[2307] | 1 | ! |
---|
| 2 | ! $Id: 1D_interp_cases.h 2716 2016-11-28 22:01:20Z fairhead $ |
---|
| 3 | ! |
---|
[2017] | 4 | !--------------------------------------------------------------------- |
---|
[2565] | 5 | ! Forcing_LES case: constant dq_dyn |
---|
| 6 | !--------------------------------------------------------------------- |
---|
| 7 | if (forcing_LES) then |
---|
| 8 | DO l = 1,llm |
---|
| 9 | d_q_adv(l,1) = dq_dyn(l,1) |
---|
| 10 | ENDDO |
---|
| 11 | endif ! forcing_LES |
---|
| 12 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 13 | !--------------------------------------------------------------------- |
---|
[2017] | 14 | ! Interpolation forcing in time and onto model levels |
---|
| 15 | !--------------------------------------------------------------------- |
---|
| 16 | if (forcing_GCSSold) then |
---|
| 17 | |
---|
[2019] | 18 | call get_uvd(it,timestep,fich_gcssold_ctl,fich_gcssold_dat, & |
---|
| 19 | & ht_gcssold,hq_gcssold,hw_gcssold, & |
---|
| 20 | & hu_gcssold,hv_gcssold, & |
---|
| 21 | & hthturb_gcssold,hqturb_gcssold,Ts_gcssold, & |
---|
| 22 | & imp_fcg_gcssold,ts_fcg_gcssold, & |
---|
| 23 | & Tp_fcg_gcssold,Turb_fcg_gcssold) |
---|
[2017] | 24 | if (prt_level.ge.1) then |
---|
| 25 | print *,' get_uvd -> hqturb_gcssold ',it,hqturb_gcssold |
---|
| 26 | endif |
---|
| 27 | ! large-scale forcing : |
---|
| 28 | !!! tsurf = ts_gcssold |
---|
| 29 | do l = 1, llm |
---|
| 30 | ! u(l) = hu_gcssold(l) ! on prescrit le vent |
---|
| 31 | ! v(l) = hv_gcssold(l) ! on prescrit le vent |
---|
| 32 | ! omega(l) = hw_gcssold(l) |
---|
| 33 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 34 | ! omega2(l)=-rho(l)*omega(l) |
---|
| 35 | omega(l) = hw_gcssold(l) |
---|
| 36 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 37 | |
---|
| 38 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 39 | d_th_adv(l) = ht_gcssold(l) |
---|
| 40 | d_q_adv(l,1) = hq_gcssold(l) |
---|
| 41 | dt_cooling(l) = 0.0 |
---|
| 42 | enddo |
---|
| 43 | |
---|
| 44 | endif ! forcing_GCSSold |
---|
| 45 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 46 | !--------------------------------------------------------------------- |
---|
| 47 | ! Interpolation Toga forcing |
---|
| 48 | !--------------------------------------------------------------------- |
---|
| 49 | if (forcing_toga) then |
---|
| 50 | |
---|
| 51 | if (prt_level.ge.1) then |
---|
[2019] | 52 | print*, & |
---|
| 53 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_toga=', & |
---|
| 54 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_toga |
---|
[2017] | 55 | endif |
---|
| 56 | |
---|
| 57 | ! time interpolation: |
---|
[2019] | 58 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
| 59 | & ,year_ini_toga,day_ju_ini_toga,nt_toga,dt_toga & |
---|
| 60 | & ,nlev_toga,ts_toga,plev_toga,t_toga,q_toga,u_toga & |
---|
| 61 | & ,v_toga,w_toga,ht_toga,vt_toga,hq_toga,vq_toga & |
---|
| 62 | & ,ts_prof,plev_prof,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
| 63 | & ,ht_prof,vt_prof,hq_prof,vq_prof) |
---|
[2017] | 64 | |
---|
| 65 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 66 | |
---|
| 67 | ! vertical interpolation: |
---|
[2019] | 68 | CALL interp_toga_vertical(play,nlev_toga,plev_prof & |
---|
| 69 | & ,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
| 70 | & ,ht_prof,vt_prof,hq_prof,vq_prof & |
---|
| 71 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 72 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 73 | |
---|
| 74 | ! large-scale forcing : |
---|
| 75 | tsurf = ts_prof |
---|
| 76 | do l = 1, llm |
---|
| 77 | u(l) = u_mod(l) ! sb: on prescrit le vent |
---|
| 78 | v(l) = v_mod(l) ! sb: on prescrit le vent |
---|
| 79 | ! omega(l) = w_prof(l) |
---|
| 80 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 81 | ! omega2(l)=-rho(l)*omega(l) |
---|
| 82 | omega(l) = w_mod(l) |
---|
| 83 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 84 | |
---|
| 85 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 86 | d_th_adv(l) = alpha*omega(l)/rcpd-(ht_mod(l)+vt_mod(l)) |
---|
| 87 | d_q_adv(l,1) = -(hq_mod(l)+vq_mod(l)) |
---|
| 88 | dt_cooling(l) = 0.0 |
---|
| 89 | enddo |
---|
| 90 | |
---|
| 91 | endif ! forcing_toga |
---|
| 92 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2126] | 93 | ! Interpolation DICE forcing |
---|
[2017] | 94 | !--------------------------------------------------------------------- |
---|
[2126] | 95 | if (forcing_dice) then |
---|
| 96 | |
---|
| 97 | if (prt_level.ge.1) then |
---|
| 98 | print*,'#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_dice=',& |
---|
| 99 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_dice |
---|
| 100 | endif |
---|
| 101 | |
---|
| 102 | ! time interpolation: |
---|
| 103 | CALL interp_dice_time(daytime,day1,annee_ref & |
---|
| 104 | & ,year_ini_dice,day_ju_ini_dice,nt_dice,dt_dice & |
---|
| 105 | & ,nlev_dice,shf_dice,lhf_dice,lwup_dice,swup_dice & |
---|
| 106 | & ,tg_dice,ustar_dice,psurf_dice,ug_dice,vg_dice & |
---|
| 107 | & ,ht_dice,hq_dice,hu_dice,hv_dice,w_dice,omega_dice & |
---|
| 108 | & ,shf_prof,lhf_prof,lwup_prof,swup_prof,tg_prof & |
---|
| 109 | & ,ustar_prof,psurf_prof,ug_profd,vg_profd & |
---|
| 110 | & ,ht_profd,hq_profd,hu_profd,hv_profd,w_profd & |
---|
| 111 | & ,omega_profd) |
---|
| 112 | ! do l = 1, llm |
---|
| 113 | ! print *,'llm l omega_profd',llm,l,omega_profd(l) |
---|
| 114 | ! enddo |
---|
| 115 | |
---|
| 116 | if (type_ts_forcing.eq.1) ts_cur = tg_prof ! SST used in read_tsurf1d |
---|
| 117 | |
---|
| 118 | ! vertical interpolation: |
---|
| 119 | CALL interp_dice_vertical(play,nlev_dice,nt_dice,plev_dice & |
---|
[2683] | 120 | & ,t_dice,qv_dice,u_dice,v_dice,o3_dice & |
---|
[2126] | 121 | & ,ht_profd,hq_profd,hu_profd,hv_profd,w_profd,omega_profd & |
---|
[2683] | 122 | & ,t_mod,qv_mod,u_mod,v_mod,o3_mod & |
---|
[2126] | 123 | & ,ht_mod,hq_mod,hu_mod,hv_mod,w_mod,omega_mod,mxcalc) |
---|
| 124 | ! do l = 1, llm |
---|
| 125 | ! print *,'llm l omega_mod',llm,l,omega_mod(l) |
---|
| 126 | ! enddo |
---|
| 127 | |
---|
| 128 | ! Les forcages DICE sont donnes /jour et non /seconde ! |
---|
| 129 | ht_mod(:)=ht_mod(:)/86400. |
---|
| 130 | hq_mod(:)=hq_mod(:)/86400. |
---|
| 131 | hu_mod(:)=hu_mod(:)/86400. |
---|
| 132 | hv_mod(:)=hv_mod(:)/86400. |
---|
| 133 | |
---|
| 134 | !calcul de l'advection verticale a partir du omega (repris cas TWPICE, MPL 05082013) |
---|
| 135 | !Calcul des gradients verticaux |
---|
| 136 | !initialisation |
---|
| 137 | d_t_z(:)=0. |
---|
| 138 | d_q_z(:)=0. |
---|
| 139 | d_u_z(:)=0. |
---|
| 140 | d_v_z(:)=0. |
---|
| 141 | DO l=2,llm-1 |
---|
| 142 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 143 | d_q_z(l)=(q(l+1,1)-q(l-1,1)) /(play(l+1)-play(l-1)) |
---|
| 144 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
| 145 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
| 146 | ENDDO |
---|
| 147 | d_t_z(1)=d_t_z(2) |
---|
| 148 | d_q_z(1)=d_q_z(2) |
---|
| 149 | ! d_u_z(1)=u(2)/(play(2)-psurf)/5. |
---|
| 150 | ! d_v_z(1)=v(2)/(play(2)-psurf)/5. |
---|
| 151 | d_u_z(1)=0. |
---|
| 152 | d_v_z(1)=0. |
---|
| 153 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 154 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 155 | d_u_z(llm)=d_u_z(llm-1) |
---|
| 156 | d_v_z(llm)=d_v_z(llm-1) |
---|
| 157 | |
---|
| 158 | !Calcul de l advection verticale: |
---|
| 159 | ! utiliser omega (Pa/s) et non w (m/s) !! MP 20131108 |
---|
| 160 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
| 161 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
| 162 | d_u_dyn_z(:)=omega_mod(:)*d_u_z(:) |
---|
| 163 | d_v_dyn_z(:)=omega_mod(:)*d_v_z(:) |
---|
| 164 | |
---|
| 165 | ! large-scale forcing : |
---|
| 166 | ! tsurf = tg_prof MPL 20130925 commente |
---|
| 167 | psurf = psurf_prof |
---|
| 168 | ! For this case, fluxes are imposed |
---|
| 169 | fsens=-1*shf_prof |
---|
| 170 | flat=-1*lhf_prof |
---|
| 171 | ust=ustar_prof |
---|
| 172 | tg=tg_prof |
---|
| 173 | print *,'ust= ',ust |
---|
| 174 | do l = 1, llm |
---|
| 175 | ug(l)= ug_profd |
---|
| 176 | vg(l)= vg_profd |
---|
| 177 | ! omega(l) = w_prof(l) |
---|
| 178 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 179 | ! omega2(l)=-rho(l)*omega(l) |
---|
| 180 | ! omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
| 181 | omega(l) = omega_mod(l) |
---|
| 182 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 183 | |
---|
| 184 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 185 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
| 186 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
| 187 | d_u_adv(l) = hu_mod(l)-d_u_dyn_z(l) |
---|
| 188 | d_v_adv(l) = hv_mod(l)-d_v_dyn_z(l) |
---|
| 189 | dt_cooling(l) = 0.0 |
---|
| 190 | enddo |
---|
| 191 | |
---|
| 192 | endif ! forcing_dice |
---|
| 193 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2672] | 194 | ! Interpolation gabls4 forcing |
---|
[2126] | 195 | !--------------------------------------------------------------------- |
---|
[2672] | 196 | if (forcing_gabls4 ) then |
---|
| 197 | |
---|
| 198 | if (prt_level.ge.1) then |
---|
| 199 | print*,'#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_gabls4=',& |
---|
| 200 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_gabls4 |
---|
| 201 | endif |
---|
| 202 | |
---|
| 203 | ! time interpolation: |
---|
| 204 | CALL interp_gabls4_time(daytime,day1,annee_ref & |
---|
| 205 | & ,year_ini_gabls4,day_ju_ini_gabls4,nt_gabls4,dt_gabls4,nlev_gabls4 & |
---|
| 206 | & ,ug_gabls4,vg_gabls4,ht_gabls4,hq_gabls4,tg_gabls4 & |
---|
| 207 | & ,ug_profg,vg_profg,ht_profg,hq_profg,tg_profg) |
---|
| 208 | |
---|
| 209 | if (type_ts_forcing.eq.1) ts_cur = tg_prof ! SST used in read_tsurf1d |
---|
| 210 | |
---|
| 211 | ! vertical interpolation: |
---|
| 212 | ! on re-utilise le programme interp_dice_vertical: les transformations sur |
---|
| 213 | ! plev_gabls4,th_gabls4,qv_gabls4,u_gabls4,v_gabls4 ne sont pas prises en compte. |
---|
| 214 | ! seules celles sur ht_profg,hq_profg,ug_profg,vg_profg sont prises en compte. |
---|
| 215 | |
---|
| 216 | CALL interp_dice_vertical(play,nlev_gabls4,nt_gabls4,plev_gabls4 & |
---|
| 217 | ! & ,t_gabls4,qv_gabls4,u_gabls4,v_gabls4,poub & |
---|
| 218 | & ,poub,poub,poub,poub,poub & |
---|
| 219 | & ,ht_profg,hq_profg,ug_profg,vg_profg,poub,poub & |
---|
| 220 | & ,t_mod,qv_mod,u_mod,v_mod,o3_mod & |
---|
| 221 | & ,ht_mod,hq_mod,ug_mod,vg_mod,w_mod,omega_mod,mxcalc) |
---|
| 222 | |
---|
| 223 | do l = 1, llm |
---|
| 224 | ug(l)= ug_mod(l) |
---|
| 225 | vg(l)= vg_mod(l) |
---|
| 226 | d_th_adv(l)=ht_mod(l) |
---|
| 227 | d_q_adv(l,1)=hq_mod(l) |
---|
| 228 | enddo |
---|
| 229 | |
---|
| 230 | endif ! forcing_gabls4 |
---|
| 231 | !--------------------------------------------------------------------- |
---|
| 232 | |
---|
| 233 | !--------------------------------------------------------------------- |
---|
[2126] | 234 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 235 | !--------------------------------------------------------------------- |
---|
[2017] | 236 | ! Interpolation forcing TWPice |
---|
| 237 | !--------------------------------------------------------------------- |
---|
| 238 | if (forcing_twpice) then |
---|
| 239 | |
---|
[2019] | 240 | print*, & |
---|
| 241 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_twpi=', & |
---|
| 242 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 243 | & (daytime-day1)*86400/dt_twpi |
---|
[2017] | 244 | |
---|
| 245 | ! time interpolation: |
---|
[2019] | 246 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
| 247 | & ,year_ini_twpi,day_ju_ini_twpi,nt_twpi,dt_twpi,nlev_twpi & |
---|
| 248 | & ,ts_twpi,plev_twpi,t_twpi,q_twpi,u_twpi,v_twpi,w_twpi & |
---|
| 249 | & ,ht_twpi,vt_twpi,hq_twpi,vq_twpi & |
---|
| 250 | & ,ts_proftwp,plev_proftwp,t_proftwp,q_proftwp,u_proftwp & |
---|
| 251 | & ,v_proftwp,w_proftwp & |
---|
| 252 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp) |
---|
[2017] | 253 | |
---|
| 254 | ! vertical interpolation: |
---|
[2019] | 255 | CALL interp_toga_vertical(play,nlev_twpi,plev_proftwp & |
---|
| 256 | & ,t_proftwp,q_proftwp,u_proftwp,v_proftwp,w_proftwp & |
---|
| 257 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp & |
---|
| 258 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 259 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 260 | |
---|
| 261 | |
---|
| 262 | !calcul de l'advection verticale a partir du omega |
---|
[2019] | 263 | !Calcul des gradients verticaux |
---|
| 264 | !initialisation |
---|
[2017] | 265 | d_t_z(:)=0. |
---|
| 266 | d_q_z(:)=0. |
---|
| 267 | d_t_dyn_z(:)=0. |
---|
| 268 | d_q_dyn_z(:)=0. |
---|
| 269 | DO l=2,llm-1 |
---|
[2019] | 270 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 271 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
[2017] | 272 | ENDDO |
---|
| 273 | d_t_z(1)=d_t_z(2) |
---|
| 274 | d_q_z(1)=d_q_z(2) |
---|
| 275 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 276 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 277 | |
---|
[2019] | 278 | !Calcul de l advection verticale |
---|
[2017] | 279 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
| 280 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
| 281 | |
---|
| 282 | !wind nudging above 500m with a 2h time scale |
---|
| 283 | do l=1,llm |
---|
| 284 | if (nudge_wind) then |
---|
| 285 | ! if (phi(l).gt.5000.) then |
---|
| 286 | if (phi(l).gt.0.) then |
---|
[2019] | 287 | u(l)=u(l)+timestep*(u_mod(l)-u(l))/(2.*3600.) |
---|
| 288 | v(l)=v(l)+timestep*(v_mod(l)-v(l))/(2.*3600.) |
---|
[2017] | 289 | endif |
---|
| 290 | else |
---|
| 291 | u(l) = u_mod(l) |
---|
| 292 | v(l) = v_mod(l) |
---|
| 293 | endif |
---|
| 294 | enddo |
---|
| 295 | |
---|
| 296 | !CR:nudging of q and theta with a 6h time scale above 15km |
---|
| 297 | if (nudge_thermo) then |
---|
| 298 | do l=1,llm |
---|
| 299 | zz(l)=phi(l)/9.8 |
---|
| 300 | if ((zz(l).le.16000.).and.(zz(l).gt.15000.)) then |
---|
| 301 | zfact=(zz(l)-15000.)/1000. |
---|
[2019] | 302 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.)*zfact |
---|
| 303 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.)*zfact |
---|
[2017] | 304 | else if (zz(l).gt.16000.) then |
---|
[2019] | 305 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.) |
---|
| 306 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.) |
---|
[2017] | 307 | endif |
---|
| 308 | enddo |
---|
| 309 | endif |
---|
| 310 | |
---|
| 311 | do l = 1, llm |
---|
| 312 | omega(l) = w_mod(l) |
---|
| 313 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 314 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 315 | !calcul de l'advection totale |
---|
| 316 | if (cptadvw) then |
---|
| 317 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
| 318 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
| 319 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
| 320 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
| 321 | else |
---|
| 322 | d_th_adv(l) = alpha*omega(l)/rcpd+(ht_mod(l)+vt_mod(l)) |
---|
| 323 | d_q_adv(l,1) = (hq_mod(l)+vq_mod(l)) |
---|
| 324 | endif |
---|
| 325 | dt_cooling(l) = 0.0 |
---|
| 326 | enddo |
---|
| 327 | |
---|
| 328 | endif ! forcing_twpice |
---|
| 329 | |
---|
| 330 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 331 | !--------------------------------------------------------------------- |
---|
| 332 | ! Interpolation forcing AMMA |
---|
| 333 | !--------------------------------------------------------------------- |
---|
| 334 | |
---|
| 335 | if (forcing_amma) then |
---|
| 336 | |
---|
[2019] | 337 | print*, & |
---|
| 338 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_amma=', & |
---|
| 339 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 340 | & (daytime-day1)*86400/dt_amma |
---|
[2017] | 341 | |
---|
| 342 | ! time interpolation using TOGA interpolation routine |
---|
[2019] | 343 | CALL interp_amma_time(daytime,day1,annee_ref & |
---|
| 344 | & ,year_ini_amma,day_ju_ini_amma,nt_amma,dt_amma,nlev_amma & |
---|
| 345 | & ,vitw_amma,ht_amma,hq_amma,lat_amma,sens_amma & |
---|
| 346 | & ,vitw_profamma,ht_profamma,hq_profamma,lat_profamma & |
---|
| 347 | & ,sens_profamma) |
---|
[2017] | 348 | |
---|
| 349 | print*,'apres interpolation temporelle AMMA' |
---|
| 350 | |
---|
| 351 | do k=1,nlev_amma |
---|
| 352 | th_profamma(k)=0. |
---|
| 353 | q_profamma(k)=0. |
---|
| 354 | u_profamma(k)=0. |
---|
| 355 | v_profamma(k)=0. |
---|
| 356 | vt_profamma(k)=0. |
---|
| 357 | vq_profamma(k)=0. |
---|
| 358 | enddo |
---|
| 359 | ! vertical interpolation using TOGA interpolation routine: |
---|
| 360 | ! write(*,*)'avant interp vert', t_proftwp |
---|
[2019] | 361 | CALL interp_toga_vertical(play,nlev_amma,plev_amma & |
---|
| 362 | & ,th_profamma,q_profamma,u_profamma,v_profamma & |
---|
| 363 | & ,vitw_profamma & |
---|
| 364 | & ,ht_profamma,vt_profamma,hq_profamma,vq_profamma & |
---|
| 365 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 366 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 367 | write(*,*) 'Profil initial forcing AMMA interpole' |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | !calcul de l'advection verticale a partir du omega |
---|
[2019] | 371 | !Calcul des gradients verticaux |
---|
| 372 | !initialisation |
---|
[2017] | 373 | do l=1,llm |
---|
| 374 | d_t_z(l)=0. |
---|
| 375 | d_q_z(l)=0. |
---|
| 376 | enddo |
---|
| 377 | |
---|
| 378 | DO l=2,llm-1 |
---|
[2019] | 379 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 380 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
[2017] | 381 | ENDDO |
---|
| 382 | d_t_z(1)=d_t_z(2) |
---|
| 383 | d_q_z(1)=d_q_z(2) |
---|
| 384 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 385 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 386 | |
---|
| 387 | |
---|
| 388 | do l = 1, llm |
---|
| 389 | rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 390 | omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
| 391 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 392 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 393 | !calcul de l'advection totale |
---|
| 394 | ! d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-omega(l)*d_t_z(l) |
---|
| 395 | !attention: on impose dth |
---|
[2019] | 396 | d_th_adv(l) = alpha*omega(l)/rcpd+ & |
---|
[2017] | 397 | & ht_mod(l)*(play(l)/pzero)**rkappa-omega(l)*d_t_z(l) |
---|
| 398 | ! d_th_adv(l) = 0. |
---|
| 399 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
| 400 | d_q_adv(l,1) = hq_mod(l)-omega(l)*d_q_z(l) |
---|
| 401 | ! d_q_adv(l,1) = 0. |
---|
| 402 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
| 403 | |
---|
| 404 | dt_cooling(l) = 0.0 |
---|
| 405 | enddo |
---|
| 406 | |
---|
| 407 | |
---|
| 408 | ! ok_flux_surf=.false. |
---|
| 409 | fsens=-1.*sens_profamma |
---|
| 410 | flat=-1.*lat_profamma |
---|
| 411 | |
---|
| 412 | endif ! forcing_amma |
---|
| 413 | |
---|
| 414 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 415 | !--------------------------------------------------------------------- |
---|
| 416 | ! Interpolation forcing Rico |
---|
| 417 | !--------------------------------------------------------------------- |
---|
| 418 | if (forcing_rico) then |
---|
| 419 | ! call lstendH(llm,omega,dt_dyn,dq_dyn,du_dyn, dv_dyn, |
---|
| 420 | ! : q,temp,u,v,play) |
---|
[2019] | 421 | call lstendH(llm,nqtot,omega,dt_dyn,dq_dyn,q,temp,u,v,play) |
---|
[2017] | 422 | |
---|
| 423 | do l=1,llm |
---|
| 424 | d_th_adv(l) = (dth_rico(l) + dt_dyn(l)) |
---|
| 425 | d_q_adv(l,1) = (dqh_rico(l) + dq_dyn(l,1)) |
---|
| 426 | d_q_adv(l,2) = 0. |
---|
| 427 | enddo |
---|
| 428 | endif ! forcing_rico |
---|
| 429 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 430 | !--------------------------------------------------------------------- |
---|
| 431 | ! Interpolation forcing Arm_cu |
---|
| 432 | !--------------------------------------------------------------------- |
---|
| 433 | if (forcing_armcu) then |
---|
| 434 | |
---|
[2019] | 435 | print*, & |
---|
| 436 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_armcu=', & |
---|
| 437 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_armcu |
---|
[2017] | 438 | |
---|
| 439 | ! time interpolation: |
---|
| 440 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 441 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 442 | CALL interp_armcu_time(daytime,day1,annee_ref & |
---|
| 443 | & ,year_ini_armcu,day_ju_ini_armcu,nt_armcu,dt_armcu & |
---|
| 444 | & ,nlev_armcu,sens_armcu,flat_armcu,adv_theta_armcu & |
---|
| 445 | & ,rad_theta_armcu,adv_qt_armcu,sens_prof,flat_prof & |
---|
| 446 | & ,adv_theta_prof,rad_theta_prof,adv_qt_prof) |
---|
[2017] | 447 | |
---|
| 448 | ! vertical interpolation: |
---|
| 449 | ! No vertical interpolation if nlev imposed to 19 or 40 |
---|
| 450 | |
---|
| 451 | ! For this case, fluxes are imposed |
---|
| 452 | fsens=-1*sens_prof |
---|
| 453 | flat=-1*flat_prof |
---|
| 454 | |
---|
| 455 | ! Advective forcings are given in K or g/kg ... BY HOUR |
---|
| 456 | do l = 1, llm |
---|
| 457 | ug(l)= u_mod(l) |
---|
| 458 | vg(l)= v_mod(l) |
---|
| 459 | IF((phi(l)/RG).LT.1000) THEN |
---|
| 460 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)/3600. |
---|
| 461 | d_q_adv(l,1) = adv_qt_prof/1000./3600. |
---|
| 462 | d_q_adv(l,2) = 0.0 |
---|
| 463 | ! print *,'INF1000: phi dth dq1 dq2', |
---|
| 464 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 465 | ELSEIF ((phi(l)/RG).GE.1000.AND.(phi(l)/RG).lt.3000) THEN |
---|
| 466 | fact=((phi(l)/RG)-1000.)/2000. |
---|
| 467 | fact=1-fact |
---|
| 468 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)*fact/3600. |
---|
| 469 | d_q_adv(l,1) = adv_qt_prof*fact/1000./3600. |
---|
| 470 | d_q_adv(l,2) = 0.0 |
---|
| 471 | ! print *,'SUP1000: phi fact dth dq1 dq2', |
---|
| 472 | ! : phi(l)/RG,fact,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 473 | ELSE |
---|
| 474 | d_th_adv(l) = 0.0 |
---|
| 475 | d_q_adv(l,1) = 0.0 |
---|
| 476 | d_q_adv(l,2) = 0.0 |
---|
| 477 | ! print *,'SUP3000: phi dth dq1 dq2', |
---|
| 478 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 479 | ENDIF |
---|
| 480 | dt_cooling(l) = 0.0 |
---|
| 481 | ! print *,'Interp armcu: phi dth dq1 dq2', |
---|
| 482 | ! : l,phi(l),d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 483 | enddo |
---|
| 484 | endif ! forcing_armcu |
---|
| 485 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 486 | !--------------------------------------------------------------------- |
---|
| 487 | ! Interpolation forcing in time and onto model levels |
---|
| 488 | !--------------------------------------------------------------------- |
---|
| 489 | if (forcing_sandu) then |
---|
| 490 | |
---|
[2019] | 491 | print*, & |
---|
| 492 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_sandu=', & |
---|
| 493 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_sandu |
---|
[2017] | 494 | |
---|
| 495 | ! time interpolation: |
---|
| 496 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 497 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 498 | CALL interp_sandu_time(daytime,day1,annee_ref & |
---|
| 499 | & ,year_ini_sandu,day_ju_ini_sandu,nt_sandu,dt_sandu & |
---|
| 500 | & ,nlev_sandu & |
---|
| 501 | & ,ts_sandu,ts_prof) |
---|
[2017] | 502 | |
---|
| 503 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 504 | |
---|
| 505 | ! vertical interpolation: |
---|
[2019] | 506 | CALL interp_sandu_vertical(play,nlev_sandu,plev_profs & |
---|
| 507 | & ,t_profs,thl_profs,q_profs,u_profs,v_profs,w_profs & |
---|
| 508 | & ,omega_profs,o3mmr_profs & |
---|
| 509 | & ,t_mod,thl_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 510 | & ,omega_mod,o3mmr_mod,mxcalc) |
---|
[2017] | 511 | !calcul de l'advection verticale |
---|
[2019] | 512 | !Calcul des gradients verticaux |
---|
| 513 | !initialisation |
---|
[2017] | 514 | d_t_z(:)=0. |
---|
| 515 | d_q_z(:)=0. |
---|
| 516 | d_t_dyn_z(:)=0. |
---|
| 517 | d_q_dyn_z(:)=0. |
---|
| 518 | ! schema centre |
---|
| 519 | ! DO l=2,llm-1 |
---|
| 520 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
| 521 | ! & /(play(l+1)-play(l-1)) |
---|
| 522 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
| 523 | ! & /(play(l+1)-play(l-1)) |
---|
| 524 | ! schema amont |
---|
| 525 | DO l=2,llm-1 |
---|
| 526 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
| 527 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
| 528 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
| 529 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
| 530 | ENDDO |
---|
| 531 | d_t_z(1)=d_t_z(2) |
---|
| 532 | d_q_z(1)=d_q_z(2) |
---|
| 533 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 534 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 535 | |
---|
| 536 | ! calcul de l advection verticale |
---|
| 537 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
| 538 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
| 539 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
| 540 | ! do l=1,llm |
---|
| 541 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
| 542 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
| 543 | ! enddo |
---|
| 544 | |
---|
| 545 | |
---|
| 546 | ! large-scale forcing : pour le cas Sandu ces forcages sont la SST |
---|
| 547 | ! et une divergence constante -> profil de omega |
---|
| 548 | tsurf = ts_prof |
---|
| 549 | write(*,*) 'SST suivante: ',tsurf |
---|
| 550 | do l = 1, llm |
---|
| 551 | omega(l) = omega_mod(l) |
---|
| 552 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 553 | |
---|
| 554 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 555 | ! |
---|
| 556 | ! d_th_adv(l) = 0.0 |
---|
| 557 | ! d_q_adv(l,1) = 0.0 |
---|
| 558 | !CR:test advection=0 |
---|
| 559 | !calcul de l'advection verticale |
---|
| 560 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
| 561 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
| 562 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
| 563 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
| 564 | dt_cooling(l) = 0.0 |
---|
| 565 | enddo |
---|
| 566 | endif ! forcing_sandu |
---|
| 567 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 568 | !--------------------------------------------------------------------- |
---|
| 569 | ! Interpolation forcing in time and onto model levels |
---|
| 570 | !--------------------------------------------------------------------- |
---|
| 571 | if (forcing_astex) then |
---|
| 572 | |
---|
[2019] | 573 | print*, & |
---|
| 574 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_astex=', & |
---|
| 575 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_astex |
---|
[2017] | 576 | |
---|
| 577 | ! time interpolation: |
---|
| 578 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 579 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 580 | CALL interp_astex_time(daytime,day1,annee_ref & |
---|
| 581 | & ,year_ini_astex,day_ju_ini_astex,nt_astex,dt_astex & |
---|
| 582 | & ,nlev_astex,div_astex,ts_astex,ug_astex,vg_astex & |
---|
| 583 | & ,ufa_astex,vfa_astex,div_prof,ts_prof,ug_prof,vg_prof & |
---|
| 584 | & ,ufa_prof,vfa_prof) |
---|
[2017] | 585 | |
---|
| 586 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 587 | |
---|
| 588 | ! vertical interpolation: |
---|
[2019] | 589 | CALL interp_astex_vertical(play,nlev_astex,plev_profa & |
---|
| 590 | & ,t_profa,thl_profa,qv_profa,ql_profa,qt_profa & |
---|
| 591 | & ,u_profa,v_profa,w_profa,tke_profa,o3mmr_profa & |
---|
| 592 | & ,t_mod,thl_mod,qv_mod,ql_mod,qt_mod,u_mod,v_mod,w_mod & |
---|
| 593 | & ,tke_mod,o3mmr_mod,mxcalc) |
---|
[2017] | 594 | !calcul de l'advection verticale |
---|
| 595 | !Calcul des gradients verticaux |
---|
| 596 | !initialisation |
---|
| 597 | d_t_z(:)=0. |
---|
| 598 | d_q_z(:)=0. |
---|
| 599 | d_t_dyn_z(:)=0. |
---|
| 600 | d_q_dyn_z(:)=0. |
---|
| 601 | ! schema centre |
---|
| 602 | ! DO l=2,llm-1 |
---|
| 603 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
| 604 | ! & /(play(l+1)-play(l-1)) |
---|
| 605 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
| 606 | ! & /(play(l+1)-play(l-1)) |
---|
| 607 | ! schema amont |
---|
| 608 | DO l=2,llm-1 |
---|
| 609 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
| 610 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
| 611 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
| 612 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
| 613 | ENDDO |
---|
| 614 | d_t_z(1)=d_t_z(2) |
---|
| 615 | d_q_z(1)=d_q_z(2) |
---|
| 616 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 617 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 618 | |
---|
| 619 | ! calcul de l advection verticale |
---|
| 620 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
| 621 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
| 622 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
| 623 | ! do l=1,llm |
---|
| 624 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
| 625 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
| 626 | ! enddo |
---|
| 627 | |
---|
| 628 | |
---|
| 629 | ! large-scale forcing : pour le cas Astex ces forcages sont la SST |
---|
| 630 | ! la divergence,ug,vg,ufa,vfa |
---|
| 631 | tsurf = ts_prof |
---|
| 632 | write(*,*) 'SST suivante: ',tsurf |
---|
| 633 | do l = 1, llm |
---|
| 634 | omega(l) = w_mod(l) |
---|
| 635 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 636 | |
---|
| 637 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 638 | ! |
---|
| 639 | ! d_th_adv(l) = 0.0 |
---|
| 640 | ! d_q_adv(l,1) = 0.0 |
---|
| 641 | !CR:test advection=0 |
---|
| 642 | !calcul de l'advection verticale |
---|
| 643 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
| 644 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
| 645 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
| 646 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
| 647 | dt_cooling(l) = 0.0 |
---|
| 648 | enddo |
---|
| 649 | endif ! forcing_astex |
---|
[2191] | 650 | |
---|
[2017] | 651 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2191] | 652 | !--------------------------------------------------------------------- |
---|
| 653 | ! Interpolation forcing standard case |
---|
| 654 | !--------------------------------------------------------------------- |
---|
| 655 | if (forcing_case) then |
---|
[2017] | 656 | |
---|
[2191] | 657 | print*, & |
---|
| 658 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/pdt_cas=', & |
---|
| 659 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 660 | & (daytime-day1)*86400/pdt_cas |
---|
| 661 | |
---|
| 662 | ! time interpolation: |
---|
[2332] | 663 | CALL interp_case_time(daytime,day1,annee_ref & |
---|
| 664 | ! & ,year_ini_cas,day_ju_ini_cas,nt_cas,pdt_cas,nlev_cas & |
---|
| 665 | & ,nt_cas,nlev_cas & |
---|
| 666 | & ,ts_cas,plev_cas,t_cas,q_cas,u_cas,v_cas,ug_cas,vg_cas & |
---|
| 667 | & ,vitw_cas,du_cas,hu_cas,vu_cas & |
---|
| 668 | & ,dv_cas,hv_cas,vv_cas,dt_cas,ht_cas,vt_cas,dtrad_cas & |
---|
| 669 | & ,dq_cas,hq_cas,vq_cas,lat_cas,sens_cas,ustar_cas & |
---|
| 670 | & ,uw_cas,vw_cas,q1_cas,q2_cas & |
---|
[2191] | 671 | & ,ts_prof_cas,plev_prof_cas,t_prof_cas,q_prof_cas,u_prof_cas,v_prof_cas & |
---|
| 672 | & ,ug_prof_cas,vg_prof_cas,vitw_prof_cas,du_prof_cas,hu_prof_cas,vu_prof_cas & |
---|
| 673 | & ,dv_prof_cas,hv_prof_cas,vv_prof_cas,dt_prof_cas,ht_prof_cas,vt_prof_cas & |
---|
| 674 | & ,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas,lat_prof_cas & |
---|
[2332] | 675 | & ,sens_prof_cas,ustar_prof_cas,uw_prof_cas,vw_prof_cas,q1_prof_cas,q2_prof_cas) |
---|
[2191] | 676 | |
---|
| 677 | ts_cur = ts_prof_cas |
---|
| 678 | psurf=plev_prof_cas(1) |
---|
| 679 | |
---|
| 680 | ! vertical interpolation: |
---|
| 681 | CALL interp_case_vertical(play,nlev_cas,plev_prof_cas & |
---|
| 682 | & ,t_prof_cas,q_prof_cas,u_prof_cas,v_prof_cas,ug_prof_cas,vg_prof_cas,vitw_prof_cas & |
---|
| 683 | & ,du_prof_cas,hu_prof_cas,vu_prof_cas,dv_prof_cas,hv_prof_cas,vv_prof_cas & |
---|
| 684 | & ,dt_prof_cas,ht_prof_cas,vt_prof_cas,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & |
---|
| 685 | & ,t_mod_cas,q_mod_cas,u_mod_cas,v_mod_cas,ug_mod_cas,vg_mod_cas,w_mod_cas & |
---|
| 686 | & ,du_mod_cas,hu_mod_cas,vu_mod_cas,dv_mod_cas,hv_mod_cas,vv_mod_cas & |
---|
| 687 | & ,dt_mod_cas,ht_mod_cas,vt_mod_cas,dtrad_mod_cas,dq_mod_cas,hq_mod_cas,vq_mod_cas,mxcalc) |
---|
| 688 | |
---|
| 689 | |
---|
| 690 | !calcul de l'advection verticale a partir du omega |
---|
| 691 | !Calcul des gradients verticaux |
---|
| 692 | !initialisation |
---|
| 693 | d_t_z(:)=0. |
---|
| 694 | d_q_z(:)=0. |
---|
| 695 | d_u_z(:)=0. |
---|
| 696 | d_v_z(:)=0. |
---|
| 697 | d_t_dyn_z(:)=0. |
---|
| 698 | d_q_dyn_z(:)=0. |
---|
| 699 | d_u_dyn_z(:)=0. |
---|
| 700 | d_v_dyn_z(:)=0. |
---|
| 701 | DO l=2,llm-1 |
---|
| 702 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 703 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
| 704 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
| 705 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
| 706 | ENDDO |
---|
| 707 | d_t_z(1)=d_t_z(2) |
---|
| 708 | d_q_z(1)=d_q_z(2) |
---|
| 709 | d_u_z(1)=d_u_z(2) |
---|
| 710 | d_v_z(1)=d_v_z(2) |
---|
| 711 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 712 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 713 | d_u_z(llm)=d_u_z(llm-1) |
---|
| 714 | d_v_z(llm)=d_v_z(llm-1) |
---|
| 715 | |
---|
| 716 | !Calcul de l advection verticale |
---|
| 717 | d_t_dyn_z(:)=w_mod_cas(:)*d_t_z(:) |
---|
| 718 | d_q_dyn_z(:)=w_mod_cas(:)*d_q_z(:) |
---|
| 719 | d_u_dyn_z(:)=w_mod_cas(:)*d_u_z(:) |
---|
| 720 | d_v_dyn_z(:)=w_mod_cas(:)*d_v_z(:) |
---|
| 721 | |
---|
| 722 | !wind nudging |
---|
| 723 | if (nudge_u.gt.0.) then |
---|
| 724 | do l=1,llm |
---|
| 725 | u(l)=u(l)+timestep*(u_mod_cas(l)-u(l))/(nudge_u) |
---|
| 726 | enddo |
---|
| 727 | else |
---|
| 728 | do l=1,llm |
---|
| 729 | u(l) = u_mod_cas(l) |
---|
| 730 | enddo |
---|
| 731 | endif |
---|
| 732 | |
---|
| 733 | if (nudge_v.gt.0.) then |
---|
| 734 | do l=1,llm |
---|
| 735 | v(l)=v(l)+timestep*(v_mod_cas(l)-v(l))/(nudge_v) |
---|
| 736 | enddo |
---|
| 737 | else |
---|
| 738 | do l=1,llm |
---|
| 739 | v(l) = v_mod_cas(l) |
---|
| 740 | enddo |
---|
| 741 | endif |
---|
| 742 | |
---|
| 743 | if (nudge_w.gt.0.) then |
---|
| 744 | do l=1,llm |
---|
| 745 | w(l)=w(l)+timestep*(w_mod_cas(l)-w(l))/(nudge_w) |
---|
| 746 | enddo |
---|
| 747 | else |
---|
| 748 | do l=1,llm |
---|
| 749 | w(l) = w_mod_cas(l) |
---|
| 750 | enddo |
---|
| 751 | endif |
---|
| 752 | |
---|
| 753 | !nudging of q and temp |
---|
| 754 | if (nudge_t.gt.0.) then |
---|
| 755 | do l=1,llm |
---|
| 756 | temp(l)=temp(l)+timestep*(t_mod_cas(l)-temp(l))/(nudge_t) |
---|
| 757 | enddo |
---|
| 758 | endif |
---|
| 759 | if (nudge_q.gt.0.) then |
---|
| 760 | do l=1,llm |
---|
| 761 | q(l,1)=q(l,1)+timestep*(q_mod_cas(l)-q(l,1))/(nudge_q) |
---|
| 762 | enddo |
---|
| 763 | endif |
---|
| 764 | |
---|
| 765 | do l = 1, llm |
---|
| 766 | omega(l) = w_mod_cas(l) |
---|
| 767 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 768 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 769 | |
---|
| 770 | !calcul advection |
---|
| 771 | if ((tend_u.eq.1).and.(tend_w.eq.0)) then |
---|
| 772 | d_u_adv(l)=du_mod_cas(l) |
---|
| 773 | else if ((tend_u.eq.1).and.(tend_w.eq.1)) then |
---|
| 774 | d_u_adv(l)=hu_mod_cas(l)-d_u_dyn_z(l) |
---|
| 775 | endif |
---|
| 776 | |
---|
| 777 | if ((tend_v.eq.1).and.(tend_w.eq.0)) then |
---|
| 778 | d_v_adv(l)=dv_mod_cas(l) |
---|
| 779 | else if ((tend_v.eq.1).and.(tend_w.eq.1)) then |
---|
| 780 | d_v_adv(l)=hv_mod_cas(l)-d_v_dyn_z(l) |
---|
| 781 | endif |
---|
| 782 | |
---|
| 783 | if ((tend_t.eq.1).and.(tend_w.eq.0)) then |
---|
| 784 | ! d_th_adv(l)=alpha*omega(l)/rcpd+dt_mod_cas(l) |
---|
| 785 | d_th_adv(l)=alpha*omega(l)/rcpd-dt_mod_cas(l) |
---|
| 786 | else if ((tend_t.eq.1).and.(tend_w.eq.1)) then |
---|
| 787 | ! d_th_adv(l)=alpha*omega(l)/rcpd+ht_mod_cas(l)-d_t_dyn_z(l) |
---|
| 788 | d_th_adv(l)=alpha*omega(l)/rcpd-ht_mod_cas(l)-d_t_dyn_z(l) |
---|
| 789 | endif |
---|
| 790 | |
---|
| 791 | if ((tend_q.eq.1).and.(tend_w.eq.0)) then |
---|
| 792 | ! d_q_adv(l,1)=dq_mod_cas(l) |
---|
| 793 | d_q_adv(l,1)=-1*dq_mod_cas(l) |
---|
| 794 | else if ((tend_q.eq.1).and.(tend_w.eq.1)) then |
---|
| 795 | ! d_q_adv(l,1)=hq_mod_cas(l)-d_q_dyn_z(l) |
---|
| 796 | d_q_adv(l,1)=-1*hq_mod_cas(l)-d_q_dyn_z(l) |
---|
| 797 | endif |
---|
| 798 | |
---|
| 799 | if (tend_rayo.eq.1) then |
---|
| 800 | dt_cooling(l) = dtrad_mod_cas(l) |
---|
[2307] | 801 | ! print *,'dt_cooling=',dt_cooling(l) |
---|
[2191] | 802 | else |
---|
| 803 | dt_cooling(l) = 0.0 |
---|
| 804 | endif |
---|
| 805 | enddo |
---|
| 806 | |
---|
[2716] | 807 | ! Faut-il multiplier par -1 ? (MPL 20160713) |
---|
| 808 | IF(ok_flux_surf) THEN |
---|
| 809 | fsens=sens_prof_cas |
---|
| 810 | flat=lat_prof_cas |
---|
| 811 | ENDIF |
---|
| 812 | ! |
---|
| 813 | IF (ok_prescr_ust) THEN |
---|
| 814 | ust=ustar_prof_cas |
---|
| 815 | print *,'ust=',ust |
---|
| 816 | ENDIF |
---|
[2191] | 817 | endif ! forcing_case |
---|
| 818 | |
---|
| 819 | |
---|
| 820 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2716] | 821 | !--------------------------------------------------------------------- |
---|
| 822 | ! Interpolation forcing standard case |
---|
| 823 | !--------------------------------------------------------------------- |
---|
| 824 | if (forcing_case2) then |
---|
[2191] | 825 | |
---|
[2716] | 826 | print*, & |
---|
| 827 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/pdt_cas=', & |
---|
| 828 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 829 | & (daytime-day1)*86400/pdt_cas |
---|
[2683] | 830 | |
---|
[2716] | 831 | ! time interpolation: |
---|
| 832 | CALL interp2_case_time(daytime,day1,annee_ref & |
---|
| 833 | ! & ,year_ini_cas,day_ju_ini_cas,nt_cas,pdt_cas,nlev_cas & |
---|
| 834 | & ,nt_cas,nlev_cas & |
---|
| 835 | & ,ts_cas,ps_cas,plev_cas,t_cas,th_cas,thv_cas,thl_cas,qv_cas,ql_cas,qi_cas & |
---|
| 836 | & ,u_cas,v_cas,ug_cas,vg_cas,vitw_cas,omega_cas,du_cas,hu_cas,vu_cas & |
---|
| 837 | & ,dv_cas,hv_cas,vv_cas,dt_cas,ht_cas,vt_cas,dtrad_cas & |
---|
| 838 | & ,dq_cas,hq_cas,vq_cas,dth_cas,hth_cas,vth_cas,lat_cas,sens_cas,ustar_cas & |
---|
| 839 | & ,uw_cas,vw_cas,q1_cas,q2_cas,tke_cas & |
---|
| 840 | ! |
---|
| 841 | & ,ts_prof_cas,plev_prof_cas,t_prof_cas,theta_prof_cas,thv_prof_cas & |
---|
| 842 | & ,thl_prof_cas,qv_prof_cas,ql_prof_cas,qi_prof_cas & |
---|
| 843 | & ,u_prof_cas,v_prof_cas,ug_prof_cas,vg_prof_cas,vitw_prof_cas,omega_prof_cas & |
---|
| 844 | & ,du_prof_cas,hu_prof_cas,vu_prof_cas & |
---|
| 845 | & ,dv_prof_cas,hv_prof_cas,vv_prof_cas,dt_prof_cas,ht_prof_cas,vt_prof_cas & |
---|
| 846 | & ,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & |
---|
| 847 | & ,dth_prof_cas,hth_prof_cas,vth_prof_cas,lat_prof_cas & |
---|
| 848 | & ,sens_prof_cas,ustar_prof_cas,uw_prof_cas,vw_prof_cas,q1_prof_cas,q2_prof_cas,tke_prof_cas) |
---|
| 849 | |
---|
| 850 | ts_cur = ts_prof_cas |
---|
| 851 | ! psurf=plev_prof_cas(1) |
---|
| 852 | psurf=ps_prof_cas |
---|
| 853 | |
---|
| 854 | ! vertical interpolation: |
---|
| 855 | CALL interp2_case_vertical(play,nlev_cas,plev_prof_cas & |
---|
| 856 | & ,t_prof_cas,theta_prof_cas,thv_prof_cas,thl_prof_cas & |
---|
| 857 | & ,qv_prof_cas,ql_prof_cas,qi_prof_cas,u_prof_cas,v_prof_cas & |
---|
| 858 | & ,ug_prof_cas,vg_prof_cas,vitw_prof_cas,omega_prof_cas & |
---|
| 859 | & ,du_prof_cas,hu_prof_cas,vu_prof_cas,dv_prof_cas,hv_prof_cas,vv_prof_cas & |
---|
| 860 | & ,dt_prof_cas,ht_prof_cas,vt_prof_cas,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & |
---|
| 861 | & ,dth_prof_cas,hth_prof_cas,vth_prof_cas & |
---|
| 862 | ! |
---|
| 863 | & ,t_mod_cas,theta_mod_cas,thv_mod_cas,thl_mod_cas,qv_mod_cas,ql_mod_cas,qi_mod_cas & |
---|
| 864 | & ,u_mod_cas,v_mod_cas,ug_mod_cas,vg_mod_cas,w_mod_cas,omega_mod_cas & |
---|
| 865 | & ,du_mod_cas,hu_mod_cas,vu_mod_cas,dv_mod_cas,hv_mod_cas,vv_mod_cas & |
---|
| 866 | & ,dt_mod_cas,ht_mod_cas,vt_mod_cas,dtrad_mod_cas,dq_mod_cas,hq_mod_cas,vq_mod_cas & |
---|
| 867 | & ,dth_mod_cas,hth_mod_cas,vth_mod_cas,mxcalc) |
---|
| 868 | |
---|
| 869 | |
---|
| 870 | DO l=1,llm |
---|
| 871 | teta(l)=temp(l)*(100000./play(l))**(rd/rcpd) |
---|
| 872 | ENDDO |
---|
| 873 | !calcul de l'advection verticale a partir du omega |
---|
| 874 | !Calcul des gradients verticaux |
---|
| 875 | !initialisation |
---|
| 876 | d_t_z(:)=0. |
---|
| 877 | d_th_z(:)=0. |
---|
| 878 | d_q_z(:)=0. |
---|
| 879 | d_t_dyn_z(:)=0. |
---|
| 880 | d_th_dyn_z(:)=0. |
---|
| 881 | d_q_dyn_z(:)=0. |
---|
| 882 | DO l=2,llm-1 |
---|
| 883 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 884 | d_th_z(l)=(teta(l+1)-teta(l-1))/(play(l+1)-play(l-1)) |
---|
| 885 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
| 886 | ENDDO |
---|
| 887 | d_t_z(1)=d_t_z(2) |
---|
| 888 | d_th_z(1)=d_th_z(2) |
---|
| 889 | d_q_z(1)=d_q_z(2) |
---|
| 890 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 891 | d_th_z(llm)=d_th_z(llm-1) |
---|
| 892 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 893 | |
---|
| 894 | !Calcul de l advection verticale |
---|
| 895 | d_t_dyn_z(:)=w_mod_cas(:)*d_t_z(:) |
---|
| 896 | d_th_dyn_z(:)=w_mod_cas(:)*d_th_z(:) |
---|
| 897 | d_q_dyn_z(:)=w_mod_cas(:)*d_q_z(:) |
---|
| 898 | |
---|
| 899 | !wind nudging |
---|
| 900 | if (nudging_u.gt.0.) then |
---|
| 901 | do l=1,llm |
---|
| 902 | u(l)=u(l)+timestep*(u_mod_cas(l)-u(l))/(nudge_u) |
---|
| 903 | enddo |
---|
| 904 | else |
---|
| 905 | do l=1,llm |
---|
| 906 | ug(l) = u_mod_cas(l) |
---|
| 907 | enddo |
---|
| 908 | endif |
---|
| 909 | |
---|
| 910 | if (nudging_v.gt.0.) then |
---|
| 911 | do l=1,llm |
---|
| 912 | v(l)=v(l)+timestep*(v_mod_cas(l)-v(l))/(nudge_v) |
---|
| 913 | enddo |
---|
| 914 | else |
---|
| 915 | do l=1,llm |
---|
| 916 | vg(l) = v_mod_cas(l) |
---|
| 917 | enddo |
---|
| 918 | endif |
---|
| 919 | |
---|
| 920 | if (nudging_w.gt.0.) then |
---|
| 921 | do l=1,llm |
---|
| 922 | w(l)=w(l)+timestep*(w_mod_cas(l)-w(l))/(nudge_w) |
---|
| 923 | enddo |
---|
| 924 | else |
---|
| 925 | do l=1,llm |
---|
| 926 | w(l) = w_mod_cas(l) |
---|
| 927 | enddo |
---|
| 928 | endif |
---|
| 929 | |
---|
| 930 | !nudging of q and temp |
---|
| 931 | if (nudging_t.gt.0.) then |
---|
| 932 | do l=1,llm |
---|
| 933 | temp(l)=temp(l)+timestep*(t_mod_cas(l)-temp(l))/(nudge_t) |
---|
| 934 | enddo |
---|
| 935 | endif |
---|
| 936 | if (nudging_q.gt.0.) then |
---|
| 937 | do l=1,llm |
---|
| 938 | q(l,1)=q(l,1)+timestep*(q_mod_cas(l)-q(l,1))/(nudge_q) |
---|
| 939 | enddo |
---|
| 940 | endif |
---|
| 941 | |
---|
| 942 | do l = 1, llm |
---|
| 943 | omega(l) = w_mod_cas(l) |
---|
| 944 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 945 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 946 | |
---|
| 947 | !calcul advection |
---|
| 948 | ! if ((tend_u.eq.1).and.(tend_w.eq.0)) then |
---|
| 949 | ! d_u_adv(l)=du_mod_cas(l) |
---|
| 950 | ! else if ((tend_u.eq.1).and.(tend_w.eq.1)) then |
---|
| 951 | ! d_u_adv(l)=hu_mod_cas(l)-d_u_dyn_z(l) |
---|
| 952 | ! endif |
---|
| 953 | ! |
---|
| 954 | ! if ((tend_v.eq.1).and.(tend_w.eq.0)) then |
---|
| 955 | ! d_v_adv(l)=dv_mod_cas(l) |
---|
| 956 | ! else if ((tend_v.eq.1).and.(tend_w.eq.1)) then |
---|
| 957 | ! d_v_adv(l)=hv_mod_cas(l)-d_v_dyn_z(l) |
---|
| 958 | ! endif |
---|
| 959 | ! |
---|
| 960 | !----------------------------------------------------- |
---|
| 961 | if (tadv.eq.1 .or. tadvh.eq.1) then |
---|
| 962 | d_t_adv(l)=alpha*omega(l)/rcpd-dt_mod_cas(l) |
---|
| 963 | else if (tadvv.eq.1) then |
---|
| 964 | ! ATTENTION d_t_dyn_z pas calcule (voir twpice) |
---|
| 965 | d_t_adv(l)=alpha*omega(l)/rcpd-ht_mod_cas(l)-d_t_dyn_z(l) |
---|
| 966 | endif |
---|
| 967 | print *,'interp_case d_t_dyn_z=',d_t_dyn_z(l),d_q_dyn_z(l) |
---|
| 968 | |
---|
| 969 | ! Verifier le signe !! |
---|
| 970 | if (thadv.eq.1 .or. thadvh.eq.1) then |
---|
| 971 | d_th_adv(l)=dth_mod_cas(l) |
---|
| 972 | print *,'dthadv=',d_th_adv(l)*86400. |
---|
| 973 | else if (thadvv.eq.1) then |
---|
| 974 | d_th_adv(l)=hth_mod_cas(l)-d_th_dyn_z(l) |
---|
| 975 | endif |
---|
| 976 | |
---|
| 977 | ! Verifier le signe !! |
---|
| 978 | if ((qadv.eq.1).and.(forc_w.eq.0)) then |
---|
| 979 | d_q_adv(l,1)=dq_mod_cas(l) |
---|
| 980 | else if ((qadvh.eq.1).and.(forc_w.eq.1)) then |
---|
| 981 | d_q_adv(l,1)=hq_mod_cas(l)-d_q_dyn_z(l) |
---|
| 982 | endif |
---|
| 983 | |
---|
| 984 | if (trad.eq.1) then |
---|
| 985 | tend_rayo=1 |
---|
| 986 | dt_cooling(l) = dtrad_mod_cas(l) |
---|
| 987 | ! print *,'dt_cooling=',dt_cooling(l) |
---|
| 988 | else |
---|
| 989 | dt_cooling(l) = 0.0 |
---|
| 990 | endif |
---|
| 991 | enddo |
---|
| 992 | |
---|
| 993 | ! Faut-il multiplier par -1 ? (MPL 20160713) |
---|
| 994 | IF(ok_flux_surf) THEN |
---|
| 995 | fsens=-1.*sens_prof_cas |
---|
| 996 | flat=-1.*lat_prof_cas |
---|
| 997 | print *,'1D_interp: sens,flat',fsens,flat |
---|
| 998 | ENDIF |
---|
| 999 | ! |
---|
| 1000 | IF (ok_prescr_ust) THEN |
---|
| 1001 | ust=ustar_prof_cas |
---|
| 1002 | print *,'ust=',ust |
---|
| 1003 | ENDIF |
---|
| 1004 | endif ! forcing_case2 |
---|
| 1005 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1006 | |
---|