source: LMDZ5/trunk/libf/phylmd/fisrtilp.F90 @ 2433

Last change on this file since 2433 was 2415, checked in by crio, 9 years ago

Prise en compte de l'effet Bergeron dans les flux de pluie grande-echelle
Activer en mettant iflag_bergeron=1 dans physiq.def (valeur par defaut 0)
Representation of the Bergeron effect in the large-scale precipitation fluxes
Activate by iflag_bergeron=1 in physiq.def (standard value 0)

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 36.2 KB
RevLine 
[524]1!
[1403]2! $Id: fisrtilp.F90 2415 2015-12-23 18:13:53Z idelkadi $
[524]3!
[1472]4!
5SUBROUTINE fisrtilp(dtime,paprs,pplay,t,q,ptconv,ratqs, &
[2086]6     d_t, d_q, d_ql, d_qi, rneb, radliq, rain, snow,          &
[1742]7     pfrac_impa, pfrac_nucl, pfrac_1nucl,               &
8     frac_impa, frac_nucl, beta,                        &
9     prfl, psfl, rhcl, zqta, fraca,                     &
[2236]10     ztv, zpspsk, ztla, zthl, iflag_cld_th,             &
[1849]11     iflag_ice_thermo)
[524]12
[1472]13  !
14  USE dimphy
[2109]15  USE icefrac_lsc_mod ! compute ice fraction (JBM 3/14)
[2311]16  USE print_control_mod, ONLY: prt_level, lunout
[1472]17  IMPLICIT none
18  !======================================================================
19  ! Auteur(s): Z.X. Li (LMD/CNRS)
20  ! Date: le 20 mars 1995
21  ! Objet: condensation et precipitation stratiforme.
22  !        schema de nuage
23  !======================================================================
24  !======================================================================
25  include "YOMCST.h"
26  include "fisrtilp.h"
[2006]27  include "nuage.h" ! JBM (3/14)
[1506]28
[1472]29  !
30  ! Arguments:
31  !
32  REAL dtime ! intervalle du temps (s)
33  REAL paprs(klon,klev+1) ! pression a inter-couche
34  REAL pplay(klon,klev) ! pression au milieu de couche
35  REAL t(klon,klev) ! temperature (K)
36  REAL q(klon,klev) ! humidite specifique (kg/kg)
37  REAL d_t(klon,klev) ! incrementation de la temperature (K)
38  REAL d_q(klon,klev) ! incrementation de la vapeur d'eau
39  REAL d_ql(klon,klev) ! incrementation de l'eau liquide
[2086]40  REAL d_qi(klon,klev) ! incrementation de l'eau glace
[1472]41  REAL rneb(klon,klev) ! fraction nuageuse
42  REAL radliq(klon,klev) ! eau liquide utilisee dans rayonnements
43  REAL rhcl(klon,klev) ! humidite relative en ciel clair
44  REAL rain(klon) ! pluies (mm/s)
45  REAL snow(klon) ! neige (mm/s)
46  REAL prfl(klon,klev+1) ! flux d'eau precipitante aux interfaces (kg/m2/s)
47  REAL psfl(klon,klev+1) ! flux d'eau precipitante aux interfaces (kg/m2/s)
48  REAL ztv(klon,klev)
49  REAL zqta(klon,klev),fraca(klon,klev)
50  REAL sigma1(klon,klev),sigma2(klon,klev)
51  REAL qltot(klon,klev),ctot(klon,klev)
52  REAL zpspsk(klon,klev),ztla(klon,klev)
53  REAL zthl(klon,klev)
[1849]54  REAL ztfondue, qsl, qsi
[1403]55
[1472]56  logical lognormale(klon)
[1849]57  logical ice_thermo
[1411]58
[1472]59  !AA
60  ! Coeffients de fraction lessivee : pour OFF-LINE
61  !
62  REAL pfrac_nucl(klon,klev)
63  REAL pfrac_1nucl(klon,klev)
64  REAL pfrac_impa(klon,klev)
65  !
66  ! Fraction d'aerosols lessivee par impaction et par nucleation
67  ! POur ON-LINE
68  !
69  REAL frac_impa(klon,klev)
70  REAL frac_nucl(klon,klev)
71  real zct      ,zcl
72  !AA
73  !
74  ! Options du programme:
75  !
76  REAL seuil_neb ! un nuage existe vraiment au-dela
77  PARAMETER (seuil_neb=0.001)
[524]78
[1472]79  INTEGER ninter ! sous-intervals pour la precipitation
80  INTEGER ncoreczq 
[2236]81  INTEGER iflag_cld_th
[1849]82  INTEGER iflag_ice_thermo
[1472]83  PARAMETER (ninter=5)
84  LOGICAL evap_prec ! evaporation de la pluie
85  PARAMETER (evap_prec=.TRUE.)
86  REAL ratqs(klon,klev) ! determine la largeur de distribution de vapeur
87  logical ptconv(klon,klev) ! determine la largeur de distribution de vapeur
[524]88
[1472]89  real zpdf_sig(klon),zpdf_k(klon),zpdf_delta(klon)
90  real Zpdf_a(klon),zpdf_b(klon),zpdf_e1(klon),zpdf_e2(klon)
91  real erf   
92  REAL qcloud(klon)
93  !
94  LOGICAL cpartiel ! condensation partielle
95  PARAMETER (cpartiel=.TRUE.)
96  REAL t_coup
97  PARAMETER (t_coup=234.0)
98  !
99  ! Variables locales:
100  !
101  INTEGER i, k, n, kk
[1901]102  REAL zqs(klon), zdqs(klon), zdelta, zcor, zcvm5 
103  REAL Tbef(klon),qlbef(klon),DT(klon),num,denom
104  LOGICAL convergence(klon)
105  REAL DDT0
106  PARAMETER (DDT0=.01)
[2086]107  INTEGER n_i(klon), iter
108  REAL cste
[1901]109 
[1849]110  REAL zrfl(klon), zrfln(klon), zqev, zqevt
111  REAL zifl(klon), zifln(klon), zqev0,zqevi, zqevti
112  REAL zoliq(klon), zcond(klon), zq(klon), zqn(klon), zdelq
113  REAL zoliqp(klon), zoliqi(klon)
[2006]114  REAL zt(klon)
115! JBM (3/14) nexpo is replaced by exposant_glace
116! REAL nexpo ! exponentiel pour glace/eau
117! INTEGER, PARAMETER :: nexpo=6
118  INTEGER exposant_glace_old
119  REAL t_glace_min_old
[1472]120  REAL zdz(klon),zrho(klon),ztot      , zrhol(klon)
121  REAL zchau      ,zfroi      ,zfice(klon),zneb(klon)
[1849]122  REAL zmelt, zpluie, zice, zcondold
123  PARAMETER (ztfondue=278.15)
[2086]124  REAL dzfice(klon)
[2415]125  REAL zsolid
[1472]126  !
127  LOGICAL appel1er
128  SAVE appel1er
129  !$OMP THREADPRIVATE(appel1er)
130  !
131  !---------------------------------------------------------------
132  !
133  !AA Variables traceurs:
134  !AA  Provisoire !!! Parametres alpha du lessivage
135  !AA  A priori on a 4 scavenging # possibles
136  !
137  REAL a_tr_sca(4)
138  save a_tr_sca
139  !$OMP THREADPRIVATE(a_tr_sca)
140  !
141  ! Variables intermediaires
142  !
143  REAL zalpha_tr
144  REAL zfrac_lessi
145  REAL zprec_cond(klon)
146  !AA
[1742]147! RomP >>> 15 nov 2012
148  REAL   beta(klon,klev) ! taux de conversion de l'eau cond
149! RomP <<<
[1472]150  REAL zmair, zcpair, zcpeau
151  !     Pour la conversion eau-neige
152  REAL zlh_solid(klon), zm_solid
153  !IM
154  !ym      INTEGER klevm1
155  !---------------------------------------------------------------
156  !
157  ! Fonctions en ligne:
158  !
159  REAL fallvs,fallvc ! vitesse de chute pour crystaux de glace
160  REAL zzz
161  include "YOETHF.h"
162  include "FCTTRE.h"
163  fallvc (zzz) = 3.29/2.0 * ((zzz)**0.16) * ffallv_con
164  fallvs (zzz) = 3.29/2.0 * ((zzz)**0.16) * ffallv_lsc
165  !
166  DATA appel1er /.TRUE./
167  !ym
[2086]168!CR: pour iflag_ice_thermo=2, on active que la convection
169!  ice_thermo = iflag_ice_thermo .GE. 1
170   ice_thermo = (iflag_ice_thermo .EQ. 1).OR.(iflag_ice_thermo .GE. 3)
[1472]171  zdelq=0.0
[524]172
[1506]173  if (prt_level>9)write(lunout,*)'NUAGES4 A. JAM'
[1472]174  IF (appel1er) THEN
175     !
[1575]176     WRITE(lunout,*) 'fisrtilp, ninter:', ninter
177     WRITE(lunout,*) 'fisrtilp, evap_prec:', evap_prec
178     WRITE(lunout,*) 'fisrtilp, cpartiel:', cpartiel
[1472]179     IF (ABS(dtime/REAL(ninter)-360.0).GT.0.001) THEN
[1575]180        WRITE(lunout,*) 'fisrtilp: Ce n est pas prevu, voir Z.X.Li', dtime
181        WRITE(lunout,*) 'Je prefere un sous-intervalle de 6 minutes'
[1472]182        !         CALL abort
183     ENDIF
184     appel1er = .FALSE.
185     !
186     !AA initialiation provisoire
187     a_tr_sca(1) = -0.5
188     a_tr_sca(2) = -0.5
189     a_tr_sca(3) = -0.5
190     a_tr_sca(4) = -0.5
191     !
192     !AA Initialisation a 1 des coefs des fractions lessivees
193     !
194     !cdir collapse
195     DO k = 1, klev
196        DO i = 1, klon
197           pfrac_nucl(i,k)=1.
198           pfrac_1nucl(i,k)=1.
199           pfrac_impa(i,k)=1.
[1742]200           beta(i,k)=0.  !RomP initialisation
[1472]201        ENDDO
202     ENDDO
[524]203
[1472]204  ENDIF          !  test sur appel1er
205  !
206  !MAf Initialisation a 0 de zoliq
207  !      DO i = 1, klon
208  !         zoliq(i)=0.
209  !      ENDDO
210  ! Determiner les nuages froids par leur temperature
211  !  nexpo regle la raideur de la transition eau liquide / eau glace.
212  !
[2086]213!CR: on est oblige de definir des valeurs fisrt car les valeurs de newmicro ne sont pas les memes par defaut
[2006]214  IF (iflag_t_glace.EQ.0) THEN
215!   ztglace = RTT - 15.0
216    t_glace_min_old = RTT - 15.0
217    !AJ<
218    IF (ice_thermo) THEN
219!     nexpo = 2
220      exposant_glace_old = 2
221    ELSE
222!     nexpo = 6
223      exposant_glace_old = 6
224    ENDIF
[2086]225   
[1849]226  ENDIF
[2006]227 
[1849]228!!  RLVTT = 2.501e6 ! pas de redefinition des constantes physiques (jyg)
229!!  RLSTT = 2.834e6 ! pas de redefinition des constantes physiques (jyg)
230!>AJ
[1472]231  !cc      nexpo = 1
232  !
233  ! Initialiser les sorties:
234  !
235  !cdir collapse
236  DO k = 1, klev+1
237     DO i = 1, klon
238        prfl(i,k) = 0.0
239        psfl(i,k) = 0.0
240     ENDDO
241  ENDDO
[524]242
[1472]243  !cdir collapse
244  DO k = 1, klev
245     DO i = 1, klon
246        d_t(i,k) = 0.0
247        d_q(i,k) = 0.0
248        d_ql(i,k) = 0.0
[2086]249        d_qi(i,k) = 0.0
[1472]250        rneb(i,k) = 0.0
251        radliq(i,k) = 0.0
252        frac_nucl(i,k) = 1.
253        frac_impa(i,k) = 1.
254     ENDDO
255  ENDDO
256  DO i = 1, klon
257     rain(i) = 0.0
258     snow(i) = 0.0
259     zoliq(i)=0.
260     !     ENDDO
261     !
262     ! Initialiser le flux de precipitation a zero
263     !
264     !     DO i = 1, klon
265     zrfl(i) = 0.0
[1849]266     zifl(i) = 0.0
[1472]267     zneb(i) = seuil_neb
268  ENDDO
269  !
270  !
271  !AA Pour plus de securite
[524]272
[1472]273  zalpha_tr   = 0.
274  zfrac_lessi = 0.
[524]275
[1472]276  !AA----------------------------------------------------------
277  !
278  ncoreczq=0
279  ! Boucle verticale (du haut vers le bas)
280  !
281  !IM : klevm1
282  !ym      klevm1=klev-1
283  DO k = klev, 1, -1
284     !
285     !AA----------------------------------------------------------
286     !
287     DO i = 1, klon
288        zt(i)=t(i,k)
289        zq(i)=q(i,k)
290     ENDDO
291     !
292     ! Calculer la varition de temp. de l'air du a la chaleur sensible
293     ! transporter par la pluie.
294     ! Il resterait a rajouter cet effet de la chaleur sensible sur les
295     ! flux de surface, du a la diff. de temp. entre le 1er niveau et la
296     ! surface.
297     !
298     IF(k.LE.klevm1) THEN         
299        DO i = 1, klon
300           !IM
301           zmair=(paprs(i,k)-paprs(i,k+1))/RG
302           zcpair=RCPD*(1.0+RVTMP2*zq(i))
303           zcpeau=RCPD*RVTMP2
304           zt(i) = ( (t(i,k+1)+d_t(i,k+1))*zrfl(i)*dtime*zcpeau &
305                + zmair*zcpair*zt(i) ) &
306                / (zmair*zcpair + zrfl(i)*dtime*zcpeau)
307           !     C        WRITE (6,*) 'cppluie ', zt(i)-(t(i,k+1)+d_t(i,k+1))
308        ENDDO
309     ENDIF
310     !
311     !
312     ! Calculer l'evaporation de la precipitation
313     !
[524]314
315
[1849]316     ! Calculer l'evaporation de la precipitation
317     !
318
319
[1472]320     IF (evap_prec) THEN
321        DO i = 1, klon
[1849]322!AJ<
323!!           IF (zrfl(i) .GT.0.) THEN
324           IF (zrfl(i)+zifl(i).GT.0.) THEN
325!>AJ
[1472]326              IF (thermcep) THEN
327                 zdelta=MAX(0.,SIGN(1.,RTT-zt(i)))
328                 zqs(i)= R2ES*FOEEW(zt(i),zdelta)/pplay(i,k)
329                 zqs(i)=MIN(0.5,zqs(i))
330                 zcor=1./(1.-RETV*zqs(i))
331                 zqs(i)=zqs(i)*zcor
332              ELSE
333                 IF (zt(i) .LT. t_coup) THEN
334                    zqs(i) = qsats(zt(i)) / pplay(i,k)
335                 ELSE
336                    zqs(i) = qsatl(zt(i)) / pplay(i,k)
337                 ENDIF
338              ENDIF
[1849]339           ENDIF ! (zrfl(i)+zifl(i).GT.0.)
340        ENDDO
341!AJ<
342       IF (.NOT. ice_thermo) THEN
343        DO i = 1, klon
344!AJ<
345!!           IF (zrfl(i) .GT.0.) THEN
346           IF (zrfl(i)+zifl(i).GT.0.) THEN
347!>AJ
348                zqev = MAX (0.0, (zqs(i)-zq(i))*zneb(i) )
349                zqevt = coef_eva * (1.0-zq(i)/zqs(i)) * SQRT(zrfl(i)) &
350                     * (paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG
351                zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) &
352                     * RG*dtime/(paprs(i,k)-paprs(i,k+1))
353                zqev = MIN (zqev, zqevt)
354                zrfln(i) = zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) &
355                     /RG/dtime
356       
357                ! pour la glace, on ré-évapore toute la précip dans la
358                ! couche du dessous
359                ! la glace venant de la couche du dessus est simplement
360                ! dans la couche du dessous.
361       
362                IF (zt(i) .LT. t_coup.and.reevap_ice) zrfln(i)=0.
363       
364                zq(i) = zq(i) - (zrfln(i)-zrfl(i)) &
365                     * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime
366                zt(i) = zt(i) + (zrfln(i)-zrfl(i)) &
367                     * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime &
368                     * RLVTT/RCPD/(1.0+RVTMP2*zq(i))
369                zrfl(i) = zrfln(i)
370                zifl(i) = 0.
371           ENDIF ! (zrfl(i)+zifl(i).GT.0.)
372        ENDDO
373!
374       ELSE ! (.NOT. ice_thermo)
375!
376        DO i = 1, klon
377!AJ<
378!!           IF (zrfl(i) .GT.0.) THEN
379           IF (zrfl(i)+zifl(i).GT.0.) THEN
380!>AJ
381     !JAM !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
382     ! Modification de l'évaporation avec la glace
383     ! Différentiation entre précipitation liquide et solide
384     ! On suppose que coef_evai=2*coef_eva
385     !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
386     
387         zqev0 = MAX (0.0, (zqs(i)-zq(i))*zneb(i) )
388     !    zqev0 = MAX (0.0, zqs(i)-zq(i) )
[524]389
[1849]390     !JAM !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
391     ! On différencie qsat pour l'eau et la glace
392     ! Si zdelta=1. --> glace
393     ! Si zdelta=0. --> eau liquide
394     !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
395         
396         qsl= R2ES*FOEEW(zt(i),0.)/pplay(i,k)
397         qsl= MIN(0.5,qsl)
398         zcor= 1./(1.-RETV*qsl)
399         qsl= qsl*zcor
400         
401         zqevt = 1.*coef_eva*(1.0-zq(i)/qsl)*SQRT(zrfl(i)) &
402              *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG
403         zqevt = MAX(0.0,MIN(zqevt,zrfl(i))) &
404              *RG*dtime/(paprs(i,k)-paprs(i,k+1))
[524]405
[1849]406         qsi= R2ES*FOEEW(zt(i),1.)/pplay(i,k)
407         qsi= MIN(0.5,qsi)
408         zcor= 1./(1.-RETV*qsi)
409         qsi= qsi*zcor
[1472]410
[1849]411         zqevti = 1.*coef_eva*(1.0-zq(i)/qsi)*SQRT(zifl(i)) &
412              *(paprs(i,k)-paprs(i,k+1))/pplay(i,k)*zt(i)*RD/RG
413         zqevti = MAX(0.0,MIN(zqevti,zifl(i))) &
414              *RG*dtime/(paprs(i,k)-paprs(i,k+1))   
415
416             
417     !JAM!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
418     ! Vérification sur l'évaporation
419     !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
420     
421         IF (zqevt+zqevti.GT.zqev0) THEN
422                  zqev=zqev0*zqevt/(zqevt+zqevti)
423                  zqevi=zqev0*zqevti/(zqevt+zqevti)
424             
425         ELSE
426             IF (zqevt+zqevti.GT.0.) THEN
427                  zqev=MIN(zqev0*zqevt/(zqevt+zqevti),zqevt)
428                  zqevi=MIN(zqev0*zqevti/(zqevt+zqevti),zqevti)
429             ELSE
430             zqev=0.
431             zqevi=0.
432             ENDIF
433         ENDIF
434     
435         zrfln(i) = Max(0.,zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1)) &
436                                 /RG/dtime)
437         zifln(i) = Max(0.,zifl(i) - zqevi*(paprs(i,k)-paprs(i,k+1)) &
438                                 /RG/dtime)
439         
440     ! Pour la glace, on révapore toute la précip dans la couche du dessous
441     ! la glace venant de la couche du dessus est simplement dans la couche
442     ! du dessous.
443     
444     !    IF (zt(i) .LT. t_coup.and.reevap_ice) zrfln(i)=0.
445!         print*,zrfl(i),zrfln(i),zqevt,zqevti,RLMLT,'fluxdeprecip'
446         zq(i) = zq(i) - (zrfln(i)+zifln(i)-zrfl(i)-zifl(i)) &
447                  * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime
448         zt(i) = zt(i) + (zrfln(i)-zrfl(i)) &
449                  * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime &
450                  * RLVTT/RCPD/(1.0+RVTMP2*zq(i)) &
451                  + (zifln(i)-zifl(i)) &
452                  * (RG/(paprs(i,k)-paprs(i,k+1)))*dtime &
453                  * RLSTT/RCPD/(1.0+RVTMP2*zq(i))
454     
455         zrfl(i) = zrfln(i)
456         zifl(i) = zifln(i)
457
[2086]458!CR ATTENTION: deplacement de la fonte de la glace
459           zmelt = ((zt(i)-273.15)/(ztfondue-273.15))**2
460           zmelt = MIN(MAX(zmelt,0.),1.)
461           zrfl(i)=zrfl(i)+zmelt*zifl(i)
462           zifl(i)=zifl(i)*(1.-zmelt)
463!           print*,zt(i),'octavio1'
464           zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) &
465                      *RLMLT/RCPD/(1.0+RVTMP2*zq(i))
466!           print*,zt(i),zrfl(i),zifl(i),zmelt,'octavio2'
467!fin CR
468
469
470
[1849]471           ENDIF ! (zrfl(i)+zifl(i).GT.0.)
[1472]472        ENDDO
[1849]473
474      ENDIF ! (.NOT. ice_thermo)
475     
476     ENDIF ! (evap_prec)
[1472]477     !
478     ! Calculer Qs et L/Cp*dQs/dT:
479     !
480     IF (thermcep) THEN
481        DO i = 1, klon
[524]482           zdelta = MAX(0.,SIGN(1.,RTT-zt(i)))
483           zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta
484           zcvm5 = zcvm5 /RCPD/(1.0+RVTMP2*zq(i))
485           zqs(i) = R2ES*FOEEW(zt(i),zdelta)/pplay(i,k)
486           zqs(i) = MIN(0.5,zqs(i))
487           zcor = 1./(1.-RETV*zqs(i))
488           zqs(i) = zqs(i)*zcor
489           zdqs(i) = FOEDE(zt(i),zdelta,zcvm5,zqs(i),zcor)
[1472]490        ENDDO
491     ELSE
492        DO i = 1, klon
493           IF (zt(i).LT.t_coup) THEN
494              zqs(i) = qsats(zt(i))/pplay(i,k)
495              zdqs(i) = dqsats(zt(i),zqs(i))
496           ELSE
497              zqs(i) = qsatl(zt(i))/pplay(i,k)
498              zdqs(i) = dqsatl(zt(i),zqs(i))
499           ENDIF
500        ENDDO
501     ENDIF
502     !
503     ! Determiner la condensation partielle et calculer la quantite
504     ! de l'eau condensee:
505     !
[1901]506!verification de la valeur de iflag_fisrtilp_qsat pour iflag_ice_thermo=1
[2086]507!       if ((iflag_ice_thermo.eq.1).and.(iflag_fisrtilp_qsat.ne.0)) then
508!         write(*,*) " iflag_ice_thermo==1 requires iflag_fisrtilp_qsat==0", &
509!        " but iflag_fisrtilp_qsat=",iflag_fisrtilp_qsat, ". Might as well stop here."
510!         stop
511!       endif
[1403]512
[1472]513     IF (cpartiel) THEN
[524]514
[1472]515        !        print*,'Dans partiel k=',k
516        !
517        !   Calcul de l'eau condensee et de la fraction nuageuse et de l'eau
518        !   nuageuse a partir des PDF de Sandrine Bony.
519        !   rneb  : fraction nuageuse
520        !   zqn   : eau totale dans le nuage
521        !   zcond : eau condensee moyenne dans la maille.
522        !  on prend en compte le réchauffement qui diminue la partie
523        ! condensee
524        !
525        !   Version avec les raqts
[524]526
[1472]527        if (iflag_pdf.eq.0) then
[524]528
529           do i=1,klon
[1472]530              zdelq = min(ratqs(i,k),0.99) * zq(i)
531              rneb(i,k) = (zq(i)+zdelq-zqs(i)) / (2.0*zdelq)
532              zqn(i) = (zq(i)+zdelq+zqs(i))/2.0
[524]533           enddo
534
[1472]535        else
536           !
537           !   Version avec les nouvelles PDFs.
[524]538           do i=1,klon
539              if(zq(i).lt.1.e-15) then
[1472]540                 ncoreczq=ncoreczq+1
541                 zq(i)=1.e-15
[524]542              endif
[1472]543           enddo
[1403]544
[2236]545           if (iflag_cld_th>=5) then
[1403]546
[1472]547              call cloudth(klon,klev,k,ztv, &
548                   zq,zqta,fraca, &
549                   qcloud,ctot,zpspsk,paprs,ztla,zthl, &
550                   ratqs,zqs,t)
[1403]551
[1472]552              do i=1,klon
[1403]553                 rneb(i,k)=ctot(i,k)
554                 zqn(i)=qcloud(i)
[1472]555              enddo
[1403]556
[1472]557           endif
558
[2236]559           if (iflag_cld_th <= 4) then
[1472]560              lognormale = .true.
[2236]561           elseif (iflag_cld_th >= 6) then
[1472]562              ! lognormale en l'absence des thermiques
563              lognormale = fraca(:,k) < 1e-10
564           else
[2236]565              ! Dans le cas iflag_cld_th=5, on prend systématiquement la
[1472]566              ! bi-gaussienne
567              lognormale = .false.
568           end if
569
[2086]570!CR: variation de qsat avec T en présence de glace ou non
571!initialisations
[1472]572           do i=1,klon
[2086]573              DT(i) = 0.
574              n_i(i)=0
[1901]575              Tbef(i)=zt(i)
[2086]576              qlbef(i)=0.
577           enddo
578
579
580!Boucle iterative: ATTENTION, l'option -1 n'est plus activable ici
581           if (iflag_fisrtilp_qsat.ge.0) then
582             do iter=1,iflag_fisrtilp_qsat+1
583               
584               do i=1,klon
585!                 do while ((abs(DT(i)).gt.DDT0).or.(n_i(i).eq.0))
586                 convergence(i)=abs(DT(i)).gt.DDT0
587                 if ((convergence(i).or.(n_i(i).eq.0)).and.lognormale(i)) then
588                 Tbef(i)=Tbef(i)+DT(i)
589                 if (.not.ice_thermo) then   
590                    zdelta = MAX(0.,SIGN(1.,RTT-Tbef(i)))
591                 else
592                    if (iflag_t_glace.eq.0) then
593                    zdelta = MAX(0.,SIGN(1.,t_glace_min_old-Tbef(i)))
594                    else if (iflag_t_glace.eq.1) then
595                    zdelta = MAX(0.,SIGN(1.,t_glace_min-Tbef(i)))
596                    endif
597                 endif
598                 zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta
599                 zcvm5 = zcvm5 /RCPD/(1.0+RVTMP2*zq(i))
600                 zqs(i) = R2ES*FOEEW(Tbef(i),zdelta)/pplay(i,k)
601                 zqs(i) = MIN(0.5,zqs(i))
602                 zcor = 1./(1.-RETV*zqs(i))
603                 zqs(i) = zqs(i)*zcor
604                 zdqs(i) = FOEDE(Tbef(i),zdelta,zcvm5,zqs(i),zcor)
[1472]605                 zpdf_sig(i)=ratqs(i,k)*zq(i)
606                 zpdf_k(i)=-sqrt(log(1.+(zpdf_sig(i)/zq(i))**2))
607                 zpdf_delta(i)=log(zq(i)/zqs(i))
608                 zpdf_a(i)=zpdf_delta(i)/(zpdf_k(i)*sqrt(2.))
609                 zpdf_b(i)=zpdf_k(i)/(2.*sqrt(2.))
610                 zpdf_e1(i)=zpdf_a(i)-zpdf_b(i)
611                 zpdf_e1(i)=sign(min(abs(zpdf_e1(i)),5.),zpdf_e1(i))
612                 zpdf_e1(i)=1.-erf(zpdf_e1(i))
613                 zpdf_e2(i)=zpdf_a(i)+zpdf_b(i)
614                 zpdf_e2(i)=sign(min(abs(zpdf_e2(i)),5.),zpdf_e2(i))
615                 zpdf_e2(i)=1.-erf(zpdf_e2(i))
[1901]616             
617                 if (zpdf_e1(i).lt.1.e-10) then
618                    rneb(i,k)=0.
619                    zqn(i)=zqs(i)
620                 else
621                    rneb(i,k)=0.5*zpdf_e1(i)
622                    zqn(i)=zq(i)*zpdf_e2(i)/zpdf_e1(i)
623                 endif
624
[2086]625                 endif !convergence
626               enddo ! boucle en i
627
628                 if (.not. ice_thermo) then
629
630                 do i=1,klon
631                 if ((convergence(i).or.(n_i(i).eq.0)).and.lognormale(i)) then
632
[1901]633                 qlbef(i)=max(0.,zqn(i)-zqs(i))
634                 num=-Tbef(i)+zt(i)+rneb(i,k)*RLVTT/RCPD/(1.0+RVTMP2*zq(i))*qlbef(i)
635                 denom=1.+rneb(i,k)*zdqs(i)
636                 DT(i)=num/denom
[2086]637                 n_i(i)=n_i(i)+1
638                 endif
639                 enddo
[1403]640
[1472]641                 else
[2086]642
643!calcul de la fraction de glace
644!CR: on utilise la nouvelle fonction de JBM pour l ancien calcul
645!                 zfice(i) = icefrac_lsc(Tbef(i), t_glace_min, &
646!                                     t_glace_max, exposant_glace)
647!                 zfice(i) = 1.0 - (Tbef(i)-ztglace) / (RTT-ztglace)
648!                 zfice(i) = MIN(MAX(zfice(i),0.0),1.0)
649!                 zfice(i) = zfice(i)**nexpo
650                 if (iflag_t_glace.eq.1) then
[2109]651                 CALL icefrac_lsc(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:))
[1472]652                 endif
[1411]653
[2086]654                 do i=1,klon
655                 if ((convergence(i).or.(n_i(i).eq.0)).and.lognormale(i)) then
656                 
657                 if (iflag_t_glace.eq.0) then
658                    zfice(i) = 1.0 - (Tbef(i)-t_glace_min_old) / (RTT-t_glace_min_old)
659                    zfice(i) = MIN(MAX(zfice(i),0.0),1.0)
660                    zfice(i) = zfice(i)**exposant_glace_old
661                    dzfice(i)= exposant_glace_old * zfice(i)**(exposant_glace_old-1) / (t_glace_min_old - RTT)
[1901]662                 endif
[2086]663                 
664                 if (iflag_t_glace.eq.1) then
665                 dzfice(i)= exposant_glace * zfice(i)**(exposant_glace-1) / (t_glace_min - t_glace_max)
666                 endif
667               
668                 if ((zfice(i).eq.0).or.(zfice(i).eq.1)) then
669                    dzfice(i)=0.
670                 endif
[1411]671
[2086]672                 if (zfice(i).lt.1) then
673                    cste=RLVTT
674                 else
675                    cste=RLSTT
676                 endif
677
678                 qlbef(i)=max(0.,zqn(i)-zqs(i))
679                 num=-Tbef(i)+zt(i)+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/RCPD/(1.0+RVTMP2*zq(i))*qlbef(i)
680                 denom=1.+rneb(i,k)*((1-zfice(i))*RLVTT+zfice(i)*RLSTT)/cste*zdqs(i) &
681                         -(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*zq(i))*rneb(i,k)*qlbef(i)*dzfice(i)
682                 DT(i)=num/denom
683                 n_i(i)=n_i(i)+1
684
685                 endif ! fin convergence
686                 enddo ! fin boucle i
687
688                 endif !ice_thermo
689
690!                 endif
691!               enddo
692 
693         
694             enddo
[1901]695           endif
[524]696
[1901]697
[524]698        endif ! iflag_pdf
699
[2086]700
701!        if (iflag_fisrtilp_qsat.eq.-1) then
702!CR: ATTENTION option fausse mais a existe: pour la re-activer, prendre iflag_fisrtilp_qsat=0 et activer les lignes suivantes:
703       IF (1.eq.0) THEN
704       DO i=1,klon
[1146]705           IF (rneb(i,k) .LE. 0.0) THEN
706              zqn(i) = 0.0
707              rneb(i,k) = 0.0
708              zcond(i) = 0.0
709              rhcl(i,k)=zq(i)/zqs(i)
710           ELSE IF (rneb(i,k) .GE. 1.0) THEN
711              zqn(i) = zq(i)
[1901]712              rneb(i,k) = 1.0                 
713              zcond(i) = MAX(0.0,zqn(i)-zqs(i))/(1+zdqs(i))
[1146]714              rhcl(i,k)=1.0
715           ELSE
[1901]716              zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k)/(1+zdqs(i))
[1146]717              rhcl(i,k)=(zqs(i)+zq(i)-zdelq)/2./zqs(i)
718           ENDIF
719        ENDDO
[2086]720        ENDIF
[1901]721
[2086]722!        ELSE
[1901]723
724        DO i=1,klon
725           IF (rneb(i,k) .LE. 0.0) THEN
726              zqn(i) = 0.0
727              rneb(i,k) = 0.0
728              zcond(i) = 0.0
729              rhcl(i,k)=zq(i)/zqs(i)
730           ELSE IF (rneb(i,k) .GE. 1.0) THEN
731              zqn(i) = zq(i)
732              rneb(i,k) = 1.0
733              zcond(i) = MAX(0.0,zqn(i)-zqs(i))
734              rhcl(i,k)=1.0
735           ELSE
736              zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k)
737              rhcl(i,k)=(zqs(i)+zq(i)-zdelq)/2./zqs(i)
738           ENDIF
739        ENDDO
740
741
[2086]742!        ENDIF
[1901]743
[1472]744        !         do i=1,klon
745        !            IF (rneb(i,k) .LE. 0.0) zqn(i) = 0.0
746        !            IF (rneb(i,k) .GE. 1.0) zqn(i) = zq(i)
747        !            rneb(i,k) = MAX(0.0,MIN(1.0,rneb(i,k)))
748        !c           zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k)/(1.+zdqs(i))
749        !c  On ne divise pas par 1+zdqs pour forcer a avoir l'eau predite par
750        !c  la convection.
751        !c  ATTENTION !!! Il va falloir verifier tout ca.
752        !            zcond(i) = MAX(0.0,zqn(i)-zqs(i))*rneb(i,k)
753        !c           print*,'ZDQS ',zdqs(i)
754        !c--Olivier
755        !            rhcl(i,k)=(zqs(i)+zq(i)-zdelq)/2./zqs(i)
756        !            IF (rneb(i,k) .LE. 0.0) rhcl(i,k)=zq(i)/zqs(i)
757        !            IF (rneb(i,k) .GE. 1.0) rhcl(i,k)=1.0
758        !c--fin
759        !           ENDDO
760     ELSE
761        DO i = 1, klon
762           IF (zq(i).GT.zqs(i)) THEN
763              rneb(i,k) = 1.0
764           ELSE
765              rneb(i,k) = 0.0
766           ENDIF
767           zcond(i) = MAX(0.0,zq(i)-zqs(i))/(1.+zdqs(i))
768        ENDDO
769     ENDIF
770     !
771     DO i = 1, klon
772        zq(i) = zq(i) - zcond(i)
773        !         zt(i) = zt(i) + zcond(i) * RLVTT/RCPD
774     ENDDO
[1849]775!AJ<
776     IF (.NOT. ice_thermo) THEN
[1901]777        if (iflag_fisrtilp_qsat.lt.1) then
778           DO i = 1, klon
779             zt(i) = zt(i) + zcond(i) * RLVTT/RCPD/(1.0+RVTMP2*zq(i))
780           ENDDO
781        else if (iflag_fisrtilp_qsat.gt.0) then
782           DO i= 1, klon
783             zt(i) = zt(i) + zcond(i) * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zcond(i)))
784           ENDDO
785        endif
[1849]786     ELSE
[2086]787         if (iflag_t_glace.eq.1) then
[2109]788            CALL icefrac_lsc(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:))
[1901]789         endif
[2006]790         if (iflag_fisrtilp_qsat.lt.1) then
791           DO i = 1, klon
[2109]792! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod
[2086]793!              zfice(i) = icefrac_lsc(zt(i), t_glace_min, &
794!                                     t_glace_max, exposant_glace)
795              if (iflag_t_glace.eq.0) then
[2223]796                    zfice(i) = 1.0 - (zt(i)-t_glace_min_old) / (RTT-t_glace_min_old)
[2086]797                    zfice(i) = MIN(MAX(zfice(i),0.0),1.0)
798                    zfice(i) = zfice(i)**exposant_glace_old
799              endif
[2006]800              zt(i) = zt(i) + (1.-zfice(i))*zcond(i) * RLVTT/RCPD/(1.0+RVTMP2*zq(i)) &
801                       +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*zq(i))
802           ENDDO
803         else
804           DO i=1, klon
[2109]805! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod
[2086]806!              zfice(i) = icefrac_lsc(zt(i), t_glace_min, &
807!                                     t_glace_max, exposant_glace)
808              if (iflag_t_glace.eq.0) then
[2223]809                    zfice(i) = 1.0 - (zt(i)-t_glace_min_old) / (RTT-t_glace_min_old)
[2086]810                    zfice(i) = MIN(MAX(zfice(i),0.0),1.0)
811                    zfice(i) = zfice(i)**exposant_glace_old
812              endif
[2006]813              zt(i) = zt(i) + (1.-zfice(i))*zcond(i) * RLVTT/RCPD/(1.0+RVTMP2*(zq(i)+zcond(i))) &
814                       +zfice(i)*zcond(i) * RLSTT/RCPD/(1.0+RVTMP2*(zq(i)+zcond(i)))
815           ENDDO
816         endif
817!         print*,zt(i),zrfl(i),zifl(i),'temp1'
818       ENDIF
[1849]819!>AJ
[1472]820     !
821     ! Partager l'eau condensee en precipitation et eau liquide nuageuse
822     !
823     DO i = 1, klon
824        IF (rneb(i,k).GT.0.0) THEN
825           zoliq(i) = zcond(i)
826           zrho(i) = pplay(i,k) / zt(i) / RD
827           zdz(i) = (paprs(i,k)-paprs(i,k+1)) / (zrho(i)*RG)
[1849]828        ENDIF
829     ENDDO
830!AJ<
831     IF (.NOT. ice_thermo) THEN
[2006]832       IF (iflag_t_glace.EQ.0) THEN
833         DO i = 1, klon
834            IF (rneb(i,k).GT.0.0) THEN
835               zfice(i) = 1.0 - (zt(i)-t_glace_min_old) / (273.13-t_glace_min_old)
836               zfice(i) = MIN(MAX(zfice(i),0.0),1.0)
837               zfice(i) = zfice(i)**exposant_glace_old
838!              zfice(i) = zfice(i)**nexpo
839         !!      zfice(i)=0.
840            ENDIF
841         ENDDO
842       ELSE ! of IF (iflag_t_glace.EQ.0)
[2109]843         CALL icefrac_lsc(klon,zt(:),pplay(:,k)/paprs(:,1),zfice(:))
[2086]844!         DO i = 1, klon
845!            IF (rneb(i,k).GT.0.0) THEN
[2109]846! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod
[2086]847!              zfice(i) = icefrac_lsc(zt(i), t_glace_min, &
848!                                     t_glace_max, exposant_glace)
849!            ENDIF
850!         ENDDO
[2006]851       ENDIF
[1849]852     ENDIF
853     DO i = 1, klon
854        IF (rneb(i,k).GT.0.0) THEN
[1472]855           zneb(i) = MAX(rneb(i,k), seuil_neb)
[1849]856     !      zt(i) = zt(i)+zcond(i)*zfice(i)*RLMLT/RCPD/(1.0+RVTMP2*zq(i)) 
857!           print*,zt(i),'fractionglace'
858!>AJ
[1472]859           radliq(i,k) = zoliq(i)/REAL(ninter+1)
860        ENDIF
861     ENDDO
862     !
863     DO n = 1, ninter
864        DO i = 1, klon
865           IF (rneb(i,k).GT.0.0) THEN
866              zrhol(i) = zrho(i) * zoliq(i) / zneb(i)
[1855]867              ! Initialization of zpluie and zice:
868              zpluie=0
869              zice=0
[1472]870              IF (zneb(i).EQ.seuil_neb) THEN
871                 ztot = 0.0
872              ELSE
873                 !  quantite d'eau a eliminer: zchau
874                 !  meme chose pour la glace: zfroi
875                 if (ptconv(i,k)) then
876                    zcl   =cld_lc_con
877                    zct   =1./cld_tau_con
878                    zfroi    = dtime/REAL(ninter)/zdz(i)*zoliq(i) &
879                         *fallvc(zrhol(i)) * zfice(i)
880                 else
881                    zcl   =cld_lc_lsc
882                    zct   =1./cld_tau_lsc
883                    zfroi    = dtime/REAL(ninter)/zdz(i)*zoliq(i) &
884                         *fallvs(zrhol(i)) * zfice(i)
885                 endif
886                 zchau    = zct   *dtime/REAL(ninter) * zoliq(i) &
887                      *(1.0-EXP(-(zoliq(i)/zneb(i)/zcl   )**2)) *(1.-zfice(i))
[1849]888!AJ<
889                 IF (.NOT. ice_thermo) THEN
890                   ztot    = zchau + zfroi
891                 ELSE
892                   zpluie = MIN(MAX(zchau,0.0),zoliq(i)*(1.-zfice(i)))
893                   zice = MIN(MAX(zfroi,0.0),zoliq(i)*zfice(i))
894                   ztot    = zpluie    + zice
895                 ENDIF
896!>AJ
[1472]897                 ztot    = MAX(ztot   ,0.0)
898              ENDIF
899              ztot    = MIN(ztot,zoliq(i))
[1849]900!AJ<
901     !         zoliqp = MAX(zoliq(i)*(1.-zfice(i))-1.*zpluie   , 0.0)
902     !         zoliqi = MAX(zoliq(i)*zfice(i)-1.*zice   , 0.0)
903              zoliqp(i) = MAX(zoliq(i)*(1.-zfice(i))-1.*zpluie  , 0.0)
904              zoliqi(i) = MAX(zoliq(i)*zfice(i)-1.*zice  , 0.0)
[1472]905              zoliq(i) = MAX(zoliq(i)-ztot   , 0.0)
[1849]906!>AJ
[1472]907              radliq(i,k) = radliq(i,k) + zoliq(i)/REAL(ninter+1)
908           ENDIF
909        ENDDO
910     ENDDO
911     !
[1849]912         IF (.NOT. ice_thermo) THEN
913       DO i = 1, klon
914         IF (rneb(i,k).GT.0.0) THEN
[1472]915           d_ql(i,k) = zoliq(i)
916           zrfl(i) = zrfl(i)+ MAX(zcond(i)-zoliq(i),0.0) &
917                * (paprs(i,k)-paprs(i,k+1))/(RG*dtime)
[1849]918         ENDIF
919       ENDDO
920     ELSE
921       DO i = 1, klon
922         IF (rneb(i,k).GT.0.0) THEN
[2086]923!CR on prend en compte la phase glace
924           if (.not.ice_thermo) then
[1849]925           d_ql(i,k) = zoliq(i)
[2086]926           d_qi(i,k) = 0.
927           else
928           d_ql(i,k) = (1-zfice(i))*zoliq(i)
929           d_qi(i,k) = zfice(i)*zoliq(i)
930           endif
[1849]931!AJ<
932           zrfl(i) = zrfl(i)+ MAX(zcond(i)*(1.-zfice(i))-zoliqp(i),0.0) &
933               *(paprs(i,k)-paprs(i,k+1))/(RG*dtime)
934           zifl(i) = zifl(i)+ MAX(zcond(i)*zfice(i)-zoliqi(i),0.0) &
935                    *(paprs(i,k)-paprs(i,k+1))/(RG*dtime) 
936     !      zrfl(i) = zrfl(i)+  zpluie                         &
937     !          *(paprs(i,k)-paprs(i,k+1))/(RG*dtime)
938     !      zifl(i) = zifl(i)+  zice                    &
939     !               *(paprs(i,k)-paprs(i,k+1))/(RG*dtime)                                   
940
[2415]941!CR : on prend en compte l'effet Bergeron dans les flux de precipitation
942           if ((iflag_bergeron.eq.1).and.(zt(i).LT.273.15)) then
943              zsolid = zrfl(i)
944              zifl(i) = zifl(i)+zrfl(i)
945              zrfl(i) = 0.
946              zt(i)=zt(i)+zsolid*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) &
947                      *(RLSTT-RLVTT)/RCPD/(1.0+RVTMP2*zq(i))
948           endif
949!RC   
950
[1849]951         ENDIF                     
952       ENDDO
953     ENDIF
954
[2086]955!CR: la fonte est faite au debut
956!      IF (ice_thermo) THEN
957!       DO i = 1, klon
958!           zmelt = ((zt(i)-273.15)/(ztfondue-273.15))**2
959!           zmelt = MIN(MAX(zmelt,0.),1.)
960!           zrfl(i)=zrfl(i)+zmelt*zifl(i)
961!           zifl(i)=zifl(i)*(1.-zmelt)
[1849]962!           print*,zt(i),'octavio1'
[2086]963!           zt(i)=zt(i)-zifl(i)*zmelt*(RG*dtime)/(paprs(i,k)-paprs(i,k+1)) &
964!                      *RLMLT/RCPD/(1.0+RVTMP2*zq(i))
[1849]965!           print*,zt(i),zrfl(i),zifl(i),zmelt,'octavio2'
[2086]966!       ENDDO
967!     ENDIF
[1849]968
969       
970     IF (.NOT. ice_thermo) THEN
971       DO i = 1, klon
972         IF (zt(i).LT.RTT) THEN
[1472]973           psfl(i,k)=zrfl(i)
[1849]974         ELSE
[1472]975           prfl(i,k)=zrfl(i)
[1849]976         ENDIF
977       ENDDO
978     ELSE
979     ! JAM*************************************************
980     ! Revoir partie ci-dessous: à quoi servent psfl et prfl?
981     ! *****************************************************
982
983       DO i = 1, klon
984     !   IF (zt(i).LT.RTT) THEN
985           psfl(i,k)=zifl(i)
986     !   ELSE
987           prfl(i,k)=zrfl(i)
988     !   ENDIF
989!>AJ
990       ENDDO
991     ENDIF
[1472]992     !
[1849]993     !
[1472]994     ! Calculer les tendances de q et de t:
995     !
996     DO i = 1, klon
997        d_q(i,k) = zq(i) - q(i,k)
998        d_t(i,k) = zt(i) - t(i,k)
999     ENDDO
1000     !
1001     !AA--------------- Calcul du lessivage stratiforme  -------------
[524]1002
[1472]1003     DO i = 1,klon
1004        !
[1742]1005        if(zcond(i).gt.zoliq(i)+1.e-10) then
1006         beta(i,k) = (zcond(i)-zoliq(i))/zcond(i)/dtime
1007        else
1008         beta(i,k) = 0.
1009        endif
[1472]1010        zprec_cond(i) = MAX(zcond(i)-zoliq(i),0.0) &
1011             * (paprs(i,k)-paprs(i,k+1))/RG
1012        IF (rneb(i,k).GT.0.0.and.zprec_cond(i).gt.0.) THEN
1013           !AA lessivage nucleation LMD5 dans la couche elle-meme
[2006]1014          IF (iflag_t_glace.EQ.0) THEN
1015           if (t(i,k) .GE. t_glace_min_old) THEN
[1472]1016              zalpha_tr = a_tr_sca(3)
1017           else
1018              zalpha_tr = a_tr_sca(4)
1019           endif
[2006]1020          ELSE ! of IF (iflag_t_glace.EQ.0)
1021           if (t(i,k) .GE. t_glace_min) THEN
1022              zalpha_tr = a_tr_sca(3)
1023           else
1024              zalpha_tr = a_tr_sca(4)
1025           endif
1026          ENDIF
[1472]1027           zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i))
1028           pfrac_nucl(i,k)=pfrac_nucl(i,k)*(1.-zneb(i)*zfrac_lessi)
1029           frac_nucl(i,k)= 1.-zneb(i)*zfrac_lessi
1030           !
1031           ! nucleation avec un facteur -1 au lieu de -0.5
1032           zfrac_lessi = 1. - EXP(-zprec_cond(i)/zneb(i))
1033           pfrac_1nucl(i,k)=pfrac_1nucl(i,k)*(1.-zneb(i)*zfrac_lessi)
1034        ENDIF
1035        !
1036     ENDDO      ! boucle sur i
1037     !
1038     !AA Lessivage par impaction dans les couches en-dessous
1039     DO kk = k-1, 1, -1
[524]1040        DO i = 1, klon
[1472]1041           IF (rneb(i,k).GT.0.0.and.zprec_cond(i).gt.0.) THEN
[2006]1042             IF (iflag_t_glace.EQ.0) THEN
1043              if (t(i,kk) .GE. t_glace_min_old) THEN
[1472]1044                 zalpha_tr = a_tr_sca(1)
1045              else
1046                 zalpha_tr = a_tr_sca(2)
1047              endif
[2006]1048             ELSE ! of IF (iflag_t_glace.EQ.0)
1049              if (t(i,kk) .GE. t_glace_min) THEN
1050                 zalpha_tr = a_tr_sca(1)
1051              else
1052                 zalpha_tr = a_tr_sca(2)
1053              endif
1054             ENDIF
[1472]1055              zfrac_lessi = 1. - EXP(zalpha_tr*zprec_cond(i)/zneb(i))
1056              pfrac_impa(i,kk)=pfrac_impa(i,kk)*(1.-zneb(i)*zfrac_lessi)
1057              frac_impa(i,kk)= 1.-zneb(i)*zfrac_lessi
1058           ENDIF
[524]1059        ENDDO
[1472]1060     ENDDO
1061     !
1062     !AA----------------------------------------------------------
1063     !                     FIN DE BOUCLE SUR K   
1064  end DO
1065  !
1066  !AA-----------------------------------------------------------
1067  !
1068  ! Pluie ou neige au sol selon la temperature de la 1ere couche
1069  !
[2086]1070!CR: si la thermo de la glace est active, on calcule zifl directement
1071  IF (.NOT.ice_thermo) THEN
[1472]1072  DO i = 1, klon
1073     IF ((t(i,1)+d_t(i,1)) .LT. RTT) THEN
[1849]1074!AJ<
[2086]1075!        snow(i) = zrfl(i)
[1849]1076        snow(i) = zrfl(i)+zifl(i)
1077!>AJ
[1472]1078        zlh_solid(i) = RLSTT-RLVTT
1079     ELSE
1080        rain(i) = zrfl(i)
1081        zlh_solid(i) = 0.
1082     ENDIF
1083  ENDDO
[2086]1084
1085  ELSE
1086     DO i = 1, klon
1087        snow(i) = zifl(i)
1088        rain(i) = zrfl(i)
1089     ENDDO
1090   
1091   ENDIF
[1472]1092  !
1093  ! For energy conservation : when snow is present, the solification
1094  ! latent heat is considered.
[2086]1095!CR: si thermo de la glace, neige deja prise en compte
1096  IF (.not.ice_thermo) THEN
[1472]1097  DO k = 1, klev
1098     DO i = 1, klon
1099        zcpair=RCPD*(1.0+RVTMP2*(q(i,k)+d_q(i,k)))
1100        zmair=(paprs(i,k)-paprs(i,k+1))/RG
1101        zm_solid = (prfl(i,k)-prfl(i,k+1)+psfl(i,k)-psfl(i,k+1))*dtime
1102        d_t(i,k) = d_t(i,k) + zlh_solid(i) *zm_solid / (zcpair*zmair)
1103     END DO
1104  END DO
[2086]1105  ENDIF
[1472]1106  !
[883]1107
[1472]1108  if (ncoreczq>0) then
[1575]1109     WRITE(lunout,*)'WARNING : ZQ dans fisrtilp ',ncoreczq,' val < 1.e-15.'
[1472]1110  endif
1111
1112END SUBROUTINE fisrtilp
Note: See TracBrowser for help on using the repository browser.