[1938] | 1 | module FLOTT_GWD_rando_m |
---|
| 2 | |
---|
| 3 | implicit none |
---|
| 4 | |
---|
| 5 | contains |
---|
| 6 | |
---|
| 7 | SUBROUTINE FLOTT_GWD_rando(DTIME, pp, tt, uu, vv, prec, zustr, zvstr, d_u, & |
---|
| 8 | d_v) |
---|
| 9 | |
---|
| 10 | ! Parametrization of the momentum flux deposition due to a discrete |
---|
| 11 | ! number of gravity waves. |
---|
| 12 | ! Author: F. Lott |
---|
| 13 | ! July, 12th, 2012 |
---|
| 14 | ! Gaussian distribution of the source, source is precipitation |
---|
| 15 | ! Reference: Lott (JGR, vol 118, page 8897, 2013) |
---|
| 16 | |
---|
| 17 | use dimphy, only: klon, klev |
---|
| 18 | use assert_m, only: assert |
---|
| 19 | |
---|
| 20 | include "YOMCST.h" |
---|
| 21 | include "clesphys.h" |
---|
| 22 | include "YOEGWD.h" |
---|
| 23 | |
---|
| 24 | ! 0. DECLARATIONS: |
---|
| 25 | |
---|
| 26 | ! 0.1 INPUTS |
---|
| 27 | REAL, intent(in)::DTIME ! Time step of the Physics |
---|
| 28 | REAL, intent(in):: pp(:, :) ! (KLON, KLEV) Pressure at full levels |
---|
| 29 | REAL, intent(in):: prec(:) ! (klon) Precipitation (kg/m^2/s) |
---|
| 30 | REAL, intent(in):: TT(:, :) ! (KLON, KLEV) Temp at full levels |
---|
| 31 | REAL, intent(in):: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels |
---|
| 32 | REAL, intent(in):: VV(:, :) ! (KLON, KLEV) Merid wind at full levels |
---|
| 33 | |
---|
| 34 | ! 0.2 OUTPUTS |
---|
| 35 | REAL, intent(out):: zustr(:), zvstr(:) ! (KLON) Surface Stresses |
---|
| 36 | |
---|
| 37 | REAL, intent(inout):: d_u(:, :), d_v(:, :) |
---|
| 38 | ! (KLON, KLEV) tendencies on winds |
---|
| 39 | |
---|
| 40 | ! O.3 INTERNAL ARRAYS |
---|
| 41 | REAL BVLOW(klon) |
---|
| 42 | |
---|
| 43 | INTEGER II, LL |
---|
| 44 | |
---|
| 45 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
---|
| 46 | |
---|
| 47 | REAL DELTAT |
---|
| 48 | |
---|
| 49 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
---|
| 50 | |
---|
| 51 | INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
---|
| 52 | INTEGER JK, JP, JO, JW |
---|
| 53 | REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
---|
| 54 | REAL CMIN, CMAX ! Min and Max absolute ph. vel. |
---|
| 55 | REAL CPHA ! absolute PHASE VELOCITY frequency |
---|
| 56 | REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude |
---|
| 57 | REAL ZP(NW, KLON) ! Horizontal wavenumber angle |
---|
| 58 | REAL ZO(NW, KLON) ! Absolute frequency ! |
---|
| 59 | |
---|
| 60 | ! Waves Intr. freq. at the 1/2 lev surrounding the full level |
---|
| 61 | REAL ZOM(NW, KLON), ZOP(NW, KLON) |
---|
| 62 | |
---|
| 63 | ! Wave EP-fluxes at the 2 semi levels surrounding the full level |
---|
| 64 | REAL WWM(NW, KLON), WWP(NW, KLON) |
---|
| 65 | |
---|
| 66 | REAL RUW0(NW, KLON) ! Fluxes at launching level |
---|
| 67 | |
---|
| 68 | REAL RUWP(NW, KLON), RVWP(NW, KLON) |
---|
| 69 | ! Fluxes X and Y for each waves at 1/2 Levels |
---|
| 70 | |
---|
| 71 | INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude |
---|
| 72 | |
---|
| 73 | REAL XLAUNCH ! Controle the launching altitude |
---|
| 74 | REAL XTROP ! SORT of Tropopause altitude |
---|
| 75 | REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
---|
| 76 | REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
---|
| 77 | |
---|
| 78 | REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
---|
| 79 | ! for GWs parameterisation apply |
---|
| 80 | |
---|
| 81 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
---|
| 82 | |
---|
| 83 | REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
---|
| 84 | |
---|
| 85 | ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
---|
| 86 | |
---|
| 87 | REAL H0 ! Characteristic Height of the atmosphere |
---|
| 88 | REAL DZ ! Characteristic depth of the source! |
---|
| 89 | REAL PR, TR ! Reference Pressure and Temperature |
---|
| 90 | |
---|
| 91 | REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude |
---|
| 92 | |
---|
| 93 | REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
---|
| 94 | REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
---|
| 95 | REAL PSEC ! Security to avoid division by 0 pressure |
---|
| 96 | REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels |
---|
| 97 | REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
---|
| 98 | REAL BVSEC ! Security to avoid negative BVF |
---|
| 99 | |
---|
| 100 | !----------------------------------------------------------------- |
---|
| 101 | |
---|
| 102 | ! 1. INITIALISATIONS |
---|
| 103 | |
---|
| 104 | ! 1.1 Basic parameter |
---|
| 105 | |
---|
| 106 | ! Are provided from elsewhere (latent heat of vaporization, dry |
---|
| 107 | ! gaz constant for air, gravity constant, heat capacity of dry air |
---|
| 108 | ! at constant pressure, earth rotation rate, pi). |
---|
| 109 | |
---|
| 110 | ! 1.2 Tuning parameters of V14 |
---|
| 111 | |
---|
| 112 | RDISS = 1. ! Diffusion parameter |
---|
| 113 | |
---|
| 114 | PRMAX = 20. / 24. /3600. |
---|
| 115 | ! maximum of rain for which our theory applies (in kg/m^2/s) |
---|
| 116 | |
---|
| 117 | DZ = 1000. ! Characteristic depth of the source |
---|
| 118 | XLAUNCH=0.5 ! Parameter that control launching altitude |
---|
| 119 | XTROP=0.2 ! Parameter that control tropopause altitude |
---|
| 120 | DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b) |
---|
| 121 | |
---|
| 122 | KMIN = 2.E-5 |
---|
| 123 | ! minimum horizontal wavenumber (inverse of the subgrid scale resolution) |
---|
| 124 | |
---|
| 125 | KMAX = 1.E-3 ! Max horizontal wavenumber |
---|
| 126 | CMIN = 1. ! Min phase velocity |
---|
| 127 | CMAX = 50. ! Max phase speed velocity |
---|
| 128 | |
---|
| 129 | TR = 240. ! Reference Temperature |
---|
| 130 | PR = 101300. ! Reference pressure |
---|
| 131 | H0 = RD * TR / RG ! Characteristic vertical scale height |
---|
| 132 | |
---|
| 133 | BVSEC = 5.E-3 ! Security to avoid negative BVF |
---|
| 134 | PSEC = 1.E-6 ! Security to avoid division by 0 pressure |
---|
| 135 | ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ |
---|
| 136 | |
---|
| 137 | call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & |
---|
| 138 | size(vv, 1), size(prec), size(zustr), size(zvstr), size(d_u, 1), & |
---|
| 139 | size(d_v, 1)/), "FLOTT_GWD_RANDO klon") |
---|
| 140 | call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & |
---|
| 141 | size(vv, 2), size(d_u, 2), size(d_v, 2)/), "FLOTT_GWD_RANDO klev") |
---|
| 142 | |
---|
| 143 | IF(DELTAT < DTIME)THEN |
---|
| 144 | PRINT *, 'flott_gwd_rando: deltat < dtime!' |
---|
| 145 | STOP 1 |
---|
| 146 | ENDIF |
---|
| 147 | |
---|
| 148 | IF (KLEV < NW) THEN |
---|
| 149 | PRINT *, 'flott_gwd_rando: you will have problem with random numbers' |
---|
| 150 | STOP 1 |
---|
| 151 | ENDIF |
---|
| 152 | |
---|
| 153 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
---|
| 154 | |
---|
| 155 | ! Pressure and Inv of pressure |
---|
| 156 | DO LL = 2, KLEV |
---|
| 157 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
---|
| 158 | PHM1(:, LL) = 1. / PH(:, LL) |
---|
| 159 | end DO |
---|
| 160 | |
---|
| 161 | PH(:, KLEV + 1) = 0. |
---|
| 162 | PHM1(:, KLEV + 1) = 1. / PSEC |
---|
| 163 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
---|
| 164 | |
---|
| 165 | ! Launching altitude |
---|
| 166 | |
---|
| 167 | LAUNCH=0 |
---|
| 168 | LTROP =0 |
---|
| 169 | DO LL = 1, KLEV |
---|
| 170 | IF (PH(KLON / 2, LL) / PH(KLON / 2, 1) > XLAUNCH) LAUNCH = LL |
---|
| 171 | ENDDO |
---|
| 172 | DO LL = 1, KLEV |
---|
| 173 | IF (PH(KLON / 2, LL) / PH(KLON / 2, 1) > XTROP) LTROP = LL |
---|
| 174 | ENDDO |
---|
| 175 | |
---|
| 176 | ! Log pressure vert. coordinate |
---|
| 177 | DO LL = 1, KLEV + 1 |
---|
| 178 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
---|
| 179 | end DO |
---|
| 180 | |
---|
| 181 | ! BV frequency |
---|
| 182 | DO LL = 2, KLEV |
---|
| 183 | ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) |
---|
| 184 | UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
---|
| 185 | * RD**2 / RCPD / H0**2 + (TT(:, LL) & |
---|
| 186 | - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 |
---|
| 187 | end DO |
---|
| 188 | BVLOW = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) & |
---|
| 189 | * RD**2 / RCPD / H0**2 + (TT(:, LTROP ) & |
---|
| 190 | - TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0 |
---|
| 191 | |
---|
| 192 | UH(:, 1) = UH(:, 2) |
---|
| 193 | UH(:, KLEV + 1) = UH(:, KLEV) |
---|
| 194 | BV(:, 1) = UH(:, 2) |
---|
| 195 | BV(:, KLEV + 1) = UH(:, KLEV) |
---|
| 196 | ! SMOOTHING THE BV HELPS |
---|
| 197 | DO LL = 2, KLEV |
---|
| 198 | BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4. |
---|
| 199 | end DO |
---|
| 200 | |
---|
| 201 | BV=MAX(SQRT(MAX(BV, 0.)), BVSEC) |
---|
| 202 | BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) |
---|
| 203 | |
---|
| 204 | ! WINDS |
---|
| 205 | DO LL = 2, KLEV |
---|
| 206 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
---|
| 207 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
---|
| 208 | end DO |
---|
| 209 | UH(:, 1) = 0. |
---|
| 210 | VH(:, 1) = 0. |
---|
| 211 | UH(:, KLEV + 1) = UU(:, KLEV) |
---|
| 212 | VH(:, KLEV + 1) = VV(:, KLEV) |
---|
| 213 | |
---|
| 214 | ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE |
---|
| 215 | |
---|
| 216 | ! The mod functions of weird arguments are used to produce the |
---|
| 217 | ! waves characteristics in an almost stochastic way |
---|
| 218 | |
---|
| 219 | JW = 0 |
---|
| 220 | DO JP = 1, NP |
---|
| 221 | DO JK = 1, NK |
---|
| 222 | DO JO = 1, NO |
---|
| 223 | JW = JW + 1 |
---|
| 224 | ! Angle |
---|
| 225 | DO II = 1, KLON |
---|
| 226 | ! Angle (0 or PI so far) |
---|
| 227 | ZP(JW, II) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) & |
---|
| 228 | * RPI / 2. |
---|
| 229 | ! Horizontal wavenumber amplitude |
---|
| 230 | ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.) |
---|
| 231 | ! Horizontal phase speed |
---|
| 232 | CPHA = CMIN + (CMAX - CMIN) * MOD(TT(II, JW)**2, 1.) |
---|
| 233 | ! Absolute frequency is imposed |
---|
| 234 | ZO(JW, II) = CPHA * ZK(JW, II) |
---|
| 235 | ! Intrinsic frequency is imposed |
---|
| 236 | ZO(JW, II) = ZO(JW, II) & |
---|
| 237 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
---|
| 238 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
---|
| 239 | ! Momentum flux at launch lev |
---|
[2072] | 240 | RUW0(JW, II) = GWD_RANDO_RUWMAX |
---|
[1938] | 241 | ENDDO |
---|
| 242 | end DO |
---|
| 243 | end DO |
---|
| 244 | end DO |
---|
| 245 | |
---|
| 246 | ! 4. COMPUTE THE FLUXES |
---|
| 247 | |
---|
| 248 | ! 4.1 Vertical velocity at launching altitude to ensure |
---|
| 249 | ! the correct value to the imposed fluxes. |
---|
| 250 | |
---|
| 251 | DO JW = 1, NW |
---|
| 252 | |
---|
| 253 | ! Evaluate intrinsic frequency at launching altitude: |
---|
| 254 | ZOP(JW, :) = ZO(JW, :) & |
---|
| 255 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
| 256 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
| 257 | |
---|
| 258 | ! VERSION WITH CONVECTIVE SOURCE |
---|
| 259 | |
---|
| 260 | ! Vertical velocity at launch level, value to ensure the |
---|
| 261 | ! imposed factor related to the convective forcing: |
---|
| 262 | ! precipitations. |
---|
| 263 | |
---|
| 264 | ! tanh limitation to values above prmax: |
---|
| 265 | WWP(JW, :) = RUW0(JW, :) & |
---|
| 266 | * (RD / RCPD / H0 * RLVTT * PRMAX * TANH(PREC / PRMAX))**2 |
---|
| 267 | |
---|
| 268 | ! Factor related to the characteristics of the waves: |
---|
| 269 | WWP(JW, :) = WWP(JW, :) * ZK(JW, :)**3 / KMIN / BVLOW & |
---|
| 270 | / MAX(ABS(ZOP(JW, :)), ZOISEC)**3 |
---|
| 271 | |
---|
| 272 | ! Moderation by the depth of the source (dz here): |
---|
| 273 | WWP(JW, :) = WWP(JW, :) & |
---|
| 274 | * EXP(- BVLOW**2 / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 * ZK(JW, :)**2 & |
---|
| 275 | * DZ**2) |
---|
| 276 | |
---|
| 277 | ! Put the stress in the right direction: |
---|
| 278 | RUWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & |
---|
| 279 | * BV(:, LAUNCH) * COS(ZP(JW, :)) * WWP(JW, :)**2 |
---|
| 280 | RVWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & |
---|
| 281 | * BV(:, LAUNCH) * SIN(ZP(JW, :)) * WWP(JW, :)**2 |
---|
| 282 | end DO |
---|
| 283 | |
---|
| 284 | ! 4.2 Uniform values below the launching altitude |
---|
| 285 | |
---|
| 286 | DO LL = 1, LAUNCH |
---|
| 287 | RUW(:, LL) = 0 |
---|
| 288 | RVW(:, LL) = 0 |
---|
| 289 | DO JW = 1, NW |
---|
| 290 | RUW(:, LL) = RUW(:, LL) + RUWP(JW, :) |
---|
| 291 | RVW(:, LL) = RVW(:, LL) + RVWP(JW, :) |
---|
| 292 | end DO |
---|
| 293 | end DO |
---|
| 294 | |
---|
| 295 | ! 4.3 Loop over altitudes, with passage from one level to the next |
---|
| 296 | ! done by i) conserving the EP flux, ii) dissipating a little, |
---|
| 297 | ! iii) testing critical levels, and vi) testing the breaking. |
---|
| 298 | |
---|
| 299 | DO LL = LAUNCH, KLEV - 1 |
---|
| 300 | ! Warning: all the physics is here (passage from one level |
---|
| 301 | ! to the next) |
---|
| 302 | DO JW = 1, NW |
---|
| 303 | ZOM(JW, :) = ZOP(JW, :) |
---|
| 304 | WWM(JW, :) = WWP(JW, :) |
---|
| 305 | ! Intrinsic Frequency |
---|
| 306 | ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) & |
---|
| 307 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1) |
---|
| 308 | |
---|
| 309 | ! No breaking (Eq.6) |
---|
| 310 | ! Dissipation (Eq. 8) |
---|
| 311 | WWP(JW, :) = WWM(JW, :) * EXP(- 2. * RDISS * PR / (PH(:, LL + 1) & |
---|
| 312 | + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
---|
| 313 | / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & |
---|
| 314 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))) |
---|
| 315 | |
---|
| 316 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
---|
| 317 | ! Saturation (Eq. 12) |
---|
| 318 | WWP(JW, :) = min(WWP(JW, :), MAX(0., & |
---|
| 319 | SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 & |
---|
[2072] | 320 | / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * GWD_RANDO_SAT**2 & |
---|
| 321 | * KMIN**2 / ZK(JW, :)**4) |
---|
[1938] | 322 | end DO |
---|
| 323 | |
---|
| 324 | ! Evaluate EP-flux from Eq. 7 and give the right orientation to |
---|
| 325 | ! the stress |
---|
| 326 | |
---|
| 327 | DO JW = 1, NW |
---|
| 328 | RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :) |
---|
| 329 | RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :) |
---|
| 330 | end DO |
---|
| 331 | |
---|
| 332 | RUW(:, LL + 1) = 0. |
---|
| 333 | RVW(:, LL + 1) = 0. |
---|
| 334 | |
---|
| 335 | DO JW = 1, NW |
---|
| 336 | RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) |
---|
| 337 | RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) |
---|
| 338 | end DO |
---|
| 339 | end DO |
---|
| 340 | |
---|
| 341 | ! 5 CALCUL DES TENDANCES: |
---|
| 342 | |
---|
| 343 | ! 5.1 Rectification des flux au sommet et dans les basses couches |
---|
| 344 | |
---|
| 345 | RUW(:, KLEV + 1) = 0. |
---|
| 346 | RVW(:, KLEV + 1) = 0. |
---|
| 347 | RUW(:, 1) = RUW(:, LAUNCH) |
---|
| 348 | RVW(:, 1) = RVW(:, LAUNCH) |
---|
| 349 | DO LL = 1, LAUNCH |
---|
| 350 | RUW(:, LL) = RUW(:, LAUNCH+1) |
---|
| 351 | RVW(:, LL) = RVW(:, LAUNCH+1) |
---|
| 352 | end DO |
---|
| 353 | |
---|
| 354 | ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
---|
| 355 | DO LL = 1, KLEV |
---|
| 356 | D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
| 357 | RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
---|
| 358 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
| 359 | D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
| 360 | RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
---|
| 361 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
| 362 | ENDDO |
---|
| 363 | |
---|
| 364 | ! Cosmetic: evaluation of the cumulated stress |
---|
| 365 | ZUSTR = 0. |
---|
| 366 | ZVSTR = 0. |
---|
| 367 | DO LL = 1, KLEV |
---|
| 368 | ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
| 369 | ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
| 370 | ENDDO |
---|
| 371 | |
---|
| 372 | END SUBROUTINE FLOTT_GWD_RANDO |
---|
| 373 | |
---|
| 374 | end module FLOTT_GWD_rando_m |
---|