[2293] | 1 | MODULE grid_noro_m |
---|
| 2 | ! |
---|
| 3 | !******************************************************************************* |
---|
| 4 | |
---|
| 5 | PRIVATE |
---|
| 6 | PUBLIC :: grid_noro |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | CONTAINS |
---|
| 10 | |
---|
| 11 | |
---|
| 12 | !------------------------------------------------------------------------------- |
---|
| 13 | ! |
---|
| 14 | SUBROUTINE grid_noro(xd,yd,zd,x,y,zphi,zmea,zstd,zsig,zgam,zthe,zpic,zval,mask) |
---|
| 15 | ! |
---|
| 16 | !------------------------------------------------------------------------------- |
---|
| 17 | ! Author: F. Lott (see also Z.X. Li, A. Harzallah et L. Fairhead) |
---|
| 18 | !------------------------------------------------------------------------------- |
---|
| 19 | ! Purpose: Compute the Parameters of the SSO scheme as described in LOTT &MILLER |
---|
| 20 | ! (1997) and LOTT(1999). |
---|
| 21 | !------------------------------------------------------------------------------- |
---|
| 22 | ! Comments: |
---|
| 23 | ! * Target points are on a rectangular grid: |
---|
| 24 | ! iim+1 latitudes including North and South Poles; |
---|
| 25 | ! jjm+1 longitudes, with periodicity jjm+1=1. |
---|
| 26 | ! * At the poles, the fields value is repeated jjm+1 time. |
---|
| 27 | ! * The parameters a,b,c,d represent the limits of the target gridpoint region. |
---|
| 28 | ! The means over this region are calculated from USN data, ponderated by a |
---|
| 29 | ! weight proportional to the surface occupated by the data inside the model |
---|
| 30 | ! gridpoint area. In most circumstances, this weight is the ratio between the |
---|
| 31 | ! surfaces of the USN gridpoint area and the model gridpoint area. |
---|
| 32 | ! |
---|
| 33 | ! (c) |
---|
| 34 | ! ----d----- |
---|
| 35 | ! | . . . .| |
---|
| 36 | ! | | |
---|
| 37 | ! (b)a . * . .b(a) |
---|
| 38 | ! | | |
---|
| 39 | ! | . . . .| |
---|
| 40 | ! ----c----- |
---|
| 41 | ! (d) |
---|
| 42 | ! * Hard-coded US Navy dataset dimensions (imdp=2160 ; jmdp=1080) have been |
---|
| 43 | ! removed (ALLOCATABLE used). |
---|
| 44 | ! * iext (currently 10% of imdp) represents the margin to ensure output cells |
---|
| 45 | ! on the edge are contained in input cells. |
---|
| 46 | !=============================================================================== |
---|
| 47 | USE assert_eq_m, ONLY: assert_eq |
---|
[2311] | 48 | USE print_control_mod, ONLY: lunout |
---|
[2293] | 49 | IMPLICIT NONE |
---|
| 50 | REAL, PARAMETER :: epsfra = 1.e-5 |
---|
| 51 | !------------------------------------------------------------------------------- |
---|
| 52 | ! Arguments: |
---|
| 53 | REAL, INTENT(IN) :: xd(:), yd(:) !--- INPUT COORDINATES (imdp) (jmdp) |
---|
| 54 | REAL, INTENT(IN) :: zd(:,:) !--- INPUT FIELD (imdp,jmdp) |
---|
| 55 | REAL, INTENT(IN) :: x(:), y(:) !--- OUTPUT COORDINATES (imar+1) (jmar) |
---|
| 56 | REAL, INTENT(OUT) :: zphi(:,:) !--- GEOPOTENTIAL (imar+1,jmar) |
---|
| 57 | REAL, INTENT(OUT) :: zmea(:,:) !--- MEAN OROGRAPHY (imar+1,jmar) |
---|
| 58 | REAL, INTENT(OUT) :: zstd(:,:) !--- STANDARD DEVIATION (imar+1,jmar) |
---|
| 59 | REAL, INTENT(OUT) :: zsig(:,:) !--- SLOPE (imar+1,jmar) |
---|
| 60 | REAL, INTENT(OUT) :: zgam(:,:) !--- ANISOTROPY (imar+1,jmar) |
---|
| 61 | REAL, INTENT(OUT) :: zthe(:,:) !--- SMALL AXIS ORIENTATION (imar+1,jmar) |
---|
| 62 | REAL, INTENT(OUT) :: zpic(:,:) !--- MAXIMUM ALTITITUDE (imar+1,jmar) |
---|
| 63 | REAL, INTENT(OUT) :: zval(:,:) !--- MINIMUM ALTITITUDE (imar+1,jmar) |
---|
| 64 | REAL, INTENT(OUT) :: mask(:,:) !--- MASK (imar+1,jmar) |
---|
| 65 | !------------------------------------------------------------------------------- |
---|
| 66 | ! Local variables: |
---|
| 67 | CHARACTER(LEN=256) :: modname="grid_noro" |
---|
| 68 | REAL, ALLOCATABLE :: xusn(:), yusn(:) ! dim (imdp+2*iext) (jmdp+2) |
---|
| 69 | REAL, ALLOCATABLE :: zusn(:,:) ! dim (imdp+2*iext,jmdp+2) |
---|
| 70 | ! CORRELATIONS OF OROGRAPHY GRADIENT ! dim (imar+1,jmar) |
---|
| 71 | REAL, ALLOCATABLE :: ztz(:,:), zxtzx(:,:), zytzy(:,:), zxtzy(:,:), weight(:,:) |
---|
| 72 | ! CORRELATIONS OF USN OROGRAPHY GRADIENTS ! dim (imar+2*iext,jmdp+2) |
---|
| 73 | REAL, ALLOCATABLE :: zxtzxusn(:,:), zytzyusn(:,:), zxtzyusn(:,:) |
---|
| 74 | REAL, ALLOCATABLE :: mask_tmp(:,:), zmea0(:,:) ! dim (imar+1,jmar) |
---|
| 75 | REAL, ALLOCATABLE :: num_tot(:,:), num_lan(:,:) ! dim (imax,jmax) |
---|
| 76 | REAL, ALLOCATABLE :: a(:), b(:) ! dim (imax) |
---|
| 77 | REAL, ALLOCATABLE :: c(:), d(:) ! dim (jmax) |
---|
| 78 | LOGICAL :: masque_lu |
---|
| 79 | INTEGER :: i, ii, imdp, imar, iext |
---|
| 80 | INTEGER :: j, jj, jmdp, jmar, nn |
---|
| 81 | REAL :: xpi, zdeltax, zlenx, weighx, xincr, zmeanor0 |
---|
| 82 | REAL :: rad, zdeltay, zleny, weighy, masque, zmeasud0 |
---|
| 83 | REAL :: zbordnor, zmeanor, zstdnor, zsignor, zweinor, zpicnor, zvalnor |
---|
| 84 | REAL :: zbordsud, zmeasud, zstdsud, zsigsud, zweisud, zpicsud, zvalsud |
---|
| 85 | REAL :: zbordest, zbordoue, xk, xl, xm, xp, xq, xw |
---|
| 86 | !------------------------------------------------------------------------------- |
---|
| 87 | imdp=assert_eq(SIZE(xd),SIZE(zd,1),TRIM(modname)//" imdp") |
---|
| 88 | jmdp=assert_eq(SIZE(yd),SIZE(zd,2),TRIM(modname)//" jmdp") |
---|
| 89 | imar=assert_eq([SIZE(x),SIZE(zphi,1),SIZE(zmea,1),SIZE(zstd,1),SIZE(zsig,1), & |
---|
| 90 | SIZE(zgam,1),SIZE(zthe,1),SIZE(zpic,1),SIZE(zval,1), & |
---|
| 91 | SIZE(mask,1)],TRIM(modname)//" imar")-1 |
---|
| 92 | jmar=assert_eq([SIZE(y),SIZE(zphi,2),SIZE(zmea,2),SIZE(zstd,2),SIZE(zsig,2), & |
---|
| 93 | SIZE(zgam,2),SIZE(zthe,2),SIZE(zpic,2),SIZE(zval,2), & |
---|
| 94 | SIZE(mask,2)],TRIM(modname)//" jmar") |
---|
[2311] | 95 | ! IF(imar/=iim) CALL abort_physic(TRIM(modname),'imar/=iim' ,1) |
---|
| 96 | ! IF(jmar/=jjm+1) CALL abort_physic(TRIM(modname),'jmar/=jjm+1',1) |
---|
[2293] | 97 | iext=imdp/10 !--- OK up to 36 degrees cell |
---|
| 98 | xpi = ACOS(-1.) |
---|
| 99 | rad = 6371229. |
---|
| 100 | zdeltay=2.*xpi/REAL(jmdp)*rad |
---|
| 101 | WRITE(lunout,*)"*** Orography parameters at sub-cell scale ***" |
---|
| 102 | |
---|
| 103 | !--- ARE WE USING A READ MASK ? |
---|
| 104 | masque_lu=ANY(mask/=-99999.); IF(.NOT.masque_lu) mask=0.0 |
---|
| 105 | WRITE(lunout,*)'Masque lu: ',masque_lu |
---|
| 106 | |
---|
| 107 | !--- EXTENSION OF THE INPUT DATABASE TO PROCEED COMPUTATIONS AT BOUNDARIES: |
---|
| 108 | ALLOCATE(xusn(imdp+2*iext)) |
---|
| 109 | xusn(1 +iext:imdp +iext)=xd(:) |
---|
| 110 | xusn(1 : iext)=xd(1+imdp-iext:imdp)-2.*xpi |
---|
| 111 | xusn(1+imdp+iext:imdp+2*iext)=xd(1 :iext)+2.*xpi |
---|
| 112 | |
---|
| 113 | ALLOCATE(yusn(jmdp+2)) |
---|
| 114 | yusn(1 )=yd(1) +(yd(1) -yd(2)) |
---|
| 115 | yusn(2:jmdp+1)=yd(:) |
---|
| 116 | yusn( jmdp+2)=yd(jmdp)+(yd(jmdp)-yd(jmdp-1)) |
---|
| 117 | |
---|
| 118 | ALLOCATE(zusn(imdp+2*iext,jmdp+2)) |
---|
| 119 | zusn(1 +iext:imdp +iext,2:jmdp+1)=zd (: , :) |
---|
| 120 | zusn(1 : iext,2:jmdp+1)=zd (imdp-iext+1:imdp , :) |
---|
| 121 | zusn(1+imdp +iext:imdp+2*iext,2:jmdp+1)=zd (1:iext , :) |
---|
| 122 | zusn(1 :imdp/2+iext, 1)=zusn(1+imdp/2:imdp +iext, 2) |
---|
| 123 | zusn(1+imdp/2+iext:imdp+2*iext, 1)=zusn(1 :imdp/2+iext, 2) |
---|
| 124 | zusn(1 :imdp/2+iext, jmdp+2)=zusn(1+imdp/2:imdp +iext,jmdp+1) |
---|
| 125 | zusn(1+imdp/2+iext:imdp+2*iext, jmdp+2)=zusn(1 :imdp/2+iext,jmdp+1) |
---|
| 126 | |
---|
| 127 | !--- COMPUTE LIMITS OF MODEL GRIDPOINT AREA (REGULAR GRID) |
---|
| 128 | ALLOCATE(a(imar+1),b(imar+1)) |
---|
| 129 | b(1:imar)=(x(1:imar )+ x(2:imar+1))/2.0 |
---|
| 130 | b(imar+1)= x( imar+1)+(x( imar+1)-x(imar))/2.0 |
---|
| 131 | a(1)=x(1)-(x(2)-x(1))/2.0 |
---|
| 132 | a(2:imar+1)= b(1:imar) |
---|
| 133 | |
---|
| 134 | ALLOCATE(c(jmar),d(jmar)) |
---|
| 135 | d(1:jmar-1)=(y(1:jmar-1)+ y(2:jmar))/2.0 |
---|
| 136 | d( jmar )= y( jmar )+(y( jmar)-y(jmar-1))/2.0 |
---|
| 137 | c(1)=y(1)-(y(2)-y(1))/2.0 |
---|
| 138 | c(2:jmar)=d(1:jmar-1) |
---|
| 139 | |
---|
| 140 | !--- INITIALIZATIONS: |
---|
| 141 | ALLOCATE(weight(imar+1,jmar)); weight(:,:)= 0.0 |
---|
| 142 | ALLOCATE(zxtzx (imar+1,jmar)); zxtzx (:,:)= 0.0 |
---|
| 143 | ALLOCATE(zytzy (imar+1,jmar)); zytzy (:,:)= 0.0 |
---|
| 144 | ALLOCATE(zxtzy (imar+1,jmar)); zxtzy (:,:)= 0.0 |
---|
| 145 | ALLOCATE(ztz (imar+1,jmar)); ztz (:,:)= 0.0 |
---|
| 146 | zmea(:,:)= 0.0 |
---|
| 147 | zpic(:,:)=-1.E+10 |
---|
| 148 | zval(:,:)= 1.E+10 |
---|
| 149 | |
---|
| 150 | !--- COMPUTE SLOPES CORRELATIONS ON USN GRID |
---|
| 151 | ! CORRELATIONS OF USN OROGRAPHY GRADIENTS ! dim (imdp+2*iext,jmdp+2) |
---|
| 152 | ALLOCATE(zytzyusn(imdp+2*iext,jmdp+2)); zytzyusn(:,:)=0.0 |
---|
| 153 | ALLOCATE(zxtzxusn(imdp+2*iext,jmdp+2)); zxtzxusn(:,:)=0.0 |
---|
| 154 | ALLOCATE(zxtzyusn(imdp+2*iext,jmdp+2)); zxtzyusn(:,:)=0.0 |
---|
| 155 | DO j = 2, jmdp+1 |
---|
| 156 | zdeltax=zdeltay*cos(yusn(j)) |
---|
| 157 | DO i = 2, imdp+2*iext-1 |
---|
| 158 | zytzyusn(i,j)=(zusn(i,j+1)-zusn(i,j-1))**2/zdeltay**2 |
---|
| 159 | zxtzxusn(i,j)=(zusn(i+1,j)-zusn(i-1,j))**2/zdeltax**2 |
---|
| 160 | zxtzyusn(i,j)=(zusn(i,j+1)-zusn(i,j-1)) /zdeltay & |
---|
| 161 | & *(zusn(i+1,j)-zusn(i-1,j)) /zdeltax |
---|
| 162 | END DO |
---|
| 163 | END DO |
---|
| 164 | |
---|
| 165 | !--- SUMMATION OVER GRIDPOINT AREA |
---|
| 166 | zleny=xpi/REAL(jmdp)*rad |
---|
| 167 | xincr=xpi/REAL(jmdp)/2. |
---|
| 168 | ALLOCATE(num_tot(imar+1,jmar)); num_tot(:,:)=0. |
---|
| 169 | ALLOCATE(num_lan(imar+1,jmar)); num_lan(:,:)=0. |
---|
| 170 | DO ii = 1, imar+1 |
---|
| 171 | DO jj = 1, jmar |
---|
| 172 | DO j = 2,jmdp+1 |
---|
| 173 | zlenx =zleny *COS(yusn(j)) |
---|
| 174 | zdeltax=zdeltay*COS(yusn(j)) |
---|
| 175 | zbordnor=(xincr+c(jj)-yusn(j))*rad |
---|
| 176 | zbordsud=(xincr-d(jj)+yusn(j))*rad |
---|
| 177 | weighy=AMAX1(0.,AMIN1(zbordnor,zbordsud,zleny)) |
---|
| 178 | IF(weighy==0.) CYCLE |
---|
| 179 | DO i = 2, imdp+2*iext-1 |
---|
| 180 | zbordest=(xusn(i)-a(ii)+xincr)*rad*COS(yusn(j)) |
---|
| 181 | zbordoue=(b(ii)+xincr-xusn(i))*rad*COS(yusn(j)) |
---|
| 182 | weighx=AMAX1(0.,AMIN1(zbordest,zbordoue,zlenx)) |
---|
| 183 | IF(weighx==0.) CYCLE |
---|
| 184 | num_tot(ii,jj)=num_tot(ii,jj)+1.0 |
---|
| 185 | IF(zusn(i,j)>=1.)num_lan(ii,jj)=num_lan(ii,jj)+1.0 |
---|
| 186 | weight(ii,jj)=weight(ii,jj)+weighx*weighy |
---|
| 187 | zxtzx(ii,jj)=zxtzx(ii,jj)+zxtzxusn(i,j)*weighx*weighy |
---|
| 188 | zytzy(ii,jj)=zytzy(ii,jj)+zytzyusn(i,j)*weighx*weighy |
---|
| 189 | zxtzy(ii,jj)=zxtzy(ii,jj)+zxtzyusn(i,j)*weighx*weighy |
---|
| 190 | ztz (ii,jj)= ztz(ii,jj)+zusn(i,j)*zusn(i,j)*weighx*weighy |
---|
| 191 | zmea (ii,jj)= zmea(ii,jj)+zusn(i,j)*weighx*weighy !--- MEAN |
---|
| 192 | zpic (ii,jj)=AMAX1(zpic(ii,jj),zusn(i,j)) !--- PEAKS |
---|
| 193 | zval (ii,jj)=AMIN1(zval(ii,jj),zusn(i,j)) !--- VALLEYS |
---|
| 194 | END DO |
---|
| 195 | END DO |
---|
| 196 | END DO |
---|
| 197 | END DO |
---|
| 198 | |
---|
| 199 | !--- COMPUTE PARAMETERS NEEDED BY LOTT & MILLER (1997) AND LOTT (1999) SSO SCHEME |
---|
| 200 | IF(.NOT.masque_lu) THEN |
---|
| 201 | WHERE(weight(:,1:jmar-1)/=0.0) mask=num_lan(:,:)/num_tot(:,:) |
---|
| 202 | END IF |
---|
| 203 | nn=COUNT(weight(:,1:jmar-1)==0.0) |
---|
| 204 | IF(nn/=0) WRITE(lunout,*)'Problem with weight ; vanishing occurrences: ',nn |
---|
| 205 | WHERE(weight(:,:)/=0.0) |
---|
| 206 | zmea (:,:)=zmea (:,:)/weight(:,:) |
---|
| 207 | zxtzx(:,:)=zxtzx(:,:)/weight(:,:) |
---|
| 208 | zytzy(:,:)=zytzy(:,:)/weight(:,:) |
---|
| 209 | zxtzy(:,:)=zxtzy(:,:)/weight(:,:) |
---|
| 210 | ztz (:,:)=ztz (:,:)/weight(:,:) |
---|
| 211 | zstd (:,:)=ztz (:,:)-zmea(:,:)**2 |
---|
| 212 | END WHERE |
---|
| 213 | WHERE(zstd(:,:)<0) zstd(:,:)=0. |
---|
| 214 | zstd (:,:)=SQRT(zstd(:,:)) |
---|
| 215 | |
---|
| 216 | !--- CORRECT VALUES OF HORIZONTAL SLOPE NEAR THE POLES: |
---|
| 217 | zxtzx(:, 1)=zxtzx(:, 2) |
---|
| 218 | zxtzx(:,jmar)=zxtzx(:,jmar-1) |
---|
| 219 | zxtzy(:, 1)=zxtzy(:, 2) |
---|
| 220 | zxtzy(:,jmar)=zxtzy(:,jmar-1) |
---|
| 221 | zytzy(:, 1)=zytzy(:, 2) |
---|
| 222 | zytzy(:,jmar)=zytzy(:,jmar-1) |
---|
| 223 | |
---|
| 224 | !=== FILTERS TO SMOOTH OUT FIELDS FOR INPUT INTO SSO SCHEME. |
---|
| 225 | !--- FIRST FILTER, MOVING AVERAGE OVER 9 POINTS. |
---|
| 226 | !------------------------------------------------------------------------------- |
---|
| 227 | ALLOCATE(zmea0(imar+1,jmar)) |
---|
| 228 | zmea0(:,:)=zmea(:,:) ! GK211005 (CG) UNSMOOTHED TOPO |
---|
| 229 | CALL MVA9(zmea); CALL MVA9(zstd); CALL MVA9(zpic); CALL MVA9(zval) |
---|
| 230 | CALL MVA9(zxtzx); CALL MVA9(zxtzy); CALL MVA9(zytzy) |
---|
| 231 | |
---|
| 232 | !--- MASK BASED ON GROUND MAXIMUM, 10% THRESHOLD. (SURFACE PARAMS MEANINGLESS) |
---|
| 233 | ALLOCATE(mask_tmp(imar+1,jmar)); mask_tmp(:,:)=0.0 |
---|
| 234 | WHERE(mask>=0.1) mask_tmp = 1. |
---|
| 235 | WHERE(weight(:,:)/=0.0) |
---|
| 236 | ! zphi (:,:)= mask_tmp(:,:)*zmea (:,:) ! GK211005 (CG) not necessarly smoothed |
---|
| 237 | zphi (:,:)= mask_tmp(:,:)*zmea0(:,:) |
---|
| 238 | zmea0(:,:)= mask_tmp(:,:)*zmea0(:,:) |
---|
| 239 | zmea (:,:)= mask_tmp(:,:)*zmea (:,:) |
---|
| 240 | zpic (:,:)= mask_tmp(:,:)*zpic (:,:) |
---|
| 241 | zval (:,:)= mask_tmp(:,:)*zval (:,:) |
---|
| 242 | zstd (:,:)= mask_tmp(:,:)*zstd (:,:) |
---|
| 243 | END WHERE |
---|
| 244 | DO ii = 1, imar |
---|
| 245 | DO jj = 1, jmar |
---|
| 246 | IF (weight(ii,jj)/=0.0) THEN |
---|
| 247 | !--- Coefficients K, L et M: |
---|
| 248 | xk=(zxtzx(ii,jj)+zytzy(ii,jj))/2. |
---|
| 249 | xl=(zxtzx(ii,jj)-zytzy(ii,jj))/2. |
---|
| 250 | xm=zxtzy(ii,jj) |
---|
| 251 | xp=xk-SQRT(xl**2+xm**2) |
---|
| 252 | xq=xk+SQRT(xl**2+xm**2) |
---|
| 253 | xw=1.e-8 |
---|
| 254 | IF(xp<=xw) xp=0. |
---|
| 255 | IF(xq<=xw) xq=xw |
---|
| 256 | IF(ABS(xm)<=xw) xm=xw*SIGN(1.,xm) |
---|
| 257 | !--- SLOPE |
---|
| 258 | zsig(ii,jj)=SQRT(xq)*mask_tmp(ii,jj) |
---|
| 259 | !---ISOTROPY |
---|
| 260 | zgam(ii,jj)=xp/xq*mask_tmp(ii,jj) |
---|
| 261 | !--- THETA ANGLE |
---|
| 262 | zthe(ii,jj)=57.29577951*ATAN2(xm,xl)/2.*mask_tmp(ii,jj) |
---|
| 263 | END IF |
---|
| 264 | END DO |
---|
| 265 | END DO |
---|
| 266 | WRITE(lunout,*)' MEAN ORO:' ,MAXVAL(zmea) |
---|
| 267 | WRITE(lunout,*)' ST. DEV.:' ,MAXVAL(zstd) |
---|
| 268 | WRITE(lunout,*)' PENTE:' ,MAXVAL(zsig) |
---|
| 269 | WRITE(lunout,*)' ANISOTROP:',MAXVAL(zgam) |
---|
| 270 | WRITE(lunout,*)' ANGLE:' ,MINVAL(zthe),MAXVAL(zthe) |
---|
| 271 | WRITE(lunout,*)' pic:' ,MAXVAL(zpic) |
---|
| 272 | WRITE(lunout,*)' val:' ,MAXVAL(zval) |
---|
| 273 | |
---|
| 274 | !--- Values at poles |
---|
| 275 | zmea0(imar+1,:)=zmea0(1,:) |
---|
| 276 | zmea (imar+1,:)=zmea (1,:) |
---|
| 277 | zphi (imar+1,:)=zphi (1,:) |
---|
| 278 | zpic (imar+1,:)=zpic (1,:) |
---|
| 279 | zval (imar+1,:)=zval (1,:) |
---|
| 280 | zstd (imar+1,:)=zstd (1,:) |
---|
| 281 | zsig (imar+1,:)=zsig (1,:) |
---|
| 282 | zgam (imar+1,:)=zgam (1,:) |
---|
| 283 | zthe (imar+1,:)=zthe (1,:) |
---|
| 284 | |
---|
| 285 | zweinor =SUM(weight(1:imar, 1),DIM=1) |
---|
| 286 | zweisud =SUM(weight(1:imar,jmar),DIM=1) |
---|
| 287 | zmeanor0=SUM(weight(1:imar, 1)*zmea0(1:imar, 1),DIM=1) |
---|
| 288 | zmeasud0=SUM(weight(1:imar,jmar)*zmea0(1:imar,jmar),DIM=1) |
---|
| 289 | zmeanor =SUM(weight(1:imar, 1)*zmea (1:imar, 1),DIM=1) |
---|
| 290 | zmeasud =SUM(weight(1:imar,jmar)*zmea (1:imar,jmar),DIM=1) |
---|
| 291 | zstdnor =SUM(weight(1:imar, 1)*zstd (1:imar, 1),DIM=1) |
---|
| 292 | zstdsud =SUM(weight(1:imar,jmar)*zstd (1:imar,jmar),DIM=1) |
---|
| 293 | zsignor =SUM(weight(1:imar, 1)*zsig (1:imar, 1),DIM=1) |
---|
| 294 | zsigsud =SUM(weight(1:imar,jmar)*zsig (1:imar,jmar),DIM=1) |
---|
| 295 | zpicnor =SUM(weight(1:imar, 1)*zpic (1:imar, 1),DIM=1) |
---|
| 296 | zpicsud =SUM(weight(1:imar,jmar)*zpic (1:imar,jmar),DIM=1) |
---|
| 297 | zvalnor =SUM(weight(1:imar, 1)*zval (1:imar, 1),DIM=1) |
---|
| 298 | zvalsud =SUM(weight(1:imar,jmar)*zval (1:imar,jmar),DIM=1) |
---|
| 299 | |
---|
| 300 | zmea(:,1)=zmeanor /zweinor; zmea(:,jmar)=zmeasud /zweisud |
---|
| 301 | ! zphi(:,1)=zmeanor0/zweinor; zphi(:,jmar)=zmeasud0/zweisud TO COMMIT |
---|
| 302 | zphi(:,1)=zmeanor /zweinor; zphi(:,jmar)=zmeasud /zweisud |
---|
| 303 | zpic(:,1)=zpicnor /zweinor; zpic(:,jmar)=zpicsud /zweisud |
---|
| 304 | zval(:,1)=zvalnor /zweinor; zval(:,jmar)=zvalsud /zweisud |
---|
| 305 | zstd(:,1)=zstdnor /zweinor; zstd(:,jmar)=zstdsud /zweisud |
---|
| 306 | zsig(:,1)=zsignor /zweinor; zsig(:,jmar)=zsigsud /zweisud |
---|
| 307 | zgam(:,1)=1.; zgam(:,jmar)=1. |
---|
| 308 | zthe(:,1)=0.; zthe(:,jmar)=0. |
---|
| 309 | |
---|
| 310 | END SUBROUTINE grid_noro |
---|
| 311 | ! |
---|
| 312 | !------------------------------------------------------------------------------- |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | !------------------------------------------------------------------------------- |
---|
| 316 | ! |
---|
| 317 | SUBROUTINE MVA9(x) |
---|
| 318 | ! |
---|
| 319 | !------------------------------------------------------------------------------- |
---|
| 320 | IMPLICIT NONE |
---|
| 321 | ! MAKE A MOVING AVERAGE OVER 9 GRIDPOINTS OF THE X FIELDS |
---|
| 322 | !------------------------------------------------------------------------------- |
---|
| 323 | ! Arguments: |
---|
| 324 | REAL, INTENT(INOUT) :: x(:,:) |
---|
| 325 | !------------------------------------------------------------------------------- |
---|
| 326 | ! Local variables: |
---|
| 327 | REAL :: xf(SIZE(x,DIM=1),SIZE(x,DIM=2)), WEIGHTpb(-1:1,-1:1) |
---|
| 328 | INTEGER :: i, j, imar, jmar |
---|
| 329 | !------------------------------------------------------------------------------- |
---|
| 330 | WEIGHTpb=RESHAPE([((1./REAL((1+i**2)*(1+j**2)),i=-1,1),j=-1,1)],SHAPE=[3,3]) |
---|
| 331 | WEIGHTpb=WEIGHTpb/SUM(WEIGHTpb) |
---|
| 332 | imar=SIZE(X,DIM=1); jmar=SIZE(X,DIM=2) |
---|
| 333 | DO j=2,jmar-1 |
---|
| 334 | DO i=2,imar-1 |
---|
| 335 | xf(i,j)=SUM(x(i-1:i+1,j-1:j+1)*WEIGHTpb(:,:)) |
---|
| 336 | END DO |
---|
| 337 | END DO |
---|
| 338 | DO j=2,jmar-1 |
---|
| 339 | xf(1,j)=SUM(x(imar-1,j-1:j+1)*WEIGHTpb(-1,:)) |
---|
| 340 | xf(1,j)=xf(1,j)+SUM(x(1:2,j-1:j+1)*WEIGHTpb(0:1,-1:1)) |
---|
| 341 | xf(imar,j)=xf(1,j) |
---|
| 342 | END DO |
---|
| 343 | xf(:, 1)=xf(:, 2) |
---|
| 344 | xf(:,jmar)=xf(:,jmar-1) |
---|
| 345 | x(:,:)=xf(:,:) |
---|
| 346 | |
---|
| 347 | END SUBROUTINE MVA9 |
---|
| 348 | ! |
---|
| 349 | !------------------------------------------------------------------------------- |
---|
| 350 | |
---|
| 351 | |
---|
| 352 | END MODULE grid_noro_m |
---|
| 353 | |
---|