[1992] | 1 | |
---|
[776] | 2 | ! $Header$ |
---|
| 3 | |
---|
[644] | 4 | |
---|
[1992] | 5 | SUBROUTINE hbtm(knon, paprs, pplay, t2m, t10m, q2m, q10m, ustar, wstar, & |
---|
| 6 | flux_t, flux_q, u, v, t, q, pblh, cape, eauliq, ctei, pblt, therm, trmb1, & |
---|
| 7 | trmb2, trmb3, plcl) |
---|
| 8 | USE dimphy |
---|
| 9 | IMPLICIT NONE |
---|
[674] | 10 | |
---|
[1992] | 11 | ! *************************************************************** |
---|
| 12 | ! * * |
---|
| 13 | ! * HBTM2 D'apres Holstag&Boville et Troen&Mahrt * |
---|
| 14 | ! * JAS 47 BLM * |
---|
| 15 | ! * Algorithme These Anne Mathieu * |
---|
| 16 | ! * Critere d'Entrainement Peter Duynkerke (JAS 50) * |
---|
| 17 | ! * written by : Anne MATHIEU & Alain LAHELLEC, 22/11/99 * |
---|
| 18 | ! * features : implem. exces Mathieu * |
---|
| 19 | ! *************************************************************** |
---|
| 20 | ! * mods : decembre 99 passage th a niveau plus bas. voir fixer * |
---|
| 21 | ! * la prise du th a z/Lambda = -.2 (max Ray) * |
---|
| 22 | ! * Autre algo : entrainement ~ Theta+v =cste mais comment=>The?* |
---|
| 23 | ! * on peut fixer q a .7qsat(cf non adiab)=>T2 et The2 * |
---|
| 24 | ! * voir aussi //KE pblh = niveau The_e ou l = env. * |
---|
| 25 | ! *************************************************************** |
---|
| 26 | ! * fin therm a la HBTM passage a forme Mathieu 12/09/2001 * |
---|
| 27 | ! *************************************************************** |
---|
| 28 | ! * |
---|
[674] | 29 | |
---|
| 30 | |
---|
[1992] | 31 | ! AM Fev 2003 |
---|
| 32 | ! Adaptation a LMDZ version couplee |
---|
[674] | 33 | |
---|
[1992] | 34 | ! Pour le moment on fait passer en argument les grdeurs de surface : |
---|
| 35 | ! flux, t,q2m, t,q10m, on va utiliser systematiquement les grdeurs a 2m ms |
---|
| 36 | ! on garde la possibilite de changer si besoin est (jusqu'a present la |
---|
| 37 | ! forme de HB avec le 1er niveau modele etait conservee) |
---|
[674] | 38 | |
---|
[644] | 39 | |
---|
| 40 | |
---|
| 41 | |
---|
[1992] | 42 | |
---|
| 43 | include "YOMCST.h" |
---|
| 44 | REAL rlvcp, reps |
---|
| 45 | ! Arguments: |
---|
| 46 | |
---|
| 47 | INTEGER knon ! nombre de points a calculer |
---|
| 48 | ! AM |
---|
| 49 | REAL t2m(klon), t10m(klon) ! temperature a 2 et 10m |
---|
| 50 | REAL q2m(klon), q10m(klon) ! q a 2 et 10m |
---|
| 51 | REAL ustar(klon) |
---|
| 52 | REAL wstar(klon) ! w*, convective velocity scale |
---|
| 53 | REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
---|
| 54 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 55 | REAL flux_t(klon, klev), flux_q(klon, klev) ! Flux |
---|
| 56 | REAL u(klon, klev) ! vitesse U (m/s) |
---|
| 57 | REAL v(klon, klev) ! vitesse V (m/s) |
---|
| 58 | REAL t(klon, klev) ! temperature (K) |
---|
| 59 | REAL q(klon, klev) ! vapeur d'eau (kg/kg) |
---|
| 60 | ! AM REAL cd_h(klon) ! coefficient de friction au sol pour chaleur |
---|
| 61 | ! AM REAL cd_m(klon) ! coefficient de friction au sol pour vitesse |
---|
| 62 | |
---|
| 63 | INTEGER isommet |
---|
| 64 | ! um PARAMETER (isommet=klev) ! limite max sommet pbl |
---|
| 65 | REAL, PARAMETER :: vk = 0.35 ! Von Karman => passer a .41 ! cf U.Olgstrom |
---|
| 66 | REAL, PARAMETER :: ricr = 0.4 |
---|
| 67 | REAL, PARAMETER :: fak = 8.5 ! b calcul du Prandtl et de dTetas |
---|
| 68 | REAL, PARAMETER :: fakn = 7.2 ! a |
---|
| 69 | REAL, PARAMETER :: onet = 1.0/3.0 |
---|
| 70 | REAL, PARAMETER :: t_coup = 273.15 |
---|
| 71 | REAL, PARAMETER :: zkmin = 0.01 |
---|
| 72 | REAL, PARAMETER :: betam = 15.0 ! pour Phim / h dans la S.L stable |
---|
| 73 | REAL, PARAMETER :: betah = 15.0 |
---|
| 74 | REAL, PARAMETER :: betas = 5.0 ! Phit dans la S.L. stable (mais 2 formes / z/OBL<>1 |
---|
| 75 | REAL, PARAMETER :: sffrac = 0.1 ! S.L. = z/h < .1 |
---|
| 76 | REAL, PARAMETER :: usmin = 1.E-12 |
---|
| 77 | REAL, PARAMETER :: binm = betam*sffrac |
---|
| 78 | REAL, PARAMETER :: binh = betah*sffrac |
---|
| 79 | REAL, PARAMETER :: ccon = fak*sffrac*vk |
---|
| 80 | REAL, PARAMETER :: b1 = 70., b2 = 20. |
---|
| 81 | REAL, PARAMETER :: zref = 2. ! Niveau de ref a 2m peut eventuellement |
---|
| 82 | ! etre choisi a 10m |
---|
| 83 | REAL q_star, t_star |
---|
| 84 | REAL b212, b2sr ! Lambert correlations T' q' avec T* q* |
---|
| 85 | |
---|
| 86 | REAL z(klon, klev) |
---|
| 87 | ! AM REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
| 88 | INTEGER i, k, j |
---|
| 89 | REAL zxt |
---|
| 90 | ! AM REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy |
---|
| 91 | ! AM REAL zx_alf1, zx_alf2 ! parametres pour extrapolation |
---|
| 92 | REAL khfs(klon) ! surface kinematic heat flux [mK/s] |
---|
| 93 | REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] |
---|
| 94 | REAL heatv(klon) ! surface virtual heat flux |
---|
| 95 | REAL rhino(klon, klev) ! bulk Richardon no. mais en Theta_v |
---|
| 96 | LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) |
---|
| 97 | LOGICAL stblev(klon) ! stable pbl with levels within pbl |
---|
| 98 | LOGICAL unslev(klon) ! unstbl pbl with levels within pbl |
---|
| 99 | LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr |
---|
| 100 | LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr |
---|
| 101 | LOGICAL check(klon) ! True=>chk if Richardson no.>critcal |
---|
| 102 | LOGICAL omegafl(klon) ! flag de prolongerment cape pour pt Omega |
---|
| 103 | REAL pblh(klon) |
---|
| 104 | REAL pblt(klon) |
---|
| 105 | REAL plcl(klon) |
---|
| 106 | ! AM REAL cgh(klon,2:klev) ! counter-gradient term for heat [K/m] |
---|
| 107 | ! AM REAL cgq(klon,2:klev) ! counter-gradient term for constituents |
---|
| 108 | ! AM REAL cgs(klon,2:klev) ! counter-gradient star (cg/flux) |
---|
| 109 | REAL unsobklen(klon) ! Monin-Obukhov lengh |
---|
| 110 | ! AM REAL ztvd, ztvu, |
---|
| 111 | REAL zdu2 |
---|
| 112 | REAL therm(klon) ! thermal virtual temperature excess |
---|
| 113 | REAL trmb1(klon), trmb2(klon), trmb3(klon) |
---|
| 114 | ! Algorithme thermique |
---|
| 115 | REAL s(klon, klev) ! [P/Po]^Kappa milieux couches |
---|
| 116 | REAL th_th(klon) ! potential temperature of thermal |
---|
| 117 | REAL the_th(klon) ! equivalent potential temperature of thermal |
---|
| 118 | REAL qt_th(klon) ! total water of thermal |
---|
| 119 | REAL tbef(klon) ! T thermique niveau precedent |
---|
| 120 | REAL qsatbef(klon) |
---|
| 121 | LOGICAL zsat(klon) ! le thermique est sature |
---|
| 122 | REAL cape(klon) ! Cape du thermique |
---|
| 123 | REAL kape(klon) ! Cape locale |
---|
| 124 | REAL eauliq(klon) ! Eau liqu integr du thermique |
---|
| 125 | REAL ctei(klon) ! Critere d'instab d'entrainmt des nuages de CL |
---|
| 126 | REAL the1, the2, aa, bb, zthvd, zthvu, xintpos, qqsat |
---|
| 127 | ! IM 091204 BEG |
---|
| 128 | REAL a1, a2, a3 |
---|
| 129 | ! IM 091204 END |
---|
| 130 | REAL xhis, rnum, denom, th1, th2, thv1, thv2, ql2 |
---|
| 131 | REAL dqsat_dt, qsat2, qt1, q2, t1, t2, xnull, delt_the |
---|
| 132 | REAL delt_qt, delt_2, quadsat, spblh, reduc |
---|
| 133 | |
---|
| 134 | REAL phiminv(klon) ! inverse phi function for momentum |
---|
| 135 | REAL phihinv(klon) ! inverse phi function for heat |
---|
| 136 | REAL wm(klon) ! turbulent velocity scale for momentum |
---|
| 137 | REAL fak1(klon) ! k*ustar*pblh |
---|
| 138 | REAL fak2(klon) ! k*wm*pblh |
---|
| 139 | REAL fak3(klon) ! fakn*wstar/wm |
---|
| 140 | REAL pblk(klon) ! level eddy diffusivity for momentum |
---|
| 141 | REAL pr(klon) ! Prandtl number for eddy diffusivities |
---|
| 142 | REAL zl(klon) ! zmzp / Obukhov length |
---|
| 143 | REAL zh(klon) ! zmzp / pblh |
---|
| 144 | REAL zzh(klon) ! (1-(zmzp/pblh))**2 |
---|
| 145 | REAL zm(klon) ! current level height |
---|
| 146 | REAL zp(klon) ! current level height + one level up |
---|
| 147 | REAL zcor, zdelta, zcvm5 |
---|
| 148 | ! AM REAL zxqs |
---|
| 149 | REAL fac, pblmin, zmzp, term |
---|
| 150 | |
---|
| 151 | include "YOETHF.h" |
---|
| 152 | include "FCTTRE.h" |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | ! initialisations (Anne) |
---|
| 157 | isommet = klev |
---|
| 158 | th_th(:) = 0. |
---|
| 159 | q_star = 0 |
---|
| 160 | t_star = 0 |
---|
| 161 | |
---|
| 162 | |
---|
| 163 | b212 = sqrt(b1*b2) |
---|
| 164 | b2sr = sqrt(b2) |
---|
| 165 | |
---|
| 166 | ! ============================================================ |
---|
| 167 | ! Fonctions thermo implicites |
---|
| 168 | ! ============================================================ |
---|
| 169 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 170 | ! Tetens : pression partielle de vap d'eau e_sat(T) |
---|
| 171 | ! ================================================= |
---|
| 172 | ! ++ e_sat(T) = r2*exp( r3*(T-Tf)/(T-r4) ) id a r2*FOEWE |
---|
| 173 | ! ++ avec : |
---|
| 174 | ! ++ Tf = 273.16 K (Temp de fusion de la glace) |
---|
| 175 | ! ++ r2 = 611.14 Pa |
---|
| 176 | ! ++ r3 = 17.269 (liquide) 21.875 (solide) adim |
---|
| 177 | ! ++ r4 = 35.86 7.66 Kelvin |
---|
| 178 | ! ++ q_sat = eps*e_sat/(p-(1-eps)*e_sat) |
---|
| 179 | ! ++ deriv� : |
---|
| 180 | ! ++ ========= |
---|
| 181 | ! ++ r3*(Tf-r4)*q_sat(T,p) |
---|
| 182 | ! ++ d_qsat_dT = -------------------------------- |
---|
| 183 | ! ++ (T-r4)^2*( 1-(1-eps)*e_sat(T)/p ) |
---|
| 184 | ! ++ pour zcvm5=Lv, c'est FOEDE |
---|
| 185 | ! ++ Rq :(1.-REPS)*esarg/Parg id a RETV*Qsat |
---|
| 186 | ! ------------------------------------------------------------------ |
---|
| 187 | |
---|
| 188 | ! Initialisation |
---|
| 189 | rlvcp = rlvtt/rcpd |
---|
| 190 | reps = rd/rv |
---|
| 191 | |
---|
| 192 | |
---|
| 193 | ! DO i = 1, klon |
---|
| 194 | ! pcfh(i,1) = cd_h(i) |
---|
| 195 | ! pcfm(i,1) = cd_m(i) |
---|
| 196 | ! ENDDO |
---|
| 197 | ! DO k = 2, klev |
---|
| 198 | ! DO i = 1, klon |
---|
| 199 | ! pcfh(i,k) = zkmin |
---|
| 200 | ! pcfm(i,k) = zkmin |
---|
| 201 | ! cgs(i,k) = 0.0 |
---|
| 202 | ! cgh(i,k) = 0.0 |
---|
| 203 | ! cgq(i,k) = 0.0 |
---|
| 204 | ! ENDDO |
---|
| 205 | ! ENDDO |
---|
| 206 | |
---|
| 207 | ! Calculer les hauteurs de chaque couche |
---|
| 208 | ! (geopotentielle Int_dp/ro = Int_[Rd.T.dp/p] z = geop/g) |
---|
| 209 | ! pourquoi ne pas utiliser Phi/RG ? |
---|
| 210 | DO i = 1, knon |
---|
| 211 | z(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i,1)))*(paprs(i,1)-pplay(i,1) & |
---|
| 212 | )/rg |
---|
| 213 | s(i, 1) = (pplay(i,1)/paprs(i,1))**rkappa |
---|
| 214 | END DO |
---|
| 215 | ! s(k) = [pplay(k)/ps]^kappa |
---|
| 216 | ! + + + + + + + + + pplay <-> s(k) t dp=pplay(k-1)-pplay(k) |
---|
| 217 | |
---|
| 218 | ! ----------------- paprs <-> sig(k) |
---|
| 219 | |
---|
| 220 | ! + + + + + + + + + pplay <-> s(k-1) |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | ! + + + + + + + + + pplay <-> s(1) t dp=paprs-pplay z(1) |
---|
| 224 | |
---|
| 225 | ! ----------------- paprs <-> sig(1) |
---|
| 226 | |
---|
| 227 | DO k = 2, klev |
---|
| 228 | DO i = 1, knon |
---|
| 229 | z(i, k) = z(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1 & |
---|
| 230 | )-pplay(i,k))/rg |
---|
| 231 | s(i, k) = (pplay(i,k)/paprs(i,1))**rkappa |
---|
| 232 | END DO |
---|
| 233 | END DO |
---|
| 234 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 235 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 236 | ! +++ Determination des grandeurs de surface +++++++++++++++++++++ |
---|
| 237 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 238 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 239 | DO i = 1, knon |
---|
| 240 | ! AM IF (thermcep) THEN |
---|
| 241 | ! AM zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) |
---|
| 242 | ! zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
| 243 | ! zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) |
---|
| 244 | ! AM zxqs= r2es * FOEEW(tsol(i),zdelta)/paprs(i,1) |
---|
| 245 | ! AM zxqs=MIN(0.5,zxqs) |
---|
| 246 | ! AM zcor=1./(1.-retv*zxqs) |
---|
| 247 | ! AM zxqs=zxqs*zcor |
---|
| 248 | ! AM ELSE |
---|
| 249 | ! AM IF (tsol(i).LT.t_coup) THEN |
---|
| 250 | ! AM zxqs = qsats(tsol(i)) / paprs(i,1) |
---|
| 251 | ! AM ELSE |
---|
| 252 | ! AM zxqs = qsatl(tsol(i)) / paprs(i,1) |
---|
| 253 | ! AM ENDIF |
---|
| 254 | ! AM ENDIF |
---|
| 255 | ! niveau de reference bulk; mais ici, c,a pourrait etre le niveau de ref |
---|
| 256 | ! du thermique |
---|
| 257 | ! AM zx_alf1 = 1.0 |
---|
| 258 | ! AM zx_alf2 = 1.0 - zx_alf1 |
---|
| 259 | ! AM zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
| 260 | ! AM . *(1.+RETV*q(i,1))*zx_alf1 |
---|
| 261 | ! AM . + (t(i,2)+z(i,2)*RG/RCPD/(1.+RVTMP2*q(i,2))) |
---|
| 262 | ! AM . *(1.+RETV*q(i,2))*zx_alf2 |
---|
| 263 | ! AM zxu = u(i,1)*zx_alf1+u(i,2)*zx_alf2 |
---|
| 264 | ! AM zxv = v(i,1)*zx_alf1+v(i,2)*zx_alf2 |
---|
| 265 | ! AM zxq = q(i,1)*zx_alf1+q(i,2)*zx_alf2 |
---|
| 266 | ! AM |
---|
| 267 | ! AMAM zxu = u10m(i) |
---|
| 268 | ! AMAM zxv = v10m(i) |
---|
| 269 | ! AMAM zxmod = 1.0+SQRT(zxu**2+zxv**2) |
---|
| 270 | ! AM Niveau de ref choisi a 2m |
---|
| 271 | zxt = t2m(i) |
---|
| 272 | |
---|
| 273 | ! *************************************************** |
---|
| 274 | ! attention, il doit s'agir de <w'theta'> |
---|
| 275 | ! ;Calcul de tcls virtuel et de w'theta'virtuel |
---|
| 276 | ! ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; |
---|
| 277 | ! tcls=tcls*(1+.608*qcls) |
---|
| 278 | |
---|
| 279 | ! ;Pour avoir w'theta', |
---|
| 280 | ! ; il faut diviser par ro.Cp |
---|
| 281 | ! Cp=Cpd*(1+0.84*qcls) |
---|
| 282 | ! fcs=fcs/(ro_surf*Cp) |
---|
| 283 | ! ;On transforme w'theta' en w'thetav' |
---|
| 284 | ! Lv=(2.501-0.00237*(tcls-273.15))*1.E6 |
---|
| 285 | ! xle=xle/(ro_surf*Lv) |
---|
| 286 | ! fcsv=fcs+.608*xle*tcls |
---|
| 287 | ! *************************************************** |
---|
| 288 | ! AM khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cd_h(i) |
---|
| 289 | ! AM kqfs(i) = (zxqs-zxq) *zxmod*cd_h(i) * beta(i) |
---|
| 290 | ! AM |
---|
| 291 | ! dif khfs est deja w't'_v / heatv(i) = khfs(i) + RETV*zxt*kqfs(i) |
---|
| 292 | ! AM calcule de Ro = paprs(i,1)/Rd zxt |
---|
| 293 | ! AM convention >0 vers le bas ds lmdz |
---|
| 294 | khfs(i) = -flux_t(i, 1)*zxt*rd/(rcpd*paprs(i,1)) |
---|
| 295 | kqfs(i) = -flux_q(i, 1)*zxt*rd/(paprs(i,1)) |
---|
| 296 | ! AM verifier que khfs et kqfs sont bien de la forme w'l' |
---|
| 297 | heatv(i) = khfs(i) + 0.608*zxt*kqfs(i) |
---|
| 298 | ! a comparer aussi aux sorties de clqh : flux_T/RoCp et flux_q/RoLv |
---|
| 299 | ! AM heatv(i) = khfs(i) |
---|
| 300 | ! AM ustar est en entree |
---|
| 301 | ! AM taux = zxu *zxmod*cd_m(i) |
---|
| 302 | ! AM tauy = zxv *zxmod*cd_m(i) |
---|
| 303 | ! AM ustar(i) = SQRT(taux**2+tauy**2) |
---|
| 304 | ! AM ustar(i) = MAX(SQRT(ustar(i)),0.01) |
---|
| 305 | ! Theta et qT du thermique sans exces (interpolin vers surf) |
---|
| 306 | ! chgt de niveau du thermique (jeudi 30/12/1999) |
---|
| 307 | ! (interpolation lineaire avant integration phi_h) |
---|
| 308 | ! AM qT_th(i) = zxqs*beta(i) + 4./z(i,1)*(q(i,1)-zxqs*beta(i)) |
---|
| 309 | ! AM qT_th(i) = max(qT_th(i),q(i,1)) |
---|
| 310 | qt_th(i) = q2m(i) |
---|
| 311 | ! n The_th restera la Theta du thermique sans exces jusqu'a 2eme calcul |
---|
| 312 | ! n reste a regler convention P) pour Theta |
---|
| 313 | ! The_th(i) = tsol(i) + 4./z(i,1)*(t(i,1)-tsol(i)) |
---|
| 314 | ! - + RLvCp*qT_th(i) |
---|
| 315 | ! AM Th_th(i) = tsol(i) + 4./z(i,1)*(t(i,1)-tsol(i)) |
---|
| 316 | th_th(i) = t2m(i) |
---|
| 317 | END DO |
---|
| 318 | |
---|
| 319 | DO i = 1, knon |
---|
| 320 | rhino(i, 1) = 0.0 ! Global Richardson |
---|
| 321 | check(i) = .TRUE. |
---|
| 322 | pblh(i) = z(i, 1) ! on initialise pblh a l'altitude du 1er niveau |
---|
| 323 | plcl(i) = 6000. |
---|
| 324 | ! Lambda = -u*^3 / (alpha.g.kvon.<w'Theta'v> |
---|
| 325 | unsobklen(i) = -rg*vk*heatv(i)/(t(i,1)*max(ustar(i),usmin)**3) |
---|
| 326 | trmb1(i) = 0. |
---|
| 327 | trmb2(i) = 0. |
---|
| 328 | trmb3(i) = 0. |
---|
| 329 | END DO |
---|
| 330 | |
---|
| 331 | |
---|
| 332 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 333 | ! PBL height calculation: |
---|
| 334 | ! Search for level of pbl. Scan upward until the Richardson number between |
---|
| 335 | ! the first level and the current level exceeds the "critical" value. |
---|
| 336 | ! (bonne idee Nu de separer le Ric et l'exces de temp du thermique) |
---|
| 337 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 338 | fac = 100.0 |
---|
| 339 | DO k = 2, isommet |
---|
| 340 | DO i = 1, knon |
---|
[644] | 341 | IF (check(i)) THEN |
---|
[1992] | 342 | ! pourquoi / niveau 1 (au lieu du sol) et le terme en u*^2 ? |
---|
| 343 | ! test zdu2 = |
---|
| 344 | ! (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
| 345 | zdu2 = u(i, k)**2 + v(i, k)**2 |
---|
| 346 | zdu2 = max(zdu2, 1.0E-20) |
---|
| 347 | ! Theta_v environnement |
---|
| 348 | zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) |
---|
[644] | 349 | |
---|
[1992] | 350 | ! therm Theta_v sans exces (avec hypothese fausse de H&B, sinon, |
---|
| 351 | ! passer par Theta_e et virpot) |
---|
| 352 | ! zthvu=t(i,1)/s(i,1)*(1.+RETV*q(i,1)) |
---|
| 353 | ! AM zthvu = Th_th(i)*(1.+RETV*q(i,1)) |
---|
| 354 | zthvu = th_th(i)*(1.+retv*qt_th(i)) |
---|
| 355 | ! Le Ri par Theta_v |
---|
| 356 | ! AM rhino(i,k) = (z(i,k)-z(i,1))*RG*(zthvd-zthvu) |
---|
| 357 | ! AM . /(zdu2*0.5*(zthvd+zthvu)) |
---|
| 358 | ! AM On a nveau de ref a 2m ??? |
---|
| 359 | rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5*(zthvd+zthvu)) |
---|
| 360 | |
---|
| 361 | IF (rhino(i,k)>=ricr) THEN |
---|
| 362 | pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))/(rhino( & |
---|
| 363 | i,k-1)-rhino(i,k)) |
---|
| 364 | ! test04 |
---|
| 365 | pblh(i) = pblh(i) + 100. |
---|
| 366 | pblt(i) = t(i, k-1) + (t(i,k)-t(i,k-1))*(pblh(i)-z(i,k-1))/(z(i,k)- & |
---|
| 367 | z(i,k-1)) |
---|
| 368 | check(i) = .FALSE. |
---|
| 369 | END IF |
---|
| 370 | END IF |
---|
| 371 | END DO |
---|
| 372 | END DO |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | ! Set pbl height to maximum value where computation exceeds number of |
---|
| 376 | ! layers allowed |
---|
| 377 | |
---|
| 378 | DO i = 1, knon |
---|
| 379 | IF (check(i)) pblh(i) = z(i, isommet) |
---|
| 380 | END DO |
---|
| 381 | |
---|
| 382 | ! Improve estimate of pbl height for the unstable points. |
---|
| 383 | ! Find unstable points (sensible heat flux is upward): |
---|
| 384 | |
---|
| 385 | DO i = 1, knon |
---|
| 386 | IF (heatv(i)>0.) THEN |
---|
| 387 | unstbl(i) = .TRUE. |
---|
| 388 | check(i) = .TRUE. |
---|
| 389 | ELSE |
---|
| 390 | unstbl(i) = .FALSE. |
---|
| 391 | check(i) = .FALSE. |
---|
| 392 | END IF |
---|
| 393 | END DO |
---|
| 394 | |
---|
| 395 | ! For the unstable case, compute velocity scale and the |
---|
| 396 | ! convective temperature excess: |
---|
| 397 | |
---|
| 398 | DO i = 1, knon |
---|
| 399 | IF (check(i)) THEN |
---|
| 400 | phiminv(i) = (1.-binm*pblh(i)*unsobklen(i))**onet |
---|
| 401 | ! *************************************************** |
---|
| 402 | ! Wm ? et W* ? c'est la formule pour z/h < .1 |
---|
| 403 | ! ;Calcul de w* ;; |
---|
| 404 | ! ;;;;;;;;;;;;;;;; |
---|
| 405 | ! w_star=((g/tcls)*fcsv*z(ind))^(1/3.) [ou prendre la premiere approx |
---|
| 406 | ! de h) |
---|
| 407 | ! ;; CALCUL DE wm ;; |
---|
| 408 | ! ;;;;;;;;;;;;;;;;;; |
---|
| 409 | ! ; Ici on considerera que l'on est dans la couche de surf jusqu'a 100m |
---|
| 410 | ! ; On prend svt couche de surface=0.1*h mais on ne connait pas h |
---|
| 411 | ! ;;;;;;;;;;;Dans la couche de surface |
---|
| 412 | ! if (z(ind) le 20) then begin |
---|
| 413 | ! Phim=(1.-15.*(z(ind)/L))^(-1/3.) |
---|
| 414 | ! wm=u_star/Phim |
---|
| 415 | ! ;;;;;;;;;;;En dehors de la couche de surface |
---|
| 416 | ! endif else if (z(ind) gt 20) then begin |
---|
| 417 | ! wm=(u_star^3+c1*w_star^3)^(1/3.) |
---|
| 418 | ! endif |
---|
| 419 | ! *************************************************** |
---|
| 420 | wm(i) = ustar(i)*phiminv(i) |
---|
| 421 | ! ====================================================================== |
---|
| 422 | ! valeurs de Dominique Lambert de la campagne SEMAPHORE : |
---|
| 423 | ! <T'^2> = 100.T*^2; <q'^2> = 20.q*^2 a 10m |
---|
| 424 | ! <Tv'^2> = (1+1.2q).100.T* + 1.2Tv.sqrt(20*100).T*.q* + |
---|
| 425 | ! (.608*Tv)^2*20.q*^2; |
---|
| 426 | ! et dTetavS = sqrt(<Tv'^2>) ainsi calculee. |
---|
| 427 | ! avec : T*=<w'T'>_s/w* et q*=<w'q'>/w* |
---|
| 428 | ! !!! on peut donc utiliser w* pour les fluctuations <-> Lambert |
---|
| 429 | ! (leur corellation pourrait dependre de beta par ex) |
---|
| 430 | ! if fcsv(i,j) gt 0 then begin |
---|
| 431 | ! dTetavs=b1*(1.+2.*.608*q_10(i,j))*(fcs(i,j)/wm(i,j))^2+$ |
---|
| 432 | ! (.608*Thetav_10(i,j))^2*b2*(xle(i,j)/wm(i,j))^2+$ |
---|
| 433 | ! 2.*.608*thetav_10(i,j)*sqrt(b1*b2)*(xle(i,j)/wm(i,j))*(fcs(i,j)/wm(i,j)) |
---|
| 434 | ! dqs=b2*(xle(i,j)/wm(i,j))^2 |
---|
| 435 | ! theta_s(i,j)=thetav_10(i,j)+sqrt(dTetavs) |
---|
| 436 | ! q_s(i,j)=q_10(i,j)+sqrt(dqs) |
---|
| 437 | ! endif else begin |
---|
| 438 | ! Theta_s(i,j)=thetav_10(i,j) |
---|
| 439 | ! q_s(i,j)=q_10(i,j) |
---|
| 440 | ! endelse |
---|
| 441 | ! ====================================================================== |
---|
| 442 | |
---|
| 443 | ! HBTM therm(i) = heatv(i)*fak/wm(i) |
---|
| 444 | ! forme Mathieu : |
---|
| 445 | q_star = kqfs(i)/wm(i) |
---|
| 446 | t_star = khfs(i)/wm(i) |
---|
| 447 | ! IM 091204 BEG |
---|
| 448 | IF (1==0) THEN |
---|
| 449 | IF (t_star<0. .OR. q_star<0.) THEN |
---|
| 450 | PRINT *, 'i t_star q_star khfs kqfs wm', i, t_star, q_star, & |
---|
| 451 | khfs(i), kqfs(i), wm(i) |
---|
| 452 | END IF |
---|
| 453 | END IF |
---|
| 454 | ! IM 091204 END |
---|
| 455 | ! AM Nveau cde ref 2m => |
---|
| 456 | ! AM therm(i) = sqrt( b1*(1.+2.*RETV*q(i,1))*t_star**2 |
---|
| 457 | ! AM + + (RETV*T(i,1))**2*b2*q_star**2 |
---|
| 458 | ! AM + + 2.*RETV*T(i,1)*b212*q_star*t_star |
---|
| 459 | ! AM + ) |
---|
| 460 | ! IM 091204 BEG |
---|
| 461 | a1 = b1*(1.+2.*retv*qt_th(i))*t_star**2 |
---|
| 462 | a2 = (retv*th_th(i))**2*b2*q_star*q_star |
---|
| 463 | a3 = 2.*retv*th_th(i)*b212*q_star*t_star |
---|
| 464 | aa = a1 + a2 + a3 |
---|
| 465 | IF (1==0) THEN |
---|
| 466 | IF (aa<0.) THEN |
---|
| 467 | PRINT *, 'i a1 a2 a3 aa', i, a1, a2, a3, aa |
---|
| 468 | PRINT *, 'i qT_th Th_th t_star q_star RETV b1 b2 b212', i, & |
---|
| 469 | qt_th(i), th_th(i), t_star, q_star, retv, b1, b2, b212 |
---|
| 470 | END IF |
---|
| 471 | END IF |
---|
| 472 | ! IM 091204 END |
---|
| 473 | therm(i) = sqrt(b1*(1.+2.*retv*qt_th(i))*t_star**2+(retv*th_th( & |
---|
| 474 | i))**2*b2*q_star*q_star & ! IM 101204 + + |
---|
| 475 | ! 2.*RETV*Th_th(i)*b212*q_star*t_star |
---|
| 476 | +max(0.,2.*retv*th_th(i)*b212*q_star*t_star)) |
---|
| 477 | |
---|
| 478 | ! Theta et qT du thermique (forme H&B) avec exces |
---|
| 479 | ! (attention, on ajoute therm(i) qui est virtuelle ...) |
---|
| 480 | ! pourquoi pas sqrt(b1)*t_star ? |
---|
| 481 | ! dqs = b2sr*kqfs(i)/wm(i) |
---|
| 482 | qt_th(i) = qt_th(i) + b2sr*q_star |
---|
| 483 | ! new on differre le calcul de Theta_e |
---|
| 484 | ! The_th(i) = The_th(i) + therm(i) + RLvCp*qT_th(i) |
---|
| 485 | ! ou: The_th(i) = The_th(i) + sqrt(b1)*khfs(i)/wm(i) + |
---|
| 486 | ! RLvCp*qT_th(i) |
---|
| 487 | rhino(i, 1) = 0.0 |
---|
| 488 | END IF |
---|
| 489 | END DO |
---|
| 490 | |
---|
| 491 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 492 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 493 | ! ++ Improve pblh estimate for unstable conditions using the +++++++ |
---|
| 494 | ! ++ convective temperature excess : +++++++ |
---|
| 495 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 496 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 497 | |
---|
| 498 | DO k = 2, isommet |
---|
| 499 | DO i = 1, knon |
---|
[644] | 500 | IF (check(i)) THEN |
---|
[1992] | 501 | ! test zdu2 = |
---|
| 502 | ! (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
| 503 | zdu2 = u(i, k)**2 + v(i, k)**2 |
---|
| 504 | zdu2 = max(zdu2, 1.0E-20) |
---|
| 505 | ! Theta_v environnement |
---|
| 506 | zthvd = t(i, k)/s(i, k)*(1.+retv*q(i,k)) |
---|
[644] | 507 | |
---|
[1992] | 508 | ! et therm Theta_v (avec hypothese de constance de H&B, |
---|
| 509 | ! zthvu=(t(i,1)+therm(i))/s(i,1)*(1.+RETV*q(i,1)) |
---|
| 510 | zthvu = th_th(i)*(1.+retv*qt_th(i)) + therm(i) |
---|
[644] | 511 | |
---|
[1992] | 512 | |
---|
| 513 | ! Le Ri par Theta_v |
---|
| 514 | ! AM Niveau de ref 2m |
---|
| 515 | ! AM rhino(i,k) = (z(i,k)-z(i,1))*RG*(zthvd-zthvu) |
---|
| 516 | ! AM . /(zdu2*0.5*(zthvd+zthvu)) |
---|
| 517 | rhino(i, k) = (z(i,k)-zref)*rg*(zthvd-zthvu)/(zdu2*0.5*(zthvd+zthvu)) |
---|
| 518 | |
---|
| 519 | |
---|
| 520 | IF (rhino(i,k)>=ricr) THEN |
---|
| 521 | pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rhino(i,k-1))/(rhino( & |
---|
| 522 | i,k-1)-rhino(i,k)) |
---|
| 523 | ! test04 |
---|
| 524 | pblh(i) = pblh(i) + 100. |
---|
| 525 | pblt(i) = t(i, k-1) + (t(i,k)-t(i,k-1))*(pblh(i)-z(i,k-1))/(z(i,k)- & |
---|
| 526 | z(i,k-1)) |
---|
| 527 | check(i) = .FALSE. |
---|
| 528 | ! IM 170305 BEG |
---|
| 529 | IF (1==0) THEN |
---|
| 530 | ! debug print -120;34 -34- 58 et 0;26 wamp |
---|
| 531 | IF (i==950 .OR. i==192 .OR. i==624 .OR. i==118) THEN |
---|
| 532 | PRINT *, ' i,Th_th,Therm,qT :', i, th_th(i), therm(i), qt_th(i) |
---|
| 533 | q_star = kqfs(i)/wm(i) |
---|
| 534 | t_star = khfs(i)/wm(i) |
---|
| 535 | PRINT *, 'q* t*, b1,b2,b212 ', q_star, t_star, & |
---|
| 536 | b1*(1.+2.*retv*qt_th(i))*t_star**2, & |
---|
| 537 | (retv*th_th(i))**2*b2*q_star**2, 2.*retv*th_th(i)*b212*q_star & |
---|
| 538 | *t_star |
---|
| 539 | PRINT *, 'zdu2 ,100.*ustar(i)**2', zdu2, fac*ustar(i)**2 |
---|
| 540 | END IF |
---|
| 541 | END IF !(1.EQ.0) THEN |
---|
| 542 | ! IM 170305 END |
---|
| 543 | ! q_star = kqfs(i)/wm(i) |
---|
| 544 | ! t_star = khfs(i)/wm(i) |
---|
| 545 | ! trmb1(i) = b1*(1.+2.*RETV*q(i,1))*t_star**2 |
---|
| 546 | ! trmb2(i) = (RETV*T(i,1))**2*b2*q_star**2 |
---|
| 547 | ! Omega now trmb3(i) = 2.*RETV*T(i,1)*b212*q_star*t_star |
---|
| 548 | END IF |
---|
| 549 | END IF |
---|
| 550 | END DO |
---|
| 551 | END DO |
---|
| 552 | |
---|
| 553 | ! Set pbl height to maximum value where computation exceeds number of |
---|
| 554 | ! layers allowed |
---|
| 555 | |
---|
| 556 | DO i = 1, knon |
---|
| 557 | IF (check(i)) pblh(i) = z(i, isommet) |
---|
| 558 | END DO |
---|
| 559 | |
---|
| 560 | ! PBL height must be greater than some minimum mechanical mixing depth |
---|
| 561 | ! Several investigators have proposed minimum mechanical mixing depth |
---|
| 562 | ! relationships as a function of the local friction velocity, u*. We |
---|
| 563 | ! make use of a linear relationship of the form h = c u* where c=700. |
---|
| 564 | ! The scaling arguments that give rise to this relationship most often |
---|
| 565 | ! represent the coefficient c as some constant over the local coriolis |
---|
| 566 | ! parameter. Here we make use of the experimental results of Koracin |
---|
| 567 | ! and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f |
---|
| 568 | ! where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid |
---|
| 569 | ! latitude value for f so that c = 0.07/f = 700. |
---|
| 570 | |
---|
| 571 | DO i = 1, knon |
---|
| 572 | pblmin = 700.0*ustar(i) |
---|
| 573 | pblh(i) = max(pblh(i), pblmin) |
---|
| 574 | ! par exemple : |
---|
| 575 | pblt(i) = t(i, 2) + (t(i,3)-t(i,2))*(pblh(i)-z(i,2))/(z(i,3)-z(i,2)) |
---|
| 576 | END DO |
---|
| 577 | |
---|
| 578 | ! ******************************************************************** |
---|
| 579 | ! pblh is now available; do preparation for diffusivity calculation : |
---|
| 580 | ! ******************************************************************** |
---|
| 581 | DO i = 1, knon |
---|
| 582 | check(i) = .TRUE. |
---|
| 583 | zsat(i) = .FALSE. |
---|
| 584 | ! omegafl utilise pour prolongement CAPE |
---|
| 585 | omegafl(i) = .FALSE. |
---|
| 586 | cape(i) = 0. |
---|
| 587 | kape(i) = 0. |
---|
| 588 | eauliq(i) = 0. |
---|
| 589 | ctei(i) = 0. |
---|
| 590 | pblk(i) = 0.0 |
---|
| 591 | fak1(i) = ustar(i)*pblh(i)*vk |
---|
| 592 | |
---|
| 593 | ! Do additional preparation for unstable cases only, set temperature |
---|
| 594 | ! and moisture perturbations depending on stability. |
---|
| 595 | ! *** Rq: les formule sont prises dans leur forme CS *** |
---|
| 596 | IF (unstbl(i)) THEN |
---|
| 597 | ! AM Niveau de ref du thermique |
---|
| 598 | ! AM zxt=(t(i,1)-z(i,1)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
| 599 | ! AM . *(1.+RETV*q(i,1)) |
---|
| 600 | zxt = (th_th(i)-zref*0.5*rg/rcpd/(1.+rvtmp2*qt_th(i)))* & |
---|
| 601 | (1.+retv*qt_th(i)) |
---|
| 602 | phiminv(i) = (1.-binm*pblh(i)*unsobklen(i))**onet |
---|
| 603 | phihinv(i) = sqrt(1.-binh*pblh(i)*unsobklen(i)) |
---|
| 604 | wm(i) = ustar(i)*phiminv(i) |
---|
| 605 | fak2(i) = wm(i)*pblh(i)*vk |
---|
| 606 | wstar(i) = (heatv(i)*rg*pblh(i)/zxt)**onet |
---|
| 607 | fak3(i) = fakn*wstar(i)/wm(i) |
---|
| 608 | ELSE |
---|
| 609 | wstar(i) = 0. |
---|
| 610 | END IF |
---|
| 611 | ! Computes Theta_e for thermal (all cases : to be modified) |
---|
| 612 | ! attention ajout therm(i) = virtuelle |
---|
| 613 | the_th(i) = th_th(i) + therm(i) + rlvcp*qt_th(i) |
---|
| 614 | ! ou: The_th(i) = Th_th(i) + sqrt(b1)*khfs(i)/wm(i) + RLvCp*qT_th(i) |
---|
| 615 | END DO |
---|
| 616 | |
---|
| 617 | ! Main level loop to compute the diffusivities and |
---|
| 618 | ! counter-gradient terms: |
---|
| 619 | |
---|
| 620 | DO k = 2, isommet |
---|
| 621 | |
---|
| 622 | ! Find levels within boundary layer: |
---|
| 623 | |
---|
| 624 | DO i = 1, knon |
---|
| 625 | unslev(i) = .FALSE. |
---|
| 626 | stblev(i) = .FALSE. |
---|
| 627 | zm(i) = z(i, k-1) |
---|
| 628 | zp(i) = z(i, k) |
---|
| 629 | IF (zkmin==0.0 .AND. zp(i)>pblh(i)) zp(i) = pblh(i) |
---|
| 630 | IF (zm(i)<pblh(i)) THEN |
---|
| 631 | zmzp = 0.5*(zm(i)+zp(i)) |
---|
| 632 | ! debug |
---|
| 633 | ! if (i.EQ.1864) then |
---|
| 634 | ! print*,'i,pblh(1864),obklen(1864)',i,pblh(i),obklen(i) |
---|
| 635 | ! endif |
---|
| 636 | |
---|
| 637 | zh(i) = zmzp/pblh(i) |
---|
| 638 | zl(i) = zmzp*unsobklen(i) |
---|
| 639 | zzh(i) = 0. |
---|
| 640 | IF (zh(i)<=1.0) zzh(i) = (1.-zh(i))**2 |
---|
| 641 | |
---|
| 642 | ! stblev for points zm < plbh and stable and neutral |
---|
| 643 | ! unslev for points zm < plbh and unstable |
---|
| 644 | |
---|
[644] | 645 | IF (unstbl(i)) THEN |
---|
[1992] | 646 | unslev(i) = .TRUE. |
---|
[1818] | 647 | ELSE |
---|
[1992] | 648 | stblev(i) = .TRUE. |
---|
| 649 | END IF |
---|
| 650 | END IF |
---|
| 651 | END DO |
---|
| 652 | ! print*,'fin calcul niveaux' |
---|
[644] | 653 | |
---|
[1992] | 654 | ! Stable and neutral points; set diffusivities; counter-gradient |
---|
| 655 | ! terms zero for stable case: |
---|
[644] | 656 | |
---|
[1992] | 657 | DO i = 1, knon |
---|
| 658 | IF (stblev(i)) THEN |
---|
| 659 | IF (zl(i)<=1.) THEN |
---|
| 660 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(1.+betas*zl(i)) |
---|
| 661 | ELSE |
---|
| 662 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas+zl(i)) |
---|
| 663 | END IF |
---|
| 664 | ! pcfm(i,k) = pblk(i) |
---|
| 665 | ! pcfh(i,k) = pcfm(i,k) |
---|
| 666 | END IF |
---|
| 667 | END DO |
---|
| 668 | |
---|
| 669 | ! unssrf, unstable within surface layer of pbl |
---|
| 670 | ! unsout, unstable within outer layer of pbl |
---|
| 671 | |
---|
| 672 | DO i = 1, knon |
---|
| 673 | unssrf(i) = .FALSE. |
---|
| 674 | unsout(i) = .FALSE. |
---|
| 675 | IF (unslev(i)) THEN |
---|
| 676 | IF (zh(i)<sffrac) THEN |
---|
| 677 | unssrf(i) = .TRUE. |
---|
| 678 | ELSE |
---|
| 679 | unsout(i) = .TRUE. |
---|
| 680 | END IF |
---|
| 681 | END IF |
---|
| 682 | END DO |
---|
| 683 | |
---|
| 684 | ! Unstable for surface layer; counter-gradient terms zero |
---|
| 685 | |
---|
| 686 | DO i = 1, knon |
---|
| 687 | IF (unssrf(i)) THEN |
---|
| 688 | term = (1.-betam*zl(i))**onet |
---|
| 689 | pblk(i) = fak1(i)*zh(i)*zzh(i)*term |
---|
| 690 | pr(i) = term/sqrt(1.-betah*zl(i)) |
---|
| 691 | END IF |
---|
| 692 | END DO |
---|
| 693 | ! print*,'fin counter-gradient terms zero' |
---|
| 694 | |
---|
| 695 | ! Unstable for outer layer; counter-gradient terms non-zero: |
---|
| 696 | |
---|
| 697 | DO i = 1, knon |
---|
| 698 | IF (unsout(i)) THEN |
---|
| 699 | pblk(i) = fak2(i)*zh(i)*zzh(i) |
---|
| 700 | ! cgs(i,k) = fak3(i)/(pblh(i)*wm(i)) |
---|
| 701 | ! cgh(i,k) = khfs(i)*cgs(i,k) |
---|
| 702 | pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak |
---|
| 703 | ! cgq(i,k) = kqfs(i)*cgs(i,k) |
---|
| 704 | END IF |
---|
| 705 | END DO |
---|
| 706 | ! print*,'fin counter-gradient terms non zero' |
---|
| 707 | |
---|
| 708 | ! For all unstable layers, compute diffusivities and ctrgrad ter m |
---|
| 709 | |
---|
| 710 | ! DO i = 1, knon |
---|
| 711 | ! IF (unslev(i)) THEN |
---|
| 712 | ! pcfm(i,k) = pblk(i) |
---|
| 713 | ! pcfh(i,k) = pblk(i)/pr(i) |
---|
| 714 | ! etc cf original |
---|
| 715 | ! ENDIF |
---|
| 716 | ! ENDDO |
---|
| 717 | |
---|
| 718 | ! For all layers, compute integral info and CTEI |
---|
| 719 | |
---|
| 720 | DO i = 1, knon |
---|
| 721 | IF (check(i) .OR. omegafl(i)) THEN |
---|
| 722 | IF (.NOT. zsat(i)) THEN |
---|
| 723 | ! Th2 = The_th(i) - RLvCp*qT_th(i) |
---|
| 724 | th2 = th_th(i) |
---|
| 725 | t2 = th2*s(i, k) |
---|
| 726 | ! thermodyn functions |
---|
| 727 | zdelta = max(0., sign(1.,rtt-t2)) |
---|
| 728 | qqsat = r2es*foeew(t2, zdelta)/pplay(i, k) |
---|
| 729 | qqsat = min(0.5, qqsat) |
---|
| 730 | zcor = 1./(1.-retv*qqsat) |
---|
| 731 | qqsat = qqsat*zcor |
---|
| 732 | |
---|
| 733 | IF (qqsat<qt_th(i)) THEN |
---|
| 734 | ! on calcule lcl |
---|
| 735 | IF (k==2) THEN |
---|
| 736 | plcl(i) = z(i, k) |
---|
[644] | 737 | ELSE |
---|
[1992] | 738 | plcl(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(qt_th(i)-qsatbef(i))/( & |
---|
| 739 | qsatbef(i)-qqsat) |
---|
| 740 | END IF |
---|
| 741 | zsat(i) = .TRUE. |
---|
| 742 | tbef(i) = t2 |
---|
| 743 | END IF |
---|
| 744 | |
---|
| 745 | qsatbef(i) = qqsat ! bug dans la version orig ??? |
---|
| 746 | END IF |
---|
| 747 | ! amn ???? cette ligne a deja ete faite normalement ? |
---|
| 748 | END IF |
---|
| 749 | ! print*,'hbtm2 i,k=',i,k |
---|
| 750 | END DO |
---|
| 751 | END DO ! end of level loop |
---|
| 752 | ! IM 170305 BEG |
---|
| 753 | IF (1==0) THEN |
---|
| 754 | PRINT *, 'hbtm2 ok' |
---|
| 755 | END IF !(1.EQ.0) THEN |
---|
| 756 | ! IM 170305 END |
---|
| 757 | RETURN |
---|
| 758 | END SUBROUTINE hbtm |
---|