[524] | 1 | ! |
---|
[1403] | 2 | ! $Id: fisrtilp.F90 2415 2015-12-23 18:13:53Z jyg $ |
---|
[524] | 3 | ! |
---|
[1472] | 4 | ! |
---|
| 5 | SUBROUTINE fisrtilp(dtime,paprs,pplay,t,q,ptconv,ratqs, & |
---|
[2086] | 6 | d_t, d_q, d_ql, d_qi, rneb, radliq, rain, snow, & |
---|
[1742] | 7 | pfrac_impa, pfrac_nucl, pfrac_1nucl, & |
---|
| 8 | frac_impa, frac_nucl, beta, & |
---|
| 9 | prfl, psfl, rhcl, zqta, fraca, & |
---|
[2236] | 10 | ztv, zpspsk, ztla, zthl, iflag_cld_th, & |
---|
[1849] | 11 | iflag_ice_thermo) |
---|
[524] | 12 | |
---|
[1472] | 13 | ! |
---|
| 14 | USE dimphy |
---|
[2109] | 15 | USE icefrac_lsc_mod ! compute ice fraction (JBM 3/14) |
---|
[2311] | 16 | USE print_control_mod, ONLY: prt_level, lunout |
---|
[1472] | 17 | IMPLICIT none |
---|
| 18 | !====================================================================== |
---|
| 19 | ! Auteur(s): Z.X. Li (LMD/CNRS) |
---|
| 20 | ! Date: le 20 mars 1995 |
---|
| 21 | ! Objet: condensation et precipitation stratiforme. |
---|
| 22 | ! schema de nuage |
---|
| 23 | !====================================================================== |
---|
| 24 | !====================================================================== |
---|
| 25 | include "YOMCST.h" |
---|
| 26 | include "fisrtilp.h" |
---|
[2006] | 27 | include "nuage.h" ! JBM (3/14) |
---|
[1506] | 28 | |
---|
[1472] | 29 | ! |
---|
| 30 | ! Arguments: |
---|
| 31 | ! |
---|
| 32 | REAL dtime ! intervalle du temps (s) |
---|
| 33 | REAL paprs(klon,klev+1) ! pression a inter-couche |
---|
| 34 | REAL pplay(klon,klev) ! pression au milieu de couche |
---|
| 35 | REAL t(klon,klev) ! temperature (K) |
---|
| 36 | REAL q(klon,klev) ! humidite specifique (kg/kg) |
---|
| 37 | REAL d_t(klon,klev) ! incrementation de la temperature (K) |
---|
| 38 | REAL d_q(klon,klev) ! incrementation de la vapeur d'eau |
---|
| 39 | REAL d_ql(klon,klev) ! incrementation de l'eau liquide |
---|
[2086] | 40 | REAL d_qi(klon,klev) ! incrementation de l'eau glace |
---|
[1472] | 41 | REAL rneb(klon,klev) ! fraction nuageuse |
---|
| 42 | REAL radliq(klon,klev) ! eau liquide utilisee dans rayonnements |
---|
| 43 | REAL rhcl(klon,klev) ! humidite relative en ciel clair |
---|
| 44 | REAL rain(klon) ! pluies (mm/s) |
---|
| 45 | REAL snow(klon) ! neige (mm/s) |
---|
| 46 | REAL prfl(klon,klev+1) ! flux d'eau precipitante aux interfaces (kg/m2/s) |
---|
| 47 | REAL psfl(klon,klev+1) ! flux d'eau precipitante aux interfaces (kg/m2/s) |
---|
| 48 | REAL ztv(klon,klev) |
---|
| 49 | REAL zqta(klon,klev),fraca(klon,klev) |
---|
| 50 | REAL sigma1(klon,klev),sigma2(klon,klev) |
---|
| 51 | REAL qltot(klon,klev),ctot(klon,klev) |
---|
| 52 | REAL zpspsk(klon,klev),ztla(klon,klev) |
---|
| 53 | REAL zthl(klon,klev) |
---|
[1849] | 54 | REAL ztfondue, qsl, qsi |
---|
[1403] | 55 | |
---|
[1472] | 56 | logical lognormale(klon) |
---|
[1849] | 57 | logical ice_thermo |
---|
[1411] | 58 | |
---|
[1472] | 59 | !AA |
---|
| 60 | ! Coeffients de fraction lessivee : pour OFF-LINE |
---|
| 61 | ! |
---|
| 62 | REAL pfrac_nucl(klon,klev) |
---|
| 63 | REAL pfrac_1nucl(klon,klev) |
---|
| 64 | REAL pfrac_impa(klon,klev) |
---|
| 65 | ! |
---|
| 66 | ! Fraction d'aerosols lessivee par impaction et par nucleation |
---|
| 67 | ! POur ON-LINE |
---|
| 68 | ! |
---|
| 69 | REAL frac_impa(klon,klev) |
---|
| 70 | REAL frac_nucl(klon,klev) |
---|
| 71 | real zct ,zcl |
---|
| 72 | !AA |
---|
| 73 | ! |
---|
| 74 | ! Options du programme: |
---|
| 75 | ! |
---|
| 76 | REAL seuil_neb ! un nuage existe vraiment au-dela |
---|
| 77 | PARAMETER (seuil_neb=0.001) |
---|
[524] | 78 | |
---|
[1472] | 79 | INTEGER ninter ! sous-intervals pour la precipitation |
---|
| 80 | INTEGER ncoreczq |
---|
[2236] | 81 | INTEGER iflag_cld_th |
---|
[1849] | 82 | INTEGER iflag_ice_thermo |
---|
[1472] | 83 | PARAMETER (ninter=5) |
---|
| 84 | LOGICAL evap_prec ! evaporation de la pluie |
---|
| 85 | PARAMETER (evap_prec=.TRUE.) |
---|
| 86 | REAL ratqs(klon,klev) ! determine la largeur de distribution de vapeur |
---|
| 87 | logical ptconv(klon,klev) ! determine la largeur de distribution de vapeur |
---|
[524] | 88 | |
---|
[1472] | 89 | real zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon) |
---|
| 90 | real Zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon) |
---|
| 91 | real erf |
---|
| 92 | REAL qcloud(klon) |
---|
| 93 | ! |
---|
| 94 | LOGICAL cpartiel ! condensation partielle |
---|
| 95 | PARAMETER (cpartiel=.TRUE.) |
---|
| 96 | REAL t_coup |
---|
| 97 | PARAMETER (t_coup=234.0) |
---|
| 98 | ! |
---|
| 99 | ! Variables locales: |
---|
| 100 | ! |
---|
| 101 | INTEGER i, k, n, kk |
---|
[1901] | 102 | REAL zqs(klon), zdqs(klon), zdelta, zcor, zcvm5 |
---|
| 103 | REAL Tbef(klon),qlbef(klon),DT(klon),num,denom |
---|
| 104 | LOGICAL convergence(klon) |
---|
| 105 | REAL DDT0 |
---|
| 106 | PARAMETER (DDT0=.01) |
---|
[2086] | 107 | INTEGER n_i(klon), iter |
---|
| 108 | REAL cste |
---|
[1901] | 109 | |
---|
[1849] | 110 | REAL zrfl(klon), zrfln(klon), zqev, zqevt |
---|
| 111 | REAL zifl(klon), zifln(klon), zqev0,zqevi, zqevti |
---|
| 112 | REAL zoliq(klon), zcond(klon), zq(klon), zqn(klon), zdelq |
---|
| 113 | REAL zoliqp(klon), zoliqi(klon) |
---|
[2006] | 114 | REAL zt(klon) |
---|
| 115 | ! JBM (3/14) nexpo is replaced by exposant_glace |
---|
| 116 | ! REAL nexpo ! exponentiel pour glace/eau |
---|
| 117 | ! INTEGER, PARAMETER :: nexpo=6 |
---|
| 118 | INTEGER exposant_glace_old |
---|
| 119 | REAL t_glace_min_old |
---|
[1472] | 120 | REAL zdz(klon),zrho(klon),ztot , zrhol(klon) |
---|
| 121 | REAL zchau ,zfroi ,zfice(klon),zneb(klon) |
---|
[1849] | 122 | REAL zmelt, zpluie, zice, zcondold |
---|
| 123 | PARAMETER (ztfondue=278.15) |
---|
[2086] | 124 | REAL dzfice(klon) |
---|
[2415] | 125 | REAL zsolid |
---|
[1472] | 126 | ! |
---|
| 127 | LOGICAL appel1er |
---|
| 128 | SAVE appel1er |
---|
| 129 | !$OMP THREADPRIVATE(appel1er) |
---|
| 130 | ! |
---|
| 131 | !--------------------------------------------------------------- |
---|
| 132 | ! |
---|
| 133 | !AA Variables traceurs: |
---|
| 134 | !AA Provisoire !!! Parametres alpha du lessivage |
---|
| 135 | !AA A priori on a 4 scavenging # possibles |
---|
| 136 | ! |
---|
| 137 | REAL a_tr_sca(4) |
---|
| 138 | save a_tr_sca |
---|
| 139 | !$OMP THREADPRIVATE(a_tr_sca) |
---|
| 140 | ! |
---|
| 141 | ! Variables intermediaires |
---|
| 142 | ! |
---|
| 143 | REAL zalpha_tr |
---|
| 144 | REAL zfrac_lessi |
---|
| 145 | REAL zprec_cond(klon) |
---|
| 146 | !AA |
---|
[1742] | 147 | ! RomP >>> 15 nov 2012 |
---|
| 148 | REAL beta(klon,klev) ! taux de conversion de l'eau cond |
---|
| 149 | ! RomP <<< |
---|
[1472] | 150 | REAL zmair, zcpair, zcpeau |
---|
| 151 | ! Pour la conversion eau-neige |
---|
| 152 | REAL zlh_solid(klon), zm_solid |
---|
| 153 | !IM |
---|
| 154 | !ym INTEGER klevm1 |
---|
| 155 | !--------------------------------------------------------------- |
---|
| 156 | ! |
---|
| 157 | ! Fonctions en ligne: |
---|
| 158 | ! |
---|
| 159 | REAL fallvs,fallvc ! vitesse de chute pour crystaux de glace |
---|
| 160 | REAL zzz |
---|
| 161 | include "YOETHF.h" |
---|
| 162 | include "FCTTRE.h" |
---|
| 163 | fallvc (zzz) = 3.29/2.0 * ((zzz)**0.16) * ffallv_con |
---|
| 164 | fallvs (zzz) = 3.29/2.0 * ((zzz)**0.16) * ffallv_lsc |
---|
| 165 | ! |
---|
| 166 | DATA appel1er /.TRUE./ |
---|
| 167 | !ym |
---|
[2086] | 168 | !CR: pour iflag_ice_thermo=2, on active que la convection |
---|
| 169 | ! ice_thermo = iflag_ice_thermo .GE. 1 |
---|
| 170 | ice_thermo = (iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3) |
---|
[1472] | 171 | zdelq=0.0 |
---|
[524] | 172 | |
---|
[1506] | 173 | if (prt_level>9)write(lunout,*)'NUAGES4 A. JAM' |
---|
[1472] | 174 | IF (appel1er) THEN |
---|
| 175 | ! |
---|
[1575] | 176 | WRITE(lunout,*) 'fisrtilp, ninter:', ninter |
---|
| 177 | WRITE(lunout,*) 'fisrtilp, evap_prec:', evap_prec |
---|
| 178 | WRITE(lunout,*) 'fisrtilp, cpartiel:', cpartiel |
---|
[1472] | 179 | IF (ABS(dtime/REAL(ninter)-360.0).GT.0.001) THEN |
---|
[1575] | 180 | WRITE(lunout,*) 'fisrtilp: Ce n est pas prevu, voir Z.X.Li', dtime |
---|
| 181 | WRITE(lunout,*) 'Je prefere un sous-intervalle de 6 minutes' |
---|
[1472] | 182 | ! CALL abort |
---|
| 183 | ENDIF |
---|
| 184 | appel1er = .FALSE. |
---|
| 185 | ! |
---|
| 186 | !AA initialiation provisoire |
---|
| 187 | a_tr_sca(1) = -0.5 |
---|
| 188 | a_tr_sca(2) = -0.5 |
---|
| 189 | a_tr_sca(3) = -0.5 |
---|
| 190 | a_tr_sca(4) = -0.5 |
---|
| 191 | ! |
---|
| 192 | !AA Initialisation a 1 des coefs des fractions lessivees |
---|
| 193 | ! |
---|
| 194 | !cdir collapse |
---|
| 195 | DO k = 1, klev |
---|
| 196 | DO i = 1, klon |
---|
| 197 | pfrac_nucl(i,k)=1. |
---|
| 198 | pfrac_1nucl(i,k)=1. |
---|
| 199 | pfrac_impa(i,k)=1. |
---|
[1742] | 200 | beta(i,k)=0. !RomP initialisation |
---|
[1472] | 201 | ENDDO |
---|
| 202 | ENDDO |
---|
[524] | 203 | |
---|
[1472] | 204 | ENDIF ! test sur appel1er |
---|
| 205 | ! |
---|
| 206 | !MAf Initialisation a 0 de zoliq |
---|
| 207 | ! DO i = 1, klon |
---|
| 208 | ! zoliq(i)=0. |
---|
| 209 | ! ENDDO |
---|
| 210 | ! Determiner les nuages froids par leur temperature |
---|
| 211 | ! nexpo regle la raideur de la transition eau liquide / eau glace. |
---|
| 212 | ! |
---|
[2086] | 213 | !CR: on est oblige de definir des valeurs fisrt car les valeurs de newmicro ne sont pas les memes par defaut |
---|
[2006] | 214 | IF (iflag_t_glace.EQ.0) THEN |
---|
| 215 | ! ztglace = RTT - 15.0 |
---|
| 216 | t_glace_min_old = RTT - 15.0 |
---|
| 217 | !AJ< |
---|
| 218 | IF (ice_thermo) THEN |
---|
| 219 | ! nexpo = 2 |
---|
| 220 | exposant_glace_old = 2 |
---|
| 221 | ELSE |
---|
| 222 | ! nexpo = 6 |
---|
| 223 | exposant_glace_old = 6 |
---|
| 224 | ENDIF |
---|
[2086] | 225 | |
---|
[1849] | 226 | ENDIF |
---|
[2006] | 227 | |
---|
[1849] | 228 | !! RLVTT = 2.501e6 ! pas de redefinition des constantes physiques (jyg) |
---|
| 229 | !! RLSTT = 2.834e6 ! pas de redefinition des constantes physiques (jyg) |
---|
| 230 | !>AJ |
---|
[1472] | 231 | !cc nexpo = 1 |
---|
| 232 | ! |
---|
| 233 | ! Initialiser les sorties: |
---|
| 234 | ! |
---|
| 235 | !cdir collapse |
---|
| 236 | DO k = 1, klev+1 |
---|
| 237 | DO i = 1, klon |
---|
| 238 | prfl(i,k) = 0.0 |
---|
| 239 | psfl(i,k) = 0.0 |
---|
| 240 | ENDDO |
---|
| 241 | ENDDO |
---|
[524] | 242 | |
---|
[1472] | 243 | !cdir collapse |
---|
| 244 | DO k = 1, klev |
---|
| 245 | DO i = 1, klon |
---|
| 246 | d_t(i,k) = 0.0 |
---|
| 247 | d_q(i,k) = 0.0 |
---|
| 248 | d_ql(i,k) = 0.0 |
---|
[2086] | 249 | d_qi(i,k) = 0.0 |
---|
[1472] | 250 | rneb(i,k) = 0.0 |
---|
| 251 | radliq(i,k) = 0.0 |
---|
| 252 | frac_nucl(i,k) = 1. |
---|
| 253 | frac_impa(i,k) = 1. |
---|
| 254 | ENDDO |
---|
| 255 | ENDDO |
---|
| 256 | DO i = 1, klon |
---|
| 257 | rain(i) = 0.0 |
---|
| 258 | snow(i) = 0.0 |
---|
| 259 | zoliq(i)=0. |
---|
| 260 | ! ENDDO |
---|
| 261 | ! |
---|
| 262 | ! Initialiser le flux de precipitation a zero |
---|
| 263 | ! |
---|
| 264 | ! DO i = 1, klon |
---|
| 265 | zrfl(i) = 0.0 |
---|
[1849] | 266 | zifl(i) = 0.0 |
---|
[1472] | 267 | zneb(i) = seuil_neb |
---|
| 268 | ENDDO |
---|
| 269 | ! |
---|
| 270 | ! |
---|
| 271 | !AA Pour plus de securite |
---|
[524] | 272 | |
---|
[1472] | 273 | zalpha_tr = 0. |
---|
| 274 | zfrac_lessi = 0. |
---|
[524] | 275 | |
---|
[1472] | 276 | !AA---------------------------------------------------------- |
---|
| 277 | ! |
---|
| 278 | ncoreczq=0 |
---|
| 279 | ! Boucle verticale (du haut vers le bas) |
---|
| 280 | ! |
---|
| 281 | !IM : klevm1 |
---|
| 282 | !ym klevm1=klev-1 |
---|
| 283 | DO k = klev, 1, -1 |
---|
| 284 | ! |
---|
| 285 | !AA---------------------------------------------------------- |
---|
| 286 | ! |
---|
| 287 | DO i = 1, klon |
---|
| 288 | zt(i)=t(i,k) |
---|
| 289 | zq(i)=q(i,k) |
---|
| 290 | ENDDO |
---|
| 291 | ! |
---|
| 292 | ! Calculer la varition de temp. de l'air du a la chaleur sensible |
---|
| 293 | ! transporter par la pluie. |
---|
| 294 | ! Il resterait a rajouter cet effet de la chaleur sensible sur les |
---|
| 295 | ! flux de surface, du a la diff. de temp. entre le 1er niveau et la |
---|
| 296 | ! surface. |
---|
| 297 | ! |
---|
| 298 | IF(k.LE.klevm1) THEN |
---|
| 299 | DO i = 1, klon |
---|
| 300 | !IM |
---|
| 301 | zmair=(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 302 | zcpair=RCPD*(1.0+RVTMP2*zq(i)) |
---|
| 303 | zcpeau=RCPD*RVTMP2 |
---|
| 304 | zt(i) = ( (t(i,k+1)+d_t(i,k+1))*zrfl(i)*dtime*zcpeau & |
---|
| 305 | + zmair*zcpair*zt(i) ) & |
---|
| 306 | / (zmair*zcpair + zrfl(i)*dtime*zcpeau) |
---|
| 307 | ! C WRITE (6,*) 'cppluie ', zt(i)-(t(i,k+1)+d_t(i,k+1)) |
---|
| 308 | ENDDO |
---|
| 309 | ENDIF |
---|
| 310 | ! |
---|
| 311 | ! |
---|
| 312 | ! Calculer l'evaporation de la precipitation |
---|
| 313 | ! |
---|
[524] | 314 | |
---|
| 315 | |
---|
[1849] | 316 | ! Calculer l'evaporation de la precipitation |
---|
| 317 | ! |
---|
| 318 | |
---|
| 319 | |
---|
[1472] | 320 | IF (evap_prec) THEN |
---|
| 321 | DO i = 1, klon |
---|
[1849] | 322 | !AJ< |
---|
| 323 | !! IF (zrfl(i) .GT.0.) THEN |
---|
| 324 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
| 325 | !>AJ |
---|
[1472] | 326 | IF (thermcep) THEN |
---|
| 327 | zdelta=MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
| 328 | zqs(i)= R2ES*FOEEW(zt(i),zdelta)/pplay(i,k) |
---|
| 329 | zqs(i)=MIN(0.5,zqs(i)) |
---|
| 330 | zcor=1./(1.-RETV*zqs(i)) |
---|
| 331 | zqs(i)=zqs(i)*zcor |
---|
| 332 | ELSE |
---|
| 333 | IF (zt(i) .LT. t_coup) THEN |
---|
| 334 | zqs(i) = qsats(zt(i)) / pplay(i,k) |
---|
| 335 | ELSE |
---|
| 336 | zqs(i) = qsatl(zt(i)) / pplay(i,k) |
---|
| 337 | ENDIF |
---|
| 338 | ENDIF |
---|
[1849] | 339 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
| 340 | ENDDO |
---|
| 341 | !AJ< |
---|
| 342 | IF (.NOT. ice_thermo) THEN |
---|
| 343 | DO i = 1, klon |
---|
| 344 | !AJ< |
---|
| 345 | !! IF (zrfl(i) .GT.0.) THEN |
---|
| 346 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
| 347 | !>AJ |
---|
| 348 | zqev = MAX (0.0, (zqs(i)-zq(i))*zneb(i) ) |
---|
| 349 | zqevt = coef_eva * (1.0-zq(i)/zqs(i)) * SQRT(zrfl(i)) & |
---|
| 350 | * (paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 351 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
---|
| 352 | * RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
| 353 | zqev = MIN (zqev, zqevt) |
---|
| 354 | zrfln(i) = zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 355 | /RG/dtime |
---|
| 356 | |
---|
| 357 | ! pour la glace, on ré-évapore toute la précip dans la |
---|
| 358 | ! couche du dessous |
---|
| 359 | ! la glace venant de la couche du dessus est simplement |
---|
| 360 | ! dans la couche du dessous. |
---|
| 361 | |
---|
| 362 | IF (zt(i) .LT. t_coup.and.reevap_ice) zrfln(i)=0. |
---|
| 363 | |
---|
| 364 | zq(i) = zq(i) - (zrfln(i)-zrfl(i)) & |
---|
| 365 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
| 366 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
| 367 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 368 | * RLVTT/RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 369 | zrfl(i) = zrfln(i) |
---|
| 370 | zifl(i) = 0. |
---|
| 371 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
| 372 | ENDDO |
---|
| 373 | ! |
---|
| 374 | ELSE ! (.NOT. ice_thermo) |
---|
| 375 | ! |
---|
| 376 | DO i = 1, klon |
---|
| 377 | !AJ< |
---|
| 378 | !! IF (zrfl(i) .GT.0.) THEN |
---|
| 379 | IF (zrfl(i)+zifl(i).GT.0.) THEN |
---|
| 380 | !>AJ |
---|
| 381 | !JAM !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 382 | ! Modification de l'évaporation avec la glace |
---|
| 383 | ! Différentiation entre précipitation liquide et solide |
---|
| 384 | ! On suppose que coef_evai=2*coef_eva |
---|
| 385 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 386 | |
---|
| 387 | zqev0 = MAX (0.0, (zqs(i)-zq(i))*zneb(i) ) |
---|
| 388 | ! zqev0 = MAX (0.0, zqs(i)-zq(i) ) |
---|
[524] | 389 | |
---|
[1849] | 390 | !JAM !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 391 | ! On différencie qsat pour l'eau et la glace |
---|
| 392 | ! Si zdelta=1. --> glace |
---|
| 393 | ! Si zdelta=0. --> eau liquide |
---|
| 394 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 395 | |
---|
| 396 | qsl= R2ES*FOEEW(zt(i),0.)/pplay(i,k) |
---|
| 397 | qsl= MIN(0.5,qsl) |
---|
| 398 | zcor= 1./(1.-RETV*qsl) |
---|
| 399 | qsl= qsl*zcor |
---|
| 400 | |
---|
| 401 | zqevt = 1.*coef_eva*(1.0-zq(i)/qsl)*SQRT(zrfl(i)) & |
---|
| 402 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 403 | zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) & |
---|
| 404 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
[524] | 405 | |
---|
[1849] | 406 | qsi= R2ES*FOEEW(zt(i),1.)/pplay(i,k) |
---|
| 407 | qsi= MIN(0.5,qsi) |
---|
| 408 | zcor= 1./(1.-RETV*qsi) |
---|
| 409 | qsi= qsi*zcor |
---|
[1472] | 410 | |
---|
[1849] | 411 | zqevti = 1.*coef_eva*(1.0-zq(i)/qsi)*SQRT(zifl(i)) & |
---|
| 412 | *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG |
---|
| 413 | zqevti = MAX(0.0,MIN(zqevti,zifl(i))) & |
---|
| 414 | *RG*dtime/(paprs(i,k)-paprs(i,k+1)) |
---|
| 415 | |
---|
| 416 | |
---|
| 417 | !JAM!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 418 | ! Vérification sur l'évaporation |
---|
| 419 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 420 | |
---|
| 421 | IF (zqevt+zqevti.GT.zqev0) THEN |
---|
| 422 | zqev=zqev0*zqevt/(zqevt+zqevti) |
---|
| 423 | zqevi=zqev0*zqevti/(zqevt+zqevti) |
---|
| 424 | |
---|
| 425 | ELSE |
---|
| 426 | IF (zqevt+zqevti.GT.0.) THEN |
---|
| 427 | zqev=MIN(zqev0*zqevt/(zqevt+zqevti),zqevt) |
---|
| 428 | zqevi=MIN(zqev0*zqevti/(zqevt+zqevti),zqevti) |
---|
| 429 | ELSE |
---|
| 430 | zqev=0. |
---|
| 431 | zqevi=0. |
---|
| 432 | ENDIF |
---|
| 433 | ENDIF |
---|
| 434 | |
---|
| 435 | zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 436 | /RG/dtime) |
---|
| 437 | zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 438 | /RG/dtime) |
---|
| 439 | |
---|
| 440 | ! Pour la glace, on révapore toute la précip dans la couche du dessous |
---|
| 441 | ! la glace venant de la couche du dessus est simplement dans la couche |
---|
| 442 | ! du dessous. |
---|
| 443 | |
---|
| 444 | ! IF (zt(i) .LT. t_coup.and.reevap_ice) zrfln(i)=0. |
---|
| 445 | ! print*,zrfl(i),zrfln(i),zqevt,zqevti,RLMLT,'fluxdeprecip' |
---|
| 446 | zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) & |
---|
| 447 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
| 448 | zt(i) = zt(i) + (zrfln(i)-zrfl(i)) & |
---|
| 449 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 450 | * RLVTT/RCPD/(1.0+RVTMP2*zq(i)) & |
---|
| 451 | + (zifln(i)-zifl(i)) & |
---|
| 452 | * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime & |
---|
| 453 | * RLSTT/RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 454 | |
---|
| 455 | zrfl(i) = zrfln(i) |
---|
| 456 | zifl(i) = zifln(i) |
---|
| 457 | |
---|
[2086] | 458 | !CR ATTENTION: deplacement de la fonte de la glace |
---|
| 459 | zmelt = ((zt(i)-273.15)/(ztfondue-273.15))**2 |
---|
| 460 | zmelt = MIN(MAX(zmelt,0.),1.) |
---|
| 461 | zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
| 462 | zifl(i)=zifl(i)*(1.-zmelt) |
---|
| 463 | ! print*,zt(i),'octavio1' |
---|
| 464 | zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
---|
| 465 | *RLMLT/RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 466 | ! print*,zt(i),zrfl(i),zifl(i),zmelt,'octavio2' |
---|
| 467 | !fin CR |
---|
| 468 | |
---|
| 469 | |
---|
| 470 | |
---|
[1849] | 471 | ENDIF ! (zrfl(i)+zifl(i).GT.0.) |
---|
[1472] | 472 | ENDDO |
---|
[1849] | 473 | |
---|
| 474 | ENDIF ! (.NOT. ice_thermo) |
---|
| 475 | |
---|
| 476 | ENDIF ! (evap_prec) |
---|
[1472] | 477 | ! |
---|
| 478 | ! Calculer Qs et L/Cp*dQs/dT: |
---|
| 479 | ! |
---|
| 480 | IF (thermcep) THEN |
---|
| 481 | DO i = 1, klon |
---|
[524] | 482 | zdelta = MAX(0.,SIGN(1.,RTT-zt(i))) |
---|
| 483 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
| 484 | zcvm5 = zcvm5 /RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 485 | zqs(i) = R2ES*FOEEW(zt(i),zdelta)/pplay(i,k) |
---|
| 486 | zqs(i) = MIN(0.5,zqs(i)) |
---|
| 487 | zcor = 1./(1.-RETV*zqs(i)) |
---|
| 488 | zqs(i) = zqs(i)*zcor |
---|
| 489 | zdqs(i) = FOEDE(zt(i),zdelta,zcvm5,zqs(i),zcor) |
---|
[1472] | 490 | ENDDO |
---|
| 491 | ELSE |
---|
| 492 | DO i = 1, klon |
---|
| 493 | IF (zt(i).LT.t_coup) THEN |
---|
| 494 | zqs(i) = qsats(zt(i))/pplay(i,k) |
---|
| 495 | zdqs(i) = dqsats(zt(i),zqs(i)) |
---|
| 496 | ELSE |
---|
| 497 | zqs(i) = qsatl(zt(i))/pplay(i,k) |
---|
| 498 | zdqs(i) = dqsatl(zt(i),zqs(i)) |
---|
| 499 | ENDIF |
---|
| 500 | ENDDO |
---|
| 501 | ENDIF |
---|
| 502 | ! |
---|
| 503 | ! Determiner la condensation partielle et calculer la quantite |
---|
| 504 | ! de l'eau condensee: |
---|
| 505 | ! |
---|
[1901] | 506 | !verification de la valeur de iflag_fisrtilp_qsat pour iflag_ice_thermo=1 |
---|
[2086] | 507 | ! if ((iflag_ice_thermo.eq.1).and.(iflag_fisrtilp_qsat.ne.0)) then |
---|
| 508 | ! write(*,*) " iflag_ice_thermo==1 requires iflag_fisrtilp_qsat==0", & |
---|
| 509 | ! " but iflag_fisrtilp_qsat=",iflag_fisrtilp_qsat, ". Might as well stop here." |
---|
| 510 | ! stop |
---|
| 511 | ! endif |
---|
[1403] | 512 | |
---|
[1472] | 513 | IF (cpartiel) THEN |
---|
[524] | 514 | |
---|
[1472] | 515 | ! print*,'Dans partiel k=',k |
---|
| 516 | ! |
---|
| 517 | ! Calcul de l'eau condensee et de la fraction nuageuse et de l'eau |
---|
| 518 | ! nuageuse a partir des PDF de Sandrine Bony. |
---|
| 519 | ! rneb : fraction nuageuse |
---|
| 520 | ! zqn : eau totale dans le nuage |
---|
| 521 | ! zcond : eau condensee moyenne dans la maille. |
---|
| 522 | ! on prend en compte le réchauffement qui diminue la partie |
---|
| 523 | ! condensee |
---|
| 524 | ! |
---|
| 525 | ! Version avec les raqts |
---|
[524] | 526 | |
---|
[1472] | 527 | if (iflag_pdf.eq.0) then |
---|
[524] | 528 | |
---|
| 529 | do i=1,klon |
---|
[1472] | 530 | zdelq = min(ratqs(i,k),0.99) * zq(i) |
---|
| 531 | rneb(i,k) = (zq(i)+zdelq-zqs(i)) / (2.0*zdelq) |
---|
| 532 | zqn(i) = (zq(i)+zdelq+zqs(i))/2.0 |
---|
[524] | 533 | enddo |
---|
| 534 | |
---|
[1472] | 535 | else |
---|
| 536 | ! |
---|
| 537 | ! Version avec les nouvelles PDFs. |
---|
[524] | 538 | do i=1,klon |
---|
| 539 | if(zq(i).lt.1.e-15) then |
---|
[1472] | 540 | ncoreczq=ncoreczq+1 |
---|
| 541 | zq(i)=1.e-15 |
---|
[524] | 542 | endif |
---|
[1472] | 543 | enddo |
---|
[1403] | 544 | |
---|
[2236] | 545 | if (iflag_cld_th>=5) then |
---|
[1403] | 546 | |
---|
[1472] | 547 | call cloudth(klon,klev,k,ztv, & |
---|
| 548 | zq,zqta,fraca, & |
---|
| 549 | qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
| 550 | ratqs,zqs,t) |
---|
[1403] | 551 | |
---|
[1472] | 552 | do i=1,klon |
---|
[1403] | 553 | rneb(i,k)=ctot(i,k) |
---|
| 554 | zqn(i)=qcloud(i) |
---|
[1472] | 555 | enddo |
---|
[1403] | 556 | |
---|
[1472] | 557 | endif |
---|
| 558 | |
---|
[2236] | 559 | if (iflag_cld_th <= 4) then |
---|
[1472] | 560 | lognormale = .true. |
---|
[2236] | 561 | elseif (iflag_cld_th >= 6) then |
---|
[1472] | 562 | ! lognormale en l'absence des thermiques |
---|
| 563 | lognormale = fraca(:,k) < 1e-10 |
---|
| 564 | else |
---|
[2236] | 565 | ! Dans le cas iflag_cld_th=5, on prend systématiquement la |
---|
[1472] | 566 | ! bi-gaussienne |
---|
| 567 | lognormale = .false. |
---|
| 568 | end if |
---|
| 569 | |
---|
[2086] | 570 | !CR: variation de qsat avec T en présence de glace ou non |
---|
| 571 | !initialisations |
---|
[1472] | 572 | do i=1,klon |
---|
[2086] | 573 | DT(i) = 0. |
---|
| 574 | n_i(i)=0 |
---|
[1901] | 575 | Tbef(i)=zt(i) |
---|
[2086] | 576 | qlbef(i)=0. |
---|
| 577 | enddo |
---|
| 578 | |
---|
| 579 | |
---|
| 580 | !Boucle iterative: ATTENTION, l'option -1 n'est plus activable ici |
---|
| 581 | if (iflag_fisrtilp_qsat.ge.0) then |
---|
| 582 | do iter=1,iflag_fisrtilp_qsat+1 |
---|
| 583 | |
---|
| 584 | do i=1,klon |
---|
| 585 | ! do while ((abs(DT(i)).gt.DDT0).or.(n_i(i).eq.0)) |
---|
| 586 | convergence(i)=abs(DT(i)).gt.DDT0 |
---|
| 587 | if ((convergence(i).or.(n_i(i).eq.0)).and.lognormale(i)) then |
---|
| 588 | Tbef(i)=Tbef(i)+DT(i) |
---|
| 589 | if (.not.ice_thermo) then |
---|
| 590 | zdelta = MAX(0.,SIGN(1.,RTT-Tbef(i))) |
---|
| 591 | else |
---|
| 592 | if (iflag_t_glace.eq.0) then |
---|
| 593 | zdelta = MAX(0.,SIGN(1.,t_glace_min_old-Tbef(i))) |
---|
| 594 | else if (iflag_t_glace.eq.1) then |
---|
| 595 | zdelta = MAX(0.,SIGN(1.,t_glace_min-Tbef(i))) |
---|
| 596 | endif |
---|
| 597 | endif |
---|
| 598 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
| 599 | zcvm5 = zcvm5 /RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 600 | zqs(i) = R2ES*FOEEW(Tbef(i),zdelta)/pplay(i,k) |
---|
| 601 | zqs(i) = MIN(0.5,zqs(i)) |
---|
| 602 | zcor = 1./(1.-RETV*zqs(i)) |
---|
| 603 | zqs(i) = zqs(i)*zcor |
---|
| 604 | zdqs(i) = FOEDE(Tbef(i),zdelta,zcvm5,zqs(i),zcor) |
---|
[1472] | 605 | zpdf_sig(i)=ratqs(i,k)*zq(i) |
---|
| 606 | zpdf_k(i)=-sqrt(log(1.+(zpdf_sig(i)/zq(i))**2)) |
---|
| 607 | zpdf_delta(i)=log(zq(i)/zqs(i)) |
---|
| 608 | zpdf_a(i)=zpdf_delta(i)/(zpdf_k(i)*sqrt(2.)) |
---|
| 609 | zpdf_b(i)=zpdf_k(i)/(2.*sqrt(2.)) |
---|
| 610 | zpdf_e1(i)=zpdf_a(i)-zpdf_b(i) |
---|
| 611 | zpdf_e1(i)=sign(min(abs(zpdf_e1(i)),5.),zpdf_e1(i)) |
---|
| 612 | zpdf_e1(i)=1.-erf(zpdf_e1(i)) |
---|
| 613 | zpdf_e2(i)=zpdf_a(i)+zpdf_b(i) |
---|
| 614 | zpdf_e2(i)=sign(min(abs(zpdf_e2(i)),5.),zpdf_e2(i)) |
---|
| 615 | zpdf_e2(i)=1.-erf(zpdf_e2(i)) |
---|
[1901] | 616 | |
---|
| 617 | if (zpdf_e1(i).lt.1.e-10) then |
---|
| 618 | rneb(i,k)=0. |
---|
| 619 | zqn(i)=zqs(i) |
---|
| 620 | else |
---|
| 621 | rneb(i,k)=0.5*zpdf_e1(i) |
---|
| 622 | zqn(i)=zq(i)*zpdf_e2(i)/zpdf_e1(i) |
---|
| 623 | endif |
---|
| 624 | |
---|
[2086] | 625 | endif !convergence |
---|
| 626 | enddo ! boucle en i |
---|
| 627 | |
---|
| 628 | if (.not. ice_thermo) then |
---|
| 629 | |
---|
| 630 | do i=1,klon |
---|
| 631 | if ((convergence(i).or.(n_i(i).eq.0)).and.lognormale(i)) then |
---|
| 632 | |
---|
[1901] | 633 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
---|
| 634 | num=-Tbef(i)+zt(i)+rneb(i,k)*RLVTT/RCPD/(1.0+RVTMP2*zq(i))*qlbef(i) |
---|
| 635 | denom=1.+rneb(i,k)*zdqs(i) |
---|
| 636 | DT(i)=num/denom |
---|
[2086] | 637 | n_i(i)=n_i(i)+1 |
---|
| 638 | endif |
---|
| 639 | enddo |
---|
[1403] | 640 | |
---|
[1472] | 641 | else |
---|
[2086] | 642 | |
---|
| 643 | !calcul de la fraction de glace |
---|
| 644 | !CR: on utilise la nouvelle fonction de JBM pour l ancien calcul |
---|
| 645 | ! zfice(i) = icefrac_lsc(Tbef(i), t_glace_min, & |
---|
| 646 | ! t_glace_max, exposant_glace) |
---|
| 647 | ! zfice(i) = 1.0 - (Tbef(i)-ztglace) / (RTT-ztglace) |
---|
| 648 | ! zfice(i) = MIN(MAX(zfice(i),0.0),1.0) |
---|
| 649 | ! zfice(i) = zfice(i)**nexpo |
---|
| 650 | if (iflag_t_glace.eq.1) then |
---|
[2109] | 651 | CALL icefrac_lsc(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:)) |
---|
[1472] | 652 | endif |
---|
[1411] | 653 | |
---|
[2086] | 654 | do i=1,klon |
---|
| 655 | if ((convergence(i).or.(n_i(i).eq.0)).and.lognormale(i)) then |
---|
| 656 | |
---|
| 657 | if (iflag_t_glace.eq.0) then |
---|
| 658 | zfice(i) = 1.0 - (Tbef(i)-t_glace_min_old) / (RTT-t_glace_min_old) |
---|
| 659 | zfice(i) = MIN(MAX(zfice(i),0.0),1.0) |
---|
| 660 | zfice(i) = zfice(i)**exposant_glace_old |
---|
| 661 | dzfice(i)= exposant_glace_old * zfice(i)**(exposant_glace_old-1) / (t_glace_min_old - RTT) |
---|
[1901] | 662 | endif |
---|
[2086] | 663 | |
---|
| 664 | if (iflag_t_glace.eq.1) then |
---|
| 665 | dzfice(i)= exposant_glace * zfice(i)**(exposant_glace-1) / (t_glace_min - t_glace_max) |
---|
| 666 | endif |
---|
| 667 | |
---|
| 668 | if ((zfice(i).eq.0).or.(zfice(i).eq.1)) then |
---|
| 669 | dzfice(i)=0. |
---|
| 670 | endif |
---|
[1411] | 671 | |
---|
[2086] | 672 | if (zfice(i).lt.1) then |
---|
| 673 | cste=RLVTT |
---|
| 674 | else |
---|
| 675 | cste=RLSTT |
---|
| 676 | endif |
---|
| 677 | |
---|
| 678 | qlbef(i)=max(0.,zqn(i)-zqs(i)) |
---|
| 679 | num=-Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*zq(i))*qlbef(i) |
---|
| 680 | denom=1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) & |
---|
| 681 | -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*zq(i))*rneb(i,k)*qlbef(i)*dzfice(i) |
---|
| 682 | DT(i)=num/denom |
---|
| 683 | n_i(i)=n_i(i)+1 |
---|
| 684 | |
---|
| 685 | endif ! fin convergence |
---|
| 686 | enddo ! fin boucle i |
---|
| 687 | |
---|
| 688 | endif !ice_thermo |
---|
| 689 | |
---|
| 690 | ! endif |
---|
| 691 | ! enddo |
---|
| 692 | |
---|
| 693 | |
---|
| 694 | enddo |
---|
[1901] | 695 | endif |
---|
[524] | 696 | |
---|
[1901] | 697 | |
---|
[524] | 698 | endif ! iflag_pdf |
---|
| 699 | |
---|
[2086] | 700 | |
---|
| 701 | ! if (iflag_fisrtilp_qsat.eq.-1) then |
---|
| 702 | !CR: ATTENTION option fausse mais a existe: pour la re-activer, prendre iflag_fisrtilp_qsat=0 et activer les lignes suivantes: |
---|
| 703 | IF (1.eq.0) THEN |
---|
| 704 | DO i=1,klon |
---|
[1146] | 705 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
| 706 | zqn(i) = 0.0 |
---|
| 707 | rneb(i,k) = 0.0 |
---|
| 708 | zcond(i) = 0.0 |
---|
| 709 | rhcl(i,k)=zq(i)/zqs(i) |
---|
| 710 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
| 711 | zqn(i) = zq(i) |
---|
[1901] | 712 | rneb(i,k) = 1.0 |
---|
| 713 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))/(1+zdqs(i)) |
---|
[1146] | 714 | rhcl(i,k)=1.0 |
---|
| 715 | ELSE |
---|
[1901] | 716 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k)/(1+zdqs(i)) |
---|
[1146] | 717 | rhcl(i,k)=(zqs(i)+zq(i)-zdelq)/2./zqs(i) |
---|
| 718 | ENDIF |
---|
| 719 | ENDDO |
---|
[2086] | 720 | ENDIF |
---|
[1901] | 721 | |
---|
[2086] | 722 | ! ELSE |
---|
[1901] | 723 | |
---|
| 724 | DO i=1,klon |
---|
| 725 | IF (rneb(i,k) .LE. 0.0) THEN |
---|
| 726 | zqn(i) = 0.0 |
---|
| 727 | rneb(i,k) = 0.0 |
---|
| 728 | zcond(i) = 0.0 |
---|
| 729 | rhcl(i,k)=zq(i)/zqs(i) |
---|
| 730 | ELSE IF (rneb(i,k) .GE. 1.0) THEN |
---|
| 731 | zqn(i) = zq(i) |
---|
| 732 | rneb(i,k) = 1.0 |
---|
| 733 | zcond(i) = MAX(0.0,zqn(i)-zqs(i)) |
---|
| 734 | rhcl(i,k)=1.0 |
---|
| 735 | ELSE |
---|
| 736 | zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
---|
| 737 | rhcl(i,k)=(zqs(i)+zq(i)-zdelq)/2./zqs(i) |
---|
| 738 | ENDIF |
---|
| 739 | ENDDO |
---|
| 740 | |
---|
| 741 | |
---|
[2086] | 742 | ! ENDIF |
---|
[1901] | 743 | |
---|
[1472] | 744 | ! do i=1,klon |
---|
| 745 | ! IF (rneb(i,k) .LE. 0.0) zqn(i) = 0.0 |
---|
| 746 | ! IF (rneb(i,k) .GE. 1.0) zqn(i) = zq(i) |
---|
| 747 | ! rneb(i,k) = MAX(0.0,MIN(1.0,rneb(i,k))) |
---|
| 748 | !c zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k)/(1.+zdqs(i)) |
---|
| 749 | !c On ne divise pas par 1+zdqs pour forcer a avoir l'eau predite par |
---|
| 750 | !c la convection. |
---|
| 751 | !c ATTENTION !!! Il va falloir verifier tout ca. |
---|
| 752 | ! zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k) |
---|
| 753 | !c print*,'ZDQS ',zdqs(i) |
---|
| 754 | !c--Olivier |
---|
| 755 | ! rhcl(i,k)=(zqs(i)+zq(i)-zdelq)/2./zqs(i) |
---|
| 756 | ! IF (rneb(i,k) .LE. 0.0) rhcl(i,k)=zq(i)/zqs(i) |
---|
| 757 | ! IF (rneb(i,k) .GE. 1.0) rhcl(i,k)=1.0 |
---|
| 758 | !c--fin |
---|
| 759 | ! ENDDO |
---|
| 760 | ELSE |
---|
| 761 | DO i = 1, klon |
---|
| 762 | IF (zq(i).GT.zqs(i)) THEN |
---|
| 763 | rneb(i,k) = 1.0 |
---|
| 764 | ELSE |
---|
| 765 | rneb(i,k) = 0.0 |
---|
| 766 | ENDIF |
---|
| 767 | zcond(i) = MAX(0.0,zq(i)-zqs(i))/(1.+zdqs(i)) |
---|
| 768 | ENDDO |
---|
| 769 | ENDIF |
---|
| 770 | ! |
---|
| 771 | DO i = 1, klon |
---|
| 772 | zq(i) = zq(i) - zcond(i) |
---|
| 773 | ! zt(i) = zt(i) + zcond(i) * RLVTT/RCPD |
---|
| 774 | ENDDO |
---|
[1849] | 775 | !AJ< |
---|
| 776 | IF (.NOT. ice_thermo) THEN |
---|
[1901] | 777 | if (iflag_fisrtilp_qsat.lt.1) then |
---|
| 778 | DO i = 1, klon |
---|
| 779 | zt(i) = zt(i) + zcond(i) * RLVTT/RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 780 | ENDDO |
---|
| 781 | else if (iflag_fisrtilp_qsat.gt.0) then |
---|
| 782 | DO i= 1, klon |
---|
| 783 | zt(i) = zt(i) + zcond(i) * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zcond(i))) |
---|
| 784 | ENDDO |
---|
| 785 | endif |
---|
[1849] | 786 | ELSE |
---|
[2086] | 787 | if (iflag_t_glace.eq.1) then |
---|
[2109] | 788 | CALL icefrac_lsc(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:)) |
---|
[1901] | 789 | endif |
---|
[2006] | 790 | if (iflag_fisrtilp_qsat.lt.1) then |
---|
| 791 | DO i = 1, klon |
---|
[2109] | 792 | ! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod |
---|
[2086] | 793 | ! zfice(i) = icefrac_lsc(zt(i), t_glace_min, & |
---|
| 794 | ! t_glace_max, exposant_glace) |
---|
| 795 | if (iflag_t_glace.eq.0) then |
---|
[2223] | 796 | zfice(i) = 1.0 - (zt(i)-t_glace_min_old) / (RTT-t_glace_min_old) |
---|
[2086] | 797 | zfice(i) = MIN(MAX(zfice(i),0.0),1.0) |
---|
| 798 | zfice(i) = zfice(i)**exposant_glace_old |
---|
| 799 | endif |
---|
[2006] | 800 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) * RLVTT/RCPD/(1.0+RVTMP2*zq(i)) & |
---|
| 801 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 802 | ENDDO |
---|
| 803 | else |
---|
| 804 | DO i=1, klon |
---|
[2109] | 805 | ! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod |
---|
[2086] | 806 | ! zfice(i) = icefrac_lsc(zt(i), t_glace_min, & |
---|
| 807 | ! t_glace_max, exposant_glace) |
---|
| 808 | if (iflag_t_glace.eq.0) then |
---|
[2223] | 809 | zfice(i) = 1.0 - (zt(i)-t_glace_min_old) / (RTT-t_glace_min_old) |
---|
[2086] | 810 | zfice(i) = MIN(MAX(zfice(i),0.0),1.0) |
---|
| 811 | zfice(i) = zfice(i)**exposant_glace_old |
---|
| 812 | endif |
---|
[2006] | 813 | zt(i) = zt(i) + (1.-zfice(i))*zcond(i) * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zcond(i))) & |
---|
| 814 | +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zcond(i))) |
---|
| 815 | ENDDO |
---|
| 816 | endif |
---|
| 817 | ! print*,zt(i),zrfl(i),zifl(i),'temp1' |
---|
| 818 | ENDIF |
---|
[1849] | 819 | !>AJ |
---|
[1472] | 820 | ! |
---|
| 821 | ! Partager l'eau condensee en precipitation et eau liquide nuageuse |
---|
| 822 | ! |
---|
| 823 | DO i = 1, klon |
---|
| 824 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 825 | zoliq(i) = zcond(i) |
---|
| 826 | zrho(i) = pplay(i,k) / zt(i) / RD |
---|
| 827 | zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i)*RG) |
---|
[1849] | 828 | ENDIF |
---|
| 829 | ENDDO |
---|
| 830 | !AJ< |
---|
| 831 | IF (.NOT. ice_thermo) THEN |
---|
[2006] | 832 | IF (iflag_t_glace.EQ.0) THEN |
---|
| 833 | DO i = 1, klon |
---|
| 834 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 835 | zfice(i) = 1.0 - (zt(i)-t_glace_min_old) / (273.13-t_glace_min_old) |
---|
| 836 | zfice(i) = MIN(MAX(zfice(i),0.0),1.0) |
---|
| 837 | zfice(i) = zfice(i)**exposant_glace_old |
---|
| 838 | ! zfice(i) = zfice(i)**nexpo |
---|
| 839 | !! zfice(i)=0. |
---|
| 840 | ENDIF |
---|
| 841 | ENDDO |
---|
| 842 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
[2109] | 843 | CALL icefrac_lsc(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:)) |
---|
[2086] | 844 | ! DO i = 1, klon |
---|
| 845 | ! IF (rneb(i,k).GT.0.0) THEN |
---|
[2109] | 846 | ! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod |
---|
[2086] | 847 | ! zfice(i) = icefrac_lsc(zt(i), t_glace_min, & |
---|
| 848 | ! t_glace_max, exposant_glace) |
---|
| 849 | ! ENDIF |
---|
| 850 | ! ENDDO |
---|
[2006] | 851 | ENDIF |
---|
[1849] | 852 | ENDIF |
---|
| 853 | DO i = 1, klon |
---|
| 854 | IF (rneb(i,k).GT.0.0) THEN |
---|
[1472] | 855 | zneb(i) = MAX(rneb(i,k), seuil_neb) |
---|
[1849] | 856 | ! zt(i) = zt(i)+zcond(i)*zfice(i)*RLMLT/RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 857 | ! print*,zt(i),'fractionglace' |
---|
| 858 | !>AJ |
---|
[1472] | 859 | radliq(i,k) = zoliq(i)/REAL(ninter+1) |
---|
| 860 | ENDIF |
---|
| 861 | ENDDO |
---|
| 862 | ! |
---|
| 863 | DO n = 1, ninter |
---|
| 864 | DO i = 1, klon |
---|
| 865 | IF (rneb(i,k).GT.0.0) THEN |
---|
| 866 | zrhol(i) = zrho(i) * zoliq(i) / zneb(i) |
---|
[1855] | 867 | ! Initialization of zpluie and zice: |
---|
| 868 | zpluie=0 |
---|
| 869 | zice=0 |
---|
[1472] | 870 | IF (zneb(i).EQ.seuil_neb) THEN |
---|
| 871 | ztot = 0.0 |
---|
| 872 | ELSE |
---|
| 873 | ! quantite d'eau a eliminer: zchau |
---|
| 874 | ! meme chose pour la glace: zfroi |
---|
| 875 | if (ptconv(i,k)) then |
---|
| 876 | zcl =cld_lc_con |
---|
| 877 | zct =1./cld_tau_con |
---|
| 878 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliq(i) & |
---|
| 879 | *fallvc(zrhol(i)) * zfice(i) |
---|
| 880 | else |
---|
| 881 | zcl =cld_lc_lsc |
---|
| 882 | zct =1./cld_tau_lsc |
---|
| 883 | zfroi = dtime/REAL(ninter)/zdz(i)*zoliq(i) & |
---|
| 884 | *fallvs(zrhol(i)) * zfice(i) |
---|
| 885 | endif |
---|
| 886 | zchau = zct *dtime/REAL(ninter) * zoliq(i) & |
---|
| 887 | *(1.0-EXP(-(zoliq(i)/zneb(i)/zcl )**2)) *(1.-zfice(i)) |
---|
[1849] | 888 | !AJ< |
---|
| 889 | IF (.NOT. ice_thermo) THEN |
---|
| 890 | ztot = zchau + zfroi |
---|
| 891 | ELSE |
---|
| 892 | zpluie = MIN(MAX(zchau,0.0),zoliq(i)*(1.-zfice(i))) |
---|
| 893 | zice = MIN(MAX(zfroi,0.0),zoliq(i)*zfice(i)) |
---|
| 894 | ztot = zpluie + zice |
---|
| 895 | ENDIF |
---|
| 896 | !>AJ |
---|
[1472] | 897 | ztot = MAX(ztot ,0.0) |
---|
| 898 | ENDIF |
---|
| 899 | ztot = MIN(ztot,zoliq(i)) |
---|
[1849] | 900 | !AJ< |
---|
| 901 | ! zoliqp = MAX(zoliq(i)*(1.-zfice(i))-1.*zpluie , 0.0) |
---|
| 902 | ! zoliqi = MAX(zoliq(i)*zfice(i)-1.*zice , 0.0) |
---|
| 903 | zoliqp(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zpluie , 0.0) |
---|
| 904 | zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zice , 0.0) |
---|
[1472] | 905 | zoliq(i) = MAX(zoliq(i)-ztot , 0.0) |
---|
[1849] | 906 | !>AJ |
---|
[1472] | 907 | radliq(i,k) = radliq(i,k) + zoliq(i)/REAL(ninter+1) |
---|
| 908 | ENDIF |
---|
| 909 | ENDDO |
---|
| 910 | ENDDO |
---|
| 911 | ! |
---|
[1849] | 912 | IF (.NOT. ice_thermo) THEN |
---|
| 913 | DO i = 1, klon |
---|
| 914 | IF (rneb(i,k).GT.0.0) THEN |
---|
[1472] | 915 | d_ql(i,k) = zoliq(i) |
---|
| 916 | zrfl(i) = zrfl(i)+ MAX(zcond(i)-zoliq(i),0.0) & |
---|
| 917 | * (paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
[1849] | 918 | ENDIF |
---|
| 919 | ENDDO |
---|
| 920 | ELSE |
---|
| 921 | DO i = 1, klon |
---|
| 922 | IF (rneb(i,k).GT.0.0) THEN |
---|
[2086] | 923 | !CR on prend en compte la phase glace |
---|
| 924 | if (.not.ice_thermo) then |
---|
[1849] | 925 | d_ql(i,k) = zoliq(i) |
---|
[2086] | 926 | d_qi(i,k) = 0. |
---|
| 927 | else |
---|
| 928 | d_ql(i,k) = (1-zfice(i))*zoliq(i) |
---|
| 929 | d_qi(i,k) = zfice(i)*zoliq(i) |
---|
| 930 | endif |
---|
[1849] | 931 | !AJ< |
---|
| 932 | zrfl(i) = zrfl(i)+ MAX(zcond(i)*(1.-zfice(i))-zoliqp(i),0.0) & |
---|
| 933 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 934 | zifl(i) = zifl(i)+ MAX(zcond(i)*zfice(i)-zoliqi(i),0.0) & |
---|
| 935 | *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 936 | ! zrfl(i) = zrfl(i)+ zpluie & |
---|
| 937 | ! *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 938 | ! zifl(i) = zifl(i)+ zice & |
---|
| 939 | ! *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) |
---|
| 940 | |
---|
[2415] | 941 | !CR : on prend en compte l'effet Bergeron dans les flux de precipitation |
---|
| 942 | if ((iflag_bergeron.eq.1).and.(zt(i).LT.273.15)) then |
---|
| 943 | zsolid = zrfl(i) |
---|
| 944 | zifl(i) = zifl(i)+zrfl(i) |
---|
| 945 | zrfl(i) = 0. |
---|
| 946 | zt(i)=zt(i)+zsolid*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
---|
| 947 | *(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*zq(i)) |
---|
| 948 | endif |
---|
| 949 | !RC |
---|
| 950 | |
---|
[1849] | 951 | ENDIF |
---|
| 952 | ENDDO |
---|
| 953 | ENDIF |
---|
| 954 | |
---|
[2086] | 955 | !CR: la fonte est faite au debut |
---|
| 956 | ! IF (ice_thermo) THEN |
---|
| 957 | ! DO i = 1, klon |
---|
| 958 | ! zmelt = ((zt(i)-273.15)/(ztfondue-273.15))**2 |
---|
| 959 | ! zmelt = MIN(MAX(zmelt,0.),1.) |
---|
| 960 | ! zrfl(i)=zrfl(i)+zmelt*zifl(i) |
---|
| 961 | ! zifl(i)=zifl(i)*(1.-zmelt) |
---|
[1849] | 962 | ! print*,zt(i),'octavio1' |
---|
[2086] | 963 | ! zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) & |
---|
| 964 | ! *RLMLT/RCPD/(1.0+RVTMP2*zq(i)) |
---|
[1849] | 965 | ! print*,zt(i),zrfl(i),zifl(i),zmelt,'octavio2' |
---|
[2086] | 966 | ! ENDDO |
---|
| 967 | ! ENDIF |
---|
[1849] | 968 | |
---|
| 969 | |
---|
| 970 | IF (.NOT. ice_thermo) THEN |
---|
| 971 | DO i = 1, klon |
---|
| 972 | IF (zt(i).LT.RTT) THEN |
---|
[1472] | 973 | psfl(i,k)=zrfl(i) |
---|
[1849] | 974 | ELSE |
---|
[1472] | 975 | prfl(i,k)=zrfl(i) |
---|
[1849] | 976 | ENDIF |
---|
| 977 | ENDDO |
---|
| 978 | ELSE |
---|
| 979 | ! JAM************************************************* |
---|
| 980 | ! Revoir partie ci-dessous: à quoi servent psfl et prfl? |
---|
| 981 | ! ***************************************************** |
---|
| 982 | |
---|
| 983 | DO i = 1, klon |
---|
| 984 | ! IF (zt(i).LT.RTT) THEN |
---|
| 985 | psfl(i,k)=zifl(i) |
---|
| 986 | ! ELSE |
---|
| 987 | prfl(i,k)=zrfl(i) |
---|
| 988 | ! ENDIF |
---|
| 989 | !>AJ |
---|
| 990 | ENDDO |
---|
| 991 | ENDIF |
---|
[1472] | 992 | ! |
---|
[1849] | 993 | ! |
---|
[1472] | 994 | ! Calculer les tendances de q et de t: |
---|
| 995 | ! |
---|
| 996 | DO i = 1, klon |
---|
| 997 | d_q(i,k) = zq(i) - q(i,k) |
---|
| 998 | d_t(i,k) = zt(i) - t(i,k) |
---|
| 999 | ENDDO |
---|
| 1000 | ! |
---|
| 1001 | !AA--------------- Calcul du lessivage stratiforme ------------- |
---|
[524] | 1002 | |
---|
[1472] | 1003 | DO i = 1,klon |
---|
| 1004 | ! |
---|
[1742] | 1005 | if(zcond(i).gt.zoliq(i)+1.e-10) then |
---|
| 1006 | beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime |
---|
| 1007 | else |
---|
| 1008 | beta(i,k) = 0. |
---|
| 1009 | endif |
---|
[1472] | 1010 | zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0) & |
---|
| 1011 | * (paprs(i,k)-paprs(i,k+1))/RG |
---|
| 1012 | IF (rneb(i,k).GT.0.0.and.zprec_cond(i).gt.0.) THEN |
---|
| 1013 | !AA lessivage nucleation LMD5 dans la couche elle-meme |
---|
[2006] | 1014 | IF (iflag_t_glace.EQ.0) THEN |
---|
| 1015 | if (t(i,k) .GE. t_glace_min_old) THEN |
---|
[1472] | 1016 | zalpha_tr = a_tr_sca(3) |
---|
| 1017 | else |
---|
| 1018 | zalpha_tr = a_tr_sca(4) |
---|
| 1019 | endif |
---|
[2006] | 1020 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
| 1021 | if (t(i,k) .GE. t_glace_min) THEN |
---|
| 1022 | zalpha_tr = a_tr_sca(3) |
---|
| 1023 | else |
---|
| 1024 | zalpha_tr = a_tr_sca(4) |
---|
| 1025 | endif |
---|
| 1026 | ENDIF |
---|
[1472] | 1027 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1028 | pfrac_nucl(i,k)=pfrac_nucl(i,k)*(1.-zneb(i)*zfrac_lessi) |
---|
| 1029 | frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi |
---|
| 1030 | ! |
---|
| 1031 | ! nucleation avec un facteur -1 au lieu de -0.5 |
---|
| 1032 | zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i)) |
---|
| 1033 | pfrac_1nucl(i,k)=pfrac_1nucl(i,k)*(1.-zneb(i)*zfrac_lessi) |
---|
| 1034 | ENDIF |
---|
| 1035 | ! |
---|
| 1036 | ENDDO ! boucle sur i |
---|
| 1037 | ! |
---|
| 1038 | !AA Lessivage par impaction dans les couches en-dessous |
---|
| 1039 | DO kk = k-1, 1, -1 |
---|
[524] | 1040 | DO i = 1, klon |
---|
[1472] | 1041 | IF (rneb(i,k).GT.0.0.and.zprec_cond(i).gt.0.) THEN |
---|
[2006] | 1042 | IF (iflag_t_glace.EQ.0) THEN |
---|
| 1043 | if (t(i,kk) .GE. t_glace_min_old) THEN |
---|
[1472] | 1044 | zalpha_tr = a_tr_sca(1) |
---|
| 1045 | else |
---|
| 1046 | zalpha_tr = a_tr_sca(2) |
---|
| 1047 | endif |
---|
[2006] | 1048 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
| 1049 | if (t(i,kk) .GE. t_glace_min) THEN |
---|
| 1050 | zalpha_tr = a_tr_sca(1) |
---|
| 1051 | else |
---|
| 1052 | zalpha_tr = a_tr_sca(2) |
---|
| 1053 | endif |
---|
| 1054 | ENDIF |
---|
[1472] | 1055 | zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i)) |
---|
| 1056 | pfrac_impa(i,kk)=pfrac_impa(i,kk)*(1.-zneb(i)*zfrac_lessi) |
---|
| 1057 | frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi |
---|
| 1058 | ENDIF |
---|
[524] | 1059 | ENDDO |
---|
[1472] | 1060 | ENDDO |
---|
| 1061 | ! |
---|
| 1062 | !AA---------------------------------------------------------- |
---|
| 1063 | ! FIN DE BOUCLE SUR K |
---|
| 1064 | end DO |
---|
| 1065 | ! |
---|
| 1066 | !AA----------------------------------------------------------- |
---|
| 1067 | ! |
---|
| 1068 | ! Pluie ou neige au sol selon la temperature de la 1ere couche |
---|
| 1069 | ! |
---|
[2086] | 1070 | !CR: si la thermo de la glace est active, on calcule zifl directement |
---|
| 1071 | IF (.NOT.ice_thermo) THEN |
---|
[1472] | 1072 | DO i = 1, klon |
---|
| 1073 | IF ((t(i,1)+d_t(i,1)) .LT. RTT) THEN |
---|
[1849] | 1074 | !AJ< |
---|
[2086] | 1075 | ! snow(i) = zrfl(i) |
---|
[1849] | 1076 | snow(i) = zrfl(i)+zifl(i) |
---|
| 1077 | !>AJ |
---|
[1472] | 1078 | zlh_solid(i) = RLSTT-RLVTT |
---|
| 1079 | ELSE |
---|
| 1080 | rain(i) = zrfl(i) |
---|
| 1081 | zlh_solid(i) = 0. |
---|
| 1082 | ENDIF |
---|
| 1083 | ENDDO |
---|
[2086] | 1084 | |
---|
| 1085 | ELSE |
---|
| 1086 | DO i = 1, klon |
---|
| 1087 | snow(i) = zifl(i) |
---|
| 1088 | rain(i) = zrfl(i) |
---|
| 1089 | ENDDO |
---|
| 1090 | |
---|
| 1091 | ENDIF |
---|
[1472] | 1092 | ! |
---|
| 1093 | ! For energy conservation : when snow is present, the solification |
---|
| 1094 | ! latent heat is considered. |
---|
[2086] | 1095 | !CR: si thermo de la glace, neige deja prise en compte |
---|
| 1096 | IF (.not.ice_thermo) THEN |
---|
[1472] | 1097 | DO k = 1, klev |
---|
| 1098 | DO i = 1, klon |
---|
| 1099 | zcpair=RCPD*(1.0+RVTMP2*(q(i,k)+d_q(i,k))) |
---|
| 1100 | zmair=(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 1101 | zm_solid = (prfl(i,k)-prfl(i,k+1)+psfl(i,k)-psfl(i,k+1))*dtime |
---|
| 1102 | d_t(i,k) = d_t(i,k) + zlh_solid(i) *zm_solid / (zcpair*zmair) |
---|
| 1103 | END DO |
---|
| 1104 | END DO |
---|
[2086] | 1105 | ENDIF |
---|
[1472] | 1106 | ! |
---|
[883] | 1107 | |
---|
[1472] | 1108 | if (ncoreczq>0) then |
---|
[1575] | 1109 | WRITE(lunout,*)'WARNING : ZQ dans fisrtilp ',ncoreczq,' val < 1.e-15.' |
---|
[1472] | 1110 | endif |
---|
| 1111 | |
---|
| 1112 | END SUBROUTINE fisrtilp |
---|