1 | ! |
---|
2 | ! $Id: hines_gwd.F 1907 2013-11-26 13:10:46Z fhourdin $ |
---|
3 | ! |
---|
4 | SUBROUTINE HINES_GWD(NLON,NLEV,DTIME,paphm1x, papm1x, |
---|
5 | I rlat,tx,ux,vx, |
---|
6 | O zustrhi,zvstrhi, |
---|
7 | O d_t_hin, d_u_hin, d_v_hin) |
---|
8 | |
---|
9 | C ######################################################################## |
---|
10 | C Parametrization of the momentum flux deposition due to a broad band |
---|
11 | C spectrum of gravity waves, following Hines (1997a,b), as coded by |
---|
12 | C McLANDRESS (1995). Modified by McFARLANE and MANZINI (1995-1997) |
---|
13 | C MAECHAM model stand alone version |
---|
14 | C ######################################################################## |
---|
15 | C |
---|
16 | C |
---|
17 | USE dimphy |
---|
18 | implicit none |
---|
19 | |
---|
20 | cym#include "dimensions.h" |
---|
21 | cym#include "dimphy.h" |
---|
22 | #include "YOEGWD.h" |
---|
23 | #include "YOMCST.h" |
---|
24 | |
---|
25 | INTEGER NAZMTH |
---|
26 | PARAMETER(NAZMTH=8) |
---|
27 | |
---|
28 | C INPUT ARGUMENTS. |
---|
29 | C ----- ---------- |
---|
30 | C |
---|
31 | C - 2D |
---|
32 | C PAPHM1 : HALF LEVEL PRESSURE (T-DT) |
---|
33 | C PAPM1 : FULL LEVEL PRESSURE (T-DT) |
---|
34 | C PTM1 : TEMPERATURE (T-DT) |
---|
35 | C PUM1 : ZONAL WIND (T-DT) |
---|
36 | C PVM1 : MERIDIONAL WIND (T-DT) |
---|
37 | C |
---|
38 | |
---|
39 | C REFERENCE. |
---|
40 | C ---------- |
---|
41 | C SEE MODEL DOCUMENTATION |
---|
42 | C |
---|
43 | C AUTHOR. |
---|
44 | C ------- |
---|
45 | C |
---|
46 | C N. MCFARLANE DKRZ-HAMBURG MAY 1995 |
---|
47 | C STAND ALONE E. MANZINI MPI-HAMBURG FEBRUARY 1997 |
---|
48 | C |
---|
49 | C BASED ON A COMBINATION OF THE OROGRAPHIC SCHEME BY N.MCFARLANE 1987 |
---|
50 | C AND THE HINES SCHEME AS CODED BY C. MCLANDRESS 1995. |
---|
51 | C |
---|
52 | C |
---|
53 | C |
---|
54 | cym INTEGER KLEVM1 |
---|
55 | C |
---|
56 | REAL PAPHM1(klon,klev+1), PAPM1(klon,KLEV) |
---|
57 | REAL PTM1(klon,KLEV), PUM1(klon,KLEV), PVM1(klon,KLEV) |
---|
58 | REAL PRFLUX(klon) |
---|
59 | C1 |
---|
60 | C1 |
---|
61 | C1 |
---|
62 | REAL RLAT(klon),COSLAT(KLON) |
---|
63 | C |
---|
64 | REAL TH(klon,KLEV), |
---|
65 | 2 UTENDGW(klon,KLEV), VTENDGW(klon,KLEV), |
---|
66 | 3 PRESSG(klon), |
---|
67 | 4 UHS(klon,KLEV), VHS(klon,KLEV), ZPR(klon) |
---|
68 | |
---|
69 | C * VERTICAL POSITIONING ARRAYS. |
---|
70 | |
---|
71 | REAL SGJ(klon,KLEV), SHJ(klon,KLEV), |
---|
72 | 1 SHXKJ(klon,KLEV), DSGJ(klon,KLEV) |
---|
73 | |
---|
74 | C * LOGICAL SWITCHES TO CONTROL ROOF DRAG, ENVELOP GW DRAG AND |
---|
75 | C * HINES' DOPPLER SPREADING EXTROWAVE GW DRAG. |
---|
76 | C * LOZPR IS TRUE FOR ZPR ENHANCEMENT |
---|
77 | |
---|
78 | |
---|
79 | C * WORK ARRAYS. |
---|
80 | |
---|
81 | REAL M_ALPHA(klon,KLEV,NAZMTH), V_ALPHA(klon,KLEV,NAZMTH), |
---|
82 | 1 SIGMA_ALPHA(klon,KLEV,NAZMTH), |
---|
83 | 1 SIGSQH_ALPHA(klon,KLEV,NAZMTH), |
---|
84 | 2 DRAG_U(klon,KLEV), DRAG_V(klon,KLEV), FLUX_U(klon,KLEV), |
---|
85 | 3 FLUX_V(klon,KLEV), HEAT(klon,KLEV), DIFFCO(klon,KLEV), |
---|
86 | 4 BVFREQ(klon,KLEV), DENSITY(klon,KLEV), SIGMA_T(klon,KLEV), |
---|
87 | 5 VISC_MOL(klon,KLEV), ALT(klon,KLEV), |
---|
88 | 6 SIGSQMCW(klon,KLEV,NAZMTH), |
---|
89 | 6 SIGMATM(klon,KLEV), |
---|
90 | 7 AK_ALPHA(klon,NAZMTH), K_ALPHA(klon,NAZMTH), |
---|
91 | 8 MMIN_ALPHA(klon,NAZMTH), I_ALPHA(klon,NAZMTH), |
---|
92 | 9 RMSWIND(klon), BVFBOT(klon), DENSBOT(klon) |
---|
93 | REAL SMOOTHR1(klon,KLEV), SMOOTHR2(klon,KLEV) |
---|
94 | REAL SIGALPMC(klon,KLEV,NAZMTH) |
---|
95 | REAL F2MOD(klon,KLEV) |
---|
96 | |
---|
97 | C * THES ARE THE INPUT PARAMETERS FOR HINES ROUTINE AND |
---|
98 | C * ARE SPECIFIED IN ROUTINE HINES_SETUP. SINCE THIS IS CALLED |
---|
99 | C * ONLY AT FIRST CALL TO THIS ROUTINE THESE VARIABLES MUST BE SAVED |
---|
100 | C * FOR USE AT SUBSEQUENT CALLS. THIS CAN BE AVOIDED BY CALLING |
---|
101 | C * HINES_SETUP IN MAIN PROGRAM AND PASSING THE PARAMETERS AS |
---|
102 | C * SUBROUTINE ARGUEMENTS. |
---|
103 | C |
---|
104 | |
---|
105 | REAL RMSCON |
---|
106 | INTEGER NMESSG, IPRINT, ILRMS |
---|
107 | INTEGER IFL |
---|
108 | C |
---|
109 | INTEGER NAZ,ICUTOFF,NSMAX,IHEATCAL |
---|
110 | REAL SLOPE,F1,F2,F3,F5,F6,KSTAR(KLON),ALT_CUTOFF,SMCO |
---|
111 | C |
---|
112 | C PROVIDED AS INPUT |
---|
113 | C |
---|
114 | integer nlon,nlev |
---|
115 | |
---|
116 | real dtime |
---|
117 | real paphm1x(nlon,nlev+1), papm1x(nlon,nlev) |
---|
118 | real ux(nlon,nlev), vx(nlon,nlev), tx(nlon,nlev) |
---|
119 | c |
---|
120 | c VARIABLES FOR OUTPUT |
---|
121 | c |
---|
122 | |
---|
123 | real d_t_hin(nlon,nlev),d_u_hin(nlon,nlev),d_v_hin(nlon,nlev) |
---|
124 | real zustrhi(nlon),zvstrhi(nlon) |
---|
125 | |
---|
126 | C |
---|
127 | C * LOGICAL SWITCHES TO CONTROL PRECIP ENHANCEMENT AND |
---|
128 | C * HINES' DOPPLER SPREADING EXTROWAVE GW DRAG. |
---|
129 | C * LOZPR IS TRUE FOR ZPR ENHANCEMENT |
---|
130 | C |
---|
131 | LOGICAL LOZPR, LORMS(klon) |
---|
132 | C |
---|
133 | C LOCAL PARAMETERS TO MAKE THINGS WORK (TEMPORARY VARIABLE) |
---|
134 | |
---|
135 | REAL RHOH2O,ZPCONS,RGOCP,ZLAT,DTTDSF,RATIO,HSCAL |
---|
136 | INTEGER I,J,L,JL,JK,LE,LREF,LREFP,LEVBOT |
---|
137 | C |
---|
138 | C DATA PARAMETERS NEEDED, EXPLAINED LATER |
---|
139 | |
---|
140 | REAL V0,VMIN,DMPSCAL,TAUFAC,HMIN,APIBT,CPART,FCRIT |
---|
141 | REAL PCRIT,PCONS |
---|
142 | INTEGER IPLEV,IERROR |
---|
143 | |
---|
144 | C |
---|
145 | C |
---|
146 | C PRINT *,' IT IS STARTED HINES GOING ON...' |
---|
147 | C |
---|
148 | C |
---|
149 | C |
---|
150 | C |
---|
151 | C* COMPUTATIONAL CONSTANTS. |
---|
152 | C ------------- ---------- |
---|
153 | C |
---|
154 | C |
---|
155 | d_t_hin(:,:)=0. |
---|
156 | |
---|
157 | RHOH2O=1000. |
---|
158 | ZPCONS = (1000.*86400.)/RHOH2O |
---|
159 | cym KLEVM1=KLEV-1 |
---|
160 | C |
---|
161 | |
---|
162 | do jl=kidia,kfdia |
---|
163 | PAPHM1(JL,1) = paphm1x(JL,klev+1) |
---|
164 | do jk=1,klev |
---|
165 | le=klev+1-jk |
---|
166 | PAPHM1(JL,JK+1) = paphm1x(JL,le) |
---|
167 | PAPM1(JL,JK) = papm1x(JL,le) |
---|
168 | PTM1(JL,JK) = tx(JL,le) |
---|
169 | PUM1(JL,JK) = ux(JL,le) |
---|
170 | PVM1(JL,JK) = vx(JL,le) |
---|
171 | enddo |
---|
172 | enddo |
---|
173 | C |
---|
174 | 100 CONTINUE |
---|
175 | C |
---|
176 | C Define constants and arrays needed for the ccc/mam gwd scheme |
---|
177 | C *Constants: |
---|
178 | |
---|
179 | RGOCP=RD/RCPD |
---|
180 | LREFP=KLEV-1 |
---|
181 | LREF=KLEV-2 |
---|
182 | C1 |
---|
183 | C1 *Arrays |
---|
184 | C1 |
---|
185 | DO 2101 JK=1,KLEV |
---|
186 | DO 2102 JL=KIDIA,KFDIA |
---|
187 | SHJ(JL,JK)=PAPM1(JL,JK)/PAPHM1(JL,klev+1) |
---|
188 | SGJ(JL,JK)=PAPM1(JL,JK)/PAPHM1(JL,klev+1) |
---|
189 | DSGJ(JL,JK)=(PAPHM1(JL,JK+1)-PAPHM1(JL,JK))/PAPHM1(JL,klev+1) |
---|
190 | SHXKJ(JL,JK)=(PAPM1(JL,JK)/PAPHM1(JL,klev+1))**RGOCP |
---|
191 | TH(JL,JK)= PTM1(JL,JK) |
---|
192 | 2102 CONTINUE |
---|
193 | 2101 CONTINUE |
---|
194 | |
---|
195 | CC |
---|
196 | DO 211 JL=KIDIA,KFDIA |
---|
197 | PRESSG(JL)=PAPHM1(JL,klev+1) |
---|
198 | 211 CONTINUE |
---|
199 | C |
---|
200 | C |
---|
201 | DO 301 JL=KIDIA,KFDIA |
---|
202 | PRFLUX(JL) = 0.0 |
---|
203 | ZPR(JL)=ZPCONS*PRFLUX(JL) |
---|
204 | ZLAT=(RLAT(JL)/180.)*RPI |
---|
205 | COSLAT(Jl)=COS(ZLAT) |
---|
206 | 301 CONTINUE |
---|
207 | C |
---|
208 | C |
---|
209 | 400 CONTINUE |
---|
210 | C |
---|
211 | C |
---|
212 | C |
---|
213 | C |
---|
214 | */######################################################################### |
---|
215 | */ |
---|
216 | */ |
---|
217 | C |
---|
218 | C * AUG. 14/95 - C. MCLANDRESS. |
---|
219 | C * SEP. 95 N. MCFARLANE. |
---|
220 | C |
---|
221 | C * THIS ROUTINE CALCULATES THE HORIZONTAL WIND TENDENCIES |
---|
222 | C * DUE TO MCFARLANE'S OROGRAPHIC GW DRAG SCHEME, HINES' |
---|
223 | C * DOPPLER SPREAD SCHEME FOR "EXTROWAVES" AND ADDS ON |
---|
224 | C * ROOF DRAG. IT IS BASED ON THE ROUTINE GWDFLX8. |
---|
225 | C |
---|
226 | C * LREFP IS THE INDEX OF THE MODEL LEVEL BELOW THE REFERENCE LEVEL |
---|
227 | C * I/O ARRAYS PASSED FROM MAIN. |
---|
228 | C * (PRESSG = SURFACE PRESSURE) |
---|
229 | C |
---|
230 | C |
---|
231 | C |
---|
232 | C |
---|
233 | C * CONSTANTS VALUES DEFINED IN DATA STATEMENT ARE : |
---|
234 | C * VMIN = MIMINUM WIND IN THE DIRECTION OF REFERENCE LEVEL |
---|
235 | C * WIND BEFORE WE CONSIDER BREAKING TO HAVE OCCURED. |
---|
236 | C * DMPSCAL = DAMPING TIME FOR GW DRAG IN SECONDS. |
---|
237 | C * TAUFAC = 1/(LENGTH SCALE). |
---|
238 | C * HMIN = MIMINUM ENVELOPE HEIGHT REQUIRED TO PRODUCE GW DRAG. |
---|
239 | C * V0 = VALUE OF WIND THAT APPROXIMATES ZERO. |
---|
240 | |
---|
241 | |
---|
242 | DATA VMIN / 5.0 /, V0 / 1.E-10 /, |
---|
243 | 1 TAUFAC/ 5.E-6 /, HMIN / 40000. /, |
---|
244 | 3 DMPSCAL / 6.5E+6 /, APIBT / 1.5708 /, |
---|
245 | 4 CPART / 0.7 /, FCRIT / 1. / |
---|
246 | |
---|
247 | C * HINES EXTROWAVE GWD CONSTANTS DEFINED IN DATA STATEMENT ARE: |
---|
248 | C * RMSCON = ROOT MEAN SQUARE GRAVITY WAVE WIND AT LOWEST LEVEL (M/S). |
---|
249 | C * NMESSG = UNIT NUMBER FOR PRINTED MESSAGES. |
---|
250 | C * IPRINT = 1 TO DO PRINT OUT SOME HINES ARRAYS. |
---|
251 | C * IFL = FIRST CALL FLAG TO HINES_SETUP ("SAVE" IT) |
---|
252 | C * PCRIT = CRITICAL VALUE OF ZPR (MM/D) |
---|
253 | C * IPLEV = LEVEL OF APPLICATION OF PRCIT |
---|
254 | C * PCONS = FACTOR OF ZPR ENHANCEMENT |
---|
255 | C |
---|
256 | |
---|
257 | DATA PCRIT / 5. /, PCONS / 4.75 / |
---|
258 | |
---|
259 | IPLEV = LREFP-1 |
---|
260 | C |
---|
261 | DATA RMSCON / 1.00 / |
---|
262 | 1 IPRINT / 2 /, NMESSG / 6 / |
---|
263 | DATA IFL / 0 / |
---|
264 | C |
---|
265 | LOZPR = .FALSE. |
---|
266 | C |
---|
267 | C----------------------------------------------------------------------- |
---|
268 | C |
---|
269 | C |
---|
270 | C |
---|
271 | C * SET ERROR FLAG |
---|
272 | |
---|
273 | IERROR = 0 |
---|
274 | |
---|
275 | C * SPECIFY VARIOUS PARAMETERS FOR HINES ROUTINE AT VERY FIRST CALL. |
---|
276 | C * (NOTE THAT ARRAY K_ALPHA IS SPECIFIED SO MAKE SURE THAT |
---|
277 | C * IT IS NOT OVERWRITTEN LATER ON). |
---|
278 | C |
---|
279 | CALL HINES_SETUP (NAZ,SLOPE,F1,F2,F3,F5,F6,KSTAR, |
---|
280 | 1 ICUTOFF,ALT_CUTOFF,SMCO,NSMAX,IHEATCAL, |
---|
281 | 2 K_ALPHA,IERROR,NMESSG,klon,NAZMTH,COSLAT) |
---|
282 | IF (IERROR.NE.0) GO TO 999 |
---|
283 | C |
---|
284 | C * START GWD CALCULATIONS. |
---|
285 | |
---|
286 | LREF = LREFP-1 |
---|
287 | |
---|
288 | C |
---|
289 | DO 105 J=1,NAZMTH |
---|
290 | DO 105 L=1,KLEV |
---|
291 | DO 105 I=kidia,klon |
---|
292 | SIGSQMCW(I,L,J) = 0. |
---|
293 | 105 CONTINUE |
---|
294 | c |
---|
295 | |
---|
296 | |
---|
297 | C * INITIALIZE NECESSARY ARRAYS. |
---|
298 | C |
---|
299 | DO 120 L=1,KLEV |
---|
300 | DO 120 I=KIDIA,KFDIA |
---|
301 | UTENDGW(I,L) = 0. |
---|
302 | VTENDGW(I,L) = 0. |
---|
303 | |
---|
304 | UHS(I,L) = 0. |
---|
305 | VHS(I,L) = 0. |
---|
306 | |
---|
307 | 120 CONTINUE |
---|
308 | C |
---|
309 | C * IF USING HINES SCHEME THEN CALCULATE B V FREQUENCY AT ALL POINTS |
---|
310 | C * AND SMOOTH BVFREQ. |
---|
311 | |
---|
312 | DO 130 L=2,KLEV |
---|
313 | DO 130 I=KIDIA,KFDIA |
---|
314 | DTTDSF=(TH(I,L)/SHXKJ(I,L)-TH(I,L-1)/ |
---|
315 | 1 SHXKJ(I,L-1))/(SHJ(I,L)-SHJ(I,L-1)) |
---|
316 | DTTDSF=MIN(DTTDSF, -5./SGJ(I,L)) |
---|
317 | BVFREQ(I,L)=SQRT(-DTTDSF*SGJ(I,L)*(SGJ(I,L)**RGOCP)/RD) |
---|
318 | 1 *RG/PTM1(I,L) |
---|
319 | 130 CONTINUE |
---|
320 | DO 135 L=1,KLEV |
---|
321 | DO 135 I=KIDIA,KFDIA |
---|
322 | IF(L.EQ.1) THEN |
---|
323 | BVFREQ(I,L) = BVFREQ(I,L+1) |
---|
324 | ENDIF |
---|
325 | IF(L.GT.1) THEN |
---|
326 | RATIO=5.*LOG(SGJ(I,L)/SGJ(I,L-1)) |
---|
327 | BVFREQ(I,L) = (BVFREQ(I,L-1) + RATIO*BVFREQ(I,L)) |
---|
328 | 1 /(1.+RATIO) |
---|
329 | ENDIF |
---|
330 | 135 CONTINUE |
---|
331 | C |
---|
332 | C |
---|
333 | 300 CONTINUE |
---|
334 | |
---|
335 | C * CALCULATE GW DRAG DUE TO HINES' EXTROWAVES |
---|
336 | C * SET MOLECULAR VISCOSITY TO A VERY SMALL VALUE. |
---|
337 | C * IF THE MODEL TOP IS GREATER THAN 100 KM THEN THE ACTUAL |
---|
338 | C * VISCOSITY COEFFICIENT COULD BE SPECIFIED HERE. |
---|
339 | |
---|
340 | DO 310 L=1,KLEV |
---|
341 | DO 310 I=KIDIA,KFDIA |
---|
342 | VISC_MOL(I,L) = 1.5E-5 |
---|
343 | DRAG_U(I,L) = 0. |
---|
344 | DRAG_V(I,L) = 0. |
---|
345 | FLUX_U(I,L) = 0. |
---|
346 | FLUX_V(I,L) = 0. |
---|
347 | HEAT(I,L) = 0. |
---|
348 | DIFFCO(I,L) = 0. |
---|
349 | 310 CONTINUE |
---|
350 | |
---|
351 | C * ALTITUDE AND DENSITY AT BOTTOM. |
---|
352 | |
---|
353 | DO 330 I=KIDIA,KFDIA |
---|
354 | HSCAL = RD * PTM1(I,KLEV) / RG |
---|
355 | DENSITY(I,KLEV) = SGJ(I,KLEV) * PRESSG(I) / (RG*HSCAL) |
---|
356 | ALT(I,KLEV) = 0. |
---|
357 | 330 CONTINUE |
---|
358 | |
---|
359 | C * ALTITUDE AND DENSITY AT REMAINING LEVELS. |
---|
360 | |
---|
361 | DO 340 L=KLEV-1,1,-1 |
---|
362 | DO 340 I=KIDIA,KFDIA |
---|
363 | HSCAL = RD * PTM1(I,L) / RG |
---|
364 | ALT(I,L) = ALT(I,L+1) + HSCAL * DSGJ(I,L) / SGJ(I,L) |
---|
365 | DENSITY(I,L) = SGJ(I,L) * PRESSG(I) / (RG*HSCAL) |
---|
366 | 340 CONTINUE |
---|
367 | |
---|
368 | C |
---|
369 | C * INITIALIZE SWITCHES FOR HINES GWD CALCULATION |
---|
370 | C |
---|
371 | ILRMS = 0 |
---|
372 | C |
---|
373 | DO 345 I=KIDIA,KFDIA |
---|
374 | LORMS(I) = .FALSE. |
---|
375 | 345 CONTINUE |
---|
376 | C |
---|
377 | C |
---|
378 | C * DEFILE BOTTOM LAUNCH LEVEL |
---|
379 | C |
---|
380 | LEVBOT = IPLEV |
---|
381 | C |
---|
382 | C * BACKGROUND WIND MINUS VALUE AT BOTTOM LAUNCH LEVEL. |
---|
383 | C |
---|
384 | DO 351 L=1,LEVBOT |
---|
385 | DO 351 I=KIDIA,KFDIA |
---|
386 | UHS(I,L) = PUM1(I,L) - PUM1(I,LEVBOT) |
---|
387 | VHS(I,L) = PVM1(I,L) - PVM1(I,LEVBOT) |
---|
388 | 351 CONTINUE |
---|
389 | C |
---|
390 | C * SPECIFY ROOT MEAN SQUARE WIND AT BOTTOM LAUNCH LEVEL. |
---|
391 | C |
---|
392 | DO 355 I=KIDIA,KFDIA |
---|
393 | RMSWIND(I) = RMSCON |
---|
394 | 355 CONTINUE |
---|
395 | |
---|
396 | IF (LOZPR) THEN |
---|
397 | DO 350 I=KIDIA,KFDIA |
---|
398 | IF (ZPR(I) .GT. PCRIT) THEN |
---|
399 | RMSWIND(I) = RMSCON |
---|
400 | > +( (ZPR(I)-PCRIT)/ZPR(I) )*PCONS |
---|
401 | ENDIF |
---|
402 | 350 CONTINUE |
---|
403 | ENDIF |
---|
404 | C |
---|
405 | DO 356 I=KIDIA,KFDIA |
---|
406 | IF (RMSWIND(I) .GT. 0.0) THEN |
---|
407 | ILRMS = ILRMS+1 |
---|
408 | LORMS(I) = .TRUE. |
---|
409 | ENDIF |
---|
410 | 356 CONTINUE |
---|
411 | C |
---|
412 | C * CALCULATE GWD (NOTE THAT DIFFUSION COEFFICIENT AND |
---|
413 | C * HEATING RATE ONLY CALCULATED IF IHEATCAL = 1). |
---|
414 | C |
---|
415 | IF ( ILRMS.GT.0 ) THEN |
---|
416 | C |
---|
417 | CALL HINES_EXTRO0 (DRAG_U,DRAG_V,HEAT,DIFFCO,FLUX_U,FLUX_V, |
---|
418 | 1 UHS,VHS,BVFREQ,DENSITY,VISC_MOL,ALT, |
---|
419 | 2 RMSWIND,K_ALPHA,M_ALPHA,V_ALPHA, |
---|
420 | 3 SIGMA_ALPHA,SIGSQH_ALPHA,AK_ALPHA, |
---|
421 | 4 MMIN_ALPHA,I_ALPHA,SIGMA_T,DENSBOT,BVFBOT, |
---|
422 | 5 1,IHEATCAL,ICUTOFF,IPRINT,NSMAX, |
---|
423 | 6 SMCO,ALT_CUTOFF,KSTAR,SLOPE, |
---|
424 | 7 F1,F2,F3,F5,F6,NAZ,SIGSQMCW,SIGMATM, |
---|
425 | 8 KIDIA,klon,1,LEVBOT,KLON,KLEV,NAZMTH, |
---|
426 | 9 LORMS,SMOOTHR1,SMOOTHR2, |
---|
427 | 9 SIGALPMC,F2MOD) |
---|
428 | |
---|
429 | C * ADD ON HINES' GWD TENDENCIES TO OROGRAPHIC TENDENCIES AND |
---|
430 | C * APPLY HINES' GW DRAG ON (UROW,VROW) WORK ARRAYS. |
---|
431 | |
---|
432 | DO 360 L=1,KLEV |
---|
433 | DO 360 I=KIDIA,KFDIA |
---|
434 | UTENDGW(I,L) = UTENDGW(I,L) + DRAG_U(I,L) |
---|
435 | VTENDGW(I,L) = VTENDGW(I,L) + DRAG_V(I,L) |
---|
436 | 360 CONTINUE |
---|
437 | C |
---|
438 | |
---|
439 | C * END OF HINES CALCULATIONS. |
---|
440 | C |
---|
441 | ENDIF |
---|
442 | C |
---|
443 | 500 CONTINUE |
---|
444 | |
---|
445 | |
---|
446 | C----------------------------------------------------------------------- |
---|
447 | C |
---|
448 | do jl=kidia,kfdia |
---|
449 | zustrhi(jl)=FLUX_U(jl,1) |
---|
450 | zvstrhi(jl)=FLUX_v(jl,1) |
---|
451 | do jk=1,klev |
---|
452 | le=klev-jk+1 |
---|
453 | d_u_hin(jl,JK) = UTENDGW(jl,le) * dtime |
---|
454 | d_v_hin(jl,JK) = VTENDGW(jl,le) * dtime |
---|
455 | enddo |
---|
456 | enddo |
---|
457 | |
---|
458 | c PRINT *,'UTENDGW:',UTENDGW |
---|
459 | |
---|
460 | C PRINT *,' HINES HAS BEEN COMPLETED (LONG ISNT IT...)' |
---|
461 | |
---|
462 | RETURN |
---|
463 | 999 CONTINUE |
---|
464 | |
---|
465 | C * IF ERROR DETECTED THEN ABORT. |
---|
466 | |
---|
467 | WRITE (NMESSG,6000) |
---|
468 | WRITE (NMESSG,6010) IERROR |
---|
469 | 6000 FORMAT (/' EXECUTION ABORTED IN GWDOREXV') |
---|
470 | 6010 FORMAT (' ERROR FLAG =',I4) |
---|
471 | |
---|
472 | C |
---|
473 | RETURN |
---|
474 | END |
---|
475 | */ |
---|
476 | */ |
---|
477 | |
---|
478 | |
---|
479 | SUBROUTINE HINES_EXTRO0 (DRAG_U,DRAG_V,HEAT,DIFFCO,FLUX_U,FLUX_V, |
---|
480 | 1 VEL_U,VEL_V,BVFREQ,DENSITY,VISC_MOL,ALT, |
---|
481 | 2 RMSWIND,K_ALPHA,M_ALPHA,V_ALPHA, |
---|
482 | 3 SIGMA_ALPHA,SIGSQH_ALPHA,AK_ALPHA, |
---|
483 | 4 MMIN_ALPHA,I_ALPHA,SIGMA_T,DENSB,BVFB, |
---|
484 | 5 IORDER,IHEATCAL,ICUTOFF,IPRINT,NSMAX, |
---|
485 | 6 SMCO,ALT_CUTOFF,KSTAR,SLOPE, |
---|
486 | 7 F1,F2,F3,F5,F6,NAZ,SIGSQMCW,SIGMATM, |
---|
487 | 8 IL1,IL2,LEV1,LEV2,NLONS,NLEVS,NAZMTH, |
---|
488 | 9 LORMS,SMOOTHR1,SMOOTHR2, |
---|
489 | 9 SIGALPMC,F2MOD) |
---|
490 | |
---|
491 | implicit none |
---|
492 | C |
---|
493 | C Main routine for Hines' "extrowave" gravity wave parameterization based |
---|
494 | C on Hines' Doppler spread theory. This routine calculates zonal |
---|
495 | C and meridional components of gravity wave drag, heating rates |
---|
496 | C and diffusion coefficient on a longitude by altitude grid. |
---|
497 | C No "mythical" lower boundary region calculation is made so it |
---|
498 | C is assumed that lowest level winds are weak (i.e, approximately zero). |
---|
499 | C |
---|
500 | C Aug. 13/95 - C. McLandress |
---|
501 | C SEPT. /95 - N.McFarlane |
---|
502 | C |
---|
503 | C Modifications: |
---|
504 | C |
---|
505 | C Output arguements: |
---|
506 | C |
---|
507 | C * DRAG_U = zonal component of gravity wave drag (m/s^2). |
---|
508 | C * DRAG_V = meridional component of gravity wave drag (m/s^2). |
---|
509 | C * HEAT = gravity wave heating (K/sec). |
---|
510 | C * DIFFCO = diffusion coefficient (m^2/sec) |
---|
511 | C * FLUX_U = zonal component of vertical momentum flux (Pascals) |
---|
512 | C * FLUX_V = meridional component of vertical momentum flux (Pascals) |
---|
513 | C |
---|
514 | C Input arguements: |
---|
515 | C |
---|
516 | C * VEL_U = background zonal wind component (m/s). |
---|
517 | C * VEL_V = background meridional wind component (m/s). |
---|
518 | C * BVFREQ = background Brunt Vassala frequency (radians/sec). |
---|
519 | C * DENSITY = background density (kg/m^3) |
---|
520 | C * VISC_MOL = molecular viscosity (m^2/s) |
---|
521 | C * ALT = altitude of momentum, density, buoyancy levels (m) |
---|
522 | C * (NOTE: levels ordered so that ALT(I,1) > ALT(I,2), etc.) |
---|
523 | C * RMSWIND = root mean square gravity wave wind at lowest level (m/s). |
---|
524 | C * K_ALPHA = horizontal wavenumber of each azimuth (1/m). |
---|
525 | C * IORDER = 1 means vertical levels are indexed from top down |
---|
526 | C * (i.e., highest level indexed 1 and lowest level NLEVS); |
---|
527 | C * .NE. 1 highest level is index NLEVS. |
---|
528 | C * IHEATCAL = 1 to calculate heating rates and diffusion coefficient. |
---|
529 | C * IPRINT = 1 to print out various arrays. |
---|
530 | C * ICUTOFF = 1 to exponentially damp GWD, heating and diffusion |
---|
531 | C * arrays above ALT_CUTOFF; otherwise arrays not modified. |
---|
532 | C * ALT_CUTOFF = altitude in meters above which exponential decay applied. |
---|
533 | C * SMCO = smoothing factor used to smooth cutoff vertical |
---|
534 | C * wavenumbers and total rms winds in vertical direction |
---|
535 | C * before calculating drag or heating |
---|
536 | C * (SMCO >= 1 ==> 1:SMCO:1 stencil used). |
---|
537 | C * NSMAX = number of times smoother applied ( >= 1), |
---|
538 | C * = 0 means no smoothing performed. |
---|
539 | C * KSTAR = typical gravity wave horizontal wavenumber (1/m). |
---|
540 | C * SLOPE = slope of incident vertical wavenumber spectrum |
---|
541 | C * (SLOPE must equal 1., 1.5 or 2.). |
---|
542 | C * F1 to F6 = Hines's fudge factors (F4 not needed since used for |
---|
543 | C * vertical flux of vertical momentum). |
---|
544 | C * NAZ = actual number of horizontal azimuths used. |
---|
545 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
546 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
547 | C * LEV1 = index of first level for drag calculation. |
---|
548 | C * LEV2 = index of last level for drag calculation |
---|
549 | C * (i.e., LEV1 < LEV2 <= NLEVS). |
---|
550 | C * NLONS = number of longitudes. |
---|
551 | C * NLEVS = number of vertical levels. |
---|
552 | C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
---|
553 | C |
---|
554 | C Work arrays. |
---|
555 | C |
---|
556 | C * M_ALPHA = cutoff vertical wavenumber (1/m). |
---|
557 | C * V_ALPHA = wind component at each azimuth (m/s) and if IHEATCAL=1 |
---|
558 | C * holds vertical derivative of cutoff wavenumber. |
---|
559 | C * SIGMA_ALPHA = total rms wind in each azimuth (m/s). |
---|
560 | C * SIGSQH_ALPHA = portion of wind variance from waves having wave |
---|
561 | C * normals in the alpha azimuth (m/s). |
---|
562 | C * SIGMA_T = total rms horizontal wind (m/s). |
---|
563 | C * AK_ALPHA = spectral amplitude factor at each azimuth |
---|
564 | C * (i.e.,{AjKj}) in m^4/s^2. |
---|
565 | C * I_ALPHA = Hines' integral. |
---|
566 | C * MMIN_ALPHA = minimum value of cutoff wavenumber. |
---|
567 | C * DENSB = background density at bottom level. |
---|
568 | C * BVFB = buoyancy frequency at bottom level and |
---|
569 | C * work array for ICUTOFF = 1. |
---|
570 | C |
---|
571 | C * LORMS = .TRUE. for drag computation |
---|
572 | C |
---|
573 | INTEGER NAZ, NLONS, NLEVS, NAZMTH, IL1, IL2, LEV1, LEV2 |
---|
574 | INTEGER ICUTOFF, NSMAX, IORDER, IHEATCAL, IPRINT |
---|
575 | REAL KSTAR(NLONS), F1, F2, F3, F5, F6, SLOPE |
---|
576 | REAL ALT_CUTOFF, SMCO |
---|
577 | REAL DRAG_U(NLONS,NLEVS), DRAG_V(NLONS,NLEVS) |
---|
578 | REAL HEAT(NLONS,NLEVS), DIFFCO(NLONS,NLEVS) |
---|
579 | REAL FLUX_U(NLONS,NLEVS), FLUX_V(NLONS,NLEVS) |
---|
580 | REAL VEL_U(NLONS,NLEVS), VEL_V(NLONS,NLEVS) |
---|
581 | REAL BVFREQ(NLONS,NLEVS), DENSITY(NLONS,NLEVS) |
---|
582 | REAL VISC_MOL(NLONS,NLEVS), ALT(NLONS,NLEVS) |
---|
583 | REAL RMSWIND(NLONS), BVFB(NLONS), DENSB(NLONS) |
---|
584 | REAL SIGMA_T(NLONS,NLEVS), SIGSQMCW(NLONS,NLEVS,NAZMTH) |
---|
585 | REAL SIGMA_ALPHA(NLONS,NLEVS,NAZMTH), SIGMATM(NLONS,NLEVS) |
---|
586 | REAL SIGSQH_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
587 | REAL M_ALPHA(NLONS,NLEVS,NAZMTH), V_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
588 | REAL AK_ALPHA(NLONS,NAZMTH), K_ALPHA(NLONS,NAZMTH) |
---|
589 | REAL MMIN_ALPHA(NLONS,NAZMTH) , I_ALPHA(NLONS,NAZMTH) |
---|
590 | REAL SMOOTHR1(NLONS,NLEVS), SMOOTHR2(NLONS,NLEVS) |
---|
591 | REAL SIGALPMC(NLONS,NLEVS,NAZMTH) |
---|
592 | REAL F2MOD(NLONS,NLEVS) |
---|
593 | C |
---|
594 | LOGICAL LORMS(NLONS) |
---|
595 | C |
---|
596 | C Internal variables. |
---|
597 | C |
---|
598 | INTEGER LEVBOT, LEVTOP, I, N, L, LEV1P, LEV2M |
---|
599 | INTEGER ILPRT1, ILPRT2 |
---|
600 | C----------------------------------------------------------------------- |
---|
601 | C |
---|
602 | C PRINT *,' IN HINES_EXTRO0' |
---|
603 | LEV1P = LEV1 + 1 |
---|
604 | LEV2M = LEV2 - 1 |
---|
605 | C |
---|
606 | C Index of lowest altitude level (bottom of drag calculation). |
---|
607 | C |
---|
608 | LEVBOT = LEV2 |
---|
609 | LEVTOP = LEV1 |
---|
610 | IF (IORDER.NE.1) THEN |
---|
611 | write(6,1) |
---|
612 | 1 format(2x,' error: IORDER NOT ONE! ') |
---|
613 | END IF |
---|
614 | C |
---|
615 | C Buoyancy and density at bottom level. |
---|
616 | C |
---|
617 | DO 10 I = IL1,IL2 |
---|
618 | BVFB(I) = BVFREQ(I,LEVBOT) |
---|
619 | DENSB(I) = DENSITY(I,LEVBOT) |
---|
620 | 10 CONTINUE |
---|
621 | C |
---|
622 | C initialize some variables |
---|
623 | C |
---|
624 | DO 20 N = 1,NAZ |
---|
625 | DO 20 L=LEV1,LEV2 |
---|
626 | DO 20 I=IL1,IL2 |
---|
627 | M_ALPHA(I,L,N) = 0.0 |
---|
628 | 20 CONTINUE |
---|
629 | DO 21 L=LEV1,LEV2 |
---|
630 | DO 21 I=IL1,IL2 |
---|
631 | SIGMA_T(I,L) = 0.0 |
---|
632 | 21 CONTINUE |
---|
633 | DO 22 N = 1,NAZ |
---|
634 | DO 22 I=IL1,IL2 |
---|
635 | I_ALPHA(I,N) = 0.0 |
---|
636 | 22 CONTINUE |
---|
637 | C |
---|
638 | C Compute azimuthal wind components from zonal and meridional winds. |
---|
639 | C |
---|
640 | CALL HINES_WIND ( V_ALPHA, |
---|
641 | ^ VEL_U, VEL_V, NAZ, |
---|
642 | ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS, NAZMTH ) |
---|
643 | C |
---|
644 | C Calculate cutoff vertical wavenumber and velocity variances. |
---|
645 | C |
---|
646 | CALL HINES_WAVNUM ( M_ALPHA, SIGMA_ALPHA, SIGSQH_ALPHA, SIGMA_T, |
---|
647 | ^ AK_ALPHA, V_ALPHA, VISC_MOL, DENSITY, DENSB, |
---|
648 | ^ BVFREQ, BVFB, RMSWIND, I_ALPHA, MMIN_ALPHA, |
---|
649 | ^ KSTAR, SLOPE, F1, F2, F3, NAZ, LEVBOT, |
---|
650 | ^ LEVTOP,IL1,IL2,NLONS,NLEVS,NAZMTH, SIGSQMCW, |
---|
651 | ^ SIGMATM,LORMS,SIGALPMC,F2MOD) |
---|
652 | C |
---|
653 | C Smooth cutoff wavenumbers and total rms velocity in the vertical |
---|
654 | C direction NSMAX times, using FLUX_U as temporary work array. |
---|
655 | C |
---|
656 | IF (NSMAX.GT.0) THEN |
---|
657 | DO 80 N = 1,NAZ |
---|
658 | DO 81 L=LEV1,LEV2 |
---|
659 | DO 81 I=IL1,IL2 |
---|
660 | SMOOTHR1(I,L) = M_ALPHA(I,L,N) |
---|
661 | 81 CONTINUE |
---|
662 | CALL VERT_SMOOTH (SMOOTHR1, |
---|
663 | ^ SMOOTHR2, SMCO, NSMAX, |
---|
664 | ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS ) |
---|
665 | DO 83 L=LEV1,LEV2 |
---|
666 | DO 83 I=IL1,IL2 |
---|
667 | M_ALPHA(I,L,N) = SMOOTHR1(I,L) |
---|
668 | 83 CONTINUE |
---|
669 | 80 CONTINUE |
---|
670 | CALL VERT_SMOOTH ( SIGMA_T, |
---|
671 | ^ SMOOTHR2, SMCO, NSMAX, |
---|
672 | ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS ) |
---|
673 | END IF |
---|
674 | C |
---|
675 | C Calculate zonal and meridional components of the |
---|
676 | C momentum flux and drag. |
---|
677 | C |
---|
678 | CALL HINES_FLUX ( FLUX_U, FLUX_V, DRAG_U, DRAG_V, |
---|
679 | ^ ALT, DENSITY, DENSB, M_ALPHA, |
---|
680 | ^ AK_ALPHA, K_ALPHA, SLOPE, NAZ, |
---|
681 | ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS, NAZMTH, |
---|
682 | ^ LORMS) |
---|
683 | C |
---|
684 | C Cutoff drag above ALT_CUTOFF, using BVFB as temporary work array. |
---|
685 | C |
---|
686 | IF (ICUTOFF.EQ.1) THEN |
---|
687 | CALL HINES_EXP ( DRAG_U, |
---|
688 | ^ BVFB, ALT, ALT_CUTOFF, IORDER, |
---|
689 | ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS ) |
---|
690 | CALL HINES_EXP ( DRAG_V, |
---|
691 | ^ BVFB, ALT, ALT_CUTOFF, IORDER, |
---|
692 | ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS ) |
---|
693 | END IF |
---|
694 | C |
---|
695 | C Print out various arrays for diagnostic purposes. |
---|
696 | C |
---|
697 | IF (IPRINT.EQ.1) THEN |
---|
698 | ILPRT1 = 15 |
---|
699 | ILPRT2 = 16 |
---|
700 | CALL HINES_PRINT ( FLUX_U, FLUX_V, DRAG_U, DRAG_V, ALT, |
---|
701 | ^ SIGMA_T, SIGMA_ALPHA, V_ALPHA, M_ALPHA, |
---|
702 | ^ 1, 1, 6, ILPRT1, ILPRT2, LEV1, LEV2, |
---|
703 | ^ NAZ, NLONS, NLEVS, NAZMTH) |
---|
704 | END IF |
---|
705 | C |
---|
706 | C If not calculating heating rate and diffusion coefficient then finished. |
---|
707 | C |
---|
708 | IF (IHEATCAL.NE.1) RETURN |
---|
709 | C |
---|
710 | C Calculate vertical derivative of cutoff wavenumber (store |
---|
711 | C in array V_ALPHA) using centered differences at interior gridpoints |
---|
712 | C and one-sided differences at first and last levels. |
---|
713 | C |
---|
714 | DO 130 N = 1,NAZ |
---|
715 | DO 100 L = LEV1P,LEV2M |
---|
716 | DO 90 I = IL1,IL2 |
---|
717 | V_ALPHA(I,L,N) = ( M_ALPHA(I,L+1,N) - M_ALPHA(I,L-1,N) ) |
---|
718 | ^ / ( ALT(I,L+1) - ALT(I,L-1) ) |
---|
719 | 90 CONTINUE |
---|
720 | 100 CONTINUE |
---|
721 | DO 110 I = IL1,IL2 |
---|
722 | V_ALPHA(I,LEV1,N) = ( M_ALPHA(I,LEV1P,N) - M_ALPHA(I,LEV1,N) ) |
---|
723 | ^ / ( ALT(I,LEV1P) - ALT(I,LEV1) ) |
---|
724 | 110 CONTINUE |
---|
725 | DO 120 I = IL1,IL2 |
---|
726 | V_ALPHA(I,LEV2,N) = ( M_ALPHA(I,LEV2,N) - M_ALPHA(I,LEV2M,N) ) |
---|
727 | ^ / ( ALT(I,LEV2) - ALT(I,LEV2M) ) |
---|
728 | 120 CONTINUE |
---|
729 | 130 CONTINUE |
---|
730 | C |
---|
731 | C Heating rate and diffusion coefficient. |
---|
732 | C |
---|
733 | CALL HINES_HEAT ( HEAT, DIFFCO, |
---|
734 | ^ M_ALPHA, V_ALPHA, AK_ALPHA, K_ALPHA, |
---|
735 | ^ BVFREQ, DENSITY, DENSB, SIGMA_T, VISC_MOL, |
---|
736 | ^ KSTAR, SLOPE, F2, F3, F5, F6, NAZ, |
---|
737 | ^ IL1, IL2, LEV1, LEV2, NLONS, NLEVS, NAZMTH) |
---|
738 | C |
---|
739 | C Finished. |
---|
740 | C |
---|
741 | RETURN |
---|
742 | C----------------------------------------------------------------------- |
---|
743 | END |
---|
744 | |
---|
745 | SUBROUTINE HINES_WAVNUM (M_ALPHA,SIGMA_ALPHA,SIGSQH_ALPHA,SIGMA_T, |
---|
746 | 1 AK_ALPHA,V_ALPHA,VISC_MOL,DENSITY,DENSB, |
---|
747 | 2 BVFREQ,BVFB,RMS_WIND,I_ALPHA,MMIN_ALPHA, |
---|
748 | 3 KSTAR,SLOPE,F1,F2,F3,NAZ,LEVBOT,LEVTOP, |
---|
749 | 4 IL1,IL2,NLONS,NLEVS,NAZMTH,SIGSQMCW, |
---|
750 | 5 SIGMATM,LORMS,SIGALPMC,F2MOD) |
---|
751 | C |
---|
752 | C This routine calculates the cutoff vertical wavenumber and velocity |
---|
753 | C variances on a longitude by altitude grid for the Hines' Doppler |
---|
754 | C spread gravity wave drag parameterization scheme. |
---|
755 | C NOTE: (1) only values of four or eight can be used for # azimuths (NAZ). |
---|
756 | C (2) only values of 1.0, 1.5 or 2.0 can be used for slope (SLOPE). |
---|
757 | C |
---|
758 | C Aug. 10/95 - C. McLandress |
---|
759 | C |
---|
760 | C Output arguements: |
---|
761 | C |
---|
762 | C * M_ALPHA = cutoff wavenumber at each azimuth (1/m). |
---|
763 | C * SIGMA_ALPHA = total rms wind in each azimuth (m/s). |
---|
764 | C * SIGSQH_ALPHA = portion of wind variance from waves having wave |
---|
765 | C * normals in the alpha azimuth (m/s). |
---|
766 | C * SIGMA_T = total rms horizontal wind (m/s). |
---|
767 | C * AK_ALPHA = spectral amplitude factor at each azimuth |
---|
768 | C * (i.e.,{AjKj}) in m^4/s^2. |
---|
769 | C |
---|
770 | C Input arguements: |
---|
771 | C |
---|
772 | C * V_ALPHA = wind component at each azimuth (m/s). |
---|
773 | C * VISC_MOL = molecular viscosity (m^2/s) |
---|
774 | C * DENSITY = background density (kg/m^3). |
---|
775 | C * DENSB = background density at model bottom (kg/m^3). |
---|
776 | C * BVFREQ = background Brunt Vassala frequency (radians/sec). |
---|
777 | C * BVFB = background Brunt Vassala frequency at model bottom. |
---|
778 | C * RMS_WIND = root mean square gravity wave wind at lowest level (m/s). |
---|
779 | C * KSTAR = typical gravity wave horizontal wavenumber (1/m). |
---|
780 | C * SLOPE = slope of incident vertical wavenumber spectrum |
---|
781 | C * (SLOPE = 1., 1.5 or 2.). |
---|
782 | C * F1,F2,F3 = Hines's fudge factors. |
---|
783 | C * NAZ = actual number of horizontal azimuths used (4 or 8). |
---|
784 | C * LEVBOT = index of lowest vertical level. |
---|
785 | C * LEVTOP = index of highest vertical level |
---|
786 | C * (NOTE: if LEVTOP < LEVBOT then level index |
---|
787 | C * increases from top down). |
---|
788 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
789 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
790 | C * NLONS = number of longitudes. |
---|
791 | C * NLEVS = number of vertical levels. |
---|
792 | C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
---|
793 | C |
---|
794 | C * LORMS = .TRUE. for drag computation |
---|
795 | C |
---|
796 | C Input work arrays: |
---|
797 | C |
---|
798 | C * I_ALPHA = Hines' integral at a single level. |
---|
799 | C * MMIN_ALPHA = minimum value of cutoff wavenumber. |
---|
800 | C |
---|
801 | INTEGER NAZ, LEVBOT, LEVTOP, IL1, IL2, NLONS, NLEVS, NAZMTH |
---|
802 | REAL SLOPE, KSTAR(NLONS), F1, F2, F3 |
---|
803 | REAL M_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
804 | REAL SIGMA_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
805 | REAL SIGALPMC(NLONS,NLEVS,NAZMTH) |
---|
806 | REAL SIGSQH_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
807 | REAL SIGSQMCW(NLONS,NLEVS,NAZMTH) |
---|
808 | REAL SIGMA_T(NLONS,NLEVS) |
---|
809 | REAL SIGMATM(NLONS,NLEVS) |
---|
810 | REAL AK_ALPHA(NLONS,NAZMTH) |
---|
811 | REAL V_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
812 | REAL VISC_MOL(NLONS,NLEVS) |
---|
813 | REAL F2MOD(NLONS,NLEVS) |
---|
814 | REAL DENSITY(NLONS,NLEVS), DENSB(NLONS) |
---|
815 | REAL BVFREQ(NLONS,NLEVS), BVFB(NLONS), RMS_WIND(NLONS) |
---|
816 | REAL I_ALPHA(NLONS,NAZMTH), MMIN_ALPHA(NLONS,NAZMTH) |
---|
817 | C |
---|
818 | LOGICAL LORMS(NLONS) |
---|
819 | C |
---|
820 | C Internal variables. |
---|
821 | C |
---|
822 | INTEGER I, L, N, LSTART, LEND, LINCR, LBELOW |
---|
823 | REAL M_SUB_M_TURB, M_SUB_M_MOL, M_TRIAL |
---|
824 | REAL VISC, VISC_MIN, AZFAC, SP1 |
---|
825 | |
---|
826 | cc REAL N_OVER_M(1000), SIGFAC(1000) |
---|
827 | |
---|
828 | REAL N_OVER_M(NLONS), SIGFAC(NLONS) |
---|
829 | DATA VISC_MIN / 1.E-10 / |
---|
830 | C----------------------------------------------------------------------- |
---|
831 | C |
---|
832 | |
---|
833 | C PRINT *,'IN HINES_WAVNUM' |
---|
834 | SP1 = SLOPE + 1. |
---|
835 | C |
---|
836 | C Indices of levels to process. |
---|
837 | C |
---|
838 | IF (LEVBOT.GT.LEVTOP) THEN |
---|
839 | LSTART = LEVBOT - 1 |
---|
840 | LEND = LEVTOP |
---|
841 | LINCR = -1 |
---|
842 | ELSE |
---|
843 | write(6,1) |
---|
844 | 1 format(2x,' error: IORDER NOT ONE! ') |
---|
845 | END IF |
---|
846 | C |
---|
847 | C Use horizontal isotropy to calculate azimuthal variances at bottom level. |
---|
848 | C |
---|
849 | AZFAC = 1. / REAL(NAZ) |
---|
850 | DO 20 N = 1,NAZ |
---|
851 | DO 10 I = IL1,IL2 |
---|
852 | SIGSQH_ALPHA(I,LEVBOT,N) = AZFAC * RMS_WIND(I)**2 |
---|
853 | 10 CONTINUE |
---|
854 | 20 CONTINUE |
---|
855 | C |
---|
856 | C Velocity variances at bottom level. |
---|
857 | C |
---|
858 | CALL HINES_SIGMA ( SIGMA_T, SIGMA_ALPHA, |
---|
859 | ^ SIGSQH_ALPHA, NAZ, LEVBOT, |
---|
860 | ^ IL1, IL2, NLONS, NLEVS, NAZMTH) |
---|
861 | c |
---|
862 | CALL HINES_SIGMA ( SIGMATM, SIGALPMC, |
---|
863 | ^ SIGSQMCW, NAZ, LEVBOT, |
---|
864 | ^ IL1, IL2, NLONS, NLEVS, NAZMTH) |
---|
865 | C |
---|
866 | C Calculate cutoff wavenumber and spectral amplitude factor |
---|
867 | C at bottom level where it is assumed that background winds vanish |
---|
868 | C and also initialize minimum value of cutoff wavnumber. |
---|
869 | C |
---|
870 | DO 40 N = 1,NAZ |
---|
871 | DO 30 I = IL1,IL2 |
---|
872 | IF (LORMS(I)) THEN |
---|
873 | M_ALPHA(I,LEVBOT,N) = BVFB(I) / |
---|
874 | ^ ( F1 * SIGMA_ALPHA(I,LEVBOT,N) |
---|
875 | ^ + F2 * SIGMA_T(I,LEVBOT) ) |
---|
876 | AK_ALPHA(I,N) = SIGSQH_ALPHA(I,LEVBOT,N) |
---|
877 | ^ / ( M_ALPHA(I,LEVBOT,N)**SP1 / SP1 ) |
---|
878 | MMIN_ALPHA(I,N) = M_ALPHA(I,LEVBOT,N) |
---|
879 | ENDIF |
---|
880 | 30 CONTINUE |
---|
881 | 40 CONTINUE |
---|
882 | C |
---|
883 | C Calculate quantities from the bottom upwards, |
---|
884 | C starting one level above bottom. |
---|
885 | C |
---|
886 | DO 150 L = LSTART,LEND,LINCR |
---|
887 | C |
---|
888 | C Level beneath present level. |
---|
889 | C |
---|
890 | LBELOW = L - LINCR |
---|
891 | C |
---|
892 | C Calculate N/m_M where m_M is maximum permissible value of the vertical |
---|
893 | C wavenumber (i.e., m > m_M are obliterated) and N is buoyancy frequency. |
---|
894 | C m_M is taken as the smaller of the instability-induced |
---|
895 | C wavenumber (M_SUB_M_TURB) and that imposed by molecular viscosity |
---|
896 | C (M_SUB_M_MOL). Since variance at this level is not yet known |
---|
897 | C use value at level below. |
---|
898 | C |
---|
899 | DO 50 I = IL1,IL2 |
---|
900 | IF (LORMS(I)) THEN |
---|
901 | c |
---|
902 | F2MFAC=SIGMATM(I,LBELOW)**2 |
---|
903 | F2MOD(I,LBELOW) =1.+ 2.*F2MFAC |
---|
904 | ^ / ( F2MFAC+SIGMA_T(I,LBELOW)**2 ) |
---|
905 | c |
---|
906 | VISC = AMAX1 ( VISC_MOL(I,L), VISC_MIN ) |
---|
907 | M_SUB_M_TURB = BVFREQ(I,L) |
---|
908 | ^ / ( F2 *F2MOD(I,LBELOW)*SIGMA_T(I,LBELOW)) |
---|
909 | M_SUB_M_MOL = (BVFREQ(I,L)*KSTAR(I)/VISC)**0.33333333/F3 |
---|
910 | IF (M_SUB_M_TURB .LT. M_SUB_M_MOL) THEN |
---|
911 | N_OVER_M(I) = F2 *F2MOD(I,LBELOW)*SIGMA_T(I,LBELOW) |
---|
912 | ELSE |
---|
913 | N_OVER_M(I) = BVFREQ(I,L) / M_SUB_M_MOL |
---|
914 | END IF |
---|
915 | ENDIF |
---|
916 | 50 CONTINUE |
---|
917 | C |
---|
918 | C Calculate cutoff wavenumber at this level. |
---|
919 | C |
---|
920 | DO 70 N = 1,NAZ |
---|
921 | DO 60 I = IL1,IL2 |
---|
922 | IF (LORMS(I)) THEN |
---|
923 | C |
---|
924 | C Calculate trial value (since variance at this level is not yet known |
---|
925 | C use value at level below). If trial value is negative or if it exceeds |
---|
926 | C minimum value (not permitted) then set it to minimum value. |
---|
927 | C |
---|
928 | M_TRIAL = BVFB(I) / ( F1 * ( SIGMA_ALPHA(I,LBELOW,N)+ |
---|
929 | ^ SIGALPMC(I,LBELOW,N)) + N_OVER_M(I) + V_ALPHA(I,L,N) ) |
---|
930 | IF (M_TRIAL.LE.0. .OR. M_TRIAL.GT.MMIN_ALPHA(I,N)) THEN |
---|
931 | M_TRIAL = MMIN_ALPHA(I,N) |
---|
932 | END IF |
---|
933 | M_ALPHA(I,L,N) = M_TRIAL |
---|
934 | C |
---|
935 | C Reset minimum value of cutoff wavenumber if necessary. |
---|
936 | C |
---|
937 | IF (M_ALPHA(I,L,N) .LT. MMIN_ALPHA(I,N)) THEN |
---|
938 | MMIN_ALPHA(I,N) = M_ALPHA(I,L,N) |
---|
939 | END IF |
---|
940 | C |
---|
941 | ENDIF |
---|
942 | 60 CONTINUE |
---|
943 | 70 CONTINUE |
---|
944 | C |
---|
945 | C Calculate the Hines integral at this level. |
---|
946 | C |
---|
947 | CALL HINES_INTGRL ( I_ALPHA, |
---|
948 | ^ V_ALPHA, M_ALPHA, BVFB, SLOPE, NAZ, |
---|
949 | ^ L, IL1, IL2, NLONS, NLEVS, NAZMTH, |
---|
950 | ^ LORMS ) |
---|
951 | |
---|
952 | C |
---|
953 | C Calculate the velocity variances at this level. |
---|
954 | C |
---|
955 | DO 80 I = IL1,IL2 |
---|
956 | SIGFAC(I) = DENSB(I) / DENSITY(I,L) |
---|
957 | ^ * BVFREQ(I,L) / BVFB(I) |
---|
958 | 80 CONTINUE |
---|
959 | DO 100 N = 1,NAZ |
---|
960 | DO 90 I = IL1,IL2 |
---|
961 | SIGSQH_ALPHA(I,L,N) = SIGFAC(I) * AK_ALPHA(I,N) |
---|
962 | ^ * I_ALPHA(I,N) |
---|
963 | 90 CONTINUE |
---|
964 | 100 CONTINUE |
---|
965 | CALL HINES_SIGMA ( SIGMA_T, SIGMA_ALPHA, |
---|
966 | ^ SIGSQH_ALPHA, NAZ, L, |
---|
967 | ^ IL1, IL2, NLONS, NLEVS, NAZMTH ) |
---|
968 | c |
---|
969 | CALL HINES_SIGMA ( SIGMATM, SIGALPMC, |
---|
970 | ^ SIGSQMCW, NAZ, L, |
---|
971 | ^ IL1, IL2, NLONS, NLEVS, NAZMTH ) |
---|
972 | C |
---|
973 | C End of level loop. |
---|
974 | C |
---|
975 | 150 CONTINUE |
---|
976 | C |
---|
977 | RETURN |
---|
978 | C----------------------------------------------------------------------- |
---|
979 | END |
---|
980 | |
---|
981 | SUBROUTINE HINES_WIND (V_ALPHA,VEL_U,VEL_V, |
---|
982 | 1 NAZ,IL1,IL2,LEV1,LEV2,NLONS,NLEVS,NAZMTH) |
---|
983 | C |
---|
984 | C This routine calculates the azimuthal horizontal background wind components |
---|
985 | C on a longitude by altitude grid for the case of 4 or 8 azimuths for |
---|
986 | C the Hines' Doppler spread GWD parameterization scheme. |
---|
987 | C |
---|
988 | C Aug. 7/95 - C. McLandress |
---|
989 | C |
---|
990 | C Output arguement: |
---|
991 | C |
---|
992 | C * V_ALPHA = background wind component at each azimuth (m/s). |
---|
993 | C * (note: first azimuth is in eastward direction |
---|
994 | C * and rotate in counterclockwise direction.) |
---|
995 | C |
---|
996 | C Input arguements: |
---|
997 | C |
---|
998 | C * VEL_U = background zonal wind component (m/s). |
---|
999 | C * VEL_V = background meridional wind component (m/s). |
---|
1000 | C * NAZ = actual number of horizontal azimuths used (must be 4 or 8). |
---|
1001 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
1002 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
1003 | C * LEV1 = first altitude level to use (LEV1 >=1). |
---|
1004 | C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
---|
1005 | C * NLONS = number of longitudes. |
---|
1006 | C * NLEVS = number of vertical levels. |
---|
1007 | C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
---|
1008 | C |
---|
1009 | C Constants in DATA statements. |
---|
1010 | C |
---|
1011 | C * COS45 = cosine of 45 degrees. |
---|
1012 | C * UMIN = minimum allowable value for zonal or meridional |
---|
1013 | C * wind component (m/s). |
---|
1014 | C |
---|
1015 | C Subroutine arguements. |
---|
1016 | C |
---|
1017 | INTEGER NAZ, IL1, IL2, LEV1, LEV2 |
---|
1018 | INTEGER NLONS, NLEVS, NAZMTH |
---|
1019 | REAL V_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1020 | REAL VEL_U(NLONS,NLEVS), VEL_V(NLONS,NLEVS) |
---|
1021 | C |
---|
1022 | C Internal variables. |
---|
1023 | C |
---|
1024 | INTEGER I, L |
---|
1025 | REAL U, V, COS45, UMIN |
---|
1026 | C |
---|
1027 | DATA COS45 / 0.7071068 / |
---|
1028 | DATA UMIN / 0.001 / |
---|
1029 | C----------------------------------------------------------------------- |
---|
1030 | C |
---|
1031 | C Case with 4 azimuths. |
---|
1032 | C |
---|
1033 | |
---|
1034 | C PRINT *,'IN HINES_WIND' |
---|
1035 | IF (NAZ.EQ.4) THEN |
---|
1036 | DO 20 L = LEV1,LEV2 |
---|
1037 | DO 10 I = IL1,IL2 |
---|
1038 | U = VEL_U(I,L) |
---|
1039 | V = VEL_V(I,L) |
---|
1040 | IF (ABS(U) .LT. UMIN) U = UMIN |
---|
1041 | IF (ABS(V) .LT. UMIN) V = UMIN |
---|
1042 | V_ALPHA(I,L,1) = U |
---|
1043 | V_ALPHA(I,L,2) = V |
---|
1044 | V_ALPHA(I,L,3) = - U |
---|
1045 | V_ALPHA(I,L,4) = - V |
---|
1046 | 10 CONTINUE |
---|
1047 | 20 CONTINUE |
---|
1048 | END IF |
---|
1049 | C |
---|
1050 | C Case with 8 azimuths. |
---|
1051 | C |
---|
1052 | IF (NAZ.EQ.8) THEN |
---|
1053 | DO 40 L = LEV1,LEV2 |
---|
1054 | DO 30 I = IL1,IL2 |
---|
1055 | U = VEL_U(I,L) |
---|
1056 | V = VEL_V(I,L) |
---|
1057 | IF (ABS(U) .LT. UMIN) U = UMIN |
---|
1058 | IF (ABS(V) .LT. UMIN) V = UMIN |
---|
1059 | V_ALPHA(I,L,1) = U |
---|
1060 | V_ALPHA(I,L,2) = COS45 * ( V + U ) |
---|
1061 | V_ALPHA(I,L,3) = V |
---|
1062 | V_ALPHA(I,L,4) = COS45 * ( V - U ) |
---|
1063 | V_ALPHA(I,L,5) = - U |
---|
1064 | V_ALPHA(I,L,6) = - V_ALPHA(I,L,2) |
---|
1065 | V_ALPHA(I,L,7) = - V |
---|
1066 | V_ALPHA(I,L,8) = - V_ALPHA(I,L,4) |
---|
1067 | 30 CONTINUE |
---|
1068 | 40 CONTINUE |
---|
1069 | END IF |
---|
1070 | C |
---|
1071 | RETURN |
---|
1072 | C----------------------------------------------------------------------- |
---|
1073 | END |
---|
1074 | |
---|
1075 | SUBROUTINE HINES_FLUX (FLUX_U,FLUX_V,DRAG_U,DRAG_V,ALT,DENSITY, |
---|
1076 | 1 DENSB,M_ALPHA,AK_ALPHA,K_ALPHA,SLOPE, |
---|
1077 | 2 NAZ,IL1,IL2,LEV1,LEV2,NLONS,NLEVS,NAZMTH, |
---|
1078 | 3 LORMS) |
---|
1079 | C |
---|
1080 | C Calculate zonal and meridional components of the vertical flux |
---|
1081 | C of horizontal momentum and corresponding wave drag (force per unit mass) |
---|
1082 | C on a longitude by altitude grid for the Hines' Doppler spread |
---|
1083 | C GWD parameterization scheme. |
---|
1084 | C NOTE: only 4 or 8 azimuths can be used. |
---|
1085 | C |
---|
1086 | C Aug. 6/95 - C. McLandress |
---|
1087 | C |
---|
1088 | C Output arguements: |
---|
1089 | C |
---|
1090 | C * FLUX_U = zonal component of vertical momentum flux (Pascals) |
---|
1091 | C * FLUX_V = meridional component of vertical momentum flux (Pascals) |
---|
1092 | C * DRAG_U = zonal component of drag (m/s^2). |
---|
1093 | C * DRAG_V = meridional component of drag (m/s^2). |
---|
1094 | C |
---|
1095 | C Input arguements: |
---|
1096 | C |
---|
1097 | C * ALT = altitudes (m). |
---|
1098 | C * DENSITY = background density (kg/m^3). |
---|
1099 | C * DENSB = background density at bottom level (kg/m^3). |
---|
1100 | C * M_ALPHA = cutoff vertical wavenumber (1/m). |
---|
1101 | C * AK_ALPHA = spectral amplitude factor (i.e., {AjKj} in m^4/s^2). |
---|
1102 | C * K_ALPHA = horizontal wavenumber (1/m). |
---|
1103 | C * SLOPE = slope of incident vertical wavenumber spectrum. |
---|
1104 | C * NAZ = actual number of horizontal azimuths used (must be 4 or 8). |
---|
1105 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
1106 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
1107 | C * LEV1 = first altitude level to use (LEV1 >=1). |
---|
1108 | C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
---|
1109 | C * NLONS = number of longitudes. |
---|
1110 | C * NLEVS = number of vertical levels. |
---|
1111 | C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
---|
1112 | C |
---|
1113 | C * LORMS = .TRUE. for drag computation |
---|
1114 | C |
---|
1115 | C Constant in DATA statement. |
---|
1116 | C |
---|
1117 | C * COS45 = cosine of 45 degrees. |
---|
1118 | C |
---|
1119 | C Subroutine arguements. |
---|
1120 | C |
---|
1121 | INTEGER NAZ, IL1, IL2, LEV1, LEV2 |
---|
1122 | INTEGER NLONS, NLEVS, NAZMTH |
---|
1123 | REAL SLOPE |
---|
1124 | REAL FLUX_U(NLONS,NLEVS), FLUX_V(NLONS,NLEVS) |
---|
1125 | REAL DRAG_U(NLONS,NLEVS), DRAG_V(NLONS,NLEVS) |
---|
1126 | REAL ALT(NLONS,NLEVS), DENSITY(NLONS,NLEVS), DENSB(NLONS) |
---|
1127 | REAL M_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1128 | REAL AK_ALPHA(NLONS,NAZMTH), K_ALPHA(NLONS,NAZMTH) |
---|
1129 | C |
---|
1130 | LOGICAL LORMS(NLONS) |
---|
1131 | C |
---|
1132 | C Internal variables. |
---|
1133 | C |
---|
1134 | INTEGER I, L, LEV1P, LEV2M |
---|
1135 | REAL COS45, PROD2, PROD4, PROD6, PROD8, DENDZ, DENDZ2 |
---|
1136 | DATA COS45 / 0.7071068 / |
---|
1137 | C----------------------------------------------------------------------- |
---|
1138 | C |
---|
1139 | LEV1P = LEV1 + 1 |
---|
1140 | LEV2M = LEV2 - 1 |
---|
1141 | LEV2P = LEV2 + 1 |
---|
1142 | C |
---|
1143 | C Sum over azimuths for case where SLOPE = 1. |
---|
1144 | C |
---|
1145 | IF (SLOPE.EQ.1.) THEN |
---|
1146 | C |
---|
1147 | C Case with 4 azimuths. |
---|
1148 | C |
---|
1149 | IF (NAZ.EQ.4) THEN |
---|
1150 | DO 20 L = LEV1,LEV2 |
---|
1151 | DO 10 I = IL1,IL2 |
---|
1152 | FLUX_U(I,L) = AK_ALPHA(I,1)*K_ALPHA(I,1)*M_ALPHA(I,L,1) |
---|
1153 | ^ - AK_ALPHA(I,3)*K_ALPHA(I,3)*M_ALPHA(I,L,3) |
---|
1154 | FLUX_V(I,L) = AK_ALPHA(I,2)*K_ALPHA(I,2)*M_ALPHA(I,L,2) |
---|
1155 | ^ - AK_ALPHA(I,4)*K_ALPHA(I,4)*M_ALPHA(I,L,4) |
---|
1156 | 10 CONTINUE |
---|
1157 | 20 CONTINUE |
---|
1158 | END IF |
---|
1159 | C |
---|
1160 | C Case with 8 azimuths. |
---|
1161 | C |
---|
1162 | IF (NAZ.EQ.8) THEN |
---|
1163 | DO 40 L = LEV1,LEV2 |
---|
1164 | DO 30 I = IL1,IL2 |
---|
1165 | PROD2 = AK_ALPHA(I,2)*K_ALPHA(I,2)*M_ALPHA(I,L,2) |
---|
1166 | PROD4 = AK_ALPHA(I,4)*K_ALPHA(I,4)*M_ALPHA(I,L,4) |
---|
1167 | PROD6 = AK_ALPHA(I,6)*K_ALPHA(I,6)*M_ALPHA(I,L,6) |
---|
1168 | PROD8 = AK_ALPHA(I,8)*K_ALPHA(I,8)*M_ALPHA(I,L,8) |
---|
1169 | FLUX_U(I,L) = |
---|
1170 | ^ AK_ALPHA(I,1)*K_ALPHA(I,1)*M_ALPHA(I,L,1) |
---|
1171 | ^ - AK_ALPHA(I,5)*K_ALPHA(I,5)*M_ALPHA(I,L,5) |
---|
1172 | ^ + COS45 * ( PROD2 - PROD4 - PROD6 + PROD8 ) |
---|
1173 | FLUX_V(I,L) = |
---|
1174 | ^ AK_ALPHA(I,3)*K_ALPHA(I,3)*M_ALPHA(I,L,3) |
---|
1175 | ^ - AK_ALPHA(I,7)*K_ALPHA(I,7)*M_ALPHA(I,L,7) |
---|
1176 | ^ + COS45 * ( PROD2 + PROD4 - PROD6 - PROD8 ) |
---|
1177 | 30 CONTINUE |
---|
1178 | 40 CONTINUE |
---|
1179 | END IF |
---|
1180 | C |
---|
1181 | END IF |
---|
1182 | C |
---|
1183 | C Sum over azimuths for case where SLOPE not equal to 1. |
---|
1184 | C |
---|
1185 | IF (SLOPE.NE.1.) THEN |
---|
1186 | C |
---|
1187 | C Case with 4 azimuths. |
---|
1188 | C |
---|
1189 | IF (NAZ.EQ.4) THEN |
---|
1190 | DO 60 L = LEV1,LEV2 |
---|
1191 | DO 50 I = IL1,IL2 |
---|
1192 | FLUX_U(I,L) = |
---|
1193 | ^ AK_ALPHA(I,1)*K_ALPHA(I,1)*M_ALPHA(I,L,1)**SLOPE |
---|
1194 | ^ - AK_ALPHA(I,3)*K_ALPHA(I,3)*M_ALPHA(I,L,3)**SLOPE |
---|
1195 | FLUX_V(I,L) = |
---|
1196 | ^ AK_ALPHA(I,2)*K_ALPHA(I,2)*M_ALPHA(I,L,2)**SLOPE |
---|
1197 | ^ - AK_ALPHA(I,4)*K_ALPHA(I,4)*M_ALPHA(I,L,4)**SLOPE |
---|
1198 | 50 CONTINUE |
---|
1199 | 60 CONTINUE |
---|
1200 | END IF |
---|
1201 | C |
---|
1202 | C Case with 8 azimuths. |
---|
1203 | C |
---|
1204 | IF (NAZ.EQ.8) THEN |
---|
1205 | DO 80 L = LEV1,LEV2 |
---|
1206 | DO 70 I = IL1,IL2 |
---|
1207 | PROD2 = AK_ALPHA(I,2)*K_ALPHA(I,2)*M_ALPHA(I,L,2)**SLOPE |
---|
1208 | PROD4 = AK_ALPHA(I,4)*K_ALPHA(I,4)*M_ALPHA(I,L,4)**SLOPE |
---|
1209 | PROD6 = AK_ALPHA(I,6)*K_ALPHA(I,6)*M_ALPHA(I,L,6)**SLOPE |
---|
1210 | PROD8 = AK_ALPHA(I,8)*K_ALPHA(I,8)*M_ALPHA(I,L,8)**SLOPE |
---|
1211 | FLUX_U(I,L) = |
---|
1212 | ^ AK_ALPHA(I,1)*K_ALPHA(I,1)*M_ALPHA(I,L,1)**SLOPE |
---|
1213 | ^ - AK_ALPHA(I,5)*K_ALPHA(I,5)*M_ALPHA(I,L,5)**SLOPE |
---|
1214 | ^ + COS45 * ( PROD2 - PROD4 - PROD6 + PROD8 ) |
---|
1215 | FLUX_V(I,L) = |
---|
1216 | ^ AK_ALPHA(I,3)*K_ALPHA(I,3)*M_ALPHA(I,L,3)**SLOPE |
---|
1217 | ^ - AK_ALPHA(I,7)*K_ALPHA(I,7)*M_ALPHA(I,L,7)**SLOPE |
---|
1218 | ^ + COS45 * ( PROD2 + PROD4 - PROD6 - PROD8 ) |
---|
1219 | 70 CONTINUE |
---|
1220 | 80 CONTINUE |
---|
1221 | END IF |
---|
1222 | C |
---|
1223 | END IF |
---|
1224 | C |
---|
1225 | C Calculate flux from sum. |
---|
1226 | C |
---|
1227 | DO 100 L = LEV1,LEV2 |
---|
1228 | DO 90 I = IL1,IL2 |
---|
1229 | FLUX_U(I,L) = FLUX_U(I,L) * DENSB(I) / SLOPE |
---|
1230 | FLUX_V(I,L) = FLUX_V(I,L) * DENSB(I) / SLOPE |
---|
1231 | 90 CONTINUE |
---|
1232 | 100 CONTINUE |
---|
1233 | C |
---|
1234 | C Calculate drag at intermediate levels using centered differences |
---|
1235 | C |
---|
1236 | DO 120 L = LEV1P,LEV2M |
---|
1237 | DO 110 I = IL1,IL2 |
---|
1238 | IF (LORMS(I)) THEN |
---|
1239 | ccc DENDZ2 = DENSITY(I,L) * ( ALT(I,L+1) - ALT(I,L-1) ) |
---|
1240 | DENDZ2 = DENSITY(I,L) * ( ALT(I,L-1) - ALT(I,L) ) |
---|
1241 | ccc DRAG_U(I,L) = - ( FLUX_U(I,L+1) - FLUX_U(I,L-1) ) / DENDZ2 |
---|
1242 | DRAG_U(I,L) = - ( FLUX_U(I,L-1) - FLUX_U(I,L) ) / DENDZ2 |
---|
1243 | ccc DRAG_V(I,L) = - ( FLUX_V(I,L+1) - FLUX_V(I,L-1) ) / DENDZ2 |
---|
1244 | DRAG_V(I,L) = - ( FLUX_V(I,L-1) - FLUX_V(I,L) ) / DENDZ2 |
---|
1245 | |
---|
1246 | ENDIF |
---|
1247 | 110 CONTINUE |
---|
1248 | 120 CONTINUE |
---|
1249 | C |
---|
1250 | C Drag at first and last levels using one-side differences. |
---|
1251 | C |
---|
1252 | DO 130 I = IL1,IL2 |
---|
1253 | IF (LORMS(I)) THEN |
---|
1254 | DENDZ = DENSITY(I,LEV1) * ( ALT(I,LEV1) - ALT(I,LEV1P) ) |
---|
1255 | DRAG_U(I,LEV1) = FLUX_U(I,LEV1) / DENDZ |
---|
1256 | DRAG_V(I,LEV1) = FLUX_V(I,LEV1) / DENDZ |
---|
1257 | ENDIF |
---|
1258 | 130 CONTINUE |
---|
1259 | DO 140 I = IL1,IL2 |
---|
1260 | IF (LORMS(I)) THEN |
---|
1261 | DENDZ = DENSITY(I,LEV2) * ( ALT(I,LEV2M) - ALT(I,LEV2) ) |
---|
1262 | DRAG_U(I,LEV2) = - ( FLUX_U(I,LEV2M) - FLUX_U(I,LEV2) ) / DENDZ |
---|
1263 | DRAG_V(I,LEV2) = - ( FLUX_V(I,LEV2M) - FLUX_V(I,LEV2) ) / DENDZ |
---|
1264 | ENDIF |
---|
1265 | 140 CONTINUE |
---|
1266 | IF (NLEVS .GT. LEV2) THEN |
---|
1267 | DO 150 I = IL1,IL2 |
---|
1268 | IF (LORMS(I)) THEN |
---|
1269 | DENDZ = DENSITY(I,LEV2P) * ( ALT(I,LEV2) - ALT(I,LEV2P) ) |
---|
1270 | DRAG_U(I,LEV2P) = - FLUX_U(I,LEV2) / DENDZ |
---|
1271 | DRAG_V(I,LEV2P) = - FLUX_V(I,LEV2) / DENDZ |
---|
1272 | ENDIF |
---|
1273 | 150 CONTINUE |
---|
1274 | ENDIF |
---|
1275 | C |
---|
1276 | RETURN |
---|
1277 | C----------------------------------------------------------------------- |
---|
1278 | END |
---|
1279 | |
---|
1280 | SUBROUTINE HINES_HEAT (HEAT,DIFFCO,M_ALPHA,DMDZ_ALPHA, |
---|
1281 | 1 AK_ALPHA,K_ALPHA,BVFREQ,DENSITY,DENSB, |
---|
1282 | 2 SIGMA_T,VISC_MOL,KSTAR,SLOPE,F2,F3,F5,F6, |
---|
1283 | 3 NAZ,IL1,IL2,LEV1,LEV2,NLONS,NLEVS,NAZMTH) |
---|
1284 | C |
---|
1285 | C This routine calculates the gravity wave induced heating and |
---|
1286 | C diffusion coefficient on a longitude by altitude grid for |
---|
1287 | C the Hines' Doppler spread gravity wave drag parameterization scheme. |
---|
1288 | C |
---|
1289 | C Aug. 6/95 - C. McLandress |
---|
1290 | C |
---|
1291 | C Output arguements: |
---|
1292 | C |
---|
1293 | C * HEAT = gravity wave heating (K/sec). |
---|
1294 | C * DIFFCO = diffusion coefficient (m^2/sec) |
---|
1295 | C |
---|
1296 | C Input arguements: |
---|
1297 | C |
---|
1298 | C * M_ALPHA = cutoff vertical wavenumber (1/m). |
---|
1299 | C * DMDZ_ALPHA = vertical derivative of cutoff wavenumber. |
---|
1300 | C * AK_ALPHA = spectral amplitude factor of each azimuth |
---|
1301 | C (i.e., {AjKj} in m^4/s^2). |
---|
1302 | C * K_ALPHA = horizontal wavenumber of each azimuth (1/m). |
---|
1303 | C * BVFREQ = background Brunt Vassala frequency (rad/sec). |
---|
1304 | C * DENSITY = background density (kg/m^3). |
---|
1305 | C * DENSB = background density at bottom level (kg/m^3). |
---|
1306 | C * SIGMA_T = total rms horizontal wind (m/s). |
---|
1307 | C * VISC_MOL = molecular viscosity (m^2/s). |
---|
1308 | C * KSTAR = typical gravity wave horizontal wavenumber (1/m). |
---|
1309 | C * SLOPE = slope of incident vertical wavenumber spectrum. |
---|
1310 | C * F2,F3,F5,F6 = Hines's fudge factors. |
---|
1311 | C * NAZ = actual number of horizontal azimuths used. |
---|
1312 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
1313 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
1314 | C * LEV1 = first altitude level to use (LEV1 >=1). |
---|
1315 | C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
---|
1316 | C * NLONS = number of longitudes. |
---|
1317 | C * NLEVS = number of vertical levels. |
---|
1318 | C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
---|
1319 | C |
---|
1320 | INTEGER NAZ, IL1, IL2, LEV1, LEV2, NLONS, NLEVS, NAZMTH |
---|
1321 | REAL KSTAR(NLONS), SLOPE, F2, F3, F5, F6 |
---|
1322 | REAL HEAT(NLONS,NLEVS), DIFFCO(NLONS,NLEVS) |
---|
1323 | REAL M_ALPHA(NLONS,NLEVS,NAZMTH), DMDZ_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1324 | REAL AK_ALPHA(NLONS,NAZMTH), K_ALPHA(NLONS,NAZMTH) |
---|
1325 | REAL BVFREQ(NLONS,NLEVS), DENSITY(NLONS,NLEVS), DENSB(NLONS) |
---|
1326 | REAL SIGMA_T(NLONS,NLEVS), VISC_MOL(NLONS,NLEVS) |
---|
1327 | C |
---|
1328 | C Internal variables. |
---|
1329 | C |
---|
1330 | INTEGER I, L, N |
---|
1331 | REAL M_SUB_M_TURB, M_SUB_M_MOL, M_SUB_M, HEATNG |
---|
1332 | REAL VISC, VISC_MIN, CPGAS, SM1 |
---|
1333 | C |
---|
1334 | C specific heat at constant pressure |
---|
1335 | C |
---|
1336 | DATA CPGAS / 1004. / |
---|
1337 | C |
---|
1338 | C minimum permissible viscosity |
---|
1339 | C |
---|
1340 | DATA VISC_MIN / 1.E-10 / |
---|
1341 | C----------------------------------------------------------------------- |
---|
1342 | C |
---|
1343 | C Initialize heating array. |
---|
1344 | C |
---|
1345 | DO 20 L = 1,NLEVS |
---|
1346 | DO 10 I = 1,NLONS |
---|
1347 | HEAT(I,L) = 0. |
---|
1348 | 10 CONTINUE |
---|
1349 | 20 CONTINUE |
---|
1350 | C |
---|
1351 | C Perform sum over azimuths for case where SLOPE = 1. |
---|
1352 | C |
---|
1353 | IF (SLOPE.EQ.1.) THEN |
---|
1354 | DO 50 N = 1,NAZ |
---|
1355 | DO 40 L = LEV1,LEV2 |
---|
1356 | DO 30 I = IL1,IL2 |
---|
1357 | HEAT(I,L) = HEAT(I,L) + AK_ALPHA(I,N) * K_ALPHA(I,N) |
---|
1358 | ^ * DMDZ_ALPHA(I,L,N) |
---|
1359 | 30 CONTINUE |
---|
1360 | 40 CONTINUE |
---|
1361 | 50 CONTINUE |
---|
1362 | END IF |
---|
1363 | C |
---|
1364 | C Perform sum over azimuths for case where SLOPE not 1. |
---|
1365 | C |
---|
1366 | IF (SLOPE.NE.1.) THEN |
---|
1367 | SM1 = SLOPE - 1. |
---|
1368 | DO 80 N = 1,NAZ |
---|
1369 | DO 70 L = LEV1,LEV2 |
---|
1370 | DO 60 I = IL1,IL2 |
---|
1371 | HEAT(I,L) = HEAT(I,L) + AK_ALPHA(I,N) * K_ALPHA(I,N) |
---|
1372 | ^ * M_ALPHA(I,L,N)**SM1 * DMDZ_ALPHA(I,L,N) |
---|
1373 | 60 CONTINUE |
---|
1374 | 70 CONTINUE |
---|
1375 | 80 CONTINUE |
---|
1376 | END IF |
---|
1377 | C |
---|
1378 | C Heating and diffusion. |
---|
1379 | C |
---|
1380 | DO 100 L = LEV1,LEV2 |
---|
1381 | DO 90 I = IL1,IL2 |
---|
1382 | C |
---|
1383 | C Maximum permissible value of cutoff wavenumber is the smaller |
---|
1384 | C of the instability-induced wavenumber (M_SUB_M_TURB) and |
---|
1385 | C that imposed by molecular viscosity (M_SUB_M_MOL). |
---|
1386 | C |
---|
1387 | VISC = AMAX1 ( VISC_MOL(I,L), VISC_MIN ) |
---|
1388 | M_SUB_M_TURB = BVFREQ(I,L) / ( F2 * SIGMA_T(I,L) ) |
---|
1389 | M_SUB_M_MOL = (BVFREQ(I,L)*KSTAR(I)/VISC)**0.33333333/F3 |
---|
1390 | M_SUB_M = AMIN1 ( M_SUB_M_TURB, M_SUB_M_MOL ) |
---|
1391 | C |
---|
1392 | HEATNG = - HEAT(I,L) * F5 * BVFREQ(I,L) / M_SUB_M |
---|
1393 | ^ * DENSB(I) / DENSITY(I,L) |
---|
1394 | DIFFCO(I,L) = F6 * HEATNG**0.33333333 / M_SUB_M**1.33333333 |
---|
1395 | HEAT(I,L) = HEATNG / CPGAS |
---|
1396 | C |
---|
1397 | 90 CONTINUE |
---|
1398 | 100 CONTINUE |
---|
1399 | C |
---|
1400 | RETURN |
---|
1401 | C----------------------------------------------------------------------- |
---|
1402 | END |
---|
1403 | |
---|
1404 | SUBROUTINE HINES_SIGMA (SIGMA_T,SIGMA_ALPHA,SIGSQH_ALPHA, |
---|
1405 | 1 NAZ,LEV,IL1,IL2,NLONS,NLEVS,NAZMTH) |
---|
1406 | C |
---|
1407 | C This routine calculates the total rms and azimuthal rms horizontal |
---|
1408 | C velocities at a given level on a longitude by altitude grid for |
---|
1409 | C the Hines' Doppler spread GWD parameterization scheme. |
---|
1410 | C NOTE: only four or eight azimuths can be used. |
---|
1411 | C |
---|
1412 | C Aug. 7/95 - C. McLandress |
---|
1413 | C |
---|
1414 | C Output arguements: |
---|
1415 | C |
---|
1416 | C * SIGMA_T = total rms horizontal wind (m/s). |
---|
1417 | C * SIGMA_ALPHA = total rms wind in each azimuth (m/s). |
---|
1418 | C |
---|
1419 | C Input arguements: |
---|
1420 | C |
---|
1421 | C * SIGSQH_ALPHA = portion of wind variance from waves having wave |
---|
1422 | C * normals in the alpha azimuth (m/s). |
---|
1423 | C * NAZ = actual number of horizontal azimuths used (must be 4 or 8). |
---|
1424 | C * LEV = altitude level to process. |
---|
1425 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
1426 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
1427 | C * NLONS = number of longitudes. |
---|
1428 | C * NLEVS = number of vertical levels. |
---|
1429 | C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
---|
1430 | C |
---|
1431 | C Subroutine arguements. |
---|
1432 | C |
---|
1433 | INTEGER LEV, NAZ, IL1, IL2 |
---|
1434 | INTEGER NLONS, NLEVS, NAZMTH |
---|
1435 | REAL SIGMA_T(NLONS,NLEVS) |
---|
1436 | REAL SIGMA_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1437 | REAL SIGSQH_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1438 | C |
---|
1439 | C Internal variables. |
---|
1440 | C |
---|
1441 | INTEGER I, N |
---|
1442 | REAL SUM_EVEN, SUM_ODD |
---|
1443 | C----------------------------------------------------------------------- |
---|
1444 | C |
---|
1445 | C Calculate azimuthal rms velocity for the 4 azimuth case. |
---|
1446 | C |
---|
1447 | IF (NAZ.EQ.4) THEN |
---|
1448 | DO 10 I = IL1,IL2 |
---|
1449 | SIGMA_ALPHA(I,LEV,1) = SQRT ( SIGSQH_ALPHA(I,LEV,1) |
---|
1450 | ^ + SIGSQH_ALPHA(I,LEV,3) ) |
---|
1451 | SIGMA_ALPHA(I,LEV,2) = SQRT ( SIGSQH_ALPHA(I,LEV,2) |
---|
1452 | ^ + SIGSQH_ALPHA(I,LEV,4) ) |
---|
1453 | SIGMA_ALPHA(I,LEV,3) = SIGMA_ALPHA(I,LEV,1) |
---|
1454 | SIGMA_ALPHA(I,LEV,4) = SIGMA_ALPHA(I,LEV,2) |
---|
1455 | 10 CONTINUE |
---|
1456 | END IF |
---|
1457 | C |
---|
1458 | C Calculate azimuthal rms velocity for the 8 azimuth case. |
---|
1459 | C |
---|
1460 | IF (NAZ.EQ.8) THEN |
---|
1461 | DO 20 I = IL1,IL2 |
---|
1462 | SUM_ODD = ( SIGSQH_ALPHA(I,LEV,1) |
---|
1463 | ^ + SIGSQH_ALPHA(I,LEV,3) |
---|
1464 | ^ + SIGSQH_ALPHA(I,LEV,5) |
---|
1465 | ^ + SIGSQH_ALPHA(I,LEV,7) ) / 2. |
---|
1466 | SUM_EVEN = ( SIGSQH_ALPHA(I,LEV,2) |
---|
1467 | ^ + SIGSQH_ALPHA(I,LEV,4) |
---|
1468 | ^ + SIGSQH_ALPHA(I,LEV,6) |
---|
1469 | ^ + SIGSQH_ALPHA(I,LEV,8) ) / 2. |
---|
1470 | SIGMA_ALPHA(I,LEV,1) = SQRT ( SIGSQH_ALPHA(I,LEV,1) |
---|
1471 | ^ + SIGSQH_ALPHA(I,LEV,5) + SUM_EVEN ) |
---|
1472 | SIGMA_ALPHA(I,LEV,2) = SQRT ( SIGSQH_ALPHA(I,LEV,2) |
---|
1473 | ^ + SIGSQH_ALPHA(I,LEV,6) + SUM_ODD ) |
---|
1474 | SIGMA_ALPHA(I,LEV,3) = SQRT ( SIGSQH_ALPHA(I,LEV,3) |
---|
1475 | ^ + SIGSQH_ALPHA(I,LEV,7) + SUM_EVEN ) |
---|
1476 | SIGMA_ALPHA(I,LEV,4) = SQRT ( SIGSQH_ALPHA(I,LEV,4) |
---|
1477 | ^ + SIGSQH_ALPHA(I,LEV,8) + SUM_ODD ) |
---|
1478 | SIGMA_ALPHA(I,LEV,5) = SIGMA_ALPHA(I,LEV,1) |
---|
1479 | SIGMA_ALPHA(I,LEV,6) = SIGMA_ALPHA(I,LEV,2) |
---|
1480 | SIGMA_ALPHA(I,LEV,7) = SIGMA_ALPHA(I,LEV,3) |
---|
1481 | SIGMA_ALPHA(I,LEV,8) = SIGMA_ALPHA(I,LEV,4) |
---|
1482 | 20 CONTINUE |
---|
1483 | END IF |
---|
1484 | C |
---|
1485 | C Calculate total rms velocity. |
---|
1486 | C |
---|
1487 | DO 50 I = IL1,IL2 |
---|
1488 | SIGMA_T(I,LEV) = 0. |
---|
1489 | 50 CONTINUE |
---|
1490 | DO 70 N = 1,NAZ |
---|
1491 | DO 60 I = IL1,IL2 |
---|
1492 | SIGMA_T(I,LEV) = SIGMA_T(I,LEV) + SIGSQH_ALPHA(I,LEV,N) |
---|
1493 | 60 CONTINUE |
---|
1494 | 70 CONTINUE |
---|
1495 | DO 80 I = IL1,IL2 |
---|
1496 | SIGMA_T(I,LEV) = SQRT ( SIGMA_T(I,LEV) ) |
---|
1497 | 80 CONTINUE |
---|
1498 | C |
---|
1499 | RETURN |
---|
1500 | C----------------------------------------------------------------------- |
---|
1501 | END |
---|
1502 | |
---|
1503 | SUBROUTINE HINES_INTGRL (I_ALPHA,V_ALPHA,M_ALPHA,BVFB,SLOPE, |
---|
1504 | 1 NAZ,LEV,IL1,IL2,NLONS,NLEVS,NAZMTH, |
---|
1505 | 2 LORMS) |
---|
1506 | C |
---|
1507 | C This routine calculates the vertical wavenumber integral |
---|
1508 | C for a single vertical level at each azimuth on a longitude grid |
---|
1509 | C for the Hines' Doppler spread GWD parameterization scheme. |
---|
1510 | C NOTE: (1) only spectral slopes of 1, 1.5 or 2 are permitted. |
---|
1511 | C (2) the integral is written in terms of the product QM |
---|
1512 | C which by construction is always less than 1. Series |
---|
1513 | C solutions are used for small |QM| and analytical solutions |
---|
1514 | C for remaining values. |
---|
1515 | C |
---|
1516 | C Aug. 8/95 - C. McLandress |
---|
1517 | C |
---|
1518 | C Output arguement: |
---|
1519 | C |
---|
1520 | C * I_ALPHA = Hines' integral. |
---|
1521 | C |
---|
1522 | C Input arguements: |
---|
1523 | C |
---|
1524 | C * V_ALPHA = azimuthal wind component (m/s). |
---|
1525 | C * M_ALPHA = azimuthal cutoff vertical wavenumber (1/m). |
---|
1526 | C * BVFB = background Brunt Vassala frequency at model bottom. |
---|
1527 | C * SLOPE = slope of initial vertical wavenumber spectrum |
---|
1528 | C * (must use SLOPE = 1., 1.5 or 2.) |
---|
1529 | C * NAZ = actual number of horizontal azimuths used. |
---|
1530 | C * LEV = altitude level to process. |
---|
1531 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
1532 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
1533 | C * NLONS = number of longitudes. |
---|
1534 | C * NLEVS = number of vertical levels. |
---|
1535 | C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
---|
1536 | C |
---|
1537 | C * LORMS = .TRUE. for drag computation |
---|
1538 | C |
---|
1539 | C Constants in DATA statements: |
---|
1540 | C |
---|
1541 | C * QMIN = minimum value of Q_ALPHA (avoids indeterminant form of integral) |
---|
1542 | C * QM_MIN = minimum value of Q_ALPHA * M_ALPHA (used to avoid numerical |
---|
1543 | C * problems). |
---|
1544 | C |
---|
1545 | INTEGER LEV, NAZ, IL1, IL2, NLONS, NLEVS, NAZMTH |
---|
1546 | REAL I_ALPHA(NLONS,NAZMTH) |
---|
1547 | REAL V_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1548 | REAL M_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1549 | REAL BVFB(NLONS), SLOPE |
---|
1550 | C |
---|
1551 | LOGICAL LORMS(NLONS) |
---|
1552 | C |
---|
1553 | C Internal variables. |
---|
1554 | C |
---|
1555 | INTEGER I, N |
---|
1556 | REAL Q_ALPHA, QM, SQRTQM, Q_MIN, QM_MIN |
---|
1557 | C |
---|
1558 | DATA Q_MIN / 1.0 /, QM_MIN / 0.01 / |
---|
1559 | C----------------------------------------------------------------------- |
---|
1560 | C |
---|
1561 | C For integer value SLOPE = 1. |
---|
1562 | C |
---|
1563 | IF (SLOPE .EQ. 1.) THEN |
---|
1564 | C |
---|
1565 | DO 20 N = 1,NAZ |
---|
1566 | DO 10 I = IL1,IL2 |
---|
1567 | IF (LORMS(I)) THEN |
---|
1568 | C |
---|
1569 | Q_ALPHA = V_ALPHA(I,LEV,N) / BVFB(I) |
---|
1570 | QM = Q_ALPHA * M_ALPHA(I,LEV,N) |
---|
1571 | C |
---|
1572 | C If |QM| is small then use first 4 terms series of Taylor series |
---|
1573 | C expansion of integral in order to avoid indeterminate form of integral, |
---|
1574 | C otherwise use analytical form of integral. |
---|
1575 | C |
---|
1576 | IF (ABS(Q_ALPHA).LT.Q_MIN .OR. ABS(QM).LT.QM_MIN) THEN |
---|
1577 | IF (Q_ALPHA .EQ. 0.) THEN |
---|
1578 | I_ALPHA(I,N) = M_ALPHA(I,LEV,N)**2 / 2. |
---|
1579 | ELSE |
---|
1580 | I_ALPHA(I,N) = ( QM**2/2. + QM**3/3. + QM**4/4. |
---|
1581 | ^ + QM**5/5. ) / Q_ALPHA**2 |
---|
1582 | END IF |
---|
1583 | ELSE |
---|
1584 | I_ALPHA(I,N) = - ( ALOG(1.-QM) + QM ) / Q_ALPHA**2 |
---|
1585 | END IF |
---|
1586 | C |
---|
1587 | ENDIF |
---|
1588 | 10 CONTINUE |
---|
1589 | 20 CONTINUE |
---|
1590 | C |
---|
1591 | END IF |
---|
1592 | C |
---|
1593 | C For integer value SLOPE = 2. |
---|
1594 | C |
---|
1595 | IF (SLOPE .EQ. 2.) THEN |
---|
1596 | C |
---|
1597 | DO 40 N = 1,NAZ |
---|
1598 | DO 30 I = IL1,IL2 |
---|
1599 | IF (LORMS(I)) THEN |
---|
1600 | C |
---|
1601 | Q_ALPHA = V_ALPHA(I,LEV,N) / BVFB(I) |
---|
1602 | QM = Q_ALPHA * M_ALPHA(I,LEV,N) |
---|
1603 | C |
---|
1604 | C If |QM| is small then use first 4 terms series of Taylor series |
---|
1605 | C expansion of integral in order to avoid indeterminate form of integral, |
---|
1606 | C otherwise use analytical form of integral. |
---|
1607 | C |
---|
1608 | IF (ABS(Q_ALPHA).LT.Q_MIN .OR. ABS(QM).LT.QM_MIN) THEN |
---|
1609 | IF (Q_ALPHA .EQ. 0.) THEN |
---|
1610 | I_ALPHA(I,N) = M_ALPHA(I,LEV,N)**3 / 3. |
---|
1611 | ELSE |
---|
1612 | I_ALPHA(I,N) = ( QM**3/3. + QM**4/4. + QM**5/5. |
---|
1613 | ^ + QM**6/6. ) / Q_ALPHA**3 |
---|
1614 | END IF |
---|
1615 | ELSE |
---|
1616 | I_ALPHA(I,N) = - ( ALOG(1.-QM) + QM + QM**2/2.) |
---|
1617 | ^ / Q_ALPHA**3 |
---|
1618 | END IF |
---|
1619 | C |
---|
1620 | ENDIF |
---|
1621 | 30 CONTINUE |
---|
1622 | 40 CONTINUE |
---|
1623 | C |
---|
1624 | END IF |
---|
1625 | C |
---|
1626 | C For real value SLOPE = 1.5 |
---|
1627 | C |
---|
1628 | IF (SLOPE .EQ. 1.5) THEN |
---|
1629 | C |
---|
1630 | DO 60 N = 1,NAZ |
---|
1631 | DO 50 I = IL1,IL2 |
---|
1632 | IF (LORMS(I)) THEN |
---|
1633 | C |
---|
1634 | Q_ALPHA = V_ALPHA(I,LEV,N) / BVFB(I) |
---|
1635 | QM = Q_ALPHA * M_ALPHA(I,LEV,N) |
---|
1636 | C |
---|
1637 | C If |QM| is small then use first 4 terms series of Taylor series |
---|
1638 | C expansion of integral in order to avoid indeterminate form of integral, |
---|
1639 | C otherwise use analytical form of integral. |
---|
1640 | C |
---|
1641 | IF (ABS(Q_ALPHA).LT.Q_MIN .OR. ABS(QM).LT.QM_MIN) THEN |
---|
1642 | IF (Q_ALPHA .EQ. 0.) THEN |
---|
1643 | I_ALPHA(I,N) = M_ALPHA(I,LEV,N)**2.5 / 2.5 |
---|
1644 | ELSE |
---|
1645 | I_ALPHA(I,N) = ( QM/2.5 + QM**2/3.5 |
---|
1646 | ^ + QM**3/4.5 + QM**4/5.5 ) |
---|
1647 | ^ * M_ALPHA(I,LEV,N)**1.5 / Q_ALPHA |
---|
1648 | END IF |
---|
1649 | ELSE |
---|
1650 | QM = ABS(QM) |
---|
1651 | SQRTQM = SQRT(QM) |
---|
1652 | IF (Q_ALPHA .GE. 0.) THEN |
---|
1653 | I_ALPHA(I,N) = ( ALOG( (1.+SQRTQM)/(1.-SQRTQM) ) |
---|
1654 | ^ -2.*SQRTQM*(1.+QM/3.) ) / Q_ALPHA**2.5 |
---|
1655 | ELSE |
---|
1656 | I_ALPHA(I,N) = 2. * ( ATAN(SQRTQM) + SQRTQM*(QM/3.-1.) ) |
---|
1657 | ^ / ABS(Q_ALPHA)**2.5 |
---|
1658 | END IF |
---|
1659 | END IF |
---|
1660 | C |
---|
1661 | ENDIF |
---|
1662 | 50 CONTINUE |
---|
1663 | 60 CONTINUE |
---|
1664 | C |
---|
1665 | END IF |
---|
1666 | C |
---|
1667 | C If integral is negative (which in principal should not happen) then |
---|
1668 | C print a message and some info since execution will abort when calculating |
---|
1669 | C the variances. |
---|
1670 | C |
---|
1671 | c DO 80 N = 1,NAZ |
---|
1672 | c DO 70 I = IL1,IL2 |
---|
1673 | c IF (I_ALPHA(I,N).LT.0.) THEN |
---|
1674 | c WRITE (6,*) |
---|
1675 | c WRITE (6,*) '******************************' |
---|
1676 | c WRITE (6,*) 'Hines integral I_ALPHA < 0 ' |
---|
1677 | c WRITE (6,*) ' longitude I=',I |
---|
1678 | c WRITE (6,*) ' azimuth N=',N |
---|
1679 | c WRITE (6,*) ' level LEV=',LEV |
---|
1680 | c WRITE (6,*) ' I_ALPHA =',I_ALPHA(I,N) |
---|
1681 | c WRITE (6,*) ' V_ALPHA =',V_ALPHA(I,LEV,N) |
---|
1682 | c WRITE (6,*) ' M_ALPHA =',M_ALPHA(I,LEV,N) |
---|
1683 | c WRITE (6,*) ' Q_ALPHA =',V_ALPHA(I,LEV,N) / BVFB(I) |
---|
1684 | c WRITE (6,*) ' QM =',V_ALPHA(I,LEV,N) / BVFB(I) |
---|
1685 | c ^ * M_ALPHA(I,LEV,N) |
---|
1686 | c WRITE (6,*) '******************************' |
---|
1687 | c END IF |
---|
1688 | c 70 CONTINUE |
---|
1689 | c 80 CONTINUE |
---|
1690 | C |
---|
1691 | RETURN |
---|
1692 | C----------------------------------------------------------------------- |
---|
1693 | END |
---|
1694 | |
---|
1695 | SUBROUTINE HINES_SETUP (NAZ,SLOPE,F1,F2,F3,F5,F6,KSTAR, |
---|
1696 | 1 ICUTOFF,ALT_CUTOFF,SMCO,NSMAX,IHEATCAL, |
---|
1697 | 2 K_ALPHA,IERROR,NMESSG,NLONS,NAZMTH,COSLAT) |
---|
1698 | C |
---|
1699 | C This routine specifies various parameters needed for the |
---|
1700 | C the Hines' Doppler spread gravity wave drag parameterization scheme. |
---|
1701 | C |
---|
1702 | C Aug. 8/95 - C. McLandress |
---|
1703 | C |
---|
1704 | C Output arguements: |
---|
1705 | C |
---|
1706 | C * NAZ = actual number of horizontal azimuths used |
---|
1707 | C * (code set up presently for only NAZ = 4 or 8). |
---|
1708 | C * SLOPE = slope of incident vertical wavenumber spectrum |
---|
1709 | C * (code set up presently for SLOPE 1., 1.5 or 2.). |
---|
1710 | C * F1 = "fudge factor" used in calculation of trial value of |
---|
1711 | C * azimuthal cutoff wavenumber M_ALPHA (1.2 <= F1 <= 1.9). |
---|
1712 | C * F2 = "fudge factor" used in calculation of maximum |
---|
1713 | C * permissible instabiliy-induced cutoff wavenumber |
---|
1714 | C * M_SUB_M_TURB (0.1 <= F2 <= 1.4). |
---|
1715 | C * F3 = "fudge factor" used in calculation of maximum |
---|
1716 | C * permissible molecular viscosity-induced cutoff wavenumber |
---|
1717 | C * M_SUB_M_MOL (0.1 <= F2 <= 1.4). |
---|
1718 | C * F5 = "fudge factor" used in calculation of heating rate |
---|
1719 | C * (1 <= F5 <= 3). |
---|
1720 | C * F6 = "fudge factor" used in calculation of turbulent |
---|
1721 | C * diffusivity coefficient. |
---|
1722 | C * KSTAR = typical gravity wave horizontal wavenumber (1/m) |
---|
1723 | C * used in calculation of M_SUB_M_TURB. |
---|
1724 | C * ICUTOFF = 1 to exponentially damp off GWD, heating and diffusion |
---|
1725 | C * arrays above ALT_CUTOFF; otherwise arrays not modified. |
---|
1726 | C * ALT_CUTOFF = altitude in meters above which exponential decay applied. |
---|
1727 | C * SMCO = smoother used to smooth cutoff vertical wavenumbers |
---|
1728 | C * and total rms winds before calculating drag or heating. |
---|
1729 | C * (==> a 1:SMCO:1 stencil used; SMCO >= 1.). |
---|
1730 | C * NSMAX = number of times smoother applied ( >= 1), |
---|
1731 | C * = 0 means no smoothing performed. |
---|
1732 | C * IHEATCAL = 1 to calculate heating rates and diffusion coefficient. |
---|
1733 | C * = 0 means only drag and flux calculated. |
---|
1734 | C * K_ALPHA = horizontal wavenumber of each azimuth (1/m) which |
---|
1735 | C * is set here to KSTAR. |
---|
1736 | C * IERROR = error flag. |
---|
1737 | C * = 0 no errors. |
---|
1738 | C * = 10 ==> NAZ > NAZMTH |
---|
1739 | C * = 20 ==> invalid number of azimuths (NAZ must be 4 or 8). |
---|
1740 | C * = 30 ==> invalid slope (SLOPE must be 1., 1.5 or 2.). |
---|
1741 | C * = 40 ==> invalid smoother (SMCO must be >= 1.) |
---|
1742 | C |
---|
1743 | C Input arguements: |
---|
1744 | C |
---|
1745 | C * NMESSG = output unit number where messages to be printed. |
---|
1746 | C * NLONS = number of longitudes. |
---|
1747 | C * NAZMTH = azimuthal array dimension (NAZMTH >= NAZ). |
---|
1748 | C |
---|
1749 | INTEGER NAZ, NLONS, NAZMTH, IHEATCAL, ICUTOFF |
---|
1750 | INTEGER NMESSG, NSMAX, IERROR |
---|
1751 | REAL KSTAR(NLONS), SLOPE, F1, F2, F3, F5, F6, ALT_CUTOFF, SMCO |
---|
1752 | REAL K_ALPHA(NLONS,NAZMTH),COSLAT(NLONS) |
---|
1753 | REAL KSMIN, KSMAX |
---|
1754 | C |
---|
1755 | C Internal variables. |
---|
1756 | C |
---|
1757 | INTEGER I, N |
---|
1758 | C----------------------------------------------------------------------- |
---|
1759 | C |
---|
1760 | C Specify constants. |
---|
1761 | C |
---|
1762 | NAZ = 8 |
---|
1763 | SLOPE = 1. |
---|
1764 | F1 = 1.5 |
---|
1765 | F2 = 0.3 |
---|
1766 | F3 = 1.0 |
---|
1767 | F5 = 3.0 |
---|
1768 | F6 = 1.0 |
---|
1769 | KSMIN = 1.E-5 |
---|
1770 | KSMAX = 1.E-4 |
---|
1771 | DO I=1,NLONS |
---|
1772 | KSTAR(I) = KSMIN/( COSLAT(I)+(KSMIN/KSMAX) ) |
---|
1773 | ENDDO |
---|
1774 | ICUTOFF = 1 |
---|
1775 | ALT_CUTOFF = 105.E3 |
---|
1776 | SMCO = 2.0 |
---|
1777 | c SMCO = 1.0 |
---|
1778 | NSMAX = 5 |
---|
1779 | c NSMAX = 2 |
---|
1780 | IHEATCAL = 0 |
---|
1781 | C |
---|
1782 | C Print information to output file. |
---|
1783 | C |
---|
1784 | c WRITE (NMESSG,6000) |
---|
1785 | c 6000 FORMAT (/' Subroutine HINES_SETUP:') |
---|
1786 | c WRITE (NMESSG,*) ' SLOPE = ', SLOPE |
---|
1787 | c WRITE (NMESSG,*) ' NAZ = ', NAZ |
---|
1788 | c WRITE (NMESSG,*) ' F1,F2,F3 = ', F1, F2, F3 |
---|
1789 | c WRITE (NMESSG,*) ' F5,F6 = ', F5, F6 |
---|
1790 | c WRITE (NMESSG,*) ' KSTAR = ', KSTAR |
---|
1791 | c > ,' COSLAT = ', COSLAT |
---|
1792 | c IF (ICUTOFF .EQ. 1) THEN |
---|
1793 | c WRITE (NMESSG,*) ' Drag exponentially damped above ', |
---|
1794 | c & ALT_CUTOFF/1.E3 |
---|
1795 | c END IF |
---|
1796 | c IF (NSMAX.LT.1 ) THEN |
---|
1797 | c WRITE (NMESSG,*) ' No smoothing of cutoff wavenumbers, etc' |
---|
1798 | c ELSE |
---|
1799 | c WRITE (NMESSG,*) ' Cutoff wavenumbers and sig_t smoothed:' |
---|
1800 | c WRITE (NMESSG,*) ' SMCO =', SMCO |
---|
1801 | c WRITE (NMESSG,*) ' NSMAX =', NSMAX |
---|
1802 | c END IF |
---|
1803 | C |
---|
1804 | C Check that things are setup correctly and log error if not |
---|
1805 | C |
---|
1806 | IERROR = 0 |
---|
1807 | IF (NAZ .GT. NAZMTH) IERROR = 10 |
---|
1808 | IF (NAZ.NE.4 .AND. NAZ.NE.8) IERROR = 20 |
---|
1809 | IF (SLOPE.NE.1. .AND. SLOPE.NE.1.5 .AND. SLOPE.NE.2.) IERROR = 30 |
---|
1810 | IF (SMCO .LT. 1.) IERROR = 40 |
---|
1811 | C |
---|
1812 | C Use single value for azimuthal-dependent horizontal wavenumber. |
---|
1813 | C |
---|
1814 | DO 20 N = 1,NAZ |
---|
1815 | DO 10 I = 1,NLONS |
---|
1816 | K_ALPHA(I,N) = KSTAR(I) |
---|
1817 | 10 CONTINUE |
---|
1818 | 20 CONTINUE |
---|
1819 | C |
---|
1820 | RETURN |
---|
1821 | C----------------------------------------------------------------------- |
---|
1822 | END |
---|
1823 | |
---|
1824 | SUBROUTINE HINES_PRINT (FLUX_U,FLUX_V,DRAG_U,DRAG_V,ALT,SIGMA_T, |
---|
1825 | 1 SIGMA_ALPHA,V_ALPHA,M_ALPHA, |
---|
1826 | 2 IU_PRINT,IV_PRINT,NMESSG, |
---|
1827 | 3 ILPRT1,ILPRT2,LEVPRT1,LEVPRT2, |
---|
1828 | 4 NAZ,NLONS,NLEVS,NAZMTH) |
---|
1829 | C |
---|
1830 | C Print out altitude profiles of various quantities from |
---|
1831 | C Hines' Doppler spread gravity wave drag parameterization scheme. |
---|
1832 | C (NOTE: only for NAZ = 4 or 8). |
---|
1833 | C |
---|
1834 | C Aug. 8/95 - C. McLandress |
---|
1835 | C |
---|
1836 | C Input arguements: |
---|
1837 | C |
---|
1838 | C * IU_PRINT = 1 to print out values in east-west direction. |
---|
1839 | C * IV_PRINT = 1 to print out values in north-south direction. |
---|
1840 | C * NMESSG = unit number for printed output. |
---|
1841 | C * ILPRT1 = first longitudinal index to print. |
---|
1842 | C * ILPRT2 = last longitudinal index to print. |
---|
1843 | C * LEVPRT1 = first altitude level to print. |
---|
1844 | C * LEVPRT2 = last altitude level to print. |
---|
1845 | C |
---|
1846 | INTEGER NAZ, ILPRT1, ILPRT2, LEVPRT1, LEVPRT2 |
---|
1847 | INTEGER NLONS, NLEVS, NAZMTH |
---|
1848 | INTEGER IU_PRINT, IV_PRINT, NMESSG |
---|
1849 | REAL FLUX_U(NLONS,NLEVS), FLUX_V(NLONS,NLEVS) |
---|
1850 | REAL DRAG_U(NLONS,NLEVS), DRAG_V(NLONS,NLEVS) |
---|
1851 | REAL ALT(NLONS,NLEVS), SIGMA_T(NLONS,NLEVS) |
---|
1852 | REAL SIGMA_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1853 | REAL V_ALPHA(NLONS,NLEVS,NAZMTH), M_ALPHA(NLONS,NLEVS,NAZMTH) |
---|
1854 | C |
---|
1855 | C Internal variables. |
---|
1856 | C |
---|
1857 | INTEGER N_EAST, N_WEST, N_NORTH, N_SOUTH |
---|
1858 | INTEGER I, L |
---|
1859 | C----------------------------------------------------------------------- |
---|
1860 | C |
---|
1861 | C Azimuthal indices of cardinal directions. |
---|
1862 | C |
---|
1863 | N_EAST = 1 |
---|
1864 | IF (NAZ.EQ.4) THEN |
---|
1865 | N_WEST = 3 |
---|
1866 | N_NORTH = 2 |
---|
1867 | N_SOUTH = 4 |
---|
1868 | ELSE IF (NAZ.EQ.8) THEN |
---|
1869 | N_WEST = 5 |
---|
1870 | N_NORTH = 3 |
---|
1871 | N_SOUTH = 7 |
---|
1872 | END IF |
---|
1873 | C |
---|
1874 | C Print out values for range of longitudes. |
---|
1875 | C |
---|
1876 | DO 100 I = ILPRT1,ILPRT2 |
---|
1877 | C |
---|
1878 | C Print east-west wind, sigmas, cutoff wavenumbers, flux and drag. |
---|
1879 | C |
---|
1880 | IF (IU_PRINT.EQ.1) THEN |
---|
1881 | WRITE (NMESSG,*) |
---|
1882 | WRITE (NMESSG,6001) I |
---|
1883 | WRITE (NMESSG,6005) |
---|
1884 | 6001 FORMAT ( 'Hines GW (east-west) at longitude I =',I3) |
---|
1885 | 6005 FORMAT (15x,' U ',2x,'sig_E',2x,'sig_T',3x,'m_E', |
---|
1886 | & 4x,'m_W',4x,'fluxU',5x,'gwdU') |
---|
1887 | DO 10 L = LEVPRT1,LEVPRT2 |
---|
1888 | WRITE (NMESSG,6701) ALT(I,L)/1.E3, V_ALPHA(I,L,N_EAST), |
---|
1889 | & SIGMA_ALPHA(I,L,N_EAST), SIGMA_T(I,L), |
---|
1890 | & M_ALPHA(I,L,N_EAST)*1.E3, |
---|
1891 | & M_ALPHA(I,L,N_WEST)*1.E3, |
---|
1892 | & FLUX_U(I,L)*1.E5, DRAG_U(I,L)*24.*3600. |
---|
1893 | 10 CONTINUE |
---|
1894 | 6701 FORMAT (' z=',f7.2,1x,3f7.1,2f7.3,f9.4,f9.3) |
---|
1895 | END IF |
---|
1896 | C |
---|
1897 | C Print north-south winds, sigmas, cutoff wavenumbers, flux and drag. |
---|
1898 | C |
---|
1899 | IF (IV_PRINT.EQ.1) THEN |
---|
1900 | WRITE(NMESSG,*) |
---|
1901 | WRITE(NMESSG,6002) I |
---|
1902 | 6002 FORMAT ( 'Hines GW (north-south) at longitude I =',I3) |
---|
1903 | WRITE(NMESSG,6006) |
---|
1904 | 6006 FORMAT (15x,' V ',2x,'sig_N',2x,'sig_T',3x,'m_N', |
---|
1905 | & 4x,'m_S',4x,'fluxV',5x,'gwdV') |
---|
1906 | DO 20 L = LEVPRT1,LEVPRT2 |
---|
1907 | WRITE (NMESSG,6701) ALT(I,L)/1.E3, V_ALPHA(I,L,N_NORTH), |
---|
1908 | & SIGMA_ALPHA(I,L,N_NORTH), SIGMA_T(I,L), |
---|
1909 | & M_ALPHA(I,L,N_NORTH)*1.E3, |
---|
1910 | & M_ALPHA(I,L,N_SOUTH)*1.E3, |
---|
1911 | & FLUX_V(I,L)*1.E5, DRAG_V(I,L)*24.*3600. |
---|
1912 | 20 CONTINUE |
---|
1913 | END IF |
---|
1914 | C |
---|
1915 | 100 CONTINUE |
---|
1916 | C |
---|
1917 | RETURN |
---|
1918 | C----------------------------------------------------------------------- |
---|
1919 | END |
---|
1920 | |
---|
1921 | SUBROUTINE HINES_EXP (DATA,DATA_ZMAX,ALT,ALT_EXP,IORDER, |
---|
1922 | 1 IL1,IL2,LEV1,LEV2,NLONS,NLEVS) |
---|
1923 | C |
---|
1924 | C This routine exponentially damps a longitude by altitude array |
---|
1925 | C of data above a specified altitude. |
---|
1926 | C |
---|
1927 | C Aug. 13/95 - C. McLandress |
---|
1928 | C |
---|
1929 | C Output arguements: |
---|
1930 | C |
---|
1931 | C * DATA = modified data array. |
---|
1932 | C |
---|
1933 | C Input arguements: |
---|
1934 | C |
---|
1935 | C * DATA = original data array. |
---|
1936 | C * ALT = altitudes. |
---|
1937 | C * ALT_EXP = altitude above which exponential decay applied. |
---|
1938 | C * IORDER = 1 means vertical levels are indexed from top down |
---|
1939 | C * (i.e., highest level indexed 1 and lowest level NLEVS); |
---|
1940 | C * .NE. 1 highest level is index NLEVS. |
---|
1941 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
1942 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
1943 | C * LEV1 = first altitude level to use (LEV1 >=1). |
---|
1944 | C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
---|
1945 | C * NLONS = number of longitudes. |
---|
1946 | C * NLEVS = number of vertical |
---|
1947 | C |
---|
1948 | C Input work arrays: |
---|
1949 | C |
---|
1950 | C * DATA_ZMAX = data values just above altitude ALT_EXP. |
---|
1951 | C |
---|
1952 | INTEGER IORDER, IL1, IL2, LEV1, LEV2, NLONS, NLEVS |
---|
1953 | REAL ALT_EXP |
---|
1954 | REAL DATA(NLONS,NLEVS), DATA_ZMAX(NLONS), ALT(NLONS,NLEVS) |
---|
1955 | C |
---|
1956 | C Internal variables. |
---|
1957 | C |
---|
1958 | INTEGER LEVBOT, LEVTOP, LINCR, I, L |
---|
1959 | REAL HSCALE |
---|
1960 | DATA HSCALE / 5.E3 / |
---|
1961 | C----------------------------------------------------------------------- |
---|
1962 | C |
---|
1963 | C Index of lowest altitude level (bottom of drag calculation). |
---|
1964 | C |
---|
1965 | LEVBOT = LEV2 |
---|
1966 | LEVTOP = LEV1 |
---|
1967 | LINCR = 1 |
---|
1968 | IF (IORDER.NE.1) THEN |
---|
1969 | LEVBOT = LEV1 |
---|
1970 | LEVTOP = LEV2 |
---|
1971 | LINCR = -1 |
---|
1972 | END IF |
---|
1973 | C |
---|
1974 | C Data values at first level above ALT_EXP. |
---|
1975 | C |
---|
1976 | DO 20 I = IL1,IL2 |
---|
1977 | DO 10 L = LEVTOP,LEVBOT,LINCR |
---|
1978 | IF (ALT(I,L) .GE. ALT_EXP) THEN |
---|
1979 | DATA_ZMAX(I) = DATA(I,L) |
---|
1980 | END IF |
---|
1981 | 10 CONTINUE |
---|
1982 | 20 CONTINUE |
---|
1983 | C |
---|
1984 | C Exponentially damp field above ALT_EXP to model top at L=1. |
---|
1985 | C |
---|
1986 | DO 40 L = 1,LEV2 |
---|
1987 | DO 30 I = IL1,IL2 |
---|
1988 | IF (ALT(I,L) .GE. ALT_EXP) THEN |
---|
1989 | DATA(I,L) = DATA_ZMAX(I) * EXP( (ALT_EXP-ALT(I,L))/HSCALE ) |
---|
1990 | END IF |
---|
1991 | 30 CONTINUE |
---|
1992 | 40 CONTINUE |
---|
1993 | C |
---|
1994 | RETURN |
---|
1995 | C----------------------------------------------------------------------- |
---|
1996 | END |
---|
1997 | |
---|
1998 | SUBROUTINE VERT_SMOOTH (DATA,WORK,COEFF,NSMOOTH, |
---|
1999 | 1 IL1,IL2,LEV1,LEV2,NLONS,NLEVS) |
---|
2000 | C |
---|
2001 | C Smooth a longitude by altitude array in the vertical over a |
---|
2002 | C specified number of levels using a three point smoother. |
---|
2003 | C |
---|
2004 | C NOTE: input array DATA is modified on output! |
---|
2005 | C |
---|
2006 | C Aug. 3/95 - C. McLandress |
---|
2007 | C |
---|
2008 | C Output arguement: |
---|
2009 | C |
---|
2010 | C * DATA = smoothed array (on output). |
---|
2011 | C |
---|
2012 | C Input arguements: |
---|
2013 | C |
---|
2014 | C * DATA = unsmoothed array of data (on input). |
---|
2015 | C * WORK = work array of same dimension as DATA. |
---|
2016 | C * COEFF = smoothing coefficient for a 1:COEFF:1 stencil. |
---|
2017 | C * (e.g., COEFF = 2 will result in a smoother which |
---|
2018 | C * weights the level L gridpoint by two and the two |
---|
2019 | C * adjecent levels (L+1 and L-1) by one). |
---|
2020 | C * NSMOOTH = number of times to smooth in vertical. |
---|
2021 | C * (e.g., NSMOOTH=1 means smoothed only once, |
---|
2022 | C * NSMOOTH=2 means smoothing repeated twice, etc.) |
---|
2023 | C * IL1 = first longitudinal index to use (IL1 >= 1). |
---|
2024 | C * IL2 = last longitudinal index to use (IL1 <= IL2 <= NLONS). |
---|
2025 | C * LEV1 = first altitude level to use (LEV1 >=1). |
---|
2026 | C * LEV2 = last altitude level to use (LEV1 < LEV2 <= NLEVS). |
---|
2027 | C * NLONS = number of longitudes. |
---|
2028 | C * NLEVS = number of vertical levels. |
---|
2029 | C |
---|
2030 | C Subroutine arguements. |
---|
2031 | C |
---|
2032 | INTEGER NSMOOTH, IL1, IL2, LEV1, LEV2, NLONS, NLEVS |
---|
2033 | REAL COEFF |
---|
2034 | REAL DATA(NLONS,NLEVS), WORK(NLONS,NLEVS) |
---|
2035 | C |
---|
2036 | C Internal variables. |
---|
2037 | C |
---|
2038 | INTEGER I, L, NS, LEV1P, LEV2M |
---|
2039 | REAL SUM_WTS |
---|
2040 | C----------------------------------------------------------------------- |
---|
2041 | C |
---|
2042 | C Calculate sum of weights. |
---|
2043 | C |
---|
2044 | SUM_WTS = COEFF + 2. |
---|
2045 | C |
---|
2046 | LEV1P = LEV1 + 1 |
---|
2047 | LEV2M = LEV2 - 1 |
---|
2048 | C |
---|
2049 | C Smooth NSMOOTH times |
---|
2050 | C |
---|
2051 | DO 50 NS = 1,NSMOOTH |
---|
2052 | C |
---|
2053 | C Copy data into work array. |
---|
2054 | C |
---|
2055 | DO 20 L = LEV1,LEV2 |
---|
2056 | DO 10 I = IL1,IL2 |
---|
2057 | WORK(I,L) = DATA(I,L) |
---|
2058 | 10 CONTINUE |
---|
2059 | 20 CONTINUE |
---|
2060 | C |
---|
2061 | C Smooth array WORK in vertical direction and put into DATA. |
---|
2062 | C |
---|
2063 | DO 40 L = LEV1P,LEV2M |
---|
2064 | DO 30 I = IL1,IL2 |
---|
2065 | DATA(I,L) = ( WORK(I,L+1) + COEFF*WORK(I,L) + WORK(I,L-1) ) |
---|
2066 | & / SUM_WTS |
---|
2067 | 30 CONTINUE |
---|
2068 | 40 CONTINUE |
---|
2069 | C |
---|
2070 | 50 CONTINUE |
---|
2071 | C |
---|
2072 | RETURN |
---|
2073 | C----------------------------------------------------------------------- |
---|
2074 | END |
---|
2075 | |
---|
2076 | |
---|
2077 | |
---|
2078 | |
---|
2079 | |
---|
2080 | |
---|