[1279] | 1 | ! $Id: newmicro.F90 1992 2014-03-05 13:19:12Z fairhead $ |
---|
[1523] | 2 | |
---|
| 3 | |
---|
[1712] | 4 | |
---|
[1992] | 5 | SUBROUTINE newmicro(ok_cdnc, bl95_b0, bl95_b1, paprs, pplay, t, pqlwp, pclc, & |
---|
| 6 | pcltau, pclemi, pch, pcl, pcm, pct, pctlwp, xflwp, xfiwp, xflwc, xfiwc, & |
---|
| 7 | mass_solu_aero, mass_solu_aero_pi, pcldtaupi, re, fl, reliq, reice, & |
---|
| 8 | reliq_pi, reice_pi) |
---|
[524] | 9 | |
---|
[1992] | 10 | USE dimphy |
---|
| 11 | USE phys_local_var_mod, ONLY: scdnc, cldncl, reffclwtop, lcc, reffclws, & |
---|
| 12 | reffclwc, cldnvi, lcc3d, lcc3dcon, lcc3dstra |
---|
| 13 | USE phys_state_var_mod, ONLY: rnebcon, clwcon |
---|
| 14 | IMPLICIT NONE |
---|
| 15 | ! ====================================================================== |
---|
| 16 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 17 | ! O. Boucher (LMD/CNRS) mise a jour en 201212 |
---|
| 18 | ! Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 19 | ! ====================================================================== |
---|
| 20 | ! Arguments: |
---|
| 21 | ! ok_cdnc-input-L-flag pour calculer les rayons a partir des aerosols |
---|
[1146] | 22 | |
---|
[1992] | 23 | ! t-------input-R-temperature |
---|
| 24 | ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere dans la partie |
---|
| 25 | ! nuageuse (kg/kg) |
---|
| 26 | ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 27 | ! mass_solu_aero-----input-R-total mass concentration for all soluble |
---|
| 28 | ! aerosols[ug/m^3] |
---|
| 29 | ! mass_solu_aero_pi--input-R-ditto, pre-industrial value |
---|
[1279] | 30 | |
---|
[1992] | 31 | ! bl95_b0-input-R-a PARAMETER, may be varied for tests (s-sea, l-land) |
---|
| 32 | ! bl95_b1-input-R-a PARAMETER, may be varied for tests ( -"- ) |
---|
| 33 | |
---|
| 34 | ! re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
| 35 | ! fl------output-R-Denominator to re, introduced to avoid problems in |
---|
| 36 | ! the averaging of the output. fl is the fraction of liquid |
---|
| 37 | ! water clouds within a grid cell |
---|
| 38 | |
---|
| 39 | ! pcltau--output-R-epaisseur optique des nuages |
---|
| 40 | ! pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 41 | ! pcldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
| 42 | |
---|
| 43 | ! pcl-output-R-2D low-level cloud cover |
---|
| 44 | ! pcm-output-R-2D mid-level cloud cover |
---|
| 45 | ! pch-output-R-2D high-level cloud cover |
---|
| 46 | ! pct-output-R-2D total cloud cover |
---|
| 47 | ! ====================================================================== |
---|
| 48 | |
---|
| 49 | include "YOMCST.h" |
---|
| 50 | include "nuage.h" |
---|
| 51 | include "radepsi.h" |
---|
| 52 | include "radopt.h" |
---|
| 53 | |
---|
| 54 | ! choix de l'hypothese de recouvrememnt nuageuse |
---|
| 55 | LOGICAL random, maximum_random, maximum |
---|
| 56 | PARAMETER (random=.FALSE., maximum_random=.TRUE., maximum=.FALSE.) |
---|
| 57 | |
---|
| 58 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 59 | !$OMP THREADPRIVATE(FIRST) |
---|
| 60 | INTEGER flag_max |
---|
| 61 | |
---|
| 62 | ! threshold PARAMETERs |
---|
| 63 | REAL thres_tau, thres_neb |
---|
| 64 | PARAMETER (thres_tau=0.3, thres_neb=0.001) |
---|
| 65 | |
---|
| 66 | REAL phase3d(klon, klev) |
---|
| 67 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
| 68 | |
---|
| 69 | REAL paprs(klon, klev+1) |
---|
| 70 | REAL pplay(klon, klev) |
---|
| 71 | REAL t(klon, klev) |
---|
| 72 | REAL pclc(klon, klev) |
---|
| 73 | REAL pqlwp(klon, klev) |
---|
| 74 | REAL pcltau(klon, klev) |
---|
| 75 | REAL pclemi(klon, klev) |
---|
| 76 | REAL pcldtaupi(klon, klev) |
---|
| 77 | |
---|
| 78 | REAL pct(klon) |
---|
| 79 | REAL pcl(klon) |
---|
| 80 | REAL pcm(klon) |
---|
| 81 | REAL pch(klon) |
---|
| 82 | REAL pctlwp(klon) |
---|
| 83 | |
---|
| 84 | LOGICAL lo |
---|
| 85 | |
---|
| 86 | ! !Abderr modif JL mail du 19.01.2011 18:31 |
---|
| 87 | ! REAL cetahb, cetamb |
---|
| 88 | ! PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 89 | ! Remplacer |
---|
| 90 | ! cetahb*paprs(i,1) par prmhc |
---|
| 91 | ! cetamb*paprs(i,1) par prlmc |
---|
| 92 | REAL prmhc ! Pressure between medium and high level cloud in Pa |
---|
| 93 | REAL prlmc ! Pressure between low and medium level cloud in Pa |
---|
| 94 | PARAMETER (prmhc=440.*100., prlmc=680.*100.) |
---|
| 95 | |
---|
| 96 | INTEGER i, k |
---|
| 97 | REAL xflwp(klon), xfiwp(klon) |
---|
| 98 | REAL xflwc(klon, klev), xfiwc(klon, klev) |
---|
| 99 | |
---|
| 100 | REAL radius |
---|
| 101 | |
---|
| 102 | REAL coef_froi, coef_chau |
---|
| 103 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
| 104 | |
---|
| 105 | REAL seuil_neb |
---|
| 106 | PARAMETER (seuil_neb=0.001) |
---|
| 107 | |
---|
| 108 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 109 | PARAMETER (nexpo=6) |
---|
| 110 | ! PARAMETER (nexpo=1) |
---|
| 111 | |
---|
| 112 | REAL rel, tc, rei |
---|
| 113 | REAL k_ice0, k_ice, df |
---|
| 114 | PARAMETER (k_ice0=0.005) ! units=m2/g |
---|
| 115 | PARAMETER (df=1.66) ! diffusivity factor |
---|
| 116 | |
---|
| 117 | ! jq for the aerosol indirect effect |
---|
| 118 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 119 | ! jq |
---|
| 120 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
| 121 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
---|
| 122 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 123 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
| 124 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 125 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 126 | |
---|
| 127 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds |
---|
| 128 | ! within the grid cell) |
---|
| 129 | |
---|
| 130 | LOGICAL ok_cdnc |
---|
| 131 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
| 132 | |
---|
| 133 | ! jq-end |
---|
| 134 | ! IM cf. CR:parametres supplementaires |
---|
| 135 | REAL zclear(klon) |
---|
| 136 | REAL zcloud(klon) |
---|
| 137 | REAL zcloudh(klon) |
---|
| 138 | REAL zcloudm(klon) |
---|
| 139 | REAL zcloudl(klon) |
---|
| 140 | REAL rhodz(klon, klev) !--rho*dz pour la couche |
---|
| 141 | REAL zrho(klon, klev) !--rho pour la couche |
---|
| 142 | REAL dh(klon, klev) !--dz pour la couche |
---|
| 143 | REAL zfice(klon, klev) |
---|
| 144 | REAL rad_chaud(klon, klev) !--rayon pour les nuages chauds |
---|
| 145 | REAL rad_chaud_pi(klon, klev) !--rayon pour les nuages chauds pre-industriels |
---|
| 146 | REAL zflwp_var, zfiwp_var |
---|
| 147 | REAL d_rei_dt |
---|
| 148 | |
---|
| 149 | ! Abderrahmane oct 2009 |
---|
| 150 | REAL reliq(klon, klev), reice(klon, klev) |
---|
| 151 | REAL reliq_pi(klon, klev), reice_pi(klon, klev) |
---|
| 152 | |
---|
| 153 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 154 | ! FH : 2011/05/24 |
---|
| 155 | |
---|
| 156 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
---|
| 157 | ! to be used for a temperature in celcius T(°C) < 0 |
---|
| 158 | ! rei=rei_min for T(°C) < -81.4 |
---|
| 159 | |
---|
| 160 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
---|
| 161 | ! et la température. |
---|
| 162 | ! Pour retrouver les résultats numériques de la version d'origine, |
---|
| 163 | ! on impose 0.71 quand on est proche de 0.71 |
---|
| 164 | |
---|
| 165 | d_rei_dt = (rei_max-rei_min)/81.4 |
---|
| 166 | IF (abs(d_rei_dt-0.71)<1.E-4) d_rei_dt = 0.71 |
---|
| 167 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 168 | |
---|
| 169 | ! Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 170 | ! IM inversion des DO |
---|
| 171 | |
---|
| 172 | xflwp = 0.D0 |
---|
| 173 | xfiwp = 0.D0 |
---|
| 174 | xflwc = 0.D0 |
---|
| 175 | xfiwc = 0.D0 |
---|
| 176 | |
---|
| 177 | reliq = 0. |
---|
| 178 | reice = 0. |
---|
| 179 | reliq_pi = 0. |
---|
| 180 | reice_pi = 0. |
---|
| 181 | |
---|
| 182 | DO k = 1, klev |
---|
| 183 | DO i = 1, klon |
---|
| 184 | ! -layer calculation |
---|
| 185 | rhodz(i, k) = (paprs(i,k)-paprs(i,k+1))/rg ! kg/m2 |
---|
| 186 | zrho(i, k) = pplay(i, k)/t(i, k)/rd ! kg/m3 |
---|
| 187 | dh(i, k) = rhodz(i, k)/zrho(i, k) ! m |
---|
| 188 | ! -Fraction of ice in cloud using a linear transition |
---|
| 189 | zfice(i, k) = 1.0 - (t(i,k)-t_glace_min)/(t_glace_max-t_glace_min) |
---|
| 190 | zfice(i, k) = min(max(zfice(i,k),0.0), 1.0) |
---|
| 191 | ! -IM Total Liquid/Ice water content |
---|
| 192 | xflwc(i, k) = (1.-zfice(i,k))*pqlwp(i, k) |
---|
| 193 | xfiwc(i, k) = zfice(i, k)*pqlwp(i, k) |
---|
| 194 | END DO |
---|
| 195 | END DO |
---|
| 196 | |
---|
| 197 | IF (ok_cdnc) THEN |
---|
| 198 | |
---|
| 199 | ! --we compute cloud properties as a function of the aerosol load |
---|
| 200 | |
---|
| 201 | DO k = 1, klev |
---|
| 202 | DO i = 1, klon |
---|
| 203 | |
---|
| 204 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 205 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 206 | ! to be within [20, 1000 cm^3] |
---|
| 207 | |
---|
| 208 | ! --present-day case |
---|
| 209 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
---|
| 210 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
| 211 | cdnc(i, k) = min(1000.E6, max(20.E6,cdnc(i,k))) |
---|
| 212 | |
---|
| 213 | ! --pre-industrial case |
---|
| 214 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
---|
| 215 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
| 216 | cdnc_pi(i, k) = min(1000.E6, max(20.E6,cdnc_pi(i,k))) |
---|
| 217 | |
---|
| 218 | ! --present-day case |
---|
| 219 | rad_chaud(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & |
---|
| 220 | k)/(rd*t(i,k)))/(4./3*rpi*1000.*cdnc(i,k)))**(1./3.) |
---|
| 221 | rad_chaud(i, k) = max(rad_chaud(i,k)*1.E6, 5.) |
---|
| 222 | |
---|
| 223 | ! --pre-industrial case |
---|
| 224 | rad_chaud_pi(i, k) = 1.1*((pqlwp(i,k)*pplay(i, & |
---|
| 225 | k)/(rd*t(i,k)))/(4./3.*rpi*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
| 226 | rad_chaud_pi(i, k) = max(rad_chaud_pi(i,k)*1.E6, 5.) |
---|
| 227 | |
---|
| 228 | ! --pre-industrial case |
---|
| 229 | ! --liquid/ice cloud water paths: |
---|
| 230 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 231 | |
---|
| 232 | pcldtaupi(i, k) = 0.0 |
---|
| 233 | |
---|
| 234 | ELSE |
---|
| 235 | |
---|
| 236 | zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)* & |
---|
| 237 | rhodz(i, k) |
---|
| 238 | zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
---|
| 239 | tc = t(i, k) - 273.15 |
---|
| 240 | rei = d_rei_dt*tc + rei_max |
---|
| 241 | IF (tc<=-81.4) rei = rei_min |
---|
| 242 | |
---|
| 243 | ! -- cloud optical thickness : |
---|
| 244 | ! [for liquid clouds, traditional formula, |
---|
| 245 | ! for ice clouds, Ebert & Curry (1992)] |
---|
| 246 | |
---|
| 247 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
| 248 | pcldtaupi(i, k) = 3.0/2.0*zflwp_var/rad_chaud_pi(i, k) + & |
---|
| 249 | zfiwp_var*(3.448E-03+2.431/rei) |
---|
| 250 | |
---|
| 251 | END IF |
---|
| 252 | |
---|
| 253 | END DO |
---|
| 254 | END DO |
---|
| 255 | |
---|
| 256 | ELSE !--not ok_cdnc |
---|
| 257 | |
---|
| 258 | ! -prescribed cloud droplet radius |
---|
| 259 | |
---|
| 260 | DO k = 1, min(3, klev) |
---|
| 261 | DO i = 1, klon |
---|
| 262 | rad_chaud(i, k) = rad_chau2 |
---|
| 263 | rad_chaud_pi(i, k) = rad_chau2 |
---|
| 264 | END DO |
---|
| 265 | END DO |
---|
| 266 | DO k = min(3, klev) + 1, klev |
---|
| 267 | DO i = 1, klon |
---|
| 268 | rad_chaud(i, k) = rad_chau1 |
---|
| 269 | rad_chaud_pi(i, k) = rad_chau1 |
---|
| 270 | END DO |
---|
| 271 | END DO |
---|
| 272 | |
---|
| 273 | END IF !--ok_cdnc |
---|
| 274 | |
---|
| 275 | ! --computation of cloud optical depth and emissivity |
---|
| 276 | ! --in the general case |
---|
| 277 | |
---|
| 278 | DO k = 1, klev |
---|
| 279 | DO i = 1, klon |
---|
| 280 | |
---|
| 281 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 282 | |
---|
| 283 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
| 284 | ! For output diagnostics cloud droplet effective radius [um] |
---|
| 285 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 286 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
| 287 | ! output. |
---|
| 288 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
| 289 | ! effective radius as re/fl |
---|
| 290 | |
---|
| 291 | fl(i, k) = seuil_neb*(1.-zfice(i,k)) |
---|
| 292 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
| 293 | rel = 0. |
---|
| 294 | rei = 0. |
---|
| 295 | pclc(i, k) = 0.0 |
---|
| 296 | pcltau(i, k) = 0.0 |
---|
| 297 | pclemi(i, k) = 0.0 |
---|
| 298 | |
---|
| 299 | ELSE |
---|
| 300 | |
---|
| 301 | ! -- liquid/ice cloud water paths: |
---|
| 302 | |
---|
| 303 | zflwp_var = 1000.*(1.-zfice(i,k))*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
---|
| 304 | zfiwp_var = 1000.*zfice(i, k)*pqlwp(i, k)/pclc(i, k)*rhodz(i, k) |
---|
| 305 | |
---|
| 306 | ! effective cloud droplet radius (microns) for liquid water clouds: |
---|
| 307 | ! For output diagnostics cloud droplet effective radius [um] |
---|
| 308 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 309 | ! clouds in the grid cell) to avoid problems in the averaging of the |
---|
| 310 | ! output. |
---|
| 311 | ! In the output of IOIPSL, derive the REAL cloud droplet |
---|
| 312 | ! effective radius as re/fl |
---|
| 313 | |
---|
| 314 | fl(i, k) = pclc(i, k)*(1.-zfice(i,k)) |
---|
| 315 | re(i, k) = rad_chaud(i, k)*fl(i, k) |
---|
| 316 | |
---|
| 317 | rel = rad_chaud(i, k) |
---|
| 318 | |
---|
| 319 | ! for ice clouds: as a function of the ambiant temperature |
---|
| 320 | ! [formula used by Iacobellis and Somerville (2000), with an |
---|
| 321 | ! asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 322 | ! consistent with observations of Heymsfield et al. 1986]: |
---|
| 323 | ! 2011/05/24 : rei_min = 3.5 becomes a free PARAMETER as well as |
---|
| 324 | ! rei_max=61.29 |
---|
| 325 | |
---|
| 326 | tc = t(i, k) - 273.15 |
---|
| 327 | rei = d_rei_dt*tc + rei_max |
---|
| 328 | IF (tc<=-81.4) rei = rei_min |
---|
| 329 | |
---|
| 330 | ! -- cloud optical thickness : |
---|
| 331 | ! [for liquid clouds, traditional formula, |
---|
| 332 | ! for ice clouds, Ebert & Curry (1992)] |
---|
| 333 | |
---|
| 334 | IF (zflwp_var==0.) rel = 1. |
---|
| 335 | IF (zfiwp_var==0. .OR. rei<=0.) rei = 1. |
---|
| 336 | pcltau(i, k) = 3.0/2.0*(zflwp_var/rel) + zfiwp_var*(3.448E-03+2.431/ & |
---|
| 337 | rei) |
---|
| 338 | |
---|
| 339 | ! -- cloud infrared emissivity: |
---|
| 340 | ! [the broadband infrared absorption coefficient is PARAMETERized |
---|
| 341 | ! as a function of the effective cld droplet radius] |
---|
| 342 | ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 343 | |
---|
| 344 | k_ice = k_ice0 + 1.0/rei |
---|
| 345 | |
---|
| 346 | pclemi(i, k) = 1.0 - exp(-coef_chau*zflwp_var-df*k_ice*zfiwp_var) |
---|
| 347 | |
---|
| 348 | END IF |
---|
| 349 | |
---|
| 350 | reice(i, k) = rei |
---|
| 351 | |
---|
| 352 | xflwp(i) = xflwp(i) + xflwc(i, k)*rhodz(i, k) |
---|
| 353 | xfiwp(i) = xfiwp(i) + xfiwc(i, k)*rhodz(i, k) |
---|
| 354 | |
---|
| 355 | END DO |
---|
| 356 | END DO |
---|
| 357 | |
---|
| 358 | ! --if cloud droplet radius is fixed, then pcldtaupi=pcltau |
---|
| 359 | |
---|
| 360 | IF (.NOT. ok_cdnc) THEN |
---|
| 361 | DO k = 1, klev |
---|
| 362 | DO i = 1, klon |
---|
| 363 | pcldtaupi(i, k) = pcltau(i, k) |
---|
| 364 | reice_pi(i, k) = reice(i, k) |
---|
| 365 | END DO |
---|
| 366 | END DO |
---|
| 367 | END IF |
---|
| 368 | |
---|
| 369 | DO k = 1, klev |
---|
| 370 | DO i = 1, klon |
---|
| 371 | reliq(i, k) = rad_chaud(i, k) |
---|
| 372 | reliq_pi(i, k) = rad_chaud_pi(i, k) |
---|
| 373 | reice_pi(i, k) = reice(i, k) |
---|
| 374 | END DO |
---|
| 375 | END DO |
---|
| 376 | |
---|
| 377 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 378 | ! IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
| 379 | ! initialisations |
---|
| 380 | |
---|
| 381 | DO i = 1, klon |
---|
| 382 | zclear(i) = 1. |
---|
| 383 | zcloud(i) = 0. |
---|
| 384 | zcloudh(i) = 0. |
---|
| 385 | zcloudm(i) = 0. |
---|
| 386 | zcloudl(i) = 0. |
---|
| 387 | pch(i) = 1.0 |
---|
| 388 | pcm(i) = 1.0 |
---|
| 389 | pcl(i) = 1.0 |
---|
| 390 | pctlwp(i) = 0.0 |
---|
| 391 | END DO |
---|
| 392 | |
---|
| 393 | ! --calculation of liquid water path |
---|
| 394 | |
---|
| 395 | DO k = klev, 1, -1 |
---|
| 396 | DO i = 1, klon |
---|
| 397 | pctlwp(i) = pctlwp(i) + pqlwp(i, k)*rhodz(i, k) |
---|
| 398 | END DO |
---|
| 399 | END DO |
---|
| 400 | |
---|
| 401 | ! --calculation of cloud properties with cloud overlap |
---|
| 402 | |
---|
| 403 | IF (novlp==1) THEN |
---|
| 404 | DO k = klev, 1, -1 |
---|
| 405 | DO i = 1, klon |
---|
| 406 | zclear(i) = zclear(i)*(1.-max(pclc(i,k),zcloud(i)))/(1.-min(real( & |
---|
| 407 | zcloud(i),kind=8),1.-zepsec)) |
---|
| 408 | pct(i) = 1. - zclear(i) |
---|
| 409 | IF (paprs(i,k)<prmhc) THEN |
---|
| 410 | pch(i) = pch(i)*(1.-max(pclc(i,k),zcloudh(i)))/(1.-min(real(zcloudh & |
---|
| 411 | (i),kind=8),1.-zepsec)) |
---|
| 412 | zcloudh(i) = pclc(i, k) |
---|
| 413 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 414 | pcm(i) = pcm(i)*(1.-max(pclc(i,k),zcloudm(i)))/(1.-min(real(zcloudm & |
---|
| 415 | (i),kind=8),1.-zepsec)) |
---|
| 416 | zcloudm(i) = pclc(i, k) |
---|
| 417 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 418 | pcl(i) = pcl(i)*(1.-max(pclc(i,k),zcloudl(i)))/(1.-min(real(zcloudl & |
---|
| 419 | (i),kind=8),1.-zepsec)) |
---|
| 420 | zcloudl(i) = pclc(i, k) |
---|
| 421 | END IF |
---|
| 422 | zcloud(i) = pclc(i, k) |
---|
| 423 | END DO |
---|
| 424 | END DO |
---|
| 425 | ELSE IF (novlp==2) THEN |
---|
| 426 | DO k = klev, 1, -1 |
---|
| 427 | DO i = 1, klon |
---|
| 428 | zcloud(i) = max(pclc(i,k), zcloud(i)) |
---|
| 429 | pct(i) = zcloud(i) |
---|
| 430 | IF (paprs(i,k)<prmhc) THEN |
---|
| 431 | pch(i) = min(pclc(i,k), pch(i)) |
---|
| 432 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 433 | pcm(i) = min(pclc(i,k), pcm(i)) |
---|
| 434 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 435 | pcl(i) = min(pclc(i,k), pcl(i)) |
---|
| 436 | END IF |
---|
| 437 | END DO |
---|
| 438 | END DO |
---|
| 439 | ELSE IF (novlp==3) THEN |
---|
| 440 | DO k = klev, 1, -1 |
---|
| 441 | DO i = 1, klon |
---|
| 442 | zclear(i) = zclear(i)*(1.-pclc(i,k)) |
---|
| 443 | pct(i) = 1 - zclear(i) |
---|
| 444 | IF (paprs(i,k)<prmhc) THEN |
---|
| 445 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 446 | ELSE IF (paprs(i,k)>=prmhc .AND. paprs(i,k)<prlmc) THEN |
---|
| 447 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 448 | ELSE IF (paprs(i,k)>=prlmc) THEN |
---|
| 449 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
| 450 | END IF |
---|
| 451 | END DO |
---|
| 452 | END DO |
---|
| 453 | END IF |
---|
| 454 | |
---|
| 455 | DO i = 1, klon |
---|
| 456 | pch(i) = 1. - pch(i) |
---|
| 457 | pcm(i) = 1. - pcm(i) |
---|
| 458 | pcl(i) = 1. - pcl(i) |
---|
| 459 | END DO |
---|
| 460 | |
---|
| 461 | ! ======================================================== |
---|
| 462 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
| 463 | ! ======================================================== |
---|
| 464 | ! change by Nicolas Yan (LSCE) |
---|
| 465 | ! Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
| 466 | ! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
| 467 | ! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
| 468 | ! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
| 469 | ! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
| 470 | |
---|
| 471 | IF (ok_cdnc) THEN |
---|
| 472 | |
---|
| 473 | DO k = 1, klev |
---|
| 474 | DO i = 1, klon |
---|
| 475 | phase3d(i, k) = 1 - zfice(i, k) |
---|
| 476 | IF (pclc(i,k)<=seuil_neb) THEN |
---|
| 477 | lcc3d(i, k) = seuil_neb*phase3d(i, k) |
---|
| 478 | ELSE |
---|
| 479 | lcc3d(i, k) = pclc(i, k)*phase3d(i, k) |
---|
| 480 | END IF |
---|
| 481 | scdnc(i, k) = lcc3d(i, k)*cdnc(i, k) ! m-3 |
---|
| 482 | END DO |
---|
| 483 | END DO |
---|
| 484 | |
---|
| 485 | DO i = 1, klon |
---|
| 486 | lcc(i) = 0. |
---|
| 487 | reffclwtop(i) = 0. |
---|
| 488 | cldncl(i) = 0. |
---|
| 489 | IF (random .OR. maximum_random) tcc(i) = 1. |
---|
| 490 | IF (maximum) tcc(i) = 0. |
---|
| 491 | END DO |
---|
| 492 | |
---|
| 493 | DO i = 1, klon |
---|
| 494 | DO k = klev - 1, 1, -1 !From TOA down |
---|
| 495 | |
---|
| 496 | ! Test, if the cloud optical depth exceeds the necessary |
---|
| 497 | ! threshold: |
---|
| 498 | |
---|
| 499 | IF (pcltau(i,k)>thres_tau .AND. pclc(i,k)>thres_neb) THEN |
---|
| 500 | |
---|
| 501 | IF (maximum) THEN |
---|
| 502 | IF (first) THEN |
---|
| 503 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM' |
---|
| 504 | first = .FALSE. |
---|
| 505 | END IF |
---|
| 506 | flag_max = -1. |
---|
| 507 | ftmp(i) = max(tcc(i), pclc(i,k)) |
---|
| 508 | END IF |
---|
| 509 | |
---|
| 510 | IF (random) THEN |
---|
| 511 | IF (first) THEN |
---|
| 512 | WRITE (*, *) 'Hypothese de recouvrement: RANDOM' |
---|
| 513 | first = .FALSE. |
---|
| 514 | END IF |
---|
| 515 | flag_max = 1. |
---|
| 516 | ftmp(i) = tcc(i)*(1-pclc(i,k)) |
---|
| 517 | END IF |
---|
| 518 | |
---|
| 519 | IF (maximum_random) THEN |
---|
| 520 | IF (first) THEN |
---|
| 521 | WRITE (*, *) 'Hypothese de recouvrement: MAXIMUM_ & |
---|
| 522 | & & |
---|
| 523 | & RANDOM' |
---|
| 524 | first = .FALSE. |
---|
| 525 | END IF |
---|
| 526 | flag_max = 1. |
---|
| 527 | ftmp(i) = tcc(i)*(1.-max(pclc(i,k),pclc(i,k+1)))/(1.-min(pclc(i, & |
---|
| 528 | k+1),1.-thres_neb)) |
---|
| 529 | END IF |
---|
| 530 | ! Effective radius of cloud droplet at top of cloud (m) |
---|
| 531 | reffclwtop(i) = reffclwtop(i) + rad_chaud(i, k)*1.0E-06*phase3d(i, & |
---|
| 532 | k)*(tcc(i)-ftmp(i))*flag_max |
---|
| 533 | ! CDNC at top of cloud (m-3) |
---|
| 534 | cldncl(i) = cldncl(i) + cdnc(i, k)*phase3d(i, k)*(tcc(i)-ftmp(i))* & |
---|
| 535 | flag_max |
---|
| 536 | ! Liquid Cloud Content at top of cloud |
---|
| 537 | lcc(i) = lcc(i) + phase3d(i, k)*(tcc(i)-ftmp(i))*flag_max |
---|
| 538 | ! Total Cloud Content at top of cloud |
---|
| 539 | tcc(i) = ftmp(i) |
---|
| 540 | |
---|
| 541 | END IF ! is there a visible, not-too-small cloud? |
---|
| 542 | END DO ! loop over k |
---|
| 543 | |
---|
| 544 | IF (random .OR. maximum_random) tcc(i) = 1. - tcc(i) |
---|
| 545 | |
---|
| 546 | END DO ! loop over i |
---|
| 547 | |
---|
| 548 | ! ! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC |
---|
| 549 | ! REFFCLWS) |
---|
| 550 | DO i = 1, klon |
---|
[524] | 551 | DO k = 1, klev |
---|
[1992] | 552 | ! Weight to be used for outputs: eau_liquide*couverture nuageuse |
---|
| 553 | lcc3dcon(i, k) = rnebcon(i, k)*phase3d(i, k)*clwcon(i, k) ! eau liquide convective |
---|
| 554 | lcc3dstra(i, k) = pclc(i, k)*pqlwp(i, k)*phase3d(i, k) |
---|
| 555 | lcc3dstra(i, k) = lcc3dstra(i, k) - lcc3dcon(i, k) ! eau liquide stratiforme |
---|
| 556 | lcc3dstra(i, k) = max(lcc3dstra(i,k), 0.0) |
---|
| 557 | ! Compute cloud droplet radius as above in meter |
---|
| 558 | radius = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3*rpi*1000.* & |
---|
| 559 | cdnc(i,k)))**(1./3.) |
---|
| 560 | radius = max(radius, 5.E-6) |
---|
| 561 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
| 562 | reffclwc(i, k) = radius |
---|
| 563 | reffclwc(i, k) = reffclwc(i, k)*lcc3dcon(i, k) |
---|
| 564 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
| 565 | reffclws(i, k) = radius |
---|
| 566 | reffclws(i, k) = reffclws(i, k)*lcc3dstra(i, k) |
---|
| 567 | END DO !klev |
---|
| 568 | END DO !klon |
---|
[524] | 569 | |
---|
[1992] | 570 | ! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
[524] | 571 | |
---|
[1992] | 572 | DO i = 1, klon |
---|
| 573 | cldnvi(i) = 0. |
---|
| 574 | lcc_integrat(i) = 0. |
---|
| 575 | height(i) = 0. |
---|
[1989] | 576 | DO k = 1, klev |
---|
[1992] | 577 | cldnvi(i) = cldnvi(i) + cdnc(i, k)*lcc3d(i, k)*dh(i, k) |
---|
| 578 | lcc_integrat(i) = lcc_integrat(i) + lcc3d(i, k)*dh(i, k) |
---|
| 579 | height(i) = height(i) + dh(i, k) |
---|
| 580 | END DO ! klev |
---|
| 581 | lcc_integrat(i) = lcc_integrat(i)/height(i) |
---|
| 582 | IF (lcc_integrat(i)<=1.0E-03) THEN |
---|
| 583 | cldnvi(i) = cldnvi(i)*lcc(i)/seuil_neb |
---|
| 584 | ELSE |
---|
| 585 | cldnvi(i) = cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
| 586 | END IF |
---|
| 587 | END DO ! klon |
---|
[1337] | 588 | |
---|
[1992] | 589 | DO i = 1, klon |
---|
| 590 | DO k = 1, klev |
---|
| 591 | IF (scdnc(i,k)<=0.0) scdnc(i, k) = 0.0 |
---|
| 592 | IF (reffclws(i,k)<=0.0) reffclws(i, k) = 0.0 |
---|
| 593 | IF (reffclwc(i,k)<=0.0) reffclwc(i, k) = 0.0 |
---|
| 594 | IF (lcc3d(i,k)<=0.0) lcc3d(i, k) = 0.0 |
---|
| 595 | IF (lcc3dcon(i,k)<=0.0) lcc3dcon(i, k) = 0.0 |
---|
| 596 | IF (lcc3dstra(i,k)<=0.0) lcc3dstra(i, k) = 0.0 |
---|
| 597 | END DO |
---|
| 598 | IF (reffclwtop(i)<=0.0) reffclwtop(i) = 0.0 |
---|
| 599 | IF (cldncl(i)<=0.0) cldncl(i) = 0.0 |
---|
| 600 | IF (cldnvi(i)<=0.0) cldnvi(i) = 0.0 |
---|
| 601 | IF (lcc(i)<=0.0) lcc(i) = 0.0 |
---|
| 602 | END DO |
---|
[1337] | 603 | |
---|
[1992] | 604 | END IF !ok_cdnc |
---|
[1337] | 605 | |
---|
[1992] | 606 | RETURN |
---|
[1337] | 607 | |
---|
[1992] | 608 | END SUBROUTINE newmicro |
---|