1 | subroutine ener_conserv(klon,klev,pdtphys, & |
---|
2 | & puo,pvo,pto,pqo,pun,pvn,ptn,pqn,masse,exner,d_t_ec) |
---|
3 | |
---|
4 | !============================================================= |
---|
5 | ! Energy conservation |
---|
6 | ! Based on the TKE equation |
---|
7 | ! The M2 and N2 terms at the origin of TKE production are |
---|
8 | ! concerted into heating in the d_t_ec term |
---|
9 | ! Option 1 is the standard |
---|
10 | ! 101 is for M2 term only |
---|
11 | ! 101 for N2 term only |
---|
12 | ! -1 is a previours treatment for kinetic energy only |
---|
13 | ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 |
---|
14 | !============================================================= |
---|
15 | |
---|
16 | !============================================================= |
---|
17 | ! Declarations |
---|
18 | !============================================================= |
---|
19 | |
---|
20 | ! From module |
---|
21 | USE phys_local_var_mod, ONLY : d_u_vdf,d_v_vdf,d_t_vdf,d_u_ajs,d_v_ajs,d_t_ajs,d_u_con,d_v_con,d_t_con |
---|
22 | USE phys_output_var_mod, ONLY : bils_ec,bils_kinetic,bils_enthalp,bils_latent |
---|
23 | |
---|
24 | IMPLICIT none |
---|
25 | #include "YOMCST.h" |
---|
26 | #include "YOETHF.h" |
---|
27 | #include "clesphys.h" |
---|
28 | |
---|
29 | ! Arguments |
---|
30 | INTEGER, INTENT(IN) :: klon,klev |
---|
31 | REAL, INTENT(IN) :: pdtphys |
---|
32 | REAL, DIMENSION(klon,klev),INTENT(IN) :: puo,pvo,pto,pqo |
---|
33 | REAL, DIMENSION(klon,klev),INTENT(IN) :: pun,pvn,ptn,pqn |
---|
34 | REAL, DIMENSION(klon,klev),INTENT(IN) :: masse,exner |
---|
35 | REAL, DIMENSION(klon,klev),INTENT(OUT) :: d_t_ec |
---|
36 | integer k,i |
---|
37 | |
---|
38 | ! Local |
---|
39 | REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt |
---|
40 | REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt |
---|
41 | REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t,zv,zu |
---|
42 | REAL ZRCPD |
---|
43 | |
---|
44 | character*80 abort_message |
---|
45 | character*20 :: modname |
---|
46 | |
---|
47 | |
---|
48 | modname='ener_conser' |
---|
49 | d_t_ec(:,:)=0. |
---|
50 | |
---|
51 | IF (iflag_ener_conserv==-1) THEN |
---|
52 | !+jld ec_conser |
---|
53 | DO k = 1, klev |
---|
54 | DO i = 1, klon |
---|
55 | ZRCPD = RCPD*(1.0+RVTMP2*pqn(i,k)) |
---|
56 | d_t_ec(i,k)=0.5/ZRCPD & |
---|
57 | & *(puo(i,k)**2+pvo(i,k)**2-pun(i,k)**2-pvn(i,k)**2) |
---|
58 | ENDDO |
---|
59 | ENDDO |
---|
60 | !-jld ec_conser |
---|
61 | |
---|
62 | |
---|
63 | |
---|
64 | ELSEIF (iflag_ener_conserv>=1) THEN |
---|
65 | |
---|
66 | IF (iflag_ener_conserv<=2) THEN |
---|
67 | d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:) ! d_t_ajs = adjust + thermals |
---|
68 | d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:) |
---|
69 | d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:) |
---|
70 | ELSEIF (iflag_ener_conserv==101) THEN |
---|
71 | d_t(:,:)=0. |
---|
72 | d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:) |
---|
73 | d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:) |
---|
74 | ELSEIF (iflag_ener_conserv==110) THEN |
---|
75 | d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:) |
---|
76 | d_u(:,:)=0. |
---|
77 | d_v(:,:)=0. |
---|
78 | ELSE |
---|
79 | abort_message = 'iflag_ener_conserv non prevu' |
---|
80 | CALL abort_gcm (modname,abort_message,1) |
---|
81 | ENDIF |
---|
82 | |
---|
83 | !---------------------------------------------------------------------------- |
---|
84 | ! Two options wether we consider time integration in the energy conservation |
---|
85 | !---------------------------------------------------------------------------- |
---|
86 | |
---|
87 | if (iflag_ener_conserv==2) then |
---|
88 | zu(:,:)=puo(:,:) |
---|
89 | zv(:,:)=pvo(:,:) |
---|
90 | else |
---|
91 | zu(:,:)=puo(:,:)+0.5*d_u(:,:) |
---|
92 | zv(:,:)=pvo(:,:)+0.5*d_v(:,:) |
---|
93 | endif |
---|
94 | |
---|
95 | fluxu(:,klev+1)=0. |
---|
96 | fluxv(:,klev+1)=0. |
---|
97 | fluxt(:,klev+1)=0. |
---|
98 | |
---|
99 | do k=klev,1,-1 |
---|
100 | fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k) |
---|
101 | fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k) |
---|
102 | fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k) |
---|
103 | enddo |
---|
104 | |
---|
105 | dddu(:,1)=2*zu(:,1)*fluxu(:,1) |
---|
106 | dddv(:,1)=2*zv(:,1)*fluxv(:,1) |
---|
107 | dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1) |
---|
108 | |
---|
109 | do k=2,klev |
---|
110 | dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k) |
---|
111 | dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k) |
---|
112 | dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k) |
---|
113 | enddo |
---|
114 | dddu(:,klev+1)=0. |
---|
115 | dddv(:,klev+1)=0. |
---|
116 | dddt(:,klev+1)=0. |
---|
117 | |
---|
118 | do k=1,klev |
---|
119 | d_t_ec(:,k)=-(dddu(:,k)+dddu(:,k+1)+dddv(:,k)+dddv(:,k+1) & |
---|
120 | & +rcpd*(dddt(:,k)+dddt(:,k+1)))/(2.*rcpd*masse(:,k)) |
---|
121 | enddo |
---|
122 | ! d_t_ec=0. |
---|
123 | |
---|
124 | ENDIF |
---|
125 | |
---|
126 | !================================================================ |
---|
127 | ! Computation of integrated enthalpie and kinetic energy variation |
---|
128 | ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 |
---|
129 | !================================================================ |
---|
130 | |
---|
131 | bils_ec(:)=0. |
---|
132 | bils_kinetic(:)=0. |
---|
133 | bils_enthalp(:)=0. |
---|
134 | bils_latent(:)=0. |
---|
135 | DO k=1,klev |
---|
136 | bils_ec(:)=bils_ec(:)-d_t_ec(:,k)*masse(:,k) |
---|
137 | bils_kinetic(:)=bils_kinetic(:)+masse(:,k)* & |
---|
138 | & (pun(:,k)*pun(:,k)+pvn(:,k)*pvn(:,k) & |
---|
139 | & -puo(:,k)*puo(:,k)-pvo(:,k)*pvo(:,k)) |
---|
140 | bils_enthalp(:)= & |
---|
141 | & bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)) |
---|
142 | bils_latent(:)=bils_latent(:)+masse(:,k)* & |
---|
143 | & (pqn(:,k)-pqo(:,k)) |
---|
144 | ENDDO |
---|
145 | bils_ec(:)=rcpd*bils_ec(:)/pdtphys |
---|
146 | bils_kinetic(:)= 0.5*bils_kinetic(:)/pdtphys |
---|
147 | bils_enthalp(:)=rcpd*bils_enthalp(:)/pdtphys |
---|
148 | bils_latent(:)=rlvtt*bils_latent(:)/pdtphys |
---|
149 | |
---|
150 | |
---|
151 | RETURN |
---|
152 | |
---|
153 | END |
---|