[1279] | 1 | ! $Id: newmicro.F 1723 2013-02-04 13:25:36Z emillour $ |
---|
[1523] | 2 | |
---|
| 3 | |
---|
[1279] | 4 | ! |
---|
[1712] | 5 | SUBROUTINE newmicro (ok_cdnc, bl95_b0, bl95_b1, |
---|
| 6 | . paprs, pplay, |
---|
[524] | 7 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
| 8 | . pch, pcl, pcm, pct, pctlwp, |
---|
[1712] | 9 | . xflwp, xfiwp, xflwc, xfiwc, |
---|
| 10 | . mass_solu_aero, mass_solu_aero_pi, |
---|
| 11 | . pcldtaupi, re, fl, reliq, reice) |
---|
| 12 | c |
---|
[766] | 13 | USE dimphy |
---|
[1337] | 14 | USE phys_local_var_mod, only: scdnc,cldncl,reffclwtop,lcc, |
---|
| 15 | . reffclws,reffclwc,cldnvi,lcc3d, |
---|
| 16 | . lcc3dcon,lcc3dstra |
---|
| 17 | USE phys_state_var_mod, only: rnebcon,clwcon |
---|
[524] | 18 | IMPLICIT none |
---|
| 19 | c====================================================================== |
---|
| 20 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
[1712] | 21 | c O. Boucher (LMD/CNRS) mise a jour en 201212 |
---|
[524] | 22 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 23 | c====================================================================== |
---|
| 24 | c Arguments: |
---|
[1712] | 25 | c ok_cdnc-input-L-flag pour calculer les rayons a partir des aerosols |
---|
| 26 | c |
---|
[524] | 27 | c t-------input-R-temperature |
---|
[1712] | 28 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere dans la partie nuageuse (kg/kg) |
---|
[524] | 29 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
[1279] | 30 | c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] |
---|
[1712] | 31 | c mass_solu_aero_pi--input-R-ditto, pre-industrial value |
---|
| 32 | c |
---|
| 33 | c bl95_b0-input-R-a PARAMETER, may be varied for tests (s-sea, l-land) |
---|
| 34 | c bl95_b1-input-R-a PARAMETER, may be varied for tests ( -"- ) |
---|
[524] | 35 | c |
---|
| 36 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
| 37 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
| 38 | c the averaging of the output. fl is the fraction of liquid |
---|
| 39 | c water clouds within a grid cell |
---|
[1712] | 40 | c |
---|
[524] | 41 | c pcltau--output-R-epaisseur optique des nuages |
---|
| 42 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
[1712] | 43 | c pcldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
| 44 | c |
---|
| 45 | c pcl-output-R-2D low-level cloud cover |
---|
| 46 | c pcm-output-R-2D mid-level cloud cover |
---|
| 47 | c pch-output-R-2D high-level cloud cover |
---|
| 48 | c pct-output-R-2D total cloud cover |
---|
[524] | 49 | c====================================================================== |
---|
| 50 | C |
---|
| 51 | #include "YOMCST.h" |
---|
| 52 | #include "nuage.h" |
---|
[685] | 53 | #include "radepsi.h" |
---|
| 54 | #include "radopt.h" |
---|
[1712] | 55 | |
---|
[1337] | 56 | c choix de l'hypothese de recouvrememnt nuageuse |
---|
[1712] | 57 | LOGICAL RANDOM, MAXIMUM_RANDOM, MAXIMUM |
---|
| 58 | PARAMETER (RANDOM=.FALSE., MAXIMUM_RANDOM=.TRUE., MAXIMUM=.FALSE.) |
---|
| 59 | c |
---|
[1479] | 60 | LOGICAL, SAVE :: FIRST=.TRUE. |
---|
| 61 | !$OMP THREADPRIVATE(FIRST) |
---|
[1337] | 62 | INTEGER flag_max |
---|
[1712] | 63 | c |
---|
| 64 | c threshold PARAMETERs |
---|
[1337] | 65 | REAL thres_tau,thres_neb |
---|
| 66 | PARAMETER (thres_tau=0.3, thres_neb=0.001) |
---|
| 67 | c |
---|
[1712] | 68 | REAL phase3d(klon, klev) |
---|
| 69 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
| 70 | c |
---|
| 71 | REAL paprs(klon,klev+1) |
---|
| 72 | REAL pplay(klon,klev) |
---|
[524] | 73 | REAL t(klon,klev) |
---|
| 74 | REAL pclc(klon,klev) |
---|
| 75 | REAL pqlwp(klon,klev) |
---|
[1712] | 76 | REAL pcltau(klon,klev) |
---|
| 77 | REAL pclemi(klon,klev) |
---|
| 78 | REAL pcldtaupi(klon, klev) |
---|
[524] | 79 | c |
---|
[1712] | 80 | REAL pct(klon) |
---|
| 81 | REAL pcl(klon) |
---|
| 82 | REAL pcm(klon) |
---|
| 83 | REAL pch(klon) |
---|
| 84 | REAL pctlwp(klon) |
---|
[524] | 85 | c |
---|
| 86 | LOGICAL lo |
---|
| 87 | c |
---|
[1523] | 88 | !!Abderr modif JL mail du 19.01.2011 18:31 |
---|
| 89 | ! REAL cetahb, cetamb |
---|
| 90 | ! PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 91 | ! Remplacer |
---|
[1712] | 92 | ! cetahb*paprs(i,1) par prmhc |
---|
| 93 | ! cetamb*paprs(i,1) par prlmc |
---|
| 94 | REAL prmhc ! Pressure between medium and high level cloud in Pa |
---|
| 95 | REAL prlmc ! Pressure between low and medium level cloud in Pa |
---|
[1523] | 96 | PARAMETER (prmhc = 440.*100., prlmc = 680.*100.) |
---|
[524] | 97 | C |
---|
| 98 | INTEGER i, k |
---|
| 99 | REAL xflwp(klon), xfiwp(klon) |
---|
| 100 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
| 101 | c |
---|
[1712] | 102 | REAL radius |
---|
| 103 | c |
---|
| 104 | REAL coef_froi, coef_chau |
---|
[524] | 105 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
[1712] | 106 | c |
---|
[1286] | 107 | REAL seuil_neb |
---|
| 108 | PARAMETER (seuil_neb=0.001) |
---|
[1712] | 109 | c |
---|
[524] | 110 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 111 | PARAMETER (nexpo=6) |
---|
[1712] | 112 | c PARAMETER (nexpo=1) |
---|
[524] | 113 | |
---|
[1712] | 114 | REAL rel, tc, rei |
---|
| 115 | REAL k_ice0, k_ice, DF |
---|
| 116 | PARAMETER (k_ice0=0.005) ! units=m2/g |
---|
| 117 | PARAMETER (DF=1.66) ! diffusivity factor |
---|
| 118 | c |
---|
[524] | 119 | cjq for the aerosol indirect effect |
---|
| 120 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 121 | cjq |
---|
[1279] | 122 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
| 123 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
---|
[524] | 124 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 125 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
| 126 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 127 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 128 | |
---|
| 129 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
| 130 | |
---|
[1712] | 131 | LOGICAL ok_cdnc |
---|
[524] | 132 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
| 133 | |
---|
| 134 | cjq-end |
---|
[685] | 135 | cIM cf. CR:parametres supplementaires |
---|
| 136 | REAL zclear(klon) |
---|
| 137 | REAL zcloud(klon) |
---|
[1523] | 138 | REAL zcloudh(klon) |
---|
| 139 | REAL zcloudm(klon) |
---|
| 140 | REAL zcloudl(klon) |
---|
[1712] | 141 | REAL rhodz(klon, klev) !--rho*dz pour la couche |
---|
| 142 | REAL zrho(klon, klev) !--rho pour la couche |
---|
| 143 | REAL dh(klon, klev) !--dz pour la couche |
---|
| 144 | REAL zfice(klon, klev) |
---|
| 145 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds |
---|
| 146 | REAL zflwp_var, zfiwp_var |
---|
[1525] | 147 | REAL d_rei_dt |
---|
[1146] | 148 | |
---|
[1279] | 149 | ! Abderrahmane oct 2009 |
---|
| 150 | Real reliq(klon, klev), reice(klon, klev) |
---|
| 151 | |
---|
[1525] | 152 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 153 | ! FH : 2011/05/24 |
---|
| 154 | ! |
---|
| 155 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
---|
| 156 | ! to be used for a temperature in celcius T(°C) < 0 |
---|
| 157 | ! rei=rei_min for T(°C) < -81.4 |
---|
| 158 | ! |
---|
| 159 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
---|
| 160 | ! et la température. |
---|
| 161 | ! Pour retrouver les résultats numériques de la version d'origine, |
---|
| 162 | ! on impose 0.71 quand on est proche de 0.71 |
---|
[1712] | 163 | c |
---|
[1525] | 164 | d_rei_dt=(rei_max-rei_min)/81.4 |
---|
| 165 | if (abs(d_rei_dt-0.71)<1.e-4) d_rei_dt=0.71 |
---|
| 166 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[524] | 167 | c |
---|
| 168 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
[1712] | 169 | c IM inversion des DO |
---|
[524] | 170 | c |
---|
[1146] | 171 | xflwp = 0.d0 |
---|
| 172 | xfiwp = 0.d0 |
---|
| 173 | xflwc = 0.d0 |
---|
| 174 | xfiwc = 0.d0 |
---|
[1712] | 175 | c |
---|
[1334] | 176 | reliq=0. |
---|
| 177 | reice=0. |
---|
[1712] | 178 | c |
---|
[524] | 179 | DO k = 1, klev |
---|
[1712] | 180 | DO i = 1, klon |
---|
| 181 | c-layer calculation |
---|
| 182 | rhodz(i,k) = (paprs(i,k)-paprs(i,k+1))/RG ! kg/m2 |
---|
| 183 | zrho(i,k)=pplay(i,k)/t(i,k)/RD ! kg/m3 |
---|
| 184 | dh(i,k)=rhodz(i,k)/zrho(i,k) ! m |
---|
| 185 | c-Fraction of ice in cloud using a linear transition |
---|
| 186 | zfice(i,k) = 1.0 - (t(i,k)-t_glace_min) / |
---|
| 187 | & (t_glace_max-t_glace_min) |
---|
| 188 | zfice(i,k) = MIN(MAX(zfice(i,k),0.0),1.0) |
---|
| 189 | c-IM Total Liquid/Ice water content |
---|
| 190 | xflwc(i,k) = (1.-zfice(i,k))*pqlwp(i,k) |
---|
| 191 | xfiwc(i,k) = zfice(i,k)*pqlwp(i,k) |
---|
[1146] | 192 | ENDDO |
---|
| 193 | ENDDO |
---|
[524] | 194 | |
---|
[1712] | 195 | IF (ok_cdnc) THEN |
---|
| 196 | c |
---|
| 197 | c--we compute cloud properties as a function of the aerosol load |
---|
| 198 | c |
---|
| 199 | DO k = 1, klev |
---|
[1146] | 200 | DO i = 1, klon |
---|
[1712] | 201 | c |
---|
| 202 | c Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 203 | c Cloud droplet number concentration (CDNC) is restricted |
---|
| 204 | c to be within [20, 1000 cm^3] |
---|
| 205 | c |
---|
| 206 | c--present-day case |
---|
| 207 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
[1279] | 208 | & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
[1712] | 209 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
| 210 | c |
---|
| 211 | c--pre-industrial case |
---|
| 212 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
[1305] | 213 | & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.)) |
---|
| 214 | & *1.e6 !-m-3 |
---|
[1712] | 215 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
| 216 | c |
---|
| 217 | c--present-day case |
---|
| 218 | rad_chaud(i,k) = |
---|
| 219 | & 1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 220 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
| 221 | rad_chaud(i,k) = MAX(rad_chaud(i,k) * 1.e6, 5.) |
---|
| 222 | c |
---|
| 223 | c--pre-industrial case |
---|
| 224 | radius = |
---|
| 225 | & 1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 226 | & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
| 227 | radius = MAX(radius*1.e6, 5.) |
---|
| 228 | c |
---|
| 229 | c--pre-industrial case |
---|
| 230 | c--liquid/ice cloud water paths: |
---|
| 231 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
| 232 | c |
---|
| 233 | pcldtaupi(i,k) = 0.0 |
---|
| 234 | c |
---|
| 235 | ELSE |
---|
| 236 | c |
---|
| 237 | zflwp_var= 1000.*(1.-zfice(i,k))*pqlwp(i,k)/pclc(i,k) |
---|
| 238 | & *rhodz(i,k) |
---|
| 239 | zfiwp_var= 1000.*zfice(i,k)*pqlwp(i,k)/pclc(i,k) |
---|
| 240 | & *rhodz(i,k) |
---|
| 241 | tc = t(i,k)-273.15 |
---|
| 242 | rei = d_rei_dt*tc + rei_max |
---|
| 243 | if (tc.le.-81.4) rei = rei_min |
---|
| 244 | c |
---|
| 245 | c-- cloud optical thickness : |
---|
| 246 | c [for liquid clouds, traditional formula, |
---|
| 247 | c for ice clouds, Ebert & Curry (1992)] |
---|
| 248 | c |
---|
| 249 | if (zflwp_var.eq.0.) radius = 1. |
---|
| 250 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
| 251 | pcldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius |
---|
| 252 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
| 253 | c |
---|
| 254 | ENDIF |
---|
| 255 | c |
---|
| 256 | ENDDO |
---|
| 257 | ENDDO |
---|
| 258 | c |
---|
| 259 | ELSE !--not ok_cdnc |
---|
| 260 | c |
---|
| 261 | c-prescribed cloud droplet radius |
---|
| 262 | c |
---|
| 263 | DO k = 1, MIN(3,klev) |
---|
| 264 | DO i = 1, klon |
---|
| 265 | rad_chaud(i,k) = rad_chau2 |
---|
| 266 | ENDDO |
---|
| 267 | ENDDO |
---|
| 268 | DO k = MIN(3,klev)+1, klev |
---|
| 269 | DO i = 1, klon |
---|
| 270 | rad_chaud(i,k) = rad_chau1 |
---|
| 271 | ENDDO |
---|
| 272 | ENDDO |
---|
[524] | 273 | |
---|
[1712] | 274 | ENDIF !--ok_cdnc |
---|
| 275 | c |
---|
| 276 | c--computation of cloud optical depth and emissivity |
---|
| 277 | c--in the general case |
---|
| 278 | c |
---|
| 279 | DO k = 1, klev |
---|
| 280 | DO i = 1, klon |
---|
| 281 | c |
---|
| 282 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
| 283 | c |
---|
| 284 | c effective cloud droplet radius (microns) for liquid water clouds: |
---|
| 285 | c For output diagnostics cloud droplet effective radius [um] |
---|
| 286 | c we multiply here with f * xl (fraction of liquid water |
---|
| 287 | c clouds in the grid cell) to avoid problems in the averaging of the output. |
---|
| 288 | c In the output of IOIPSL, derive the REAL cloud droplet |
---|
| 289 | c effective radius as re/fl |
---|
| 290 | c |
---|
| 291 | fl(i,k) = seuil_neb*(1.-zfice(i,k)) |
---|
| 292 | re(i,k) = rad_chaud(i,k)*fl(i,k) |
---|
[1723] | 293 | rel = 0. |
---|
| 294 | rei = 0. |
---|
[1712] | 295 | pclc(i,k) = 0.0 |
---|
| 296 | pcltau(i,k) = 0.0 |
---|
| 297 | pclemi(i,k) = 0.0 |
---|
| 298 | c |
---|
| 299 | ELSE |
---|
| 300 | c |
---|
[1146] | 301 | c -- liquid/ice cloud water paths: |
---|
| 302 | |
---|
[1712] | 303 | zflwp_var= 1000.*(1.-zfice(i,k))*pqlwp(i,k)/pclc(i,k) |
---|
| 304 | & *rhodz(i,k) |
---|
| 305 | zfiwp_var= 1000.*zfice(i,k)*pqlwp(i,k)/pclc(i,k) |
---|
| 306 | & *rhodz(i,k) |
---|
| 307 | c |
---|
| 308 | c effective cloud droplet radius (microns) for liquid water clouds: |
---|
| 309 | c For output diagnostics cloud droplet effective radius [um] |
---|
| 310 | c we multiply here with f * xl (fraction of liquid water |
---|
| 311 | c clouds in the grid cell) to avoid problems in the averaging of the output. |
---|
| 312 | c In the output of IOIPSL, derive the REAL cloud droplet |
---|
| 313 | c effective radius as re/fl |
---|
| 314 | c |
---|
| 315 | fl(i,k) = pclc(i,k)*(1.-zfice(i,k)) |
---|
| 316 | re(i,k) = rad_chaud(i,k)*fl(i,k) |
---|
| 317 | c |
---|
| 318 | rel = rad_chaud(i,k) |
---|
| 319 | c |
---|
| 320 | c for ice clouds: as a function of the ambiant temperature |
---|
| 321 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
| 322 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 323 | c consistent with observations of Heymsfield et al. 1986]: |
---|
| 324 | c 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as rei_max=61.29 |
---|
| 325 | c |
---|
| 326 | tc = t(i,k)-273.15 |
---|
| 327 | rei = d_rei_dt*tc + rei_max |
---|
| 328 | if (tc.le.-81.4) rei = rei_min |
---|
| 329 | c |
---|
| 330 | c-- cloud optical thickness : |
---|
| 331 | c [for liquid clouds, traditional formula, |
---|
| 332 | c for ice clouds, Ebert & Curry (1992)] |
---|
| 333 | c |
---|
[1279] | 334 | if (zflwp_var.eq.0.) rel = 1. |
---|
| 335 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
| 336 | pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) |
---|
[1146] | 337 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
[1712] | 338 | c |
---|
[1146] | 339 | c -- cloud infrared emissivity: |
---|
[1712] | 340 | c [the broadband infrared absorption coefficient is PARAMETERized |
---|
[1146] | 341 | c as a function of the effective cld droplet radius] |
---|
| 342 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
[1712] | 343 | c |
---|
[1146] | 344 | k_ice = k_ice0 + 1.0/rei |
---|
[1712] | 345 | c |
---|
[1146] | 346 | pclemi(i,k) = 1.0 |
---|
| 347 | & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) |
---|
[1712] | 348 | c |
---|
| 349 | ENDIF |
---|
| 350 | c |
---|
| 351 | reliq(i,k)=rel |
---|
| 352 | reice(i,k)=rei |
---|
| 353 | c |
---|
| 354 | xflwp(i) = xflwp(i)+ xflwc(i,k) * rhodz(i,k) |
---|
| 355 | xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * rhodz(i,k) |
---|
| 356 | c |
---|
| 357 | ENDDO |
---|
| 358 | ENDDO |
---|
| 359 | c |
---|
| 360 | c--if cloud droplet radius is fixed, then pcldtaupi=pcltau |
---|
| 361 | c |
---|
| 362 | IF (.NOT.ok_cdnc) THEN |
---|
[1146] | 363 | DO k = 1, klev |
---|
| 364 | DO i = 1, klon |
---|
[1712] | 365 | pcldtaupi(i,k)=pcltau(i,k) |
---|
[1146] | 366 | ENDDO |
---|
| 367 | ENDDO |
---|
| 368 | ENDIF |
---|
| 369 | C |
---|
| 370 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 371 | c IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
| 372 | c initialisations |
---|
[1712] | 373 | c |
---|
[685] | 374 | DO i=1,klon |
---|
| 375 | zclear(i)=1. |
---|
| 376 | zcloud(i)=0. |
---|
[1523] | 377 | zcloudh(i)=0. |
---|
| 378 | zcloudm(i)=0. |
---|
| 379 | zcloudl(i)=0. |
---|
[524] | 380 | pch(i)=1.0 |
---|
| 381 | pcm(i) = 1.0 |
---|
| 382 | pcl(i) = 1.0 |
---|
| 383 | pctlwp(i) = 0.0 |
---|
| 384 | ENDDO |
---|
| 385 | C |
---|
[1712] | 386 | c--calculation of liquid water path |
---|
| 387 | c |
---|
[524] | 388 | DO k = klev, 1, -1 |
---|
[1146] | 389 | DO i = 1, klon |
---|
[1712] | 390 | pctlwp(i) = pctlwp(i)+ pqlwp(i,k)*rhodz(i,k) |
---|
[1146] | 391 | ENDDO |
---|
| 392 | ENDDO |
---|
[1712] | 393 | c |
---|
| 394 | c--calculation of cloud properties with cloud overlap |
---|
| 395 | c |
---|
[1146] | 396 | IF (NOVLP.EQ.1) THEN |
---|
| 397 | DO k = klev, 1, -1 |
---|
| 398 | DO i = 1, klon |
---|
[685] | 399 | zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
[1712] | 400 | & /(1.-MIN(REAL(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
[685] | 401 | pct(i)=1.-zclear(i) |
---|
[1523] | 402 | IF (paprs(i,k).LT.prmhc) THEN |
---|
| 403 | pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloudh(i))) |
---|
[1712] | 404 | & /(1.-MIN(REAL(zcloudh(i), kind=8),1.-ZEPSEC)) |
---|
[1523] | 405 | zcloudh(i)=pclc(i,k) |
---|
| 406 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
| 407 | & paprs(i,k).LT.prlmc) THEN |
---|
| 408 | pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloudm(i))) |
---|
[1712] | 409 | & /(1.-MIN(REAL(zcloudm(i), kind=8),1.-ZEPSEC)) |
---|
[1523] | 410 | zcloudm(i)=pclc(i,k) |
---|
| 411 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
| 412 | pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloudl(i))) |
---|
[1712] | 413 | & /(1.-MIN(REAL(zcloudl(i), kind=8),1.-ZEPSEC)) |
---|
[1523] | 414 | zcloudl(i)=pclc(i,k) |
---|
[685] | 415 | endif |
---|
| 416 | zcloud(i)=pclc(i,k) |
---|
[1146] | 417 | ENDDO |
---|
| 418 | ENDDO |
---|
| 419 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 420 | DO k = klev, 1, -1 |
---|
| 421 | DO i = 1, klon |
---|
[685] | 422 | zcloud(i)=MAX(pclc(i,k),zcloud(i)) |
---|
| 423 | pct(i)=zcloud(i) |
---|
[1523] | 424 | IF (paprs(i,k).LT.prmhc) THEN |
---|
[685] | 425 | pch(i) = MIN(pclc(i,k),pch(i)) |
---|
[1523] | 426 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
| 427 | & paprs(i,k).LT.prlmc) THEN |
---|
[685] | 428 | pcm(i) = MIN(pclc(i,k),pcm(i)) |
---|
[1523] | 429 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
[685] | 430 | pcl(i) = MIN(pclc(i,k),pcl(i)) |
---|
| 431 | endif |
---|
[1146] | 432 | ENDDO |
---|
| 433 | ENDDO |
---|
| 434 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 435 | DO k = klev, 1, -1 |
---|
| 436 | DO i = 1, klon |
---|
[685] | 437 | zclear(i)=zclear(i)*(1.-pclc(i,k)) |
---|
| 438 | pct(i)=1-zclear(i) |
---|
[1523] | 439 | IF (paprs(i,k).LT.prmhc) THEN |
---|
[1146] | 440 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
[1523] | 441 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
| 442 | & paprs(i,k).LT.prlmc) THEN |
---|
[1146] | 443 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
[1523] | 444 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
[1146] | 445 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
[685] | 446 | endif |
---|
[1146] | 447 | ENDDO |
---|
[685] | 448 | ENDDO |
---|
[1146] | 449 | ENDIF |
---|
| 450 | C |
---|
[524] | 451 | DO i = 1, klon |
---|
| 452 | pch(i)=1.-pch(i) |
---|
| 453 | pcm(i)=1.-pcm(i) |
---|
| 454 | pcl(i)=1.-pcl(i) |
---|
| 455 | ENDDO |
---|
[1712] | 456 | c |
---|
[1337] | 457 | c ======================================================== |
---|
[1712] | 458 | c DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
[1337] | 459 | c ======================================================== |
---|
[1712] | 460 | c change by Nicolas Yan (LSCE) |
---|
| 461 | c Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
| 462 | c Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
| 463 | c Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
| 464 | c Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
| 465 | c Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
| 466 | c |
---|
| 467 | IF (ok_cdnc) THEN |
---|
| 468 | c |
---|
[1337] | 469 | DO k = 1, klev |
---|
| 470 | DO i = 1, klon |
---|
[1712] | 471 | phase3d(i,k)=1-zfice(i,k) |
---|
[1337] | 472 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
| 473 | lcc3d(i,k)=seuil_neb*phase3d(i,k) |
---|
| 474 | ELSE |
---|
| 475 | lcc3d(i,k)=pclc(i,k)*phase3d(i,k) |
---|
| 476 | ENDIF |
---|
| 477 | scdnc(i,k)=lcc3d(i,k)*cdnc(i,k) ! m-3 |
---|
| 478 | ENDDO |
---|
| 479 | ENDDO |
---|
[1712] | 480 | c |
---|
[1337] | 481 | DO i=1,klon |
---|
| 482 | lcc(i)=0. |
---|
| 483 | reffclwtop(i)=0. |
---|
| 484 | cldncl(i)=0. |
---|
| 485 | IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i) = 1. |
---|
| 486 | IF(MAXIMUM) tcc(i) = 0. |
---|
| 487 | ENDDO |
---|
[1712] | 488 | c |
---|
[1337] | 489 | DO i=1,klon |
---|
| 490 | DO k=klev-1,1,-1 !From TOA down |
---|
[1712] | 491 | c |
---|
[1337] | 492 | ! Test, if the cloud optical depth exceeds the necessary |
---|
| 493 | ! threshold: |
---|
| 494 | |
---|
[1712] | 495 | IF (pcltau(i,k).GT.thres_tau |
---|
| 496 | . .AND. pclc(i,k).GT.thres_neb) THEN |
---|
[1337] | 497 | |
---|
[1712] | 498 | IF (MAXIMUM) THEN |
---|
| 499 | IF (FIRST) THEN |
---|
[1337] | 500 | write(*,*)'Hypothese de recouvrement: MAXIMUM' |
---|
| 501 | FIRST=.FALSE. |
---|
| 502 | ENDIF |
---|
| 503 | flag_max= -1. |
---|
| 504 | ftmp(i) = MAX(tcc(i),pclc(i,k)) |
---|
| 505 | ENDIF |
---|
| 506 | |
---|
[1712] | 507 | IF (RANDOM) THEN |
---|
| 508 | IF (FIRST) THEN |
---|
[1337] | 509 | write(*,*)'Hypothese de recouvrement: RANDOM' |
---|
| 510 | FIRST=.FALSE. |
---|
| 511 | ENDIF |
---|
| 512 | flag_max= 1. |
---|
| 513 | ftmp(i) = tcc(i) * (1-pclc(i,k)) |
---|
| 514 | ENDIF |
---|
| 515 | |
---|
[1712] | 516 | IF (MAXIMUM_RANDOM) THEN |
---|
| 517 | IF (FIRST) THEN |
---|
[1337] | 518 | write(*,*)'Hypothese de recouvrement: MAXIMUM_ |
---|
| 519 | . RANDOM' |
---|
| 520 | FIRST=.FALSE. |
---|
| 521 | ENDIF |
---|
| 522 | flag_max= 1. |
---|
| 523 | ftmp(i) = tcc(i) * |
---|
| 524 | . (1. - MAX(pclc(i,k),pclc(i,k+1))) / |
---|
| 525 | . (1. - MIN(pclc(i,k+1),1.-thres_neb)) |
---|
| 526 | ENDIF |
---|
| 527 | c Effective radius of cloud droplet at top of cloud (m) |
---|
[1712] | 528 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i,k) * |
---|
[1337] | 529 | . 1.0E-06 * phase3d(i,k) * ( tcc(i) - ftmp(i))*flag_max |
---|
| 530 | c CDNC at top of cloud (m-3) |
---|
| 531 | cldncl(i) = cldncl(i) + cdnc(i,k) * phase3d(i,k) * |
---|
| 532 | . (tcc(i) - ftmp(i))*flag_max |
---|
| 533 | c Liquid Cloud Content at top of cloud |
---|
| 534 | lcc(i) = lcc(i) + phase3d(i,k) * (tcc(i)-ftmp(i))* |
---|
| 535 | . flag_max |
---|
| 536 | c Total Cloud Content at top of cloud |
---|
| 537 | tcc(i)=ftmp(i) |
---|
| 538 | |
---|
| 539 | ENDIF ! is there a visible, not-too-small cloud? |
---|
| 540 | ENDDO ! loop over k |
---|
[1712] | 541 | c |
---|
| 542 | IF (RANDOM .OR. MAXIMUM_RANDOM) tcc(i)=1.-tcc(i) |
---|
| 543 | c |
---|
[1337] | 544 | ENDDO ! loop over i |
---|
| 545 | |
---|
| 546 | !! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC REFFCLWS) |
---|
| 547 | DO i = 1, klon |
---|
| 548 | DO k = 1, klev |
---|
[1712] | 549 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse |
---|
| 550 | lcc3dcon(i,k) =rnebcon(i,k)*phase3d(i,k)*clwcon(i,k) ! eau liquide convective |
---|
| 551 | lcc3dstra(i,k)=pclc(i,k)*pqlwp(i,k)*phase3d(i,k) |
---|
| 552 | lcc3dstra(i,k)=lcc3dstra(i,k)-lcc3dcon(i,k) ! eau liquide stratiforme |
---|
| 553 | lcc3dstra(i,k)=MAX(lcc3dstra(i,k),0.0) |
---|
| 554 | ! Compute cloud droplet radius as above in meter |
---|
| 555 | radius=1.1*((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 556 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
| 557 | radius=MAX(radius, 5.e-6) |
---|
[1337] | 558 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
[1712] | 559 | reffclwc(i,k)=radius |
---|
| 560 | reffclwc(i,k)=reffclwc(i,k)*lcc3dcon(i,k) |
---|
[1337] | 561 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
[1712] | 562 | reffclws(i,k)=radius |
---|
| 563 | reffclws(i,k)=reffclws(i,k)*lcc3dstra(i,k) |
---|
[1337] | 564 | ENDDO !klev |
---|
| 565 | ENDDO !klon |
---|
| 566 | c |
---|
[1712] | 567 | c Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
| 568 | c |
---|
[1337] | 569 | DO i = 1, klon |
---|
| 570 | cldnvi(i)=0. |
---|
| 571 | lcc_integrat(i)=0. |
---|
| 572 | height(i)=0. |
---|
| 573 | DO k = 1, klev |
---|
| 574 | cldnvi(i)=cldnvi(i)+cdnc(i,k)*lcc3d(i,k)*dh(i,k) |
---|
| 575 | lcc_integrat(i)=lcc_integrat(i)+lcc3d(i,k)*dh(i,k) |
---|
| 576 | height(i)=height(i)+dh(i,k) |
---|
| 577 | ENDDO ! klev |
---|
| 578 | lcc_integrat(i)=lcc_integrat(i)/height(i) |
---|
| 579 | IF (lcc_integrat(i) .LE. 1.0E-03) THEN |
---|
| 580 | cldnvi(i)=cldnvi(i)*lcc(i)/seuil_neb |
---|
| 581 | ELSE |
---|
| 582 | cldnvi(i)=cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
| 583 | ENDIF |
---|
| 584 | ENDDO ! klon |
---|
| 585 | |
---|
| 586 | DO i = 1, klon |
---|
| 587 | DO k = 1, klev |
---|
[1712] | 588 | IF (scdnc(i,k) .LE. 0.0) scdnc(i,k)=0.0 |
---|
| 589 | IF (reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 |
---|
| 590 | IF (reffclwc(i,k) .LE. 0.0) reffclwc(i,k)=0.0 |
---|
| 591 | IF (lcc3d(i,k) .LE. 0.0) lcc3d(i,k)=0.0 |
---|
| 592 | IF (lcc3dcon(i,k) .LE. 0.0) lcc3dcon(i,k)=0.0 |
---|
[1337] | 593 | IF (lcc3dstra(i,k) .LE. 0.0) lcc3dstra(i,k)=0.0 |
---|
| 594 | ENDDO |
---|
[1712] | 595 | IF (reffclwtop(i) .LE. 0.0) reffclwtop(i)=0.0 |
---|
| 596 | IF (cldncl(i) .LE. 0.0) cldncl(i)=0.0 |
---|
| 597 | IF (cldnvi(i) .LE. 0.0) cldnvi(i)=0.0 |
---|
| 598 | IF (lcc(i) .LE. 0.0) lcc(i)=0.0 |
---|
[1337] | 599 | ENDDO |
---|
| 600 | c |
---|
[1712] | 601 | ENDIF !ok_cdnc |
---|
| 602 | c |
---|
[524] | 603 | RETURN |
---|
[1712] | 604 | c |
---|
[524] | 605 | END |
---|