1 | ! |
---|
2 | ! $Id: 1D_interp_cases.h 2920 2017-06-29 09:58:07Z lguez $ |
---|
3 | ! |
---|
4 | !--------------------------------------------------------------------- |
---|
5 | ! Forcing_LES case: constant dq_dyn |
---|
6 | !--------------------------------------------------------------------- |
---|
7 | if (forcing_LES) then |
---|
8 | DO l = 1,llm |
---|
9 | d_q_adv(l,1) = dq_dyn(l,1) |
---|
10 | ENDDO |
---|
11 | endif ! forcing_LES |
---|
12 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
13 | !--------------------------------------------------------------------- |
---|
14 | ! Interpolation forcing in time and onto model levels |
---|
15 | !--------------------------------------------------------------------- |
---|
16 | if (forcing_GCSSold) then |
---|
17 | |
---|
18 | call get_uvd(it,timestep,fich_gcssold_ctl,fich_gcssold_dat, & |
---|
19 | & ht_gcssold,hq_gcssold,hw_gcssold, & |
---|
20 | & hu_gcssold,hv_gcssold, & |
---|
21 | & hthturb_gcssold,hqturb_gcssold,Ts_gcssold, & |
---|
22 | & imp_fcg_gcssold,ts_fcg_gcssold, & |
---|
23 | & Tp_fcg_gcssold,Turb_fcg_gcssold) |
---|
24 | if (prt_level.ge.1) then |
---|
25 | print *,' get_uvd -> hqturb_gcssold ',it,hqturb_gcssold |
---|
26 | endif |
---|
27 | ! large-scale forcing : |
---|
28 | !!! tsurf = ts_gcssold |
---|
29 | do l = 1, llm |
---|
30 | ! u(l) = hu_gcssold(l) ! on prescrit le vent |
---|
31 | ! v(l) = hv_gcssold(l) ! on prescrit le vent |
---|
32 | ! omega(l) = hw_gcssold(l) |
---|
33 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
34 | ! omega2(l)=-rho(l)*omega(l) |
---|
35 | omega(l) = hw_gcssold(l) |
---|
36 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
37 | |
---|
38 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
39 | d_t_adv(l) = ht_gcssold(l) |
---|
40 | d_q_adv(l,1) = hq_gcssold(l) |
---|
41 | dt_cooling(l) = 0.0 |
---|
42 | enddo |
---|
43 | |
---|
44 | endif ! forcing_GCSSold |
---|
45 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
46 | !--------------------------------------------------------------------- |
---|
47 | ! Interpolation Toga forcing |
---|
48 | !--------------------------------------------------------------------- |
---|
49 | if (forcing_toga) then |
---|
50 | |
---|
51 | if (prt_level.ge.1) then |
---|
52 | print*, & |
---|
53 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_toga=', & |
---|
54 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_toga |
---|
55 | endif |
---|
56 | |
---|
57 | ! time interpolation: |
---|
58 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
59 | & ,year_ini_toga,day_ju_ini_toga,nt_toga,dt_toga & |
---|
60 | & ,nlev_toga,ts_toga,plev_toga,t_toga,q_toga,u_toga & |
---|
61 | & ,v_toga,w_toga,ht_toga,vt_toga,hq_toga,vq_toga & |
---|
62 | & ,ts_prof,plev_prof,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
63 | & ,ht_prof,vt_prof,hq_prof,vq_prof) |
---|
64 | |
---|
65 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
66 | |
---|
67 | ! vertical interpolation: |
---|
68 | CALL interp_toga_vertical(play,nlev_toga,plev_prof & |
---|
69 | & ,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
70 | & ,ht_prof,vt_prof,hq_prof,vq_prof & |
---|
71 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
72 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
73 | |
---|
74 | ! large-scale forcing : |
---|
75 | tsurf = ts_prof |
---|
76 | do l = 1, llm |
---|
77 | u(l) = u_mod(l) ! sb: on prescrit le vent |
---|
78 | v(l) = v_mod(l) ! sb: on prescrit le vent |
---|
79 | ! omega(l) = w_prof(l) |
---|
80 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
81 | ! omega2(l)=-rho(l)*omega(l) |
---|
82 | omega(l) = w_mod(l) |
---|
83 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
84 | |
---|
85 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
86 | d_t_adv(l) = alpha*omega(l)/rcpd-(ht_mod(l)+vt_mod(l)) |
---|
87 | d_q_adv(l,1) = -(hq_mod(l)+vq_mod(l)) |
---|
88 | dt_cooling(l) = 0.0 |
---|
89 | enddo |
---|
90 | |
---|
91 | endif ! forcing_toga |
---|
92 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
93 | ! Interpolation DICE forcing |
---|
94 | !--------------------------------------------------------------------- |
---|
95 | if (forcing_dice) then |
---|
96 | |
---|
97 | if (prt_level.ge.1) then |
---|
98 | print*,'#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_dice=',& |
---|
99 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_dice |
---|
100 | endif |
---|
101 | |
---|
102 | ! time interpolation: |
---|
103 | CALL interp_dice_time(daytime,day1,annee_ref & |
---|
104 | & ,year_ini_dice,day_ju_ini_dice,nt_dice,dt_dice & |
---|
105 | & ,nlev_dice,shf_dice,lhf_dice,lwup_dice,swup_dice & |
---|
106 | & ,tg_dice,ustar_dice,psurf_dice,ug_dice,vg_dice & |
---|
107 | & ,ht_dice,hq_dice,hu_dice,hv_dice,w_dice,omega_dice & |
---|
108 | & ,shf_prof,lhf_prof,lwup_prof,swup_prof,tg_prof & |
---|
109 | & ,ustar_prof,psurf_prof,ug_profd,vg_profd & |
---|
110 | & ,ht_profd,hq_profd,hu_profd,hv_profd,w_profd & |
---|
111 | & ,omega_profd) |
---|
112 | ! do l = 1, llm |
---|
113 | ! print *,'llm l omega_profd',llm,l,omega_profd(l) |
---|
114 | ! enddo |
---|
115 | |
---|
116 | if (type_ts_forcing.eq.1) ts_cur = tg_prof ! SST used in read_tsurf1d |
---|
117 | |
---|
118 | ! vertical interpolation: |
---|
119 | CALL interp_dice_vertical(play,nlev_dice,nt_dice,plev_dice & |
---|
120 | & ,t_dice,qv_dice,u_dice,v_dice,o3_dice & |
---|
121 | & ,ht_profd,hq_profd,hu_profd,hv_profd,w_profd,omega_profd & |
---|
122 | & ,t_mod,qv_mod,u_mod,v_mod,o3_mod & |
---|
123 | & ,ht_mod,hq_mod,hu_mod,hv_mod,w_mod,omega_mod,mxcalc) |
---|
124 | ! do l = 1, llm |
---|
125 | ! print *,'llm l omega_mod',llm,l,omega_mod(l) |
---|
126 | ! enddo |
---|
127 | |
---|
128 | ! Les forcages DICE sont donnes /jour et non /seconde ! |
---|
129 | ht_mod(:)=ht_mod(:)/86400. |
---|
130 | hq_mod(:)=hq_mod(:)/86400. |
---|
131 | hu_mod(:)=hu_mod(:)/86400. |
---|
132 | hv_mod(:)=hv_mod(:)/86400. |
---|
133 | |
---|
134 | !calcul de l'advection verticale a partir du omega (repris cas TWPICE, MPL 05082013) |
---|
135 | !Calcul des gradients verticaux |
---|
136 | !initialisation |
---|
137 | d_t_z(:)=0. |
---|
138 | d_q_z(:)=0. |
---|
139 | d_u_z(:)=0. |
---|
140 | d_v_z(:)=0. |
---|
141 | DO l=2,llm-1 |
---|
142 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
143 | d_q_z(l)=(q(l+1,1)-q(l-1,1)) /(play(l+1)-play(l-1)) |
---|
144 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
145 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
146 | ENDDO |
---|
147 | d_t_z(1)=d_t_z(2) |
---|
148 | d_q_z(1)=d_q_z(2) |
---|
149 | ! d_u_z(1)=u(2)/(play(2)-psurf)/5. |
---|
150 | ! d_v_z(1)=v(2)/(play(2)-psurf)/5. |
---|
151 | d_u_z(1)=0. |
---|
152 | d_v_z(1)=0. |
---|
153 | d_t_z(llm)=d_t_z(llm-1) |
---|
154 | d_q_z(llm)=d_q_z(llm-1) |
---|
155 | d_u_z(llm)=d_u_z(llm-1) |
---|
156 | d_v_z(llm)=d_v_z(llm-1) |
---|
157 | |
---|
158 | !Calcul de l advection verticale: |
---|
159 | ! utiliser omega (Pa/s) et non w (m/s) !! MP 20131108 |
---|
160 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
161 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
162 | d_u_dyn_z(:)=omega_mod(:)*d_u_z(:) |
---|
163 | d_v_dyn_z(:)=omega_mod(:)*d_v_z(:) |
---|
164 | |
---|
165 | ! large-scale forcing : |
---|
166 | ! tsurf = tg_prof MPL 20130925 commente |
---|
167 | psurf = psurf_prof |
---|
168 | ! For this case, fluxes are imposed |
---|
169 | fsens=-1*shf_prof |
---|
170 | flat=-1*lhf_prof |
---|
171 | ust=ustar_prof |
---|
172 | tg=tg_prof |
---|
173 | print *,'ust= ',ust |
---|
174 | do l = 1, llm |
---|
175 | ug(l)= ug_profd |
---|
176 | vg(l)= vg_profd |
---|
177 | ! omega(l) = w_prof(l) |
---|
178 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
179 | ! omega2(l)=-rho(l)*omega(l) |
---|
180 | ! omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
181 | omega(l) = omega_mod(l) |
---|
182 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
183 | |
---|
184 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
185 | d_t_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
186 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
187 | d_u_adv(l) = hu_mod(l)-d_u_dyn_z(l) |
---|
188 | d_v_adv(l) = hv_mod(l)-d_v_dyn_z(l) |
---|
189 | dt_cooling(l) = 0.0 |
---|
190 | enddo |
---|
191 | |
---|
192 | endif ! forcing_dice |
---|
193 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
194 | ! Interpolation gabls4 forcing |
---|
195 | !--------------------------------------------------------------------- |
---|
196 | if (forcing_gabls4 ) then |
---|
197 | |
---|
198 | if (prt_level.ge.1) then |
---|
199 | print*,'#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_gabls4=',& |
---|
200 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_gabls4 |
---|
201 | endif |
---|
202 | |
---|
203 | ! time interpolation: |
---|
204 | CALL interp_gabls4_time(daytime,day1,annee_ref & |
---|
205 | & ,year_ini_gabls4,day_ju_ini_gabls4,nt_gabls4,dt_gabls4,nlev_gabls4 & |
---|
206 | & ,ug_gabls4,vg_gabls4,ht_gabls4,hq_gabls4,tg_gabls4 & |
---|
207 | & ,ug_profg,vg_profg,ht_profg,hq_profg,tg_profg) |
---|
208 | |
---|
209 | if (type_ts_forcing.eq.1) ts_cur = tg_prof ! SST used in read_tsurf1d |
---|
210 | |
---|
211 | ! vertical interpolation: |
---|
212 | ! on re-utilise le programme interp_dice_vertical: les transformations sur |
---|
213 | ! plev_gabls4,th_gabls4,qv_gabls4,u_gabls4,v_gabls4 ne sont pas prises en compte. |
---|
214 | ! seules celles sur ht_profg,hq_profg,ug_profg,vg_profg sont prises en compte. |
---|
215 | |
---|
216 | CALL interp_dice_vertical(play,nlev_gabls4,nt_gabls4,plev_gabls4 & |
---|
217 | ! & ,t_gabls4,qv_gabls4,u_gabls4,v_gabls4,poub & |
---|
218 | & ,poub,poub,poub,poub,poub & |
---|
219 | & ,ht_profg,hq_profg,ug_profg,vg_profg,poub,poub & |
---|
220 | & ,t_mod,qv_mod,u_mod,v_mod,o3_mod & |
---|
221 | & ,ht_mod,hq_mod,ug_mod,vg_mod,w_mod,omega_mod,mxcalc) |
---|
222 | |
---|
223 | do l = 1, llm |
---|
224 | ug(l)= ug_mod(l) |
---|
225 | vg(l)= vg_mod(l) |
---|
226 | d_t_adv(l)=ht_mod(l) |
---|
227 | d_q_adv(l,1)=hq_mod(l) |
---|
228 | enddo |
---|
229 | |
---|
230 | endif ! forcing_gabls4 |
---|
231 | !--------------------------------------------------------------------- |
---|
232 | |
---|
233 | !--------------------------------------------------------------------- |
---|
234 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
235 | !--------------------------------------------------------------------- |
---|
236 | ! Interpolation forcing TWPice |
---|
237 | !--------------------------------------------------------------------- |
---|
238 | if (forcing_twpice) then |
---|
239 | |
---|
240 | print*, & |
---|
241 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_twpi=', & |
---|
242 | & daytime,day1,(daytime-day1)*86400., & |
---|
243 | & (daytime-day1)*86400/dt_twpi |
---|
244 | |
---|
245 | ! time interpolation: |
---|
246 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
247 | & ,year_ini_twpi,day_ju_ini_twpi,nt_twpi,dt_twpi,nlev_twpi & |
---|
248 | & ,ts_twpi,plev_twpi,t_twpi,q_twpi,u_twpi,v_twpi,w_twpi & |
---|
249 | & ,ht_twpi,vt_twpi,hq_twpi,vq_twpi & |
---|
250 | & ,ts_proftwp,plev_proftwp,t_proftwp,q_proftwp,u_proftwp & |
---|
251 | & ,v_proftwp,w_proftwp & |
---|
252 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp) |
---|
253 | |
---|
254 | ! vertical interpolation: |
---|
255 | CALL interp_toga_vertical(play,nlev_twpi,plev_proftwp & |
---|
256 | & ,t_proftwp,q_proftwp,u_proftwp,v_proftwp,w_proftwp & |
---|
257 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp & |
---|
258 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
259 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
260 | |
---|
261 | |
---|
262 | !calcul de l'advection verticale a partir du omega |
---|
263 | !Calcul des gradients verticaux |
---|
264 | !initialisation |
---|
265 | d_t_z(:)=0. |
---|
266 | d_q_z(:)=0. |
---|
267 | d_t_dyn_z(:)=0. |
---|
268 | d_q_dyn_z(:)=0. |
---|
269 | DO l=2,llm-1 |
---|
270 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
271 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
272 | ENDDO |
---|
273 | d_t_z(1)=d_t_z(2) |
---|
274 | d_q_z(1)=d_q_z(2) |
---|
275 | d_t_z(llm)=d_t_z(llm-1) |
---|
276 | d_q_z(llm)=d_q_z(llm-1) |
---|
277 | |
---|
278 | !Calcul de l advection verticale |
---|
279 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
280 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
281 | |
---|
282 | !wind nudging above 500m with a 2h time scale |
---|
283 | do l=1,llm |
---|
284 | if (nudge_wind) then |
---|
285 | ! if (phi(l).gt.5000.) then |
---|
286 | if (phi(l).gt.0.) then |
---|
287 | u(l)=u(l)+timestep*(u_mod(l)-u(l))/(2.*3600.) |
---|
288 | v(l)=v(l)+timestep*(v_mod(l)-v(l))/(2.*3600.) |
---|
289 | endif |
---|
290 | else |
---|
291 | u(l) = u_mod(l) |
---|
292 | v(l) = v_mod(l) |
---|
293 | endif |
---|
294 | enddo |
---|
295 | |
---|
296 | !CR:nudging of q and theta with a 6h time scale above 15km |
---|
297 | if (nudge_thermo) then |
---|
298 | do l=1,llm |
---|
299 | zz(l)=phi(l)/9.8 |
---|
300 | if ((zz(l).le.16000.).and.(zz(l).gt.15000.)) then |
---|
301 | zfact=(zz(l)-15000.)/1000. |
---|
302 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.)*zfact |
---|
303 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.)*zfact |
---|
304 | else if (zz(l).gt.16000.) then |
---|
305 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.) |
---|
306 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.) |
---|
307 | endif |
---|
308 | enddo |
---|
309 | endif |
---|
310 | |
---|
311 | do l = 1, llm |
---|
312 | omega(l) = w_mod(l) |
---|
313 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
314 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
315 | !calcul de l'advection totale |
---|
316 | if (cptadvw) then |
---|
317 | d_t_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
318 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
319 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
320 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
321 | else |
---|
322 | d_t_adv(l) = alpha*omega(l)/rcpd+(ht_mod(l)+vt_mod(l)) |
---|
323 | d_q_adv(l,1) = (hq_mod(l)+vq_mod(l)) |
---|
324 | endif |
---|
325 | dt_cooling(l) = 0.0 |
---|
326 | enddo |
---|
327 | |
---|
328 | endif ! forcing_twpice |
---|
329 | |
---|
330 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
331 | !--------------------------------------------------------------------- |
---|
332 | ! Interpolation forcing AMMA |
---|
333 | !--------------------------------------------------------------------- |
---|
334 | |
---|
335 | if (forcing_amma) then |
---|
336 | |
---|
337 | print*, & |
---|
338 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_amma=', & |
---|
339 | & daytime,day1,(daytime-day1)*86400., & |
---|
340 | & (daytime-day1)*86400/dt_amma |
---|
341 | |
---|
342 | ! time interpolation using TOGA interpolation routine |
---|
343 | CALL interp_amma_time(daytime,day1,annee_ref & |
---|
344 | & ,year_ini_amma,day_ju_ini_amma,nt_amma,dt_amma,nlev_amma & |
---|
345 | & ,vitw_amma,ht_amma,hq_amma,lat_amma,sens_amma & |
---|
346 | & ,vitw_profamma,ht_profamma,hq_profamma,lat_profamma & |
---|
347 | & ,sens_profamma) |
---|
348 | |
---|
349 | print*,'apres interpolation temporelle AMMA' |
---|
350 | |
---|
351 | do k=1,nlev_amma |
---|
352 | th_profamma(k)=0. |
---|
353 | q_profamma(k)=0. |
---|
354 | u_profamma(k)=0. |
---|
355 | v_profamma(k)=0. |
---|
356 | vt_profamma(k)=0. |
---|
357 | vq_profamma(k)=0. |
---|
358 | enddo |
---|
359 | ! vertical interpolation using TOGA interpolation routine: |
---|
360 | ! write(*,*)'avant interp vert', t_proftwp |
---|
361 | CALL interp_toga_vertical(play,nlev_amma,plev_amma & |
---|
362 | & ,th_profamma,q_profamma,u_profamma,v_profamma & |
---|
363 | & ,vitw_profamma & |
---|
364 | & ,ht_profamma,vt_profamma,hq_profamma,vq_profamma & |
---|
365 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
366 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
367 | write(*,*) 'Profil initial forcing AMMA interpole' |
---|
368 | |
---|
369 | |
---|
370 | !calcul de l'advection verticale a partir du omega |
---|
371 | !Calcul des gradients verticaux |
---|
372 | !initialisation |
---|
373 | do l=1,llm |
---|
374 | d_t_z(l)=0. |
---|
375 | d_q_z(l)=0. |
---|
376 | enddo |
---|
377 | |
---|
378 | DO l=2,llm-1 |
---|
379 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
380 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
381 | ENDDO |
---|
382 | d_t_z(1)=d_t_z(2) |
---|
383 | d_q_z(1)=d_q_z(2) |
---|
384 | d_t_z(llm)=d_t_z(llm-1) |
---|
385 | d_q_z(llm)=d_q_z(llm-1) |
---|
386 | |
---|
387 | |
---|
388 | do l = 1, llm |
---|
389 | rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
390 | omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
391 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
392 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
393 | !calcul de l'advection totale |
---|
394 | ! d_t_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-omega(l)*d_t_z(l) |
---|
395 | !attention: on impose dth |
---|
396 | d_t_adv(l) = alpha*omega(l)/rcpd+ & |
---|
397 | & ht_mod(l)*(play(l)/pzero)**rkappa-omega(l)*d_t_z(l) |
---|
398 | ! d_t_adv(l) = 0. |
---|
399 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
400 | d_q_adv(l,1) = hq_mod(l)-omega(l)*d_q_z(l) |
---|
401 | ! d_q_adv(l,1) = 0. |
---|
402 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
403 | |
---|
404 | dt_cooling(l) = 0.0 |
---|
405 | enddo |
---|
406 | |
---|
407 | |
---|
408 | ! ok_flux_surf=.false. |
---|
409 | fsens=-1.*sens_profamma |
---|
410 | flat=-1.*lat_profamma |
---|
411 | |
---|
412 | endif ! forcing_amma |
---|
413 | |
---|
414 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
415 | !--------------------------------------------------------------------- |
---|
416 | ! Interpolation forcing Rico |
---|
417 | !--------------------------------------------------------------------- |
---|
418 | if (forcing_rico) then |
---|
419 | ! call lstendH(llm,omega,dt_dyn,dq_dyn,du_dyn, dv_dyn,q,temp,u,v,play) |
---|
420 | call lstendH(llm,nqtot,omega,dt_dyn,dq_dyn,q,temp,u,v,play) |
---|
421 | |
---|
422 | do l=1,llm |
---|
423 | d_t_adv(l) = (dth_rico(l) + dt_dyn(l)) |
---|
424 | d_q_adv(l,1) = (dqh_rico(l) + dq_dyn(l,1)) |
---|
425 | d_q_adv(l,2) = 0. |
---|
426 | enddo |
---|
427 | endif ! forcing_rico |
---|
428 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
429 | !--------------------------------------------------------------------- |
---|
430 | ! Interpolation forcing Arm_cu |
---|
431 | !--------------------------------------------------------------------- |
---|
432 | if (forcing_armcu) then |
---|
433 | |
---|
434 | print*, & |
---|
435 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_armcu=', & |
---|
436 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_armcu |
---|
437 | |
---|
438 | ! time interpolation: |
---|
439 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
440 | ! revoir 1DUTILS.h et les arguments |
---|
441 | CALL interp_armcu_time(daytime,day1,annee_ref & |
---|
442 | & ,year_ini_armcu,day_ju_ini_armcu,nt_armcu,dt_armcu & |
---|
443 | & ,nlev_armcu,sens_armcu,flat_armcu,adv_theta_armcu & |
---|
444 | & ,rad_theta_armcu,adv_qt_armcu,sens_prof,flat_prof & |
---|
445 | & ,adv_theta_prof,rad_theta_prof,adv_qt_prof) |
---|
446 | |
---|
447 | ! vertical interpolation: |
---|
448 | ! No vertical interpolation if nlev imposed to 19 or 40 |
---|
449 | |
---|
450 | ! For this case, fluxes are imposed |
---|
451 | fsens=-1*sens_prof |
---|
452 | flat=-1*flat_prof |
---|
453 | |
---|
454 | ! Advective forcings are given in K or g/kg ... BY HOUR |
---|
455 | do l = 1, llm |
---|
456 | ug(l)= u_mod(l) |
---|
457 | vg(l)= v_mod(l) |
---|
458 | IF((phi(l)/RG).LT.1000) THEN |
---|
459 | d_t_adv(l) = (adv_theta_prof + rad_theta_prof)/3600. |
---|
460 | d_q_adv(l,1) = adv_qt_prof/1000./3600. |
---|
461 | d_q_adv(l,2) = 0.0 |
---|
462 | ! print *,'INF1000: phi dth dq1 dq2', |
---|
463 | ! : phi(l)/RG,d_t_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
464 | ELSEIF ((phi(l)/RG).GE.1000.AND.(phi(l)/RG).lt.3000) THEN |
---|
465 | fact=((phi(l)/RG)-1000.)/2000. |
---|
466 | fact=1-fact |
---|
467 | d_t_adv(l) = (adv_theta_prof + rad_theta_prof)*fact/3600. |
---|
468 | d_q_adv(l,1) = adv_qt_prof*fact/1000./3600. |
---|
469 | d_q_adv(l,2) = 0.0 |
---|
470 | ! print *,'SUP1000: phi fact dth dq1 dq2', |
---|
471 | ! : phi(l)/RG,fact,d_t_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
472 | ELSE |
---|
473 | d_t_adv(l) = 0.0 |
---|
474 | d_q_adv(l,1) = 0.0 |
---|
475 | d_q_adv(l,2) = 0.0 |
---|
476 | ! print *,'SUP3000: phi dth dq1 dq2', |
---|
477 | ! : phi(l)/RG,d_t_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
478 | ENDIF |
---|
479 | dt_cooling(l) = 0.0 |
---|
480 | ! print *,'Interp armcu: phi dth dq1 dq2', |
---|
481 | ! : l,phi(l),d_t_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
482 | enddo |
---|
483 | endif ! forcing_armcu |
---|
484 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
485 | !--------------------------------------------------------------------- |
---|
486 | ! Interpolation forcing in time and onto model levels |
---|
487 | !--------------------------------------------------------------------- |
---|
488 | if (forcing_sandu) then |
---|
489 | |
---|
490 | print*, & |
---|
491 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_sandu=', & |
---|
492 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_sandu |
---|
493 | |
---|
494 | ! time interpolation: |
---|
495 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
496 | ! revoir 1DUTILS.h et les arguments |
---|
497 | CALL interp_sandu_time(daytime,day1,annee_ref & |
---|
498 | & ,year_ini_sandu,day_ju_ini_sandu,nt_sandu,dt_sandu & |
---|
499 | & ,nlev_sandu & |
---|
500 | & ,ts_sandu,ts_prof) |
---|
501 | |
---|
502 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
503 | |
---|
504 | ! vertical interpolation: |
---|
505 | CALL interp_sandu_vertical(play,nlev_sandu,plev_profs & |
---|
506 | & ,t_profs,thl_profs,q_profs,u_profs,v_profs,w_profs & |
---|
507 | & ,omega_profs,o3mmr_profs & |
---|
508 | & ,t_mod,thl_mod,q_mod,u_mod,v_mod,w_mod & |
---|
509 | & ,omega_mod,o3mmr_mod,mxcalc) |
---|
510 | !calcul de l'advection verticale |
---|
511 | !Calcul des gradients verticaux |
---|
512 | !initialisation |
---|
513 | d_t_z(:)=0. |
---|
514 | d_q_z(:)=0. |
---|
515 | d_t_dyn_z(:)=0. |
---|
516 | d_q_dyn_z(:)=0. |
---|
517 | ! schema centre |
---|
518 | ! DO l=2,llm-1 |
---|
519 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
520 | ! & /(play(l+1)-play(l-1)) |
---|
521 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
522 | ! & /(play(l+1)-play(l-1)) |
---|
523 | ! schema amont |
---|
524 | DO l=2,llm-1 |
---|
525 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
526 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
527 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
528 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
529 | ENDDO |
---|
530 | d_t_z(1)=d_t_z(2) |
---|
531 | d_q_z(1)=d_q_z(2) |
---|
532 | d_t_z(llm)=d_t_z(llm-1) |
---|
533 | d_q_z(llm)=d_q_z(llm-1) |
---|
534 | |
---|
535 | ! calcul de l advection verticale |
---|
536 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
537 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
538 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
539 | ! do l=1,llm |
---|
540 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
541 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
542 | ! enddo |
---|
543 | |
---|
544 | |
---|
545 | ! large-scale forcing : pour le cas Sandu ces forcages sont la SST |
---|
546 | ! et une divergence constante -> profil de omega |
---|
547 | tsurf = ts_prof |
---|
548 | write(*,*) 'SST suivante: ',tsurf |
---|
549 | do l = 1, llm |
---|
550 | omega(l) = omega_mod(l) |
---|
551 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
552 | |
---|
553 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
554 | ! |
---|
555 | ! d_t_adv(l) = 0.0 |
---|
556 | ! d_q_adv(l,1) = 0.0 |
---|
557 | !CR:test advection=0 |
---|
558 | !calcul de l'advection verticale |
---|
559 | d_t_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
560 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
561 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
562 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
563 | dt_cooling(l) = 0.0 |
---|
564 | enddo |
---|
565 | endif ! forcing_sandu |
---|
566 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
567 | !--------------------------------------------------------------------- |
---|
568 | ! Interpolation forcing in time and onto model levels |
---|
569 | !--------------------------------------------------------------------- |
---|
570 | if (forcing_astex) then |
---|
571 | |
---|
572 | print*, & |
---|
573 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_astex=', & |
---|
574 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_astex |
---|
575 | |
---|
576 | ! time interpolation: |
---|
577 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
578 | ! revoir 1DUTILS.h et les arguments |
---|
579 | CALL interp_astex_time(daytime,day1,annee_ref & |
---|
580 | & ,year_ini_astex,day_ju_ini_astex,nt_astex,dt_astex & |
---|
581 | & ,nlev_astex,div_astex,ts_astex,ug_astex,vg_astex & |
---|
582 | & ,ufa_astex,vfa_astex,div_prof,ts_prof,ug_prof,vg_prof & |
---|
583 | & ,ufa_prof,vfa_prof) |
---|
584 | |
---|
585 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
586 | |
---|
587 | ! vertical interpolation: |
---|
588 | CALL interp_astex_vertical(play,nlev_astex,plev_profa & |
---|
589 | & ,t_profa,thl_profa,qv_profa,ql_profa,qt_profa & |
---|
590 | & ,u_profa,v_profa,w_profa,tke_profa,o3mmr_profa & |
---|
591 | & ,t_mod,thl_mod,qv_mod,ql_mod,qt_mod,u_mod,v_mod,w_mod & |
---|
592 | & ,tke_mod,o3mmr_mod,mxcalc) |
---|
593 | !calcul de l'advection verticale |
---|
594 | !Calcul des gradients verticaux |
---|
595 | !initialisation |
---|
596 | d_t_z(:)=0. |
---|
597 | d_q_z(:)=0. |
---|
598 | d_t_dyn_z(:)=0. |
---|
599 | d_q_dyn_z(:)=0. |
---|
600 | ! schema centre |
---|
601 | ! DO l=2,llm-1 |
---|
602 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
603 | ! & /(play(l+1)-play(l-1)) |
---|
604 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
605 | ! & /(play(l+1)-play(l-1)) |
---|
606 | ! schema amont |
---|
607 | DO l=2,llm-1 |
---|
608 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
609 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
610 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
611 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
612 | ENDDO |
---|
613 | d_t_z(1)=d_t_z(2) |
---|
614 | d_q_z(1)=d_q_z(2) |
---|
615 | d_t_z(llm)=d_t_z(llm-1) |
---|
616 | d_q_z(llm)=d_q_z(llm-1) |
---|
617 | |
---|
618 | ! calcul de l advection verticale |
---|
619 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
620 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
621 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
622 | ! do l=1,llm |
---|
623 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
624 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
625 | ! enddo |
---|
626 | |
---|
627 | |
---|
628 | ! large-scale forcing : pour le cas Astex ces forcages sont la SST |
---|
629 | ! la divergence,ug,vg,ufa,vfa |
---|
630 | tsurf = ts_prof |
---|
631 | write(*,*) 'SST suivante: ',tsurf |
---|
632 | do l = 1, llm |
---|
633 | omega(l) = w_mod(l) |
---|
634 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
635 | |
---|
636 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
637 | ! |
---|
638 | ! d_t_adv(l) = 0.0 |
---|
639 | ! d_q_adv(l,1) = 0.0 |
---|
640 | !CR:test advection=0 |
---|
641 | !calcul de l'advection verticale |
---|
642 | d_t_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
643 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
644 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
645 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
646 | dt_cooling(l) = 0.0 |
---|
647 | enddo |
---|
648 | endif ! forcing_astex |
---|
649 | |
---|
650 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
651 | !--------------------------------------------------------------------- |
---|
652 | ! Interpolation forcing standard case |
---|
653 | !--------------------------------------------------------------------- |
---|
654 | if (forcing_case) then |
---|
655 | |
---|
656 | print*, & |
---|
657 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/pdt_cas=', & |
---|
658 | & daytime,day1,(daytime-day1)*86400., & |
---|
659 | & (daytime-day1)*86400/pdt_cas |
---|
660 | |
---|
661 | ! time interpolation: |
---|
662 | CALL interp_case_time(daytime,day1,annee_ref & |
---|
663 | ! & ,year_ini_cas,day_ju_ini_cas,nt_cas,pdt_cas,nlev_cas & |
---|
664 | & ,nt_cas,nlev_cas & |
---|
665 | & ,ts_cas,plev_cas,t_cas,q_cas,u_cas,v_cas,ug_cas,vg_cas & |
---|
666 | & ,vitw_cas,du_cas,hu_cas,vu_cas & |
---|
667 | & ,dv_cas,hv_cas,vv_cas,dt_cas,ht_cas,vt_cas,dtrad_cas & |
---|
668 | & ,dq_cas,hq_cas,vq_cas,lat_cas,sens_cas,ustar_cas & |
---|
669 | & ,uw_cas,vw_cas,q1_cas,q2_cas & |
---|
670 | & ,ts_prof_cas,plev_prof_cas,t_prof_cas,q_prof_cas,u_prof_cas,v_prof_cas & |
---|
671 | & ,ug_prof_cas,vg_prof_cas,vitw_prof_cas,du_prof_cas,hu_prof_cas,vu_prof_cas & |
---|
672 | & ,dv_prof_cas,hv_prof_cas,vv_prof_cas,dt_prof_cas,ht_prof_cas,vt_prof_cas & |
---|
673 | & ,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas,lat_prof_cas & |
---|
674 | & ,sens_prof_cas,ustar_prof_cas,uw_prof_cas,vw_prof_cas,q1_prof_cas,q2_prof_cas) |
---|
675 | |
---|
676 | ts_cur = ts_prof_cas |
---|
677 | psurf=plev_prof_cas(1) |
---|
678 | |
---|
679 | ! vertical interpolation: |
---|
680 | CALL interp_case_vertical(play,nlev_cas,plev_prof_cas & |
---|
681 | & ,t_prof_cas,q_prof_cas,u_prof_cas,v_prof_cas,ug_prof_cas,vg_prof_cas,vitw_prof_cas & |
---|
682 | & ,du_prof_cas,hu_prof_cas,vu_prof_cas,dv_prof_cas,hv_prof_cas,vv_prof_cas & |
---|
683 | & ,dt_prof_cas,ht_prof_cas,vt_prof_cas,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & |
---|
684 | & ,t_mod_cas,q_mod_cas,u_mod_cas,v_mod_cas,ug_mod_cas,vg_mod_cas,w_mod_cas & |
---|
685 | & ,du_mod_cas,hu_mod_cas,vu_mod_cas,dv_mod_cas,hv_mod_cas,vv_mod_cas & |
---|
686 | & ,dt_mod_cas,ht_mod_cas,vt_mod_cas,dtrad_mod_cas,dq_mod_cas,hq_mod_cas,vq_mod_cas,mxcalc) |
---|
687 | |
---|
688 | |
---|
689 | !calcul de l'advection verticale a partir du omega |
---|
690 | !Calcul des gradients verticaux |
---|
691 | !initialisation |
---|
692 | d_t_z(:)=0. |
---|
693 | d_q_z(:)=0. |
---|
694 | d_u_z(:)=0. |
---|
695 | d_v_z(:)=0. |
---|
696 | d_t_dyn_z(:)=0. |
---|
697 | d_q_dyn_z(:)=0. |
---|
698 | d_u_dyn_z(:)=0. |
---|
699 | d_v_dyn_z(:)=0. |
---|
700 | DO l=2,llm-1 |
---|
701 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
702 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
703 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
704 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
705 | ENDDO |
---|
706 | d_t_z(1)=d_t_z(2) |
---|
707 | d_q_z(1)=d_q_z(2) |
---|
708 | d_u_z(1)=d_u_z(2) |
---|
709 | d_v_z(1)=d_v_z(2) |
---|
710 | d_t_z(llm)=d_t_z(llm-1) |
---|
711 | d_q_z(llm)=d_q_z(llm-1) |
---|
712 | d_u_z(llm)=d_u_z(llm-1) |
---|
713 | d_v_z(llm)=d_v_z(llm-1) |
---|
714 | |
---|
715 | !Calcul de l advection verticale |
---|
716 | |
---|
717 | d_t_dyn_z(:)=w_mod_cas(:)*d_t_z(:) |
---|
718 | |
---|
719 | d_q_dyn_z(:)=w_mod_cas(:)*d_q_z(:) |
---|
720 | d_u_dyn_z(:)=w_mod_cas(:)*d_u_z(:) |
---|
721 | d_v_dyn_z(:)=w_mod_cas(:)*d_v_z(:) |
---|
722 | |
---|
723 | !wind nudging |
---|
724 | if (nudge_u.gt.0.) then |
---|
725 | do l=1,llm |
---|
726 | u(l)=u(l)+timestep*(u_mod_cas(l)-u(l))/(nudge_u) |
---|
727 | enddo |
---|
728 | else |
---|
729 | do l=1,llm |
---|
730 | u(l) = u_mod_cas(l) |
---|
731 | enddo |
---|
732 | endif |
---|
733 | |
---|
734 | if (nudge_v.gt.0.) then |
---|
735 | do l=1,llm |
---|
736 | v(l)=v(l)+timestep*(v_mod_cas(l)-v(l))/(nudge_v) |
---|
737 | enddo |
---|
738 | else |
---|
739 | do l=1,llm |
---|
740 | v(l) = v_mod_cas(l) |
---|
741 | enddo |
---|
742 | endif |
---|
743 | |
---|
744 | if (nudge_w.gt.0.) then |
---|
745 | do l=1,llm |
---|
746 | w(l)=w(l)+timestep*(w_mod_cas(l)-w(l))/(nudge_w) |
---|
747 | enddo |
---|
748 | else |
---|
749 | do l=1,llm |
---|
750 | w(l) = w_mod_cas(l) |
---|
751 | enddo |
---|
752 | endif |
---|
753 | |
---|
754 | !nudging of q and temp |
---|
755 | if (nudge_t.gt.0.) then |
---|
756 | do l=1,llm |
---|
757 | temp(l)=temp(l)+timestep*(t_mod_cas(l)-temp(l))/(nudge_t) |
---|
758 | enddo |
---|
759 | endif |
---|
760 | if (nudge_q.gt.0.) then |
---|
761 | do l=1,llm |
---|
762 | q(l,1)=q(l,1)+timestep*(q_mod_cas(l)-q(l,1))/(nudge_q) |
---|
763 | enddo |
---|
764 | endif |
---|
765 | |
---|
766 | do l = 1, llm |
---|
767 | omega(l) = w_mod_cas(l) ! juste car w_mod_cas en Pa/s (MPL 20170310) |
---|
768 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
769 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
770 | |
---|
771 | !calcul advection |
---|
772 | if ((tend_u.eq.1).and.(tend_w.eq.0)) then |
---|
773 | d_u_adv(l)=du_mod_cas(l) |
---|
774 | else if ((tend_u.eq.1).and.(tend_w.eq.1)) then |
---|
775 | d_u_adv(l)=hu_mod_cas(l)-d_u_dyn_z(l) |
---|
776 | endif |
---|
777 | |
---|
778 | if ((tend_v.eq.1).and.(tend_w.eq.0)) then |
---|
779 | d_v_adv(l)=dv_mod_cas(l) |
---|
780 | else if ((tend_v.eq.1).and.(tend_w.eq.1)) then |
---|
781 | d_v_adv(l)=hv_mod_cas(l)-d_v_dyn_z(l) |
---|
782 | endif |
---|
783 | |
---|
784 | if ((tend_t.eq.1).and.(tend_w.eq.0)) then |
---|
785 | ! d_t_adv(l)=alpha*omega(l)/rcpd+dt_mod_cas(l) |
---|
786 | d_t_adv(l)=alpha*omega(l)/rcpd-dt_mod_cas(l) |
---|
787 | else if ((tend_t.eq.1).and.(tend_w.eq.1)) then |
---|
788 | ! d_t_adv(l)=alpha*omega(l)/rcpd+ht_mod_cas(l)-d_t_dyn_z(l) |
---|
789 | d_t_adv(l)=alpha*omega(l)/rcpd-ht_mod_cas(l)-d_t_dyn_z(l) |
---|
790 | endif |
---|
791 | |
---|
792 | if ((tend_q.eq.1).and.(tend_w.eq.0)) then |
---|
793 | ! d_q_adv(l,1)=dq_mod_cas(l) |
---|
794 | d_q_adv(l,1)=-1*dq_mod_cas(l) |
---|
795 | else if ((tend_q.eq.1).and.(tend_w.eq.1)) then |
---|
796 | ! d_q_adv(l,1)=hq_mod_cas(l)-d_q_dyn_z(l) |
---|
797 | d_q_adv(l,1)=-1*hq_mod_cas(l)-d_q_dyn_z(l) |
---|
798 | endif |
---|
799 | |
---|
800 | if (tend_rayo.eq.1) then |
---|
801 | dt_cooling(l) = dtrad_mod_cas(l) |
---|
802 | ! print *,'dt_cooling=',dt_cooling(l) |
---|
803 | else |
---|
804 | dt_cooling(l) = 0.0 |
---|
805 | endif |
---|
806 | enddo |
---|
807 | |
---|
808 | ! Faut-il multiplier par -1 ? (MPL 20160713) |
---|
809 | IF(ok_flux_surf) THEN |
---|
810 | fsens=sens_prof_cas |
---|
811 | flat=lat_prof_cas |
---|
812 | ENDIF |
---|
813 | ! |
---|
814 | IF (ok_prescr_ust) THEN |
---|
815 | ust=ustar_prof_cas |
---|
816 | print *,'ust=',ust |
---|
817 | ENDIF |
---|
818 | endif ! forcing_case |
---|
819 | |
---|
820 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
821 | !--------------------------------------------------------------------- |
---|
822 | ! Interpolation forcing standard case |
---|
823 | !--------------------------------------------------------------------- |
---|
824 | if (forcing_case2) then |
---|
825 | |
---|
826 | print*, & |
---|
827 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/pdt_cas=', & |
---|
828 | & daytime,day1,(daytime-day1)*86400., & |
---|
829 | & (daytime-day1)*86400/pdt_cas |
---|
830 | |
---|
831 | ! time interpolation: |
---|
832 | CALL interp2_case_time(daytime,day1,annee_ref & |
---|
833 | ! & ,year_ini_cas,day_ju_ini_cas,nt_cas,pdt_cas,nlev_cas & |
---|
834 | & ,nt_cas,nlev_cas & |
---|
835 | & ,ts_cas,ps_cas,plev_cas,t_cas,th_cas,thv_cas,thl_cas,qv_cas,ql_cas,qi_cas & |
---|
836 | & ,u_cas,v_cas,ug_cas,vg_cas,vitw_cas,omega_cas,du_cas,hu_cas,vu_cas & |
---|
837 | & ,dv_cas,hv_cas,vv_cas,dt_cas,ht_cas,vt_cas,dtrad_cas & |
---|
838 | & ,dq_cas,hq_cas,vq_cas,dth_cas,hth_cas,vth_cas,lat_cas,sens_cas,ustar_cas & |
---|
839 | & ,uw_cas,vw_cas,q1_cas,q2_cas,tke_cas & |
---|
840 | ! |
---|
841 | & ,ts_prof_cas,plev_prof_cas,t_prof_cas,theta_prof_cas,thv_prof_cas & |
---|
842 | & ,thl_prof_cas,qv_prof_cas,ql_prof_cas,qi_prof_cas & |
---|
843 | & ,u_prof_cas,v_prof_cas,ug_prof_cas,vg_prof_cas,vitw_prof_cas,omega_prof_cas & |
---|
844 | & ,du_prof_cas,hu_prof_cas,vu_prof_cas & |
---|
845 | & ,dv_prof_cas,hv_prof_cas,vv_prof_cas,dt_prof_cas,ht_prof_cas,vt_prof_cas & |
---|
846 | & ,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & |
---|
847 | & ,dth_prof_cas,hth_prof_cas,vth_prof_cas,lat_prof_cas & |
---|
848 | & ,sens_prof_cas,ustar_prof_cas,uw_prof_cas,vw_prof_cas,q1_prof_cas,q2_prof_cas,tke_prof_cas) |
---|
849 | |
---|
850 | ts_cur = ts_prof_cas |
---|
851 | ! psurf=plev_prof_cas(1) |
---|
852 | psurf=ps_prof_cas |
---|
853 | |
---|
854 | ! vertical interpolation: |
---|
855 | CALL interp2_case_vertical(play,nlev_cas,plev_prof_cas & |
---|
856 | & ,t_prof_cas,theta_prof_cas,thv_prof_cas,thl_prof_cas & |
---|
857 | & ,qv_prof_cas,ql_prof_cas,qi_prof_cas,u_prof_cas,v_prof_cas & |
---|
858 | & ,ug_prof_cas,vg_prof_cas,vitw_prof_cas,omega_prof_cas & |
---|
859 | & ,du_prof_cas,hu_prof_cas,vu_prof_cas,dv_prof_cas,hv_prof_cas,vv_prof_cas & |
---|
860 | & ,dt_prof_cas,ht_prof_cas,vt_prof_cas,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & |
---|
861 | & ,dth_prof_cas,hth_prof_cas,vth_prof_cas & |
---|
862 | ! |
---|
863 | & ,t_mod_cas,theta_mod_cas,thv_mod_cas,thl_mod_cas,qv_mod_cas,ql_mod_cas,qi_mod_cas & |
---|
864 | & ,u_mod_cas,v_mod_cas,ug_mod_cas,vg_mod_cas,w_mod_cas,omega_mod_cas & |
---|
865 | & ,du_mod_cas,hu_mod_cas,vu_mod_cas,dv_mod_cas,hv_mod_cas,vv_mod_cas & |
---|
866 | & ,dt_mod_cas,ht_mod_cas,vt_mod_cas,dtrad_mod_cas,dq_mod_cas,hq_mod_cas,vq_mod_cas & |
---|
867 | & ,dth_mod_cas,hth_mod_cas,vth_mod_cas,mxcalc) |
---|
868 | |
---|
869 | |
---|
870 | DO l=1,llm |
---|
871 | teta(l)=temp(l)*(100000./play(l))**(rd/rcpd) |
---|
872 | ENDDO |
---|
873 | !calcul de l'advection verticale a partir du omega |
---|
874 | !Calcul des gradients verticaux |
---|
875 | !initialisation |
---|
876 | d_t_z(:)=0. |
---|
877 | d_th_z(:)=0. |
---|
878 | d_q_z(:)=0. |
---|
879 | d_u_z(:)=0. |
---|
880 | d_v_z(:)=0. |
---|
881 | d_t_dyn_z(:)=0. |
---|
882 | d_th_dyn_z(:)=0. |
---|
883 | d_q_dyn_z(:)=0. |
---|
884 | d_u_dyn_z(:)=0. |
---|
885 | d_v_dyn_z(:)=0. |
---|
886 | DO l=2,llm-1 |
---|
887 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
888 | d_th_z(l)=(teta(l+1)-teta(l-1))/(play(l+1)-play(l-1)) |
---|
889 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
890 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
891 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
892 | ENDDO |
---|
893 | d_t_z(1)=d_t_z(2) |
---|
894 | d_th_z(1)=d_th_z(2) |
---|
895 | d_q_z(1)=d_q_z(2) |
---|
896 | d_u_z(1)=d_u_z(2) |
---|
897 | d_v_z(1)=d_v_z(2) |
---|
898 | d_t_z(llm)=d_t_z(llm-1) |
---|
899 | d_th_z(llm)=d_th_z(llm-1) |
---|
900 | d_q_z(llm)=d_q_z(llm-1) |
---|
901 | d_u_z(llm)=d_u_z(llm-1) |
---|
902 | d_v_z(llm)=d_v_z(llm-1) |
---|
903 | |
---|
904 | !Calcul de l advection verticale |
---|
905 | ! Modif w_mod_cas -> omega_mod_cas (MM+MPL 20170310) |
---|
906 | d_t_dyn_z(:)=omega_mod_cas(:)*d_t_z(:) |
---|
907 | d_th_dyn_z(:)=omega_mod_cas(:)*d_th_z(:) |
---|
908 | d_q_dyn_z(:)=omega_mod_cas(:)*d_q_z(:) |
---|
909 | d_u_dyn_z(:)=omega_mod_cas(:)*d_u_z(:) |
---|
910 | d_v_dyn_z(:)=omega_mod_cas(:)*d_v_z(:) |
---|
911 | |
---|
912 | !geostrophic wind |
---|
913 | if (forc_geo.eq.1) then |
---|
914 | do l=1,llm |
---|
915 | ug(l) = ug_mod_cas(l) |
---|
916 | vg(l) = vg_mod_cas(l) |
---|
917 | enddo |
---|
918 | endif |
---|
919 | !wind nudging |
---|
920 | if (nudging_u.gt.0.) then |
---|
921 | do l=1,llm |
---|
922 | u(l)=u(l)+timestep*(u_mod_cas(l)-u(l))/(nudge_u) |
---|
923 | enddo |
---|
924 | ! else |
---|
925 | ! do l=1,llm |
---|
926 | ! u(l) = u_mod_cas(l) |
---|
927 | ! enddo |
---|
928 | endif |
---|
929 | |
---|
930 | if (nudging_v.gt.0.) then |
---|
931 | do l=1,llm |
---|
932 | v(l)=v(l)+timestep*(v_mod_cas(l)-v(l))/(nudge_v) |
---|
933 | enddo |
---|
934 | ! else |
---|
935 | ! do l=1,llm |
---|
936 | ! v(l) = v_mod_cas(l) |
---|
937 | ! enddo |
---|
938 | endif |
---|
939 | |
---|
940 | if (nudging_w.gt.0.) then |
---|
941 | do l=1,llm |
---|
942 | w(l)=w(l)+timestep*(w_mod_cas(l)-w(l))/(nudge_w) |
---|
943 | enddo |
---|
944 | ! else |
---|
945 | ! do l=1,llm |
---|
946 | ! w(l) = w_mod_cas(l) |
---|
947 | ! enddo |
---|
948 | endif |
---|
949 | |
---|
950 | !nudging of q and temp |
---|
951 | if (nudging_t.gt.0.) then |
---|
952 | do l=1,llm |
---|
953 | temp(l)=temp(l)+timestep*(t_mod_cas(l)-temp(l))/(nudge_t) |
---|
954 | enddo |
---|
955 | endif |
---|
956 | if (nudging_q.gt.0.) then |
---|
957 | do l=1,llm |
---|
958 | q(l,1)=q(l,1)+timestep*(q_mod_cas(l)-q(l,1))/(nudge_q) |
---|
959 | enddo |
---|
960 | endif |
---|
961 | |
---|
962 | do l = 1, llm |
---|
963 | ! Modif w_mod_cas -> omega_mod_cas (MM+MPL 20170309) |
---|
964 | omega(l) = omega_mod_cas(l) |
---|
965 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
966 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
967 | |
---|
968 | !calcul advections |
---|
969 | if ((forc_u.eq.1).and.(forc_w.eq.0)) then |
---|
970 | d_u_adv(l)=du_mod_cas(l) |
---|
971 | else if ((forc_u.eq.1).and.(forc_w.eq.1)) then |
---|
972 | d_u_adv(l)=hu_mod_cas(l)-d_u_dyn_z(l) |
---|
973 | endif |
---|
974 | |
---|
975 | if ((forc_v.eq.1).and.(forc_w.eq.0)) then |
---|
976 | d_v_adv(l)=dv_mod_cas(l) |
---|
977 | else if ((forc_v.eq.1).and.(forc_w.eq.1)) then |
---|
978 | d_v_adv(l)=hv_mod_cas(l)-d_v_dyn_z(l) |
---|
979 | endif |
---|
980 | |
---|
981 | ! Puisque dth a ete converti en dt, on traite de la meme facon |
---|
982 | ! les flags tadv et thadv |
---|
983 | if ((tadv.eq.1.or.thadv.eq.1) .and. (forc_w.eq.0)) then |
---|
984 | ! d_t_adv(l)=alpha*omega(l)/rcpd-dt_mod_cas(l) |
---|
985 | d_t_adv(l)=alpha*omega(l)/rcpd+dt_mod_cas(l) |
---|
986 | else if ((tadv.eq.1.or.thadv.eq.1) .and. (forc_w.eq.1)) then |
---|
987 | ! d_t_adv(l)=alpha*omega(l)/rcpd-ht_mod_cas(l)-d_t_dyn_z(l) |
---|
988 | d_t_adv(l)=alpha*omega(l)/rcpd+ht_mod_cas(l)-d_t_dyn_z(l) |
---|
989 | endif |
---|
990 | |
---|
991 | ! if ((thadv.eq.1) .and. (forc_w.eq.0)) then |
---|
992 | ! d_t_adv(l)=alpha*omega(l)/rcpd-dth_mod_cas(l) |
---|
993 | ! d_t_adv(l)=alpha*omega(l)/rcpd+dth_mod_cas(l) |
---|
994 | ! else if ((thadv.eq.1) .and. (forc_w.eq.1)) then |
---|
995 | ! d_t_adv(l)=alpha*omega(l)/rcpd-hth_mod_cas(l)-d_t_dyn_z(l) |
---|
996 | ! d_t_adv(l)=alpha*omega(l)/rcpd+hth_mod_cas(l)-d_t_dyn_z(l) |
---|
997 | ! endif |
---|
998 | |
---|
999 | if ((qadv.eq.1) .and. (forc_w.eq.0)) then |
---|
1000 | d_q_adv(l,1)=dq_mod_cas(l) |
---|
1001 | ! d_q_adv(l,1)=-1*dq_mod_cas(l) |
---|
1002 | else if ((qadv.eq.1) .and. (forc_w.eq.1)) then |
---|
1003 | d_q_adv(l,1)=hq_mod_cas(l)-d_q_dyn_z(l) |
---|
1004 | ! d_q_adv(l,1)=-1*hq_mod_cas(l)-d_q_dyn_z(l) |
---|
1005 | endif |
---|
1006 | |
---|
1007 | if (trad.eq.1) then |
---|
1008 | tend_rayo=1 |
---|
1009 | dt_cooling(l) = dtrad_mod_cas(l) |
---|
1010 | ! print *,'dt_cooling=',dt_cooling(l) |
---|
1011 | else |
---|
1012 | dt_cooling(l) = 0.0 |
---|
1013 | endif |
---|
1014 | enddo |
---|
1015 | |
---|
1016 | ! Faut-il multiplier par -1 ? (MPL 20160713) |
---|
1017 | IF(ok_flux_surf) THEN |
---|
1018 | fsens=-1.*sens_prof_cas |
---|
1019 | flat=-1.*lat_prof_cas |
---|
1020 | print *,'1D_interp: sens,flat',fsens,flat |
---|
1021 | ENDIF |
---|
1022 | ! |
---|
1023 | IF (ok_prescr_ust) THEN |
---|
1024 | ust=ustar_prof_cas |
---|
1025 | print *,'ust=',ust |
---|
1026 | ENDIF |
---|
1027 | endif ! forcing_case2 |
---|
1028 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1029 | |
---|