| 1271 | END DO |
---|
| 1272 | DO i = 1, klon |
---|
| 1273 | zgeom(i, klev) = rd*pt(i, klev)*log(papmh(i,klev+1)/papmf(i,klev)) |
---|
| 1274 | END DO |
---|
| 1275 | DO k = klev - 1, 1, -1 |
---|
| 1276 | DO i = 1, klon |
---|
| 1277 | zgeom(i, k) = zgeom(i, k+1) + rd*(pt(i,k)+pt(i,k+1))/2.0*log(papmf(i,k+ & |
---|
| 1278 | 1)/papmf(i,k)) |
---|
| 1279 | END DO |
---|
| 1280 | END DO |
---|
| 1281 | |
---|
| 1282 | ! appeler la routine principale |
---|
| 1283 | |
---|
| 1284 | CALL orolift(klon, klev, ktest, dtime, papmh, zgeom, pt, pu, pv, plat, & |
---|
| 1285 | pmea, pstd, ppic, pulow, pvlow, pdudt, pdvdt, pdtdt) |
---|
| 1286 | |
---|
| 1287 | DO k = 1, klev |
---|
| 1288 | DO i = 1, klon |
---|
| 1289 | d_u(i, klev+1-k) = dtime*pdudt(i, k) |
---|
| 1290 | d_v(i, klev+1-k) = dtime*pdvdt(i, k) |
---|
| 1291 | d_t(i, klev+1-k) = dtime*pdtdt(i, k) |
---|
| 1292 | pustr(i) = pustr(i) & ! IM BUG . |
---|
| 1293 | ! +RG*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
| 1294 | +pdudt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 1295 | pvstr(i) = pvstr(i) & ! IM BUG . |
---|
| 1296 | ! +RG*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
| 1297 | +pdvdt(i, k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
| 1298 | END DO |
---|
| 1299 | END DO |
---|
| 1300 | |
---|
| 1301 | RETURN |
---|
| 1302 | END SUBROUTINE lift_noro |
---|
| 1303 | SUBROUTINE orolift(nlon, nlev, ktest, ptsphy, paphm1, pgeom1, ptm1, pum1, & |
---|
| 1304 | pvm1, plat, pmea, pvaror, ppic & ! OUTPUTS |
---|
| 1305 | , pulow, pvlow, pvom, pvol, pte) |
---|
| 1306 | |
---|
| 1307 | |
---|
| 1308 | ! **** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
| 1309 | |
---|
| 1310 | ! PURPOSE. |
---|
| 1311 | ! -------- |
---|
| 1312 | |
---|
| 1313 | ! ** INTERFACE. |
---|
| 1314 | ! ---------- |
---|
| 1315 | ! CALLED FROM *lift_noro |
---|
| 1316 | ! ---------- |
---|
| 1317 | |
---|
| 1318 | ! AUTHOR. |
---|
| 1319 | ! ------- |
---|
| 1320 | ! F.LOTT LMD 22/11/95 |
---|
| 1321 | |
---|
| 1322 | USE dimphy |
---|
| 1323 | IMPLICIT NONE |
---|
| 1324 | |
---|
| 1325 | |
---|
| 1326 | ! ym#include "dimensions.h" |
---|
| 1327 | ! ym#include "dimphy.h" |
---|
| 1328 | include "YOMCST.h" |
---|
| 1329 | include "YOEGWD.h" |
---|
| 1330 | ! ----------------------------------------------------------------------- |
---|
| 1331 | |
---|
| 1332 | ! * 0.1 ARGUMENTS |
---|
| 1333 | ! --------- |
---|
| 1334 | |
---|
| 1335 | |
---|
| 1336 | INTEGER nlon, nlev |
---|
| 1337 | REAL pte(nlon, nlev), pvol(nlon, nlev), pvom(nlon, nlev), pulow(nlon), & |
---|
| 1338 | pvlow(nlon) |
---|
| 1339 | REAL pum1(nlon, nlev), pvm1(nlon, nlev), ptm1(nlon, nlev), plat(nlon), & |
---|
| 1340 | pmea(nlon), pvaror(nlon), ppic(nlon), pgeom1(nlon, nlev), & |
---|
| 1341 | paphm1(nlon, nlev+1) |
---|
| 1342 | |
---|
| 1343 | INTEGER ktest(nlon) |
---|
| 1344 | REAL ptsphy |
---|
| 1345 | ! ----------------------------------------------------------------------- |
---|
| 1346 | |
---|
| 1347 | ! * 0.2 LOCAL ARRAYS |
---|
| 1348 | ! ------------ |
---|
| 1349 | LOGICAL lifthigh |
---|
| 1350 | ! ym integer klevm1, jl, ilevh, jk |
---|
| 1351 | INTEGER jl, ilevh, jk |
---|
| 1352 | REAL zcons1, ztmst, zrtmst, zpi, zhgeo |
---|
| 1353 | REAL zdelp, zslow, zsqua, zscav, zbet |
---|
| 1354 | INTEGER iknub(klon), iknul(klon) |
---|
| 1355 | LOGICAL ll1(klon, klev+1) |
---|
| 1356 | |
---|
| 1357 | REAL ztau(klon, klev+1), ztav(klon, klev+1), zrho(klon, klev+1) |
---|
| 1358 | REAL zdudt(klon), zdvdt(klon) |
---|
| 1359 | REAL zhcrit(klon, klev) |
---|
| 1360 | CHARACTER (LEN=20) :: modname = 'orografi' |
---|
| 1361 | CHARACTER (LEN=80) :: abort_message |
---|
| 1362 | ! ----------------------------------------------------------------------- |
---|
| 1363 | |
---|
| 1364 | ! * 1.1 INITIALIZATIONS |
---|
| 1365 | ! --------------- |
---|
| 1366 | |
---|
| 1367 | lifthigh = .FALSE. |
---|
| 1368 | |
---|
| 1369 | IF (nlon/=klon .OR. nlev/=klev) THEN |
---|
| 1370 | abort_message = 'pb dimension' |
---|
| 1371 | CALL abort_gcm(modname, abort_message, 1) |
---|
| 1372 | END IF |
---|
| 1373 | zcons1 = 1./rd |
---|
| 1374 | ! ym KLEVM1=KLEV-1 |
---|
| 1375 | ztmst = ptsphy |
---|
| 1376 | zrtmst = 1./ztmst |
---|
| 1377 | zpi = acos(-1.) |
---|
| 1378 | |
---|
| 1379 | DO jl = kidia, kfdia |
---|
| 1380 | zrho(jl, klev+1) = 0.0 |
---|
| 1381 | pulow(jl) = 0.0 |
---|
| 1382 | pvlow(jl) = 0.0 |
---|
| 1383 | iknub(jl) = klev |
---|
| 1384 | iknul(jl) = klev |
---|
| 1385 | ilevh = klev/3 |
---|
| 1386 | ll1(jl, klev+1) = .FALSE. |
---|
| 1387 | DO jk = 1, klev |
---|
| 1388 | pvom(jl, jk) = 0.0 |
---|
| 1389 | pvol(jl, jk) = 0.0 |
---|
| 1390 | pte(jl, jk) = 0.0 |
---|
| 1391 | END DO |
---|
| 1392 | END DO |
---|
| 1393 | |
---|
| 1394 | |
---|
| 1395 | ! * 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
| 1396 | ! * LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
| 1397 | ! * THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
| 1398 | |
---|
| 1399 | |
---|
| 1400 | |
---|
| 1401 | DO jk = klev, 1, -1 |
---|
| 1402 | DO jl = kidia, kfdia |
---|
| 1403 | IF (ktest(jl)==1) THEN |
---|
| 1404 | zhcrit(jl, jk) = amax1(ppic(jl)-pmea(jl), 100.) |
---|
| 1405 | zhgeo = pgeom1(jl, jk)/rg |
---|
| 1406 | ll1(jl, jk) = (zhgeo>zhcrit(jl,jk)) |
---|
| 1407 | IF (ll1(jl,jk) .NEQV. ll1(jl,jk+1)) THEN |
---|
| 1408 | iknub(jl) = jk |
---|
| 1409 | END IF |
---|
| 1410 | END IF |
---|
| 1411 | END DO |
---|
| 1412 | END DO |
---|
| 1413 | |
---|
| 1414 | DO jl = kidia, kfdia |
---|
| 1415 | IF (ktest(jl)==1) THEN |
---|
| 1416 | iknub(jl) = max(iknub(jl), klev/2) |
---|
| 1417 | iknul(jl) = max(iknul(jl), 2*klev/3) |
---|
| 1418 | IF (iknub(jl)>nktopg) iknub(jl) = nktopg |
---|
| 1419 | IF (iknub(jl)==nktopg) iknul(jl) = klev |
---|
| 1420 | IF (iknub(jl)==iknul(jl)) iknub(jl) = iknul(jl) - 1 |
---|
| 1421 | END IF |
---|
| 1422 | END DO |
---|
| 1423 | |
---|
| 1424 | ! do 2011 jl=kidia,kfdia |
---|
| 1425 | ! IF(KTEST(JL).EQ.1) THEN |
---|
| 1426 | ! print *,' iknul= ',iknul(jl),' iknub=',iknub(jl) |
---|
| 1427 | ! ENDIF |
---|
| 1428 | ! 2011 continue |
---|
| 1429 | |
---|
| 1430 | ! PRINT *,' DANS OROLIFT: 2010' |
---|
| 1431 | |
---|
| 1432 | DO jk = klev, 2, -1 |
---|
| 1433 | DO jl = kidia, kfdia |
---|
| 1434 | zrho(jl, jk) = 2.*paphm1(jl, jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
| 1435 | END DO |
---|
| 1436 | END DO |
---|
| 1437 | ! PRINT *,' DANS OROLIFT: 223' |
---|
| 1438 | |
---|
| 1439 | ! ******************************************************************** |
---|
| 1440 | |
---|
| 1441 | ! * DEFINE LOW LEVEL FLOW |
---|
| 1442 | ! ------------------- |
---|
| 1443 | DO jk = klev, 1, -1 |
---|
| 1444 | DO jl = kidia, kfdia |
---|
| 1445 | IF (ktest(jl)==1) THEN |
---|
| 1446 | IF (jk>=iknub(jl) .AND. jk<=iknul(jl)) THEN |
---|
| 1447 | pulow(jl) = pulow(jl) + pum1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
| 1448 | ) |
---|
| 1449 | pvlow(jl) = pvlow(jl) + pvm1(jl, jk)*(paphm1(jl,jk+1)-paphm1(jl,jk) & |
---|
| 1450 | ) |
---|
| 1451 | zrho(jl, klev+1) = zrho(jl, klev+1) + zrho(jl, jk)*(paphm1(jl,jk+1) & |
---|
| 1452 | -paphm1(jl,jk)) |
---|
| 1453 | END IF |
---|
| 1454 | END IF |
---|
| 1455 | END DO |
---|
| 1456 | END DO |
---|
| 1457 | DO jl = kidia, kfdia |
---|
| 1458 | IF (ktest(jl)==1) THEN |
---|
| 1459 | pulow(jl) = pulow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
| 1460 | pvlow(jl) = pvlow(jl)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
| 1461 | zrho(jl, klev+1) = zrho(jl, klev+1)/(paphm1(jl,iknul(jl)+1)-paphm1(jl, & |
---|
| 1462 | iknub(jl))) |
---|
| 1463 | END IF |
---|
| 1464 | END DO |
---|
| 1465 | |
---|
| 1466 | ! *********************************************************** |
---|
| 1467 | |
---|
| 1468 | ! * 3. COMPUTE MOUNTAIN LIFT |
---|
| 1469 | |
---|
| 1470 | |
---|
| 1471 | DO jl = kidia, kfdia |
---|
| 1472 | IF (ktest(jl)==1) THEN |
---|
| 1473 | ztau(jl, klev+1) = -gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
| 1474 | ! (2*PVAROR(JL)+PMEA(JL))* |
---|
| 1475 | 2*pvaror(jl)*sin(zpi/180.*plat(jl))*pvlow(jl) |
---|
| 1476 | ztav(jl, klev+1) = gklift*zrho(jl, klev+1)*2.*romega* & ! * |
---|
| 1477 | ! (2*PVAROR(JL)+PMEA(JL))* |
---|
| 1478 | 2*pvaror(jl)*sin(zpi/180.*plat(jl))*pulow(jl) |
---|
| 1479 | ELSE |
---|
| 1480 | ztau(jl, klev+1) = 0.0 |
---|
| 1481 | ztav(jl, klev+1) = 0.0 |
---|
| 1482 | END IF |
---|
| 1483 | END DO |
---|
| 1484 | |
---|
| 1485 | ! * 4. COMPUTE LIFT PROFILE |
---|
| 1486 | ! * -------------------- |
---|
| 1487 | |
---|
| 1488 | |
---|
| 1489 | |
---|
| 1490 | DO jk = 1, klev |
---|
| 1491 | DO jl = kidia, kfdia |
---|
| 1492 | IF (ktest(jl)==1) THEN |
---|
| 1493 | ztau(jl, jk) = ztau(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
| 1494 | ztav(jl, jk) = ztav(jl, klev+1)*paphm1(jl, jk)/paphm1(jl, klev+1) |
---|
[524] | 1495 | ELSE |
---|
[1992] | 1496 | ztau(jl, jk) = 0.0 |
---|
| 1497 | ztav(jl, jk) = 0.0 |
---|
| 1498 | END IF |
---|
| 1499 | END DO |
---|
| 1500 | END DO |
---|
[524] | 1501 | |
---|
| 1502 | |
---|
[1992] | 1503 | ! * 5. COMPUTE TENDENCIES. |
---|
| 1504 | ! * ------------------- |
---|
| 1505 | IF (lifthigh) THEN |
---|
| 1506 | ! PRINT *,' DANS OROLIFT: 500' |
---|
[524] | 1507 | |
---|
[1992] | 1508 | ! EXPLICIT SOLUTION AT ALL LEVELS |
---|
[766] | 1509 | |
---|
[1992] | 1510 | DO jk = 1, klev |
---|
| 1511 | DO jl = kidia, kfdia |
---|
| 1512 | IF (ktest(jl)==1) THEN |
---|
| 1513 | zdelp = paphm1(jl, jk+1) - paphm1(jl, jk) |
---|
| 1514 | zdudt(jl) = -rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
---|
| 1515 | zdvdt(jl) = -rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
---|
| 1516 | END IF |
---|
| 1517 | END DO |
---|
| 1518 | END DO |
---|
[766] | 1519 | |
---|
[1992] | 1520 | ! PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
[766] | 1521 | |
---|
[1992] | 1522 | DO jk = 1, klev |
---|
| 1523 | DO jl = kidia, kfdia |
---|
| 1524 | IF (ktest(jl)==1) THEN |
---|
[766] | 1525 | |
---|
[1992] | 1526 | zslow = sqrt(pulow(jl)**2+pvlow(jl)**2) |
---|
| 1527 | zsqua = amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2), gvsec) |
---|
| 1528 | zscav = -zdudt(jl)*pvm1(jl, jk) + zdvdt(jl)*pum1(jl, jk) |
---|
| 1529 | IF (zsqua>gvsec) THEN |
---|
| 1530 | pvom(jl, jk) = -zscav*pvm1(jl, jk)/zsqua**2 |
---|
| 1531 | pvol(jl, jk) = zscav*pum1(jl, jk)/zsqua**2 |
---|
| 1532 | ELSE |
---|
| 1533 | pvom(jl, jk) = 0.0 |
---|
| 1534 | pvol(jl, jk) = 0.0 |
---|
| 1535 | END IF |
---|
| 1536 | zsqua = sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
---|
| 1537 | IF (zsqua<zslow) THEN |
---|
| 1538 | pvom(jl, jk) = zsqua/zslow*pvom(jl, jk) |
---|
| 1539 | pvol(jl, jk) = zsqua/zslow*pvol(jl, jk) |
---|
| 1540 | END IF |
---|
[766] | 1541 | |
---|
[1992] | 1542 | END IF |
---|
| 1543 | END DO |
---|
| 1544 | END DO |
---|
| 1545 | |
---|
| 1546 | ! 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
| 1547 | ! ---------------------------------- |
---|
| 1548 | |
---|
| 1549 | ELSE |
---|
| 1550 | |
---|
| 1551 | DO jl = kidia, kfdia |
---|
| 1552 | IF (ktest(jl)==1) THEN |
---|
| 1553 | DO jk = klev, iknub(jl), -1 |
---|
| 1554 | zbet = gklift*2.*romega*sin(zpi/180.*plat(jl))*ztmst* & |
---|
| 1555 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,jk))/ & |
---|
| 1556 | (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
---|
| 1557 | zdudt(jl) = -pum1(jl, jk)/ztmst/(1+zbet**2) |
---|
| 1558 | zdvdt(jl) = -pvm1(jl, jk)/ztmst/(1+zbet**2) |
---|
| 1559 | pvom(jl, jk) = zbet**2*zdudt(jl) - zbet*zdvdt(jl) |
---|
| 1560 | pvol(jl, jk) = zbet*zdudt(jl) + zbet**2*zdvdt(jl) |
---|
| 1561 | END DO |
---|
| 1562 | END IF |
---|
| 1563 | END DO |
---|
| 1564 | |
---|
| 1565 | END IF |
---|
| 1566 | |
---|
| 1567 | RETURN |
---|
| 1568 | END SUBROUTINE orolift |
---|
| 1569 | |
---|
| 1570 | |
---|
| 1571 | SUBROUTINE sugwd(nlon, nlev, paprs, pplay) |
---|
| 1572 | USE dimphy |
---|
| 1573 | USE mod_phys_lmdz_para |
---|
| 1574 | USE mod_grid_phy_lmdz |
---|
| 1575 | ! USE parallel |
---|
| 1576 | |
---|
| 1577 | ! **** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
| 1578 | |
---|
| 1579 | ! PURPOSE. |
---|
| 1580 | ! -------- |
---|
| 1581 | ! INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
| 1582 | ! GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
| 1583 | |
---|
| 1584 | ! ** INTERFACE. |
---|
| 1585 | ! ---------- |
---|
| 1586 | ! CALL *SUGWD* FROM *SUPHEC* |
---|
| 1587 | ! ----- ------ |
---|
| 1588 | |
---|
| 1589 | ! EXPLICIT ARGUMENTS : |
---|
| 1590 | ! -------------------- |
---|
| 1591 | ! PSIG : VERTICAL COORDINATE TABLE |
---|
| 1592 | ! NLEV : NUMBER OF MODEL LEVELS |
---|
| 1593 | |
---|
| 1594 | ! IMPLICIT ARGUMENTS : |
---|
| 1595 | ! -------------------- |
---|
| 1596 | ! COMMON YOEGWD |
---|
| 1597 | |
---|
| 1598 | ! METHOD. |
---|
| 1599 | ! ------- |
---|
| 1600 | ! SEE DOCUMENTATION |
---|
| 1601 | |
---|
| 1602 | ! EXTERNALS. |
---|
| 1603 | ! ---------- |
---|
| 1604 | ! NONE |
---|
| 1605 | |
---|
| 1606 | ! REFERENCE. |
---|
| 1607 | ! ---------- |
---|
| 1608 | ! ECMWF Research Department documentation of the IFS |
---|
| 1609 | |
---|
| 1610 | ! AUTHOR. |
---|
| 1611 | ! ------- |
---|
| 1612 | ! MARTIN MILLER *ECMWF* |
---|
| 1613 | |
---|
| 1614 | ! MODIFICATIONS. |
---|
| 1615 | ! -------------- |
---|
| 1616 | ! ORIGINAL : 90-01-01 |
---|
| 1617 | ! ------------------------------------------------------------------ |
---|
| 1618 | IMPLICIT NONE |
---|
| 1619 | |
---|
| 1620 | ! ----------------------------------------------------------------- |
---|
| 1621 | include "YOEGWD.h" |
---|
| 1622 | ! ---------------------------------------------------------------- |
---|
| 1623 | |
---|
| 1624 | INTEGER nlon, nlev, jk |
---|
| 1625 | REAL paprs(nlon, nlev+1) |
---|
| 1626 | REAL pplay(nlon, nlev) |
---|
| 1627 | REAL zpr, zstra, zsigt, zpm1r |
---|
| 1628 | REAL :: pplay_glo(klon_glo, nlev) |
---|
| 1629 | REAL :: paprs_glo(klon_glo, nlev+1) |
---|
| 1630 | |
---|
| 1631 | ! * 1. SET THE VALUES OF THE PARAMETERS |
---|
| 1632 | ! -------------------------------- |
---|
| 1633 | |
---|
| 1634 | |
---|
| 1635 | PRINT *, ' DANS SUGWD NLEV=', nlev |
---|
| 1636 | ghmax = 10000. |
---|
| 1637 | |
---|
| 1638 | zpr = 100000. |
---|
| 1639 | zstra = 0.1 |
---|
| 1640 | zsigt = 0.94 |
---|
| 1641 | ! old ZPR=80000. |
---|
| 1642 | ! old ZSIGT=0.85 |
---|
| 1643 | |
---|
| 1644 | |
---|
| 1645 | CALL gather(pplay, pplay_glo) |
---|
| 1646 | CALL bcast(pplay_glo) |
---|
| 1647 | CALL gather(paprs, paprs_glo) |
---|
| 1648 | CALL bcast(paprs_glo) |
---|
| 1649 | |
---|
| 1650 | |
---|
| 1651 | DO jk = 1, nlev |
---|
| 1652 | zpm1r = pplay_glo((klon_glo/2)+1, jk)/paprs_glo((klon_glo/2)+1, 1) |
---|
| 1653 | IF (zpm1r>=zsigt) THEN |
---|
| 1654 | nktopg = jk |
---|
| 1655 | END IF |
---|
| 1656 | zpm1r = pplay_glo((klon_glo/2)+1, jk)/paprs_glo((klon_glo/2)+1, 1) |
---|
| 1657 | IF (zpm1r>=zstra) THEN |
---|
| 1658 | nstra = jk |
---|
| 1659 | END IF |
---|
| 1660 | END DO |
---|
| 1661 | |
---|
| 1662 | |
---|
| 1663 | |
---|
| 1664 | ! inversion car dans orodrag on compte les niveaux a l'envers |
---|
| 1665 | nktopg = nlev - nktopg + 1 |
---|
| 1666 | nstra = nlev - nstra |
---|
| 1667 | PRINT *, ' DANS SUGWD nktopg=', nktopg |
---|
| 1668 | PRINT *, ' DANS SUGWD nstra=', nstra |
---|
| 1669 | |
---|
| 1670 | gsigcr = 0.80 |
---|
| 1671 | |
---|
| 1672 | gkdrag = 0.2 |
---|
| 1673 | grahilo = 1. |
---|
| 1674 | grcrit = 0.01 |
---|
| 1675 | gfrcrit = 1.0 |
---|
| 1676 | gkwake = 0.50 |
---|
| 1677 | |
---|
| 1678 | gklift = 0.50 |
---|
| 1679 | gvcrit = 0.0 |
---|
| 1680 | |
---|
| 1681 | ! ---------------------------------------------------------------- |
---|
| 1682 | |
---|
| 1683 | ! * 2. SET VALUES OF SECURITY PARAMETERS |
---|
| 1684 | ! --------------------------------- |
---|
| 1685 | |
---|
| 1686 | |
---|
| 1687 | gvsec = 0.10 |
---|
| 1688 | gssec = 1.E-12 |
---|
| 1689 | |
---|
| 1690 | gtsec = 1.E-07 |
---|
| 1691 | |
---|
| 1692 | ! ---------------------------------------------------------------- |
---|
| 1693 | |
---|
| 1694 | RETURN |
---|
| 1695 | END SUBROUTINE sugwd |
---|