[2159] | 1 | |
---|
| 2 | ! $Header$ |
---|
| 3 | |
---|
| 4 | SUBROUTINE hbtm2l(knon, paprs, pplay, t2m, t10m, q2m, q10m, ustar, flux_t, flux_q, u, v, t, q, pblh, therm, plcl, cape, & |
---|
| 5 | cin, eauliq, ctei, d_qt, d_thv, dlt_2, xhis, posint, omega, diagok) |
---|
| 6 | USE dimphy |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | |
---|
| 9 | ! *************************************************************** |
---|
| 10 | ! * * |
---|
| 11 | ! * HBTM2L D'apres Holstag&Boville et Troen&Mahrt * |
---|
| 12 | ! * JAS 47 BLM * |
---|
| 13 | ! * Algorithmes These Anne Mathieu * |
---|
| 14 | ! * Critere d'Entrainement Peter Duynkerke (JAS 50) * |
---|
| 15 | ! * written by : Anne MATHIEU & Alain LAHELLEC, 22/11/99 * |
---|
| 16 | ! * features : implem. exces Mathieu * |
---|
| 17 | ! *************************************************************** |
---|
| 18 | ! * mods : decembre 99 passage th a niveau plus bas. voir fixer * |
---|
| 19 | ! *************************************************************** |
---|
| 20 | ! * fin therm a la HBTM passage a forme Mathieu 12/09/2001 * |
---|
| 21 | ! *************************************************************** |
---|
| 22 | ! AM Fev 2003 Adaptation a LMDZ version couplee * |
---|
| 23 | ! * |
---|
| 24 | ! Pour le moment on fait passer en argument les grdeurs de surface : |
---|
| 25 | ! flux, t,q2m, t,q10m, on va utiliser systematiquement les grdeurs a 2m ms |
---|
| 26 | ! on garde la possibilite de changer si besoin est (jusqu'a present la |
---|
| 27 | ! forme de HB avec le 1er niveau modele etait conservee) * |
---|
| 28 | ! *************************************************************** |
---|
| 29 | ! * re-ecriture complete Alain Mars 2012 dans LMDZ5V5 * |
---|
| 30 | ! *************************************************************** |
---|
| 31 | include "YOMCST.h" |
---|
| 32 | REAL rlvcp, reps |
---|
| 33 | ! Arguments: |
---|
| 34 | |
---|
| 35 | INTEGER knon ! nombre de points a calculer |
---|
| 36 | ! AM |
---|
| 37 | REAL t2m(klon), t10m(klon) ! temperature a 2 et 10m |
---|
| 38 | REAL q2m(klon), q10m(klon) ! q a 2 et 10m |
---|
| 39 | REAL ustar(klon) |
---|
| 40 | REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
---|
| 41 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 42 | REAL flux_t(klon, klev), flux_q(klon, klev) ! Flux |
---|
| 43 | REAL u(klon, klev) ! vitesse U (m/s) |
---|
| 44 | REAL v(klon, klev) ! vitesse V (m/s) |
---|
| 45 | REAL t(klon, klev) ! temperature (K) |
---|
| 46 | REAL q(klon, klev) ! vapeur d'eau (kg/kg) |
---|
| 47 | |
---|
| 48 | INTEGER isommet |
---|
| 49 | REAL vk |
---|
| 50 | PARAMETER (vk=0.35) ! Von Karman => passer a .41 ! cf U.Olgstrom |
---|
| 51 | REAL ricr |
---|
| 52 | PARAMETER (ricr=0.4) |
---|
| 53 | REAL fak |
---|
| 54 | PARAMETER (fak=8.5) ! b calcul du Prandtl et de dTetas |
---|
| 55 | REAL fakn |
---|
| 56 | PARAMETER (fakn=7.2) ! a |
---|
| 57 | REAL onet |
---|
| 58 | PARAMETER (onet=1.0/3.0) |
---|
| 59 | REAL betam |
---|
| 60 | PARAMETER (betam=15.0) ! pour Phim / h dans la S.L stable |
---|
| 61 | REAL betah |
---|
| 62 | PARAMETER (betah=15.0) |
---|
| 63 | REAL betas |
---|
| 64 | PARAMETER (betas=5.0) ! Phit dans la S.L. stable (mais 2 formes / z/OBL<>1 |
---|
| 65 | REAL sffrac |
---|
| 66 | PARAMETER (sffrac=0.1) ! S.L. = z/h < .1 |
---|
| 67 | REAL binm |
---|
| 68 | PARAMETER (binm=betam*sffrac) |
---|
| 69 | REAL binh |
---|
| 70 | PARAMETER (binh=betah*sffrac) |
---|
| 71 | |
---|
| 72 | REAL q_star, t_star |
---|
| 73 | REAL b1, b2, b212, b2sr ! Lambert correlations T' q' avec T* q* |
---|
| 74 | PARAMETER (b1=70., b2=20.) ! b1 entre 70 et 100 |
---|
| 75 | |
---|
| 76 | REAL z(klon, klev) |
---|
| 77 | ! AM |
---|
| 78 | REAL zref, dt0 |
---|
| 79 | PARAMETER (zref=2.) ! Niveau de ref a 2m |
---|
| 80 | PARAMETER (dt0=0.1) ! convergence do while |
---|
| 81 | |
---|
| 82 | INTEGER i, k, j |
---|
| 83 | REAL khfs(klon) ! surface kinematic heat flux [mK/s] |
---|
| 84 | REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] |
---|
| 85 | REAL heatv(klon) ! surface virtual heat flux |
---|
| 86 | REAL rhino(klon, klev) ! bulk Richardon no. mais en Theta_v |
---|
| 87 | LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) |
---|
| 88 | LOGICAL check(klon) ! True=>chk if Richardson no.>critcal |
---|
| 89 | LOGICAL omegafl(klon) ! flag de prolongement cape pour pt Omega |
---|
| 90 | REAL obklen(klon) ! Monin-Obukhov lengh |
---|
| 91 | |
---|
| 92 | REAL pblh(klon) ! PBL H (m) |
---|
| 93 | REAL therm(klon) ! exces du thermique (K) |
---|
| 94 | REAL plcl(klon) ! Lifted Cnd Level (Pa) |
---|
| 95 | REAL cape(klon) ! Cape |
---|
| 96 | REAL cin(klon) ! Inhibition |
---|
| 97 | REAL eauliq(klon) ! Eau Liqu integree |
---|
| 98 | REAL ctei(klon) ! Cld Top Entr. Instab. |
---|
| 99 | REAL d_qt(klon) ! Saut de qT a l'inversion |
---|
| 100 | REAL d_thv(klon) ! Theta_e |
---|
| 101 | REAL dlt_2(klon) ! Ordonnee a gauche de courbe de melange |
---|
| 102 | REAL xhis(klon) ! fraction de melange pour flottab nulle |
---|
| 103 | REAL posint(klon) ! partie positive de l'int. de Peter |
---|
| 104 | REAL omega(klon) ! point ultime de l'ascention du thermique |
---|
| 105 | REAL diagok(klon) ! pour traiter les sous-mailles sans info |
---|
| 106 | ! Algorithme thermique |
---|
| 107 | REAL s(klon, klev) ! [P/Po]^Kappa milieux couches |
---|
| 108 | REAL th_th(klon) ! potential temperature of thermal |
---|
| 109 | REAL the_th(klon) ! equivalent potential temperature of thermal |
---|
| 110 | REAL qt_th(klon) ! total water of thermal |
---|
| 111 | REAL tbef(klon) ! T thermique niveau ou calcul precedent |
---|
| 112 | LOGICAL zsat(klon) ! le thermique est sature |
---|
| 113 | LOGICAL zcin(klon) ! calcul d'inhibition |
---|
| 114 | REAL kape(klon) ! Cape locale |
---|
| 115 | REAL kin(klon) ! Cin locale |
---|
| 116 | ! calcul de CTEI etc |
---|
| 117 | REAL the1, the2, aa, bb, zthvd, zthvu, qsat, chi, rh, zxt, zdu2 |
---|
| 118 | REAL rnum, denom, th1, th2, tv1, tv2, thv1, thv2, ql1, ql2, dt |
---|
| 119 | REAL dqsat_dt, qsat2, qt1, q1, q2, t1, t2, tl1, te2, xnull, delt_the |
---|
| 120 | REAL delt_qt, quadsat, spblh, reduc |
---|
| 121 | ! diag REAL dTv21(klon,klev) |
---|
| 122 | |
---|
| 123 | REAL phiminv(klon) ! inverse phi function for momentum |
---|
| 124 | REAL phihinv(klon) ! inverse phi function for heat |
---|
| 125 | REAL wm(klon) ! turbulent velocity scale for momentum |
---|
| 126 | REAL zm(klon) ! current level height |
---|
| 127 | REAL zp(klon) ! current level height + one level up |
---|
| 128 | REAL zcor, zdelta, zcvm5 |
---|
| 129 | REAL fac, pblmin |
---|
| 130 | REAL missing_val |
---|
| 131 | |
---|
| 132 | include "YOETHF.h" |
---|
| 133 | include "FCTTRE.h" |
---|
| 134 | |
---|
| 135 | ! c missing_val=nf90_fill_real (avec include netcdf) |
---|
| 136 | missing_val = 0. |
---|
| 137 | |
---|
| 138 | ! initialisations (Anne) |
---|
| 139 | isommet = klev |
---|
| 140 | b212 = sqrt(b1*b2) |
---|
| 141 | b2sr = sqrt(b2) |
---|
| 142 | |
---|
| 143 | ! Initialisation thermo |
---|
| 144 | rlvcp = rlvtt/rcpd |
---|
| 145 | reps = rd/rv |
---|
| 146 | ! raz |
---|
| 147 | q_star = 0. |
---|
| 148 | t_star = 0. |
---|
| 149 | cape(:) = missing_val |
---|
| 150 | kape(:) = 0. |
---|
| 151 | cin(:) = missing_val |
---|
| 152 | eauliq(:) = missing_val |
---|
| 153 | ctei(:) = missing_val |
---|
| 154 | d_qt(:) = missing_val |
---|
| 155 | d_thv(:) = missing_val |
---|
| 156 | dlt_2(:) = missing_val |
---|
| 157 | xhis(:) = missing_val |
---|
| 158 | posint(:) = missing_val |
---|
| 159 | kin(:) = missing_val |
---|
| 160 | omega(:) = missing_val |
---|
| 161 | diagok(:) = 0. |
---|
| 162 | ! diag dTv21(:,:)= missing_val |
---|
| 163 | |
---|
| 164 | ! Calculer les hauteurs de chaque couche |
---|
| 165 | DO i = 1, knon |
---|
| 166 | z(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i,1)))*(paprs(i,1)-pplay(i,1))/rg |
---|
| 167 | s(i, 1) = (pplay(i,1)/paprs(i,1))**rkappa |
---|
| 168 | END DO |
---|
| 169 | ! s(k) = [pplay(k)/ps]^kappa |
---|
| 170 | ! + + + + + + + + + pplay <-> s(k) t dp=pplay(k-1)-pplay(k) |
---|
| 171 | |
---|
| 172 | ! ----------------- paprs <-> sig(k) |
---|
| 173 | |
---|
| 174 | ! + + + + + + + + + pplay <-> s(k-1) |
---|
| 175 | |
---|
| 176 | |
---|
| 177 | ! + + + + + + + + + pplay <-> s(1) t dp=paprs-pplay z(1) |
---|
| 178 | |
---|
| 179 | ! ----------------- paprs <-> sig(1) |
---|
| 180 | |
---|
| 181 | DO k = 2, klev |
---|
| 182 | DO i = 1, knon |
---|
| 183 | z(i, k) = z(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1)-pplay(i,k))/rg |
---|
| 184 | s(i, k) = (pplay(i,k)/paprs(i,1))**rkappa |
---|
| 185 | END DO |
---|
| 186 | END DO |
---|
| 187 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 188 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 189 | ! +++ Determination des grandeurs de surface +++++++++++++++++++++ |
---|
| 190 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 191 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 192 | DO i = 1, knon |
---|
| 193 | ! AM Niveau de ref choisi a 2m |
---|
| 194 | zxt = t2m(i) |
---|
| 195 | |
---|
| 196 | ! *************************************************** |
---|
| 197 | ! attention, il doit s'agir de <w'theta'> |
---|
| 198 | ! ;Calcul de tcls virtuel et de w'theta'virtuel |
---|
| 199 | ! ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; |
---|
| 200 | ! tcls=tcls*(1+.608*qcls) |
---|
| 201 | |
---|
| 202 | ! ;Pour avoir w'theta', |
---|
| 203 | ! ; il faut diviser par ro.Cp |
---|
| 204 | ! Cp=Cpd*(1+0.84*qcls) |
---|
| 205 | ! fcs=fcs/(ro_surf*Cp) |
---|
| 206 | ! ;On transforme w'theta' en w'thetav' |
---|
| 207 | ! Lv=(2.501-0.00237*(tcls-273.15))*1.E6 |
---|
| 208 | ! xle=xle/(ro_surf*Lv) |
---|
| 209 | ! fcsv=fcs+.608*xle*tcls |
---|
| 210 | ! *************************************************** |
---|
| 211 | ! dif khfs est deja w't'_v / heatv(i) = khfs(i) + RETV*zxt*kqfs(i) |
---|
| 212 | ! AM calcul de Ro = paprs(i,1)/Rd zxt |
---|
| 213 | ! AM convention >0 vers le bas ds lmdz |
---|
| 214 | khfs(i) = -flux_t(i, 1)*zxt*rd/(rcpd*paprs(i,1)) |
---|
| 215 | kqfs(i) = -flux_q(i, 1)*zxt*rd/(paprs(i,1)) |
---|
| 216 | ! AM verifier que khfs et kqfs sont bien de la forme w'l' |
---|
| 217 | heatv(i) = khfs(i) + retv*zxt*kqfs(i) |
---|
| 218 | ! a comparer aussi aux sorties de clqh : flux_T/RoCp et flux_q/RoLv |
---|
| 219 | ! AM ustar est en entree (calcul dans stdlevvar avec t2m q2m) |
---|
| 220 | ! Theta et qT du thermique sans exces |
---|
| 221 | qt_th(i) = q2m(i) |
---|
| 222 | ! Al1 Th_th restera la Theta du thermique sans exces jusqu'au 3eme calcul |
---|
| 223 | th_th(i) = t2m(i) |
---|
| 224 | END DO |
---|
| 225 | |
---|
| 226 | DO i = 1, knon |
---|
| 227 | rhino(i, 1) = 0.0 ! Global Richardson |
---|
| 228 | check(i) = .TRUE. |
---|
| 229 | pblh(i) = z(i, 1) ! on initialise pblh a l'altitude du 1er niveau |
---|
| 230 | ! Attention Plcl est pression ou altitude ? |
---|
| 231 | ! plcl(i) = 6000. ! m |
---|
| 232 | plcl(i) = 200. ! hPa |
---|
| 233 | IF (heatv(i)>0.0001) THEN |
---|
| 234 | ! Lambda = -u*^3 / (alpha.g.kvon.<w'Theta'v> |
---|
| 235 | obklen(i) = -t(i, 1)*ustar(i)**3/(rg*vk*heatv(i)) |
---|
| 236 | ELSE |
---|
| 237 | ! set pblh to the friction high (cf + bas) |
---|
| 238 | pblh(i) = 700.0*ustar(i) |
---|
| 239 | check(i) = .FALSE. |
---|
| 240 | END IF |
---|
| 241 | END DO |
---|
| 242 | |
---|
| 243 | |
---|
| 244 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 245 | ! PBL height calculation: |
---|
| 246 | ! Search for level of pbl. Scan upward until the Richardson number between |
---|
| 247 | ! the first level and the current level exceeds the "critical" value. |
---|
| 248 | ! (bonne idee Nu de separer le Ric et l'exces de temp du thermique) |
---|
| 249 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 250 | fac = 100.0 |
---|
| 251 | DO k = 2, isommet |
---|
| 252 | DO i = 1, knon |
---|
| 253 | IF (check(i)) THEN |
---|
| 254 | zdu2 = u(i, k)**2 + v(i, k)**2 |
---|
| 255 | zdu2 = max(zdu2, 1.0E-20) |
---|
| 256 | ! Theta_v environnement |
---|
| 257 | zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) |
---|
| 258 | zthvu = th_th(i)*(1.+retv*qt_th(i)) |
---|
| 259 | ! Le Ri bulk par Theta_v |
---|
| 260 | rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5*(zthvd+zthvu)) |
---|
| 261 | |
---|
| 262 | IF (rhino(i,k)>=ricr) THEN |
---|
| 263 | pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))/(rhino(i,k-1)-rhino(i,k)) |
---|
| 264 | ! test04 (la pblh est encore ici sous-estime'e) |
---|
| 265 | pblh(i) = pblh(i) + 100. |
---|
| 266 | ! pblT(i) = t(i,k-1) + (t(i,k)-t(i,k-1)) * |
---|
| 267 | ! . (pblh(i)-z(i,k-1))/(z(i,k)-z(i,k-1)) |
---|
| 268 | check(i) = .FALSE. |
---|
| 269 | END IF |
---|
| 270 | END IF |
---|
| 271 | END DO |
---|
| 272 | END DO |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | ! Set pbl height to maximum value where computation exceeds number of |
---|
| 276 | ! layers allowed |
---|
| 277 | |
---|
| 278 | DO i = 1, knon |
---|
| 279 | IF (check(i)) pblh(i) = z(i, isommet) |
---|
| 280 | END DO |
---|
| 281 | |
---|
| 282 | ! Improve estimate of pbl height for the unstable points. |
---|
| 283 | ! Find unstable points (sensible heat flux is upward): |
---|
| 284 | |
---|
| 285 | DO i = 1, knon |
---|
| 286 | IF (heatv(i)>0.) THEN |
---|
| 287 | unstbl(i) = .TRUE. |
---|
| 288 | check(i) = .TRUE. |
---|
| 289 | ELSE |
---|
| 290 | unstbl(i) = .FALSE. |
---|
| 291 | check(i) = .FALSE. |
---|
| 292 | END IF |
---|
| 293 | END DO |
---|
| 294 | |
---|
| 295 | ! For the unstable case, compute velocity scale and the |
---|
| 296 | ! convective temperature excess: |
---|
| 297 | |
---|
| 298 | DO i = 1, knon |
---|
| 299 | IF (check(i)) THEN |
---|
| 300 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
---|
| 301 | ! *************************************************** |
---|
| 302 | ! Wm ? et W* ? c'est la formule pour z/h < .1 |
---|
| 303 | ! ;Calcul de w* ;; |
---|
| 304 | ! ;;;;;;;;;;;;;;;; |
---|
| 305 | ! w_star=((g/tcls)*fcsv*z(ind))^(1/3.) [ou prendre la premiere approx de h) |
---|
| 306 | ! ;; CALCUL DE wm ;; |
---|
| 307 | ! ;;;;;;;;;;;;;;;;;; |
---|
| 308 | ! ; Ici on considerera que l'on est dans la couche de surf jusqu'a 100m |
---|
| 309 | ! ; On prend svt couche de surface=0.1*h mais on ne connait pas h |
---|
| 310 | ! ;;;;;;;;;;;Dans la couche de surface |
---|
| 311 | ! if (z(ind) le 20) then begin |
---|
| 312 | ! Phim=(1.-15.*(z(ind)/L))^(-1/3.) |
---|
| 313 | ! wm=u_star/Phim |
---|
| 314 | ! ;;;;;;;;;;;En dehors de la couche de surface |
---|
| 315 | ! endif else if (z(ind) gt 20) then begin |
---|
| 316 | ! wm=(u_star^3+c1*w_star^3)^(1/3.) |
---|
| 317 | ! endif |
---|
| 318 | ! *************************************************** |
---|
| 319 | wm(i) = ustar(i)*phiminv(i) |
---|
| 320 | ! ====================================================================== |
---|
| 321 | ! valeurs de Dominique Lambert de la campagne SEMAPHORE : |
---|
| 322 | ! <T'^2> = 100.T*^2; <q'^2> = 20.q*^2 a 10m |
---|
| 323 | ! <Tv'^2> = (1+1.2q).100.T* + 1.2Tv.sqrt(20*100).T*.q* + (.608*Tv)^2*20.q*^2; |
---|
| 324 | ! et dTetavS = sqrt(<Tv'^2>) ainsi calculee. |
---|
| 325 | ! avec : T*=<w'T'>_s/w* et q*=<w'q'>/w* |
---|
| 326 | ! !!! on peut donc utiliser w* pour les fluctuations <-> Lambert |
---|
| 327 | ! (leur corellation pourrait dependre de beta par ex) |
---|
| 328 | ! if fcsv(i,j) gt 0 then begin |
---|
| 329 | ! dTetavs=b1*(1.+2.*.608*q_10(i,j))*(fcs(i,j)/wm(i,j))^2+$ |
---|
| 330 | ! (.608*Thetav_10(i,j))^2*b2*(xle(i,j)/wm(i,j))^2+$ |
---|
| 331 | ! 2.*.608*thetav_10(i,j)*sqrt(b1*b2)*(xle(i,j)/wm(i,j))*(fcs(i,j)/wm(i,j)) |
---|
| 332 | ! dqs=b2*(xle(i,j)/wm(i,j))^2 |
---|
| 333 | ! theta_s(i,j)=thetav_10(i,j)+sqrt(dTetavs) |
---|
| 334 | ! q_s(i,j)=q_10(i,j)+sqrt(dqs) |
---|
| 335 | ! endif else begin |
---|
| 336 | ! Theta_s(i,j)=thetav_10(i,j) |
---|
| 337 | ! q_s(i,j)=q_10(i,j) |
---|
| 338 | ! endelse |
---|
| 339 | ! leur reference est le niveau a 10m, mais on prend 2m ici. |
---|
| 340 | ! ====================================================================== |
---|
| 341 | ! Premier calcul de l'exces tu thermique |
---|
| 342 | ! ====================================================================== |
---|
| 343 | ! HBTM therm(i) = heatv(i)*fak/wm(i) |
---|
| 344 | ! forme Mathieu : |
---|
| 345 | q_star = max(0., kqfs(i)/wm(i)) |
---|
| 346 | t_star = max(0., khfs(i)/wm(i)) |
---|
| 347 | ! Al1 Houston, we have a problem : il arrive en effet que heatv soit |
---|
| 348 | ! positif (=thermique instable) mais pas t_star : avec evaporation |
---|
| 349 | ! importante, il se peut qu'on refroidisse la 2m Que faire alors ? |
---|
| 350 | ! Garder le seul terme en q_star^2 ? ou rendre negatif le t_star^2 ? |
---|
| 351 | therm(i) = sqrt(b1*(1.+2.*retv*qt_th(i))*t_star**2+(retv*th_th(i))**2*b2*q_star*q_star+2.*retv*th_th(i)*b212* & |
---|
| 352 | q_star*t_star) |
---|
| 353 | |
---|
| 354 | ! Theta et qT du thermique (forme H&B) avec exces |
---|
| 355 | ! (attention, on ajoute therm(i) qui est virtuelle ...) |
---|
| 356 | ! pourquoi pas sqrt(b1)*t_star ? |
---|
| 357 | ! dqs = b2sr*kqfs(i)/wm(i) |
---|
| 358 | qt_th(i) = qt_th(i) + b2sr*q_star |
---|
| 359 | rhino(i, 1) = 0.0 |
---|
| 360 | END IF |
---|
| 361 | END DO |
---|
| 362 | |
---|
| 363 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 364 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 365 | ! ++ Improve pblh estimate for unstable conditions using the +++++++ |
---|
| 366 | ! ++ convective temperature excess : +++++++ |
---|
| 367 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 368 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 369 | |
---|
| 370 | DO k = 2, isommet |
---|
| 371 | DO i = 1, knon |
---|
| 372 | IF (check(i)) THEN |
---|
| 373 | ! test zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
| 374 | zdu2 = u(i, k)**2 + v(i, k)**2 |
---|
| 375 | zdu2 = max(zdu2, 1.0E-20) |
---|
| 376 | ! Theta_v environnement |
---|
| 377 | zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) |
---|
| 378 | |
---|
| 379 | ! et therm Theta_v (avec hypothese de constance de H&B, |
---|
| 380 | ! qui assimile qT a vapeur) |
---|
| 381 | zthvu = th_th(i)*(1.+retv*qt_th(i)) + therm(i) |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | ! Le Ri par Theta_v |
---|
| 385 | ! AM Niveau de ref 2m |
---|
| 386 | rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5*(zthvd+zthvu)) |
---|
| 387 | |
---|
| 388 | ! Niveau critique atteint |
---|
| 389 | IF (rhino(i,k)>=ricr) THEN |
---|
| 390 | pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))/(rhino(i,k-1)-rhino(i,k)) |
---|
| 391 | ! test04 |
---|
| 392 | pblh(i) = pblh(i) + 100. |
---|
| 393 | ! pblT(i) = t(i,k-1) + (t(i,k)-t(i,k-1)) * |
---|
| 394 | ! . (pblh(i)-z(i,k-1))/(z(i,k)-z(i,k-1)) |
---|
| 395 | check(i) = .FALSE. |
---|
| 396 | END IF |
---|
| 397 | END IF |
---|
| 398 | END DO |
---|
| 399 | END DO |
---|
| 400 | |
---|
| 401 | ! Set pbl height to maximum value where computation exceeds number of |
---|
| 402 | ! layers allowed (H&B) |
---|
| 403 | |
---|
| 404 | DO i = 1, knon |
---|
| 405 | IF (check(i)) pblh(i) = z(i, isommet) |
---|
| 406 | END DO |
---|
| 407 | |
---|
| 408 | ! PBL height must be greater than some minimum mechanical mixing depth |
---|
| 409 | ! Several investigators have proposed minimum mechanical mixing depth |
---|
| 410 | ! relationships as a function of the local friction velocity, u*. We |
---|
| 411 | ! make use of a linear relationship of the form h = c u* where c=700. |
---|
| 412 | ! The scaling arguments that give rise to this relationship most often |
---|
| 413 | ! represent the coefficient c as some constant over the local coriolis |
---|
| 414 | ! parameter. Here we make use of the experimental results of Koracin |
---|
| 415 | ! and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f |
---|
| 416 | ! where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid |
---|
| 417 | ! latitude value for f so that c = 0.07/f = 700. (H&B) |
---|
| 418 | ! Al1 calcul de pblT dans ce cas |
---|
| 419 | DO i = 1, knon |
---|
| 420 | pblmin = 700.0*ustar(i) |
---|
| 421 | IF (pblh(i)<pblmin) check(i) = .TRUE. |
---|
| 422 | END DO |
---|
| 423 | DO i = 1, knon |
---|
| 424 | IF (check(i)) THEN |
---|
| 425 | pblh(i) = 700.0*ustar(i) |
---|
| 426 | ! et par exemple : |
---|
| 427 | ! pblT(i) = t(i,2) + (t(i,3)-t(i,2)) * |
---|
| 428 | ! . (pblh(i)-z(i,2))/(z(i,3)-z(i,2)) |
---|
| 429 | END IF |
---|
| 430 | END DO |
---|
| 431 | |
---|
| 432 | ! ******************************************************************** |
---|
| 433 | ! pblh is now available; do preparation for final calculations : |
---|
| 434 | ! ******************************************************************** |
---|
| 435 | DO i = 1, knon |
---|
| 436 | check(i) = .TRUE. |
---|
| 437 | zsat(i) = .FALSE. |
---|
| 438 | zcin(i) = .FALSE. |
---|
| 439 | ! omegafl utilise pour prolongement CAPE |
---|
| 440 | omegafl(i) = .FALSE. |
---|
| 441 | |
---|
| 442 | ! Do additional preparation for unstable cases only, set temperature |
---|
| 443 | ! and moisture perturbations depending on stability. |
---|
| 444 | ! Rq: les formules sont prises dans leur forme Couche de Surface |
---|
| 445 | IF (unstbl(i)) THEN |
---|
| 446 | ! Al pblh a change', on recalcule : |
---|
| 447 | zxt = (th_th(i)-zref*0.5*rg/rcpd/(1.+rvtmp2*qt_th(i)))*(1.+retv*qt_th(i)) |
---|
| 448 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
---|
| 449 | phihinv(i) = sqrt(1.-binh*pblh(i)/obklen(i)) |
---|
| 450 | wm(i) = ustar(i)*phiminv(i) |
---|
| 451 | END IF |
---|
| 452 | END DO |
---|
| 453 | |
---|
| 454 | |
---|
| 455 | ! ======================================================= |
---|
| 456 | ! last upward integration |
---|
| 457 | ! For all unstable layers, compute integral info and CTEI |
---|
| 458 | ! ======================================================= |
---|
| 459 | |
---|
| 460 | ! 1/Recompute surface characteristics with the improved pblh |
---|
| 461 | ! ---------------------------------------------------------- |
---|
| 462 | DO i = 1, knon |
---|
| 463 | IF (unstbl(i)) THEN |
---|
| 464 | diagok(i) = 1. |
---|
| 465 | ! from missing_value to zero |
---|
| 466 | cape(i) = 0. |
---|
| 467 | cin(i) = 0. |
---|
| 468 | eauliq(i) = 0. |
---|
| 469 | ctei(i) = 0. |
---|
| 470 | d_qt(i) = 0. |
---|
| 471 | d_thv(i) = 0. |
---|
| 472 | dlt_2(i) = 0. |
---|
| 473 | xhis(i) = 0. |
---|
| 474 | posint(i) = 0. |
---|
| 475 | kin(i) = 0. |
---|
| 476 | omega(i) = 0. |
---|
| 477 | |
---|
| 478 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
---|
| 479 | wm(i) = ustar(i)*phiminv(i) |
---|
| 480 | q_star = max(0., kqfs(i)/wm(i)) |
---|
| 481 | t_star = max(0., khfs(i)/wm(i)) |
---|
| 482 | therm(i) = sqrt(b1*(1.+2.*retv*qt_th(i))*t_star**2+(retv*th_th(i))**2*b2*q_star*q_star+2.*retv*th_th(i)*b212* & |
---|
| 483 | q_star*t_star) |
---|
| 484 | ! Al1diag |
---|
| 485 | ! trmb1(i) = b1*(1.+2.*RETV*qT_th(i))*t_star**2 |
---|
| 486 | ! trmb2(i) = (RETV*Th_th(i))**2*b2*q_star*q_star |
---|
| 487 | ! trmb3(i) = 2.*RETV*Th_th(i)*b212*q_star*t_star |
---|
| 488 | |
---|
| 489 | ! Th_th will now be the thermal-theta (including exces) |
---|
| 490 | ! c Th_th(i) = Th_th(i)+sqrt(b1)*max(0.,khfs(i)/wm(i)) |
---|
| 491 | th_th(i) = th_th(i) + therm(i) |
---|
| 492 | ! al1diag |
---|
| 493 | ! trmb2(i) = wm(i) |
---|
| 494 | ! trmb3(i) = phiminv(i) |
---|
| 495 | ! and computes Theta_e for thermal |
---|
| 496 | the_th(i) = th_th(i) + rlvcp*qt_th(i) |
---|
| 497 | END IF ! unstbl |
---|
| 498 | ! Al1 compute a first guess of Plcl with the Bolton/Emanuel formula |
---|
| 499 | t2 = th_th(i) |
---|
| 500 | ! thermodyn functions |
---|
| 501 | zdelta = max(0., sign(1.,rtt-t2)) |
---|
| 502 | qsat = r2es*foeew(t2, zdelta)/paprs(i, 1) |
---|
| 503 | qsat = min(0.5, qsat) |
---|
| 504 | zcor = 1./(1.-retv*qsat) |
---|
| 505 | qsat = qsat*zcor |
---|
| 506 | ! relative humidity of thermal at 2m |
---|
| 507 | rh = qt_th(i)/qsat |
---|
| 508 | chi = t2/(1669.0-122.0*rh-t2) |
---|
| 509 | plcl(i) = paprs(i, 1)*(rh**chi) |
---|
| 510 | ! al1diag |
---|
| 511 | ! ctei(i) = Plcl(i) |
---|
| 512 | ! cape(i) = T2 |
---|
| 513 | ! trmb1(i)= Chi |
---|
| 514 | ! select unstable columns (=thermals) |
---|
| 515 | check(i) = .FALSE. |
---|
| 516 | IF (heatv(i)>0.) check(i) = .TRUE. |
---|
| 517 | ! diag |
---|
| 518 | ! dTv21(i,1) = T2*(1+RETV*qT_th(i))-t(i,1)*(1+RETV*q(i,1)) |
---|
| 519 | END DO |
---|
| 520 | ! ---------------------------------- |
---|
| 521 | ! 2/ upward integration for thermals |
---|
| 522 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ k loop |
---|
| 523 | DO k = 2, isommet |
---|
| 524 | DO i = 1, knon |
---|
| 525 | IF (check(i) .OR. omegafl(i)) THEN |
---|
| 526 | ! CC if (pplay(i,k) .le. plcl(i)) then |
---|
| 527 | zm(i) = z(i, k-1) |
---|
| 528 | zp(i) = z(i, k) |
---|
| 529 | ! Environnement : calcul de Tv1 a partir de t(:,:)== T liquide |
---|
| 530 | ! ============== |
---|
| 531 | tl1 = t(i, k) |
---|
| 532 | t1 = tl1 |
---|
| 533 | zdelta = max(0., sign(1.,rtt-t1)) |
---|
| 534 | qsat = r2es*foeew(t1, zdelta)/pplay(i, k) |
---|
| 535 | qsat = min(0.5, qsat) |
---|
| 536 | zcor = 1./(1.-retv*qsat) |
---|
| 537 | qsat = qsat*zcor |
---|
| 538 | q1 = min(q(i,k), qsat) |
---|
| 539 | ql1 = max(0., q(i,k)-q1) |
---|
| 540 | ! thermodyn function (Tl2Tql) |
---|
| 541 | dt = rlvcp*ql1 |
---|
| 542 | DO WHILE (abs(dt)>=dt0) |
---|
| 543 | t1 = t1 + dt |
---|
| 544 | zdelta = max(0., sign(1.,rtt-t1)) |
---|
| 545 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 546 | qsat = r2es*foeew(t1, zdelta)/pplay(i, k) |
---|
| 547 | qsat = min(0.5, qsat) |
---|
| 548 | zcor = 1./(1.-retv*qsat) |
---|
| 549 | qsat = qsat*zcor |
---|
| 550 | dqsat_dt = foede(t1, zdelta, zcvm5, qsat, zcor) |
---|
| 551 | ! correction lineaire pour conserver Tl env |
---|
| 552 | ! << Tl = T1 + DT - RLvCp*(ql1 - dqsat/dT*DT >> |
---|
| 553 | denom = 1. + rlvcp*dqsat_dt |
---|
| 554 | q1 = min(q(i,k), qsat) |
---|
| 555 | ql1 = q(i, k) - q1 ! can be negative |
---|
| 556 | rnum = tl1 - t1 + rlvcp*ql1 |
---|
| 557 | dt = rnum/denom |
---|
| 558 | END DO |
---|
| 559 | ql1 = max(0., ql1) |
---|
| 560 | tv1 = t1*(1.+retv*q1-ql1) |
---|
| 561 | ! Thermique : on atteint le seuil B/E de condensation |
---|
| 562 | ! ============== |
---|
| 563 | |
---|
| 564 | IF (.NOT. zsat(i)) THEN |
---|
| 565 | ! first guess from The_th(i) = Th_th(i) + RLvCp* [qv=qT_th(i)] |
---|
| 566 | t2 = s(i, k)*the_th(i) - rlvcp*qt_th(i) |
---|
| 567 | zdelta = max(0., sign(1.,rtt-t2)) |
---|
| 568 | qsat = r2es*foeew(t2, zdelta)/pplay(i, k) |
---|
| 569 | qsat = min(0.5, qsat) |
---|
| 570 | zcor = 1./(1.-retv*qsat) |
---|
| 571 | qsat = qsat*zcor |
---|
| 572 | q2 = min(qt_th(i), qsat) |
---|
| 573 | ql2 = max(0., qt_th(i)-q2) |
---|
| 574 | IF (ql2>0.0001) zsat(i) = .TRUE. |
---|
| 575 | tbef(i) = t2 |
---|
| 576 | ! a PBLH non sature |
---|
| 577 | IF (zm(i)<pblh(i) .AND. zp(i)>=pblh(i)) THEN |
---|
| 578 | reduc = (pblh(i)-zm(i))/(zp(i)-zm(i)) |
---|
| 579 | spblh = s(i, k-1) + reduc*(s(i,k)-s(i,k-1)) |
---|
| 580 | ! lmdz : qT1 et Thv1 |
---|
| 581 | t1 = (t(i,k-1)+reduc*(t(i,k)-t(i,k-1))) |
---|
| 582 | thv1 = t1*(1.+retv*q(i,k))/spblh |
---|
| 583 | ! on calcule pour le cas sans nuage un ctei en Delta Thv |
---|
| 584 | thv2 = t2/spblh*(1.+retv*qt_th(i)) |
---|
| 585 | ctei(i) = thv1 - thv2 |
---|
| 586 | tv2 = t2*(1.+retv*q2-ql2) |
---|
| 587 | ! diag |
---|
| 588 | ! dTv21(i,k) = Tv2-Tv1 |
---|
| 589 | check(i) = .FALSE. |
---|
| 590 | omegafl(i) = .TRUE. |
---|
| 591 | END IF |
---|
| 592 | END IF |
---|
| 593 | |
---|
| 594 | IF (zsat(i)) THEN |
---|
| 595 | ! thermodyn functions (Te2Tqsat) |
---|
| 596 | t2 = tbef(i) |
---|
| 597 | dt = 1. |
---|
| 598 | te2 = s(i, k)*the_th(i) |
---|
| 599 | DO WHILE (abs(dt)>=dt0) |
---|
| 600 | zdelta = max(0., sign(1.,rtt-t2)) |
---|
| 601 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
| 602 | qsat = r2es*foeew(t2, zdelta)/pplay(i, k) |
---|
| 603 | qsat = min(0.5, qsat) |
---|
| 604 | zcor = 1./(1.-retv*qsat) |
---|
| 605 | qsat = qsat*zcor |
---|
| 606 | dqsat_dt = foede(t2, zdelta, zcvm5, qsat, zcor) |
---|
| 607 | ! correction lineaire pour conserver Te_th |
---|
| 608 | ! << Te = T2 + DT + RLvCp*(qsatbef + dq/dT*DT >> |
---|
| 609 | denom = 1. + rlvcp*dqsat_dt |
---|
| 610 | rnum = te2 - t2 - rlvcp*qsat |
---|
| 611 | dt = rnum/denom |
---|
| 612 | t2 = t2 + dt |
---|
| 613 | END DO |
---|
| 614 | q2 = min(qt_th(i), qsat) |
---|
| 615 | ql2 = max(0., qt_th(i)-q2) |
---|
| 616 | ! jusqu'a PBLH y compris |
---|
| 617 | IF (zm(i)<pblh(i)) THEN |
---|
| 618 | |
---|
| 619 | ! mais a PBLH, interpolation et complements |
---|
| 620 | IF (zp(i)>=pblh(i)) THEN |
---|
| 621 | reduc = (pblh(i)-zm(i))/(zp(i)-zm(i)) |
---|
| 622 | spblh = s(i, k-1) + reduc*(s(i,k)-s(i,k-1)) |
---|
| 623 | ! CAPE et EauLiq a pblH |
---|
| 624 | cape(i) = kape(i) + reduc*(zp(i)-zm(i))*rg*.5/(tv2+tv1)*max(0., (tv2-tv1)) |
---|
| 625 | eauliq(i) = eauliq(i) + reduc*(paprs(i,k-1)-paprs(i,k))*ql2/rg |
---|
| 626 | ! CTEI |
---|
| 627 | the2 = (t2+rlvcp*q2)/spblh |
---|
| 628 | ! T1 est en realite la Tl env (on a donc strict The1) |
---|
| 629 | t1 = (t(i,k-1)+reduc*(t(i,k)-t(i,k-1))) |
---|
| 630 | the1 = (t1+rlvcp*q(i,k))/spblh |
---|
| 631 | ! Calcul de la Cloud Top Entrainement Instability |
---|
| 632 | ! cf Mathieu Lahellec QJRMS (2005) Comments to DYCOMS-II |
---|
| 633 | ! saut a l'inversion : |
---|
| 634 | delt_the = the1 - the2 ! negatif |
---|
| 635 | delt_qt = q(i, k) - qt_th(i) ! negatif |
---|
| 636 | d_qt(i) = -delt_qt |
---|
| 637 | dlt_2(i) = .63*delt_the - the2*delt_qt |
---|
| 638 | ! init ctei(i) |
---|
| 639 | ctei(i) = dlt_2(i) |
---|
| 640 | IF (dlt_2(i)<-0.1) THEN |
---|
| 641 | ! integrale de Peter : |
---|
| 642 | aa = delt_the - delt_qt*(rlvcp-retv*the2) |
---|
| 643 | bb = (rlvcp-(1.+retv)*the2)*ql2 |
---|
| 644 | d_thv(i) = aa - bb |
---|
| 645 | ! approx de Xhi_s et de l'integrale Xint=ctei(i) |
---|
| 646 | xhis(i) = bb/(aa-dlt_2(i)) |
---|
| 647 | ! trmb1(i) = xhis |
---|
| 648 | ! trmb3(i) = dlt_2 |
---|
| 649 | xnull = bb/aa |
---|
| 650 | IF (xhis(i)>0.1) THEN |
---|
| 651 | ctei(i) = dlt_2(i)*xhis(i) + aa*(1.-xhis(i)) + bb*alog(xhis(i)) |
---|
| 652 | ELSE |
---|
| 653 | ctei(i) = .5*(dlt_2(i)+aa-bb) |
---|
| 654 | END IF |
---|
| 655 | IF (xnull>0.) THEN |
---|
| 656 | posint(i) = aa - bb + bb*alog(xnull) |
---|
| 657 | ELSE |
---|
| 658 | posint(i) = 0. |
---|
| 659 | END IF |
---|
| 660 | ELSE |
---|
| 661 | ctei(i) = 1. |
---|
| 662 | posint(i) = 1. |
---|
| 663 | END IF |
---|
| 664 | check(i) = .FALSE. |
---|
| 665 | omegafl(i) = .TRUE. |
---|
| 666 | END IF ! end a pblh |
---|
| 667 | IF (check(i)) eauliq(i) = eauliq(i) + (paprs(i,k)-paprs(i,k+1))*ql2/rg |
---|
| 668 | END IF |
---|
| 669 | |
---|
| 670 | END IF ! Zsat |
---|
| 671 | |
---|
| 672 | ! KAPE : thermique / environnement |
---|
| 673 | tv2 = t2*(1.+retv*q2-ql2) |
---|
| 674 | ! diag |
---|
| 675 | ! dTv21(i,k) = Tv2-Tv1 |
---|
| 676 | ! Kape courante |
---|
| 677 | kape(i) = kape(i) + (zp(i)-zm(i))*rg*.5/(tv2+tv1)*max(0., (tv2-tv1)) |
---|
| 678 | ! Cin |
---|
| 679 | IF (zcin(i) .AND. tv2-tv1>0.) THEN |
---|
| 680 | zcin(i) = .FALSE. |
---|
| 681 | cin(i) = kin(i) |
---|
| 682 | END IF |
---|
| 683 | IF (.NOT. zcin(i) .AND. tv2-tv1<0.) THEN |
---|
| 684 | zcin(i) = .TRUE. |
---|
| 685 | kin(i) = kin(i) + (zp(i)-zm(i))*rg*.5/(tv2+tv1)*min(0., (tv2-tv1)) |
---|
| 686 | END IF |
---|
| 687 | IF (kape(i)+kin(i)<0.) THEN |
---|
| 688 | omega(i) = zm(i) |
---|
| 689 | ! trmb3(i) = paprs(i,k) |
---|
| 690 | omegafl(i) = .FALSE. |
---|
| 691 | ! diag |
---|
| 692 | ! print*,'Tv2-Tv1 (k): ',i,(dTv21(i,j),j=1,k) |
---|
| 693 | END IF |
---|
| 694 | ! CC EndIf !plcl |
---|
| 695 | END IF ! check(i) |
---|
| 696 | END DO |
---|
| 697 | END DO ! end of level loop |
---|
| 698 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end k loop |
---|
| 699 | RETURN |
---|
| 700 | END SUBROUTINE hbtm2l |
---|