[2307] | 1 | ! |
---|
| 2 | ! $Id: 1D_interp_cases.h 2332 2015-07-21 15:40:58Z emillour $ |
---|
| 3 | ! |
---|
[2017] | 4 | !--------------------------------------------------------------------- |
---|
| 5 | ! Interpolation forcing in time and onto model levels |
---|
| 6 | !--------------------------------------------------------------------- |
---|
| 7 | if (forcing_GCSSold) then |
---|
| 8 | |
---|
[2019] | 9 | call get_uvd(it,timestep,fich_gcssold_ctl,fich_gcssold_dat, & |
---|
| 10 | & ht_gcssold,hq_gcssold,hw_gcssold, & |
---|
| 11 | & hu_gcssold,hv_gcssold, & |
---|
| 12 | & hthturb_gcssold,hqturb_gcssold,Ts_gcssold, & |
---|
| 13 | & imp_fcg_gcssold,ts_fcg_gcssold, & |
---|
| 14 | & Tp_fcg_gcssold,Turb_fcg_gcssold) |
---|
[2017] | 15 | if (prt_level.ge.1) then |
---|
| 16 | print *,' get_uvd -> hqturb_gcssold ',it,hqturb_gcssold |
---|
| 17 | endif |
---|
| 18 | ! large-scale forcing : |
---|
| 19 | !!! tsurf = ts_gcssold |
---|
| 20 | do l = 1, llm |
---|
| 21 | ! u(l) = hu_gcssold(l) ! on prescrit le vent |
---|
| 22 | ! v(l) = hv_gcssold(l) ! on prescrit le vent |
---|
| 23 | ! omega(l) = hw_gcssold(l) |
---|
| 24 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 25 | ! omega2(l)=-rho(l)*omega(l) |
---|
| 26 | omega(l) = hw_gcssold(l) |
---|
| 27 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 28 | |
---|
| 29 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 30 | d_th_adv(l) = ht_gcssold(l) |
---|
| 31 | d_q_adv(l,1) = hq_gcssold(l) |
---|
| 32 | dt_cooling(l) = 0.0 |
---|
| 33 | enddo |
---|
| 34 | |
---|
| 35 | endif ! forcing_GCSSold |
---|
| 36 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 37 | !--------------------------------------------------------------------- |
---|
| 38 | ! Interpolation Toga forcing |
---|
| 39 | !--------------------------------------------------------------------- |
---|
| 40 | if (forcing_toga) then |
---|
| 41 | |
---|
| 42 | if (prt_level.ge.1) then |
---|
[2019] | 43 | print*, & |
---|
| 44 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_toga=', & |
---|
| 45 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_toga |
---|
[2017] | 46 | endif |
---|
| 47 | |
---|
| 48 | ! time interpolation: |
---|
[2019] | 49 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
| 50 | & ,year_ini_toga,day_ju_ini_toga,nt_toga,dt_toga & |
---|
| 51 | & ,nlev_toga,ts_toga,plev_toga,t_toga,q_toga,u_toga & |
---|
| 52 | & ,v_toga,w_toga,ht_toga,vt_toga,hq_toga,vq_toga & |
---|
| 53 | & ,ts_prof,plev_prof,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
| 54 | & ,ht_prof,vt_prof,hq_prof,vq_prof) |
---|
[2017] | 55 | |
---|
| 56 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 57 | |
---|
| 58 | ! vertical interpolation: |
---|
[2019] | 59 | CALL interp_toga_vertical(play,nlev_toga,plev_prof & |
---|
| 60 | & ,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
| 61 | & ,ht_prof,vt_prof,hq_prof,vq_prof & |
---|
| 62 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 63 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 64 | |
---|
| 65 | ! large-scale forcing : |
---|
| 66 | tsurf = ts_prof |
---|
| 67 | do l = 1, llm |
---|
| 68 | u(l) = u_mod(l) ! sb: on prescrit le vent |
---|
| 69 | v(l) = v_mod(l) ! sb: on prescrit le vent |
---|
| 70 | ! omega(l) = w_prof(l) |
---|
| 71 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 72 | ! omega2(l)=-rho(l)*omega(l) |
---|
| 73 | omega(l) = w_mod(l) |
---|
| 74 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 75 | |
---|
| 76 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 77 | d_th_adv(l) = alpha*omega(l)/rcpd-(ht_mod(l)+vt_mod(l)) |
---|
| 78 | d_q_adv(l,1) = -(hq_mod(l)+vq_mod(l)) |
---|
| 79 | dt_cooling(l) = 0.0 |
---|
| 80 | enddo |
---|
| 81 | |
---|
| 82 | endif ! forcing_toga |
---|
| 83 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2126] | 84 | ! Interpolation DICE forcing |
---|
[2017] | 85 | !--------------------------------------------------------------------- |
---|
[2126] | 86 | if (forcing_dice) then |
---|
| 87 | |
---|
| 88 | if (prt_level.ge.1) then |
---|
| 89 | print*,'#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_dice=',& |
---|
| 90 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_dice |
---|
| 91 | endif |
---|
| 92 | |
---|
| 93 | ! time interpolation: |
---|
| 94 | CALL interp_dice_time(daytime,day1,annee_ref & |
---|
| 95 | & ,year_ini_dice,day_ju_ini_dice,nt_dice,dt_dice & |
---|
| 96 | & ,nlev_dice,shf_dice,lhf_dice,lwup_dice,swup_dice & |
---|
| 97 | & ,tg_dice,ustar_dice,psurf_dice,ug_dice,vg_dice & |
---|
| 98 | & ,ht_dice,hq_dice,hu_dice,hv_dice,w_dice,omega_dice & |
---|
| 99 | & ,shf_prof,lhf_prof,lwup_prof,swup_prof,tg_prof & |
---|
| 100 | & ,ustar_prof,psurf_prof,ug_profd,vg_profd & |
---|
| 101 | & ,ht_profd,hq_profd,hu_profd,hv_profd,w_profd & |
---|
| 102 | & ,omega_profd) |
---|
| 103 | ! do l = 1, llm |
---|
| 104 | ! print *,'llm l omega_profd',llm,l,omega_profd(l) |
---|
| 105 | ! enddo |
---|
| 106 | |
---|
| 107 | if (type_ts_forcing.eq.1) ts_cur = tg_prof ! SST used in read_tsurf1d |
---|
| 108 | |
---|
| 109 | ! vertical interpolation: |
---|
| 110 | CALL interp_dice_vertical(play,nlev_dice,nt_dice,plev_dice & |
---|
| 111 | & ,th_dice,qv_dice,u_dice,v_dice,o3_dice & |
---|
| 112 | & ,ht_profd,hq_profd,hu_profd,hv_profd,w_profd,omega_profd & |
---|
| 113 | & ,th_mod,qv_mod,u_mod,v_mod,o3_mod & |
---|
| 114 | & ,ht_mod,hq_mod,hu_mod,hv_mod,w_mod,omega_mod,mxcalc) |
---|
| 115 | ! do l = 1, llm |
---|
| 116 | ! print *,'llm l omega_mod',llm,l,omega_mod(l) |
---|
| 117 | ! enddo |
---|
| 118 | |
---|
| 119 | ! Les forcages DICE sont donnes /jour et non /seconde ! |
---|
| 120 | ht_mod(:)=ht_mod(:)/86400. |
---|
| 121 | hq_mod(:)=hq_mod(:)/86400. |
---|
| 122 | hu_mod(:)=hu_mod(:)/86400. |
---|
| 123 | hv_mod(:)=hv_mod(:)/86400. |
---|
| 124 | |
---|
| 125 | !calcul de l'advection verticale a partir du omega (repris cas TWPICE, MPL 05082013) |
---|
| 126 | !Calcul des gradients verticaux |
---|
| 127 | !initialisation |
---|
| 128 | d_t_z(:)=0. |
---|
| 129 | d_q_z(:)=0. |
---|
| 130 | d_u_z(:)=0. |
---|
| 131 | d_v_z(:)=0. |
---|
| 132 | DO l=2,llm-1 |
---|
| 133 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 134 | d_q_z(l)=(q(l+1,1)-q(l-1,1)) /(play(l+1)-play(l-1)) |
---|
| 135 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
| 136 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
| 137 | ENDDO |
---|
| 138 | d_t_z(1)=d_t_z(2) |
---|
| 139 | d_q_z(1)=d_q_z(2) |
---|
| 140 | ! d_u_z(1)=u(2)/(play(2)-psurf)/5. |
---|
| 141 | ! d_v_z(1)=v(2)/(play(2)-psurf)/5. |
---|
| 142 | d_u_z(1)=0. |
---|
| 143 | d_v_z(1)=0. |
---|
| 144 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 145 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 146 | d_u_z(llm)=d_u_z(llm-1) |
---|
| 147 | d_v_z(llm)=d_v_z(llm-1) |
---|
| 148 | |
---|
| 149 | !Calcul de l advection verticale: |
---|
| 150 | ! utiliser omega (Pa/s) et non w (m/s) !! MP 20131108 |
---|
| 151 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
| 152 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
| 153 | d_u_dyn_z(:)=omega_mod(:)*d_u_z(:) |
---|
| 154 | d_v_dyn_z(:)=omega_mod(:)*d_v_z(:) |
---|
| 155 | |
---|
| 156 | ! large-scale forcing : |
---|
| 157 | ! tsurf = tg_prof MPL 20130925 commente |
---|
| 158 | psurf = psurf_prof |
---|
| 159 | ! For this case, fluxes are imposed |
---|
| 160 | fsens=-1*shf_prof |
---|
| 161 | flat=-1*lhf_prof |
---|
| 162 | ust=ustar_prof |
---|
| 163 | tg=tg_prof |
---|
| 164 | print *,'ust= ',ust |
---|
| 165 | do l = 1, llm |
---|
| 166 | ug(l)= ug_profd |
---|
| 167 | vg(l)= vg_profd |
---|
| 168 | ! omega(l) = w_prof(l) |
---|
| 169 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 170 | ! omega2(l)=-rho(l)*omega(l) |
---|
| 171 | ! omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
| 172 | omega(l) = omega_mod(l) |
---|
| 173 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 174 | |
---|
| 175 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 176 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
| 177 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
| 178 | d_u_adv(l) = hu_mod(l)-d_u_dyn_z(l) |
---|
| 179 | d_v_adv(l) = hv_mod(l)-d_v_dyn_z(l) |
---|
| 180 | dt_cooling(l) = 0.0 |
---|
| 181 | enddo |
---|
| 182 | |
---|
| 183 | endif ! forcing_dice |
---|
| 184 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 185 | !--------------------------------------------------------------------- |
---|
| 186 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 187 | !--------------------------------------------------------------------- |
---|
[2017] | 188 | ! Interpolation forcing TWPice |
---|
| 189 | !--------------------------------------------------------------------- |
---|
| 190 | if (forcing_twpice) then |
---|
| 191 | |
---|
[2019] | 192 | print*, & |
---|
| 193 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_twpi=', & |
---|
| 194 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 195 | & (daytime-day1)*86400/dt_twpi |
---|
[2017] | 196 | |
---|
| 197 | ! time interpolation: |
---|
[2019] | 198 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
| 199 | & ,year_ini_twpi,day_ju_ini_twpi,nt_twpi,dt_twpi,nlev_twpi & |
---|
| 200 | & ,ts_twpi,plev_twpi,t_twpi,q_twpi,u_twpi,v_twpi,w_twpi & |
---|
| 201 | & ,ht_twpi,vt_twpi,hq_twpi,vq_twpi & |
---|
| 202 | & ,ts_proftwp,plev_proftwp,t_proftwp,q_proftwp,u_proftwp & |
---|
| 203 | & ,v_proftwp,w_proftwp & |
---|
| 204 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp) |
---|
[2017] | 205 | |
---|
| 206 | ! vertical interpolation: |
---|
[2019] | 207 | CALL interp_toga_vertical(play,nlev_twpi,plev_proftwp & |
---|
| 208 | & ,t_proftwp,q_proftwp,u_proftwp,v_proftwp,w_proftwp & |
---|
| 209 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp & |
---|
| 210 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 211 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 212 | |
---|
| 213 | |
---|
| 214 | !calcul de l'advection verticale a partir du omega |
---|
[2019] | 215 | !Calcul des gradients verticaux |
---|
| 216 | !initialisation |
---|
[2017] | 217 | d_t_z(:)=0. |
---|
| 218 | d_q_z(:)=0. |
---|
| 219 | d_t_dyn_z(:)=0. |
---|
| 220 | d_q_dyn_z(:)=0. |
---|
| 221 | DO l=2,llm-1 |
---|
[2019] | 222 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 223 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
[2017] | 224 | ENDDO |
---|
| 225 | d_t_z(1)=d_t_z(2) |
---|
| 226 | d_q_z(1)=d_q_z(2) |
---|
| 227 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 228 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 229 | |
---|
[2019] | 230 | !Calcul de l advection verticale |
---|
[2017] | 231 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
| 232 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
| 233 | |
---|
| 234 | !wind nudging above 500m with a 2h time scale |
---|
| 235 | do l=1,llm |
---|
| 236 | if (nudge_wind) then |
---|
| 237 | ! if (phi(l).gt.5000.) then |
---|
| 238 | if (phi(l).gt.0.) then |
---|
[2019] | 239 | u(l)=u(l)+timestep*(u_mod(l)-u(l))/(2.*3600.) |
---|
| 240 | v(l)=v(l)+timestep*(v_mod(l)-v(l))/(2.*3600.) |
---|
[2017] | 241 | endif |
---|
| 242 | else |
---|
| 243 | u(l) = u_mod(l) |
---|
| 244 | v(l) = v_mod(l) |
---|
| 245 | endif |
---|
| 246 | enddo |
---|
| 247 | |
---|
| 248 | !CR:nudging of q and theta with a 6h time scale above 15km |
---|
| 249 | if (nudge_thermo) then |
---|
| 250 | do l=1,llm |
---|
| 251 | zz(l)=phi(l)/9.8 |
---|
| 252 | if ((zz(l).le.16000.).and.(zz(l).gt.15000.)) then |
---|
| 253 | zfact=(zz(l)-15000.)/1000. |
---|
[2019] | 254 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.)*zfact |
---|
| 255 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.)*zfact |
---|
[2017] | 256 | else if (zz(l).gt.16000.) then |
---|
[2019] | 257 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.) |
---|
| 258 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.) |
---|
[2017] | 259 | endif |
---|
| 260 | enddo |
---|
| 261 | endif |
---|
| 262 | |
---|
| 263 | do l = 1, llm |
---|
| 264 | omega(l) = w_mod(l) |
---|
| 265 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 266 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 267 | !calcul de l'advection totale |
---|
| 268 | if (cptadvw) then |
---|
| 269 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
| 270 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
| 271 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
| 272 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
| 273 | else |
---|
| 274 | d_th_adv(l) = alpha*omega(l)/rcpd+(ht_mod(l)+vt_mod(l)) |
---|
| 275 | d_q_adv(l,1) = (hq_mod(l)+vq_mod(l)) |
---|
| 276 | endif |
---|
| 277 | dt_cooling(l) = 0.0 |
---|
| 278 | enddo |
---|
| 279 | |
---|
| 280 | endif ! forcing_twpice |
---|
| 281 | |
---|
| 282 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 283 | !--------------------------------------------------------------------- |
---|
| 284 | ! Interpolation forcing AMMA |
---|
| 285 | !--------------------------------------------------------------------- |
---|
| 286 | |
---|
| 287 | if (forcing_amma) then |
---|
| 288 | |
---|
[2019] | 289 | print*, & |
---|
| 290 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_amma=', & |
---|
| 291 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 292 | & (daytime-day1)*86400/dt_amma |
---|
[2017] | 293 | |
---|
| 294 | ! time interpolation using TOGA interpolation routine |
---|
[2019] | 295 | CALL interp_amma_time(daytime,day1,annee_ref & |
---|
| 296 | & ,year_ini_amma,day_ju_ini_amma,nt_amma,dt_amma,nlev_amma & |
---|
| 297 | & ,vitw_amma,ht_amma,hq_amma,lat_amma,sens_amma & |
---|
| 298 | & ,vitw_profamma,ht_profamma,hq_profamma,lat_profamma & |
---|
| 299 | & ,sens_profamma) |
---|
[2017] | 300 | |
---|
| 301 | print*,'apres interpolation temporelle AMMA' |
---|
| 302 | |
---|
| 303 | do k=1,nlev_amma |
---|
| 304 | th_profamma(k)=0. |
---|
| 305 | q_profamma(k)=0. |
---|
| 306 | u_profamma(k)=0. |
---|
| 307 | v_profamma(k)=0. |
---|
| 308 | vt_profamma(k)=0. |
---|
| 309 | vq_profamma(k)=0. |
---|
| 310 | enddo |
---|
| 311 | ! vertical interpolation using TOGA interpolation routine: |
---|
| 312 | ! write(*,*)'avant interp vert', t_proftwp |
---|
[2019] | 313 | CALL interp_toga_vertical(play,nlev_amma,plev_amma & |
---|
| 314 | & ,th_profamma,q_profamma,u_profamma,v_profamma & |
---|
| 315 | & ,vitw_profamma & |
---|
| 316 | & ,ht_profamma,vt_profamma,hq_profamma,vq_profamma & |
---|
| 317 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 318 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 319 | write(*,*) 'Profil initial forcing AMMA interpole' |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | !calcul de l'advection verticale a partir du omega |
---|
[2019] | 323 | !Calcul des gradients verticaux |
---|
| 324 | !initialisation |
---|
[2017] | 325 | do l=1,llm |
---|
| 326 | d_t_z(l)=0. |
---|
| 327 | d_q_z(l)=0. |
---|
| 328 | enddo |
---|
| 329 | |
---|
| 330 | DO l=2,llm-1 |
---|
[2019] | 331 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 332 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
[2017] | 333 | ENDDO |
---|
| 334 | d_t_z(1)=d_t_z(2) |
---|
| 335 | d_q_z(1)=d_q_z(2) |
---|
| 336 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 337 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 338 | |
---|
| 339 | |
---|
| 340 | do l = 1, llm |
---|
| 341 | rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 342 | omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
| 343 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 344 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 345 | !calcul de l'advection totale |
---|
| 346 | ! d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-omega(l)*d_t_z(l) |
---|
| 347 | !attention: on impose dth |
---|
[2019] | 348 | d_th_adv(l) = alpha*omega(l)/rcpd+ & |
---|
[2017] | 349 | & ht_mod(l)*(play(l)/pzero)**rkappa-omega(l)*d_t_z(l) |
---|
| 350 | ! d_th_adv(l) = 0. |
---|
| 351 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
| 352 | d_q_adv(l,1) = hq_mod(l)-omega(l)*d_q_z(l) |
---|
| 353 | ! d_q_adv(l,1) = 0. |
---|
| 354 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
| 355 | |
---|
| 356 | dt_cooling(l) = 0.0 |
---|
| 357 | enddo |
---|
| 358 | |
---|
| 359 | |
---|
| 360 | ! ok_flux_surf=.false. |
---|
| 361 | fsens=-1.*sens_profamma |
---|
| 362 | flat=-1.*lat_profamma |
---|
| 363 | |
---|
| 364 | endif ! forcing_amma |
---|
| 365 | |
---|
| 366 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 367 | !--------------------------------------------------------------------- |
---|
| 368 | ! Interpolation forcing Rico |
---|
| 369 | !--------------------------------------------------------------------- |
---|
| 370 | if (forcing_rico) then |
---|
| 371 | ! call lstendH(llm,omega,dt_dyn,dq_dyn,du_dyn, dv_dyn, |
---|
| 372 | ! : q,temp,u,v,play) |
---|
[2019] | 373 | call lstendH(llm,nqtot,omega,dt_dyn,dq_dyn,q,temp,u,v,play) |
---|
[2017] | 374 | |
---|
| 375 | do l=1,llm |
---|
| 376 | d_th_adv(l) = (dth_rico(l) + dt_dyn(l)) |
---|
| 377 | d_q_adv(l,1) = (dqh_rico(l) + dq_dyn(l,1)) |
---|
| 378 | d_q_adv(l,2) = 0. |
---|
| 379 | enddo |
---|
| 380 | endif ! forcing_rico |
---|
| 381 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 382 | !--------------------------------------------------------------------- |
---|
| 383 | ! Interpolation forcing Arm_cu |
---|
| 384 | !--------------------------------------------------------------------- |
---|
| 385 | if (forcing_armcu) then |
---|
| 386 | |
---|
[2019] | 387 | print*, & |
---|
| 388 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_armcu=', & |
---|
| 389 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_armcu |
---|
[2017] | 390 | |
---|
| 391 | ! time interpolation: |
---|
| 392 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 393 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 394 | CALL interp_armcu_time(daytime,day1,annee_ref & |
---|
| 395 | & ,year_ini_armcu,day_ju_ini_armcu,nt_armcu,dt_armcu & |
---|
| 396 | & ,nlev_armcu,sens_armcu,flat_armcu,adv_theta_armcu & |
---|
| 397 | & ,rad_theta_armcu,adv_qt_armcu,sens_prof,flat_prof & |
---|
| 398 | & ,adv_theta_prof,rad_theta_prof,adv_qt_prof) |
---|
[2017] | 399 | |
---|
| 400 | ! vertical interpolation: |
---|
| 401 | ! No vertical interpolation if nlev imposed to 19 or 40 |
---|
| 402 | |
---|
| 403 | ! For this case, fluxes are imposed |
---|
| 404 | fsens=-1*sens_prof |
---|
| 405 | flat=-1*flat_prof |
---|
| 406 | |
---|
| 407 | ! Advective forcings are given in K or g/kg ... BY HOUR |
---|
| 408 | do l = 1, llm |
---|
| 409 | ug(l)= u_mod(l) |
---|
| 410 | vg(l)= v_mod(l) |
---|
| 411 | IF((phi(l)/RG).LT.1000) THEN |
---|
| 412 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)/3600. |
---|
| 413 | d_q_adv(l,1) = adv_qt_prof/1000./3600. |
---|
| 414 | d_q_adv(l,2) = 0.0 |
---|
| 415 | ! print *,'INF1000: phi dth dq1 dq2', |
---|
| 416 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 417 | ELSEIF ((phi(l)/RG).GE.1000.AND.(phi(l)/RG).lt.3000) THEN |
---|
| 418 | fact=((phi(l)/RG)-1000.)/2000. |
---|
| 419 | fact=1-fact |
---|
| 420 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)*fact/3600. |
---|
| 421 | d_q_adv(l,1) = adv_qt_prof*fact/1000./3600. |
---|
| 422 | d_q_adv(l,2) = 0.0 |
---|
| 423 | ! print *,'SUP1000: phi fact dth dq1 dq2', |
---|
| 424 | ! : phi(l)/RG,fact,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 425 | ELSE |
---|
| 426 | d_th_adv(l) = 0.0 |
---|
| 427 | d_q_adv(l,1) = 0.0 |
---|
| 428 | d_q_adv(l,2) = 0.0 |
---|
| 429 | ! print *,'SUP3000: phi dth dq1 dq2', |
---|
| 430 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 431 | ENDIF |
---|
| 432 | dt_cooling(l) = 0.0 |
---|
| 433 | ! print *,'Interp armcu: phi dth dq1 dq2', |
---|
| 434 | ! : l,phi(l),d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 435 | enddo |
---|
| 436 | endif ! forcing_armcu |
---|
| 437 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 438 | !--------------------------------------------------------------------- |
---|
| 439 | ! Interpolation forcing in time and onto model levels |
---|
| 440 | !--------------------------------------------------------------------- |
---|
| 441 | if (forcing_sandu) then |
---|
| 442 | |
---|
[2019] | 443 | print*, & |
---|
| 444 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_sandu=', & |
---|
| 445 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_sandu |
---|
[2017] | 446 | |
---|
| 447 | ! time interpolation: |
---|
| 448 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 449 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 450 | CALL interp_sandu_time(daytime,day1,annee_ref & |
---|
| 451 | & ,year_ini_sandu,day_ju_ini_sandu,nt_sandu,dt_sandu & |
---|
| 452 | & ,nlev_sandu & |
---|
| 453 | & ,ts_sandu,ts_prof) |
---|
[2017] | 454 | |
---|
| 455 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 456 | |
---|
| 457 | ! vertical interpolation: |
---|
[2019] | 458 | CALL interp_sandu_vertical(play,nlev_sandu,plev_profs & |
---|
| 459 | & ,t_profs,thl_profs,q_profs,u_profs,v_profs,w_profs & |
---|
| 460 | & ,omega_profs,o3mmr_profs & |
---|
| 461 | & ,t_mod,thl_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 462 | & ,omega_mod,o3mmr_mod,mxcalc) |
---|
[2017] | 463 | !calcul de l'advection verticale |
---|
[2019] | 464 | !Calcul des gradients verticaux |
---|
| 465 | !initialisation |
---|
[2017] | 466 | d_t_z(:)=0. |
---|
| 467 | d_q_z(:)=0. |
---|
| 468 | d_t_dyn_z(:)=0. |
---|
| 469 | d_q_dyn_z(:)=0. |
---|
| 470 | ! schema centre |
---|
| 471 | ! DO l=2,llm-1 |
---|
| 472 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
| 473 | ! & /(play(l+1)-play(l-1)) |
---|
| 474 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
| 475 | ! & /(play(l+1)-play(l-1)) |
---|
| 476 | ! schema amont |
---|
| 477 | DO l=2,llm-1 |
---|
| 478 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
| 479 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
| 480 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
| 481 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
| 482 | ENDDO |
---|
| 483 | d_t_z(1)=d_t_z(2) |
---|
| 484 | d_q_z(1)=d_q_z(2) |
---|
| 485 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 486 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 487 | |
---|
| 488 | ! calcul de l advection verticale |
---|
| 489 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
| 490 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
| 491 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
| 492 | ! do l=1,llm |
---|
| 493 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
| 494 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
| 495 | ! enddo |
---|
| 496 | |
---|
| 497 | |
---|
| 498 | ! large-scale forcing : pour le cas Sandu ces forcages sont la SST |
---|
| 499 | ! et une divergence constante -> profil de omega |
---|
| 500 | tsurf = ts_prof |
---|
| 501 | write(*,*) 'SST suivante: ',tsurf |
---|
| 502 | do l = 1, llm |
---|
| 503 | omega(l) = omega_mod(l) |
---|
| 504 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 505 | |
---|
| 506 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 507 | ! |
---|
| 508 | ! d_th_adv(l) = 0.0 |
---|
| 509 | ! d_q_adv(l,1) = 0.0 |
---|
| 510 | !CR:test advection=0 |
---|
| 511 | !calcul de l'advection verticale |
---|
| 512 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
| 513 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
| 514 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
| 515 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
| 516 | dt_cooling(l) = 0.0 |
---|
| 517 | enddo |
---|
| 518 | endif ! forcing_sandu |
---|
| 519 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 520 | !--------------------------------------------------------------------- |
---|
| 521 | ! Interpolation forcing in time and onto model levels |
---|
| 522 | !--------------------------------------------------------------------- |
---|
| 523 | if (forcing_astex) then |
---|
| 524 | |
---|
[2019] | 525 | print*, & |
---|
| 526 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_astex=', & |
---|
| 527 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_astex |
---|
[2017] | 528 | |
---|
| 529 | ! time interpolation: |
---|
| 530 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 531 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 532 | CALL interp_astex_time(daytime,day1,annee_ref & |
---|
| 533 | & ,year_ini_astex,day_ju_ini_astex,nt_astex,dt_astex & |
---|
| 534 | & ,nlev_astex,div_astex,ts_astex,ug_astex,vg_astex & |
---|
| 535 | & ,ufa_astex,vfa_astex,div_prof,ts_prof,ug_prof,vg_prof & |
---|
| 536 | & ,ufa_prof,vfa_prof) |
---|
[2017] | 537 | |
---|
| 538 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 539 | |
---|
| 540 | ! vertical interpolation: |
---|
[2019] | 541 | CALL interp_astex_vertical(play,nlev_astex,plev_profa & |
---|
| 542 | & ,t_profa,thl_profa,qv_profa,ql_profa,qt_profa & |
---|
| 543 | & ,u_profa,v_profa,w_profa,tke_profa,o3mmr_profa & |
---|
| 544 | & ,t_mod,thl_mod,qv_mod,ql_mod,qt_mod,u_mod,v_mod,w_mod & |
---|
| 545 | & ,tke_mod,o3mmr_mod,mxcalc) |
---|
[2017] | 546 | !calcul de l'advection verticale |
---|
| 547 | !Calcul des gradients verticaux |
---|
| 548 | !initialisation |
---|
| 549 | d_t_z(:)=0. |
---|
| 550 | d_q_z(:)=0. |
---|
| 551 | d_t_dyn_z(:)=0. |
---|
| 552 | d_q_dyn_z(:)=0. |
---|
| 553 | ! schema centre |
---|
| 554 | ! DO l=2,llm-1 |
---|
| 555 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
| 556 | ! & /(play(l+1)-play(l-1)) |
---|
| 557 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
| 558 | ! & /(play(l+1)-play(l-1)) |
---|
| 559 | ! schema amont |
---|
| 560 | DO l=2,llm-1 |
---|
| 561 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
| 562 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
| 563 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
| 564 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
| 565 | ENDDO |
---|
| 566 | d_t_z(1)=d_t_z(2) |
---|
| 567 | d_q_z(1)=d_q_z(2) |
---|
| 568 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 569 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 570 | |
---|
| 571 | ! calcul de l advection verticale |
---|
| 572 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
| 573 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
| 574 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
| 575 | ! do l=1,llm |
---|
| 576 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
| 577 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
| 578 | ! enddo |
---|
| 579 | |
---|
| 580 | |
---|
| 581 | ! large-scale forcing : pour le cas Astex ces forcages sont la SST |
---|
| 582 | ! la divergence,ug,vg,ufa,vfa |
---|
| 583 | tsurf = ts_prof |
---|
| 584 | write(*,*) 'SST suivante: ',tsurf |
---|
| 585 | do l = 1, llm |
---|
| 586 | omega(l) = w_mod(l) |
---|
| 587 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 588 | |
---|
| 589 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 590 | ! |
---|
| 591 | ! d_th_adv(l) = 0.0 |
---|
| 592 | ! d_q_adv(l,1) = 0.0 |
---|
| 593 | !CR:test advection=0 |
---|
| 594 | !calcul de l'advection verticale |
---|
| 595 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
| 596 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
| 597 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
| 598 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
| 599 | dt_cooling(l) = 0.0 |
---|
| 600 | enddo |
---|
| 601 | endif ! forcing_astex |
---|
[2191] | 602 | |
---|
[2017] | 603 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2191] | 604 | !--------------------------------------------------------------------- |
---|
| 605 | ! Interpolation forcing standard case |
---|
| 606 | !--------------------------------------------------------------------- |
---|
| 607 | if (forcing_case) then |
---|
[2017] | 608 | |
---|
[2191] | 609 | print*, & |
---|
| 610 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/pdt_cas=', & |
---|
| 611 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 612 | & (daytime-day1)*86400/pdt_cas |
---|
| 613 | |
---|
| 614 | ! time interpolation: |
---|
[2332] | 615 | CALL interp_case_time(daytime,day1,annee_ref & |
---|
| 616 | ! & ,year_ini_cas,day_ju_ini_cas,nt_cas,pdt_cas,nlev_cas & |
---|
| 617 | & ,nt_cas,nlev_cas & |
---|
| 618 | & ,ts_cas,plev_cas,t_cas,q_cas,u_cas,v_cas,ug_cas,vg_cas & |
---|
| 619 | & ,vitw_cas,du_cas,hu_cas,vu_cas & |
---|
| 620 | & ,dv_cas,hv_cas,vv_cas,dt_cas,ht_cas,vt_cas,dtrad_cas & |
---|
| 621 | & ,dq_cas,hq_cas,vq_cas,lat_cas,sens_cas,ustar_cas & |
---|
| 622 | & ,uw_cas,vw_cas,q1_cas,q2_cas & |
---|
[2191] | 623 | & ,ts_prof_cas,plev_prof_cas,t_prof_cas,q_prof_cas,u_prof_cas,v_prof_cas & |
---|
| 624 | & ,ug_prof_cas,vg_prof_cas,vitw_prof_cas,du_prof_cas,hu_prof_cas,vu_prof_cas & |
---|
| 625 | & ,dv_prof_cas,hv_prof_cas,vv_prof_cas,dt_prof_cas,ht_prof_cas,vt_prof_cas & |
---|
| 626 | & ,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas,lat_prof_cas & |
---|
[2332] | 627 | & ,sens_prof_cas,ustar_prof_cas,uw_prof_cas,vw_prof_cas,q1_prof_cas,q2_prof_cas) |
---|
[2191] | 628 | |
---|
| 629 | ts_cur = ts_prof_cas |
---|
| 630 | psurf=plev_prof_cas(1) |
---|
| 631 | |
---|
| 632 | ! vertical interpolation: |
---|
| 633 | CALL interp_case_vertical(play,nlev_cas,plev_prof_cas & |
---|
| 634 | & ,t_prof_cas,q_prof_cas,u_prof_cas,v_prof_cas,ug_prof_cas,vg_prof_cas,vitw_prof_cas & |
---|
| 635 | & ,du_prof_cas,hu_prof_cas,vu_prof_cas,dv_prof_cas,hv_prof_cas,vv_prof_cas & |
---|
| 636 | & ,dt_prof_cas,ht_prof_cas,vt_prof_cas,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & |
---|
| 637 | & ,t_mod_cas,q_mod_cas,u_mod_cas,v_mod_cas,ug_mod_cas,vg_mod_cas,w_mod_cas & |
---|
| 638 | & ,du_mod_cas,hu_mod_cas,vu_mod_cas,dv_mod_cas,hv_mod_cas,vv_mod_cas & |
---|
| 639 | & ,dt_mod_cas,ht_mod_cas,vt_mod_cas,dtrad_mod_cas,dq_mod_cas,hq_mod_cas,vq_mod_cas,mxcalc) |
---|
| 640 | |
---|
| 641 | |
---|
| 642 | !calcul de l'advection verticale a partir du omega |
---|
| 643 | !Calcul des gradients verticaux |
---|
| 644 | !initialisation |
---|
| 645 | d_t_z(:)=0. |
---|
| 646 | d_q_z(:)=0. |
---|
| 647 | d_u_z(:)=0. |
---|
| 648 | d_v_z(:)=0. |
---|
| 649 | d_t_dyn_z(:)=0. |
---|
| 650 | d_q_dyn_z(:)=0. |
---|
| 651 | d_u_dyn_z(:)=0. |
---|
| 652 | d_v_dyn_z(:)=0. |
---|
| 653 | DO l=2,llm-1 |
---|
| 654 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 655 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
| 656 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
| 657 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
| 658 | ENDDO |
---|
| 659 | d_t_z(1)=d_t_z(2) |
---|
| 660 | d_q_z(1)=d_q_z(2) |
---|
| 661 | d_u_z(1)=d_u_z(2) |
---|
| 662 | d_v_z(1)=d_v_z(2) |
---|
| 663 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 664 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 665 | d_u_z(llm)=d_u_z(llm-1) |
---|
| 666 | d_v_z(llm)=d_v_z(llm-1) |
---|
| 667 | |
---|
| 668 | !Calcul de l advection verticale |
---|
| 669 | d_t_dyn_z(:)=w_mod_cas(:)*d_t_z(:) |
---|
| 670 | d_q_dyn_z(:)=w_mod_cas(:)*d_q_z(:) |
---|
| 671 | d_u_dyn_z(:)=w_mod_cas(:)*d_u_z(:) |
---|
| 672 | d_v_dyn_z(:)=w_mod_cas(:)*d_v_z(:) |
---|
| 673 | |
---|
| 674 | !wind nudging |
---|
| 675 | if (nudge_u.gt.0.) then |
---|
| 676 | do l=1,llm |
---|
| 677 | u(l)=u(l)+timestep*(u_mod_cas(l)-u(l))/(nudge_u) |
---|
| 678 | enddo |
---|
| 679 | else |
---|
| 680 | do l=1,llm |
---|
| 681 | u(l) = u_mod_cas(l) |
---|
| 682 | enddo |
---|
| 683 | endif |
---|
| 684 | |
---|
| 685 | if (nudge_v.gt.0.) then |
---|
| 686 | do l=1,llm |
---|
| 687 | v(l)=v(l)+timestep*(v_mod_cas(l)-v(l))/(nudge_v) |
---|
| 688 | enddo |
---|
| 689 | else |
---|
| 690 | do l=1,llm |
---|
| 691 | v(l) = v_mod_cas(l) |
---|
| 692 | enddo |
---|
| 693 | endif |
---|
| 694 | |
---|
| 695 | if (nudge_w.gt.0.) then |
---|
| 696 | do l=1,llm |
---|
| 697 | w(l)=w(l)+timestep*(w_mod_cas(l)-w(l))/(nudge_w) |
---|
| 698 | enddo |
---|
| 699 | else |
---|
| 700 | do l=1,llm |
---|
| 701 | w(l) = w_mod_cas(l) |
---|
| 702 | enddo |
---|
| 703 | endif |
---|
| 704 | |
---|
| 705 | !nudging of q and temp |
---|
| 706 | if (nudge_t.gt.0.) then |
---|
| 707 | do l=1,llm |
---|
| 708 | temp(l)=temp(l)+timestep*(t_mod_cas(l)-temp(l))/(nudge_t) |
---|
| 709 | enddo |
---|
| 710 | endif |
---|
| 711 | if (nudge_q.gt.0.) then |
---|
| 712 | do l=1,llm |
---|
| 713 | q(l,1)=q(l,1)+timestep*(q_mod_cas(l)-q(l,1))/(nudge_q) |
---|
| 714 | enddo |
---|
| 715 | endif |
---|
| 716 | |
---|
| 717 | do l = 1, llm |
---|
| 718 | omega(l) = w_mod_cas(l) |
---|
| 719 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 720 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 721 | |
---|
| 722 | !calcul advection |
---|
| 723 | if ((tend_u.eq.1).and.(tend_w.eq.0)) then |
---|
| 724 | d_u_adv(l)=du_mod_cas(l) |
---|
| 725 | else if ((tend_u.eq.1).and.(tend_w.eq.1)) then |
---|
| 726 | d_u_adv(l)=hu_mod_cas(l)-d_u_dyn_z(l) |
---|
| 727 | endif |
---|
| 728 | |
---|
| 729 | if ((tend_v.eq.1).and.(tend_w.eq.0)) then |
---|
| 730 | d_v_adv(l)=dv_mod_cas(l) |
---|
| 731 | else if ((tend_v.eq.1).and.(tend_w.eq.1)) then |
---|
| 732 | d_v_adv(l)=hv_mod_cas(l)-d_v_dyn_z(l) |
---|
| 733 | endif |
---|
| 734 | |
---|
| 735 | if ((tend_t.eq.1).and.(tend_w.eq.0)) then |
---|
| 736 | ! d_th_adv(l)=alpha*omega(l)/rcpd+dt_mod_cas(l) |
---|
| 737 | d_th_adv(l)=alpha*omega(l)/rcpd-dt_mod_cas(l) |
---|
| 738 | else if ((tend_t.eq.1).and.(tend_w.eq.1)) then |
---|
| 739 | ! d_th_adv(l)=alpha*omega(l)/rcpd+ht_mod_cas(l)-d_t_dyn_z(l) |
---|
| 740 | d_th_adv(l)=alpha*omega(l)/rcpd-ht_mod_cas(l)-d_t_dyn_z(l) |
---|
| 741 | endif |
---|
| 742 | |
---|
| 743 | if ((tend_q.eq.1).and.(tend_w.eq.0)) then |
---|
| 744 | ! d_q_adv(l,1)=dq_mod_cas(l) |
---|
| 745 | d_q_adv(l,1)=-1*dq_mod_cas(l) |
---|
| 746 | else if ((tend_q.eq.1).and.(tend_w.eq.1)) then |
---|
| 747 | ! d_q_adv(l,1)=hq_mod_cas(l)-d_q_dyn_z(l) |
---|
| 748 | d_q_adv(l,1)=-1*hq_mod_cas(l)-d_q_dyn_z(l) |
---|
| 749 | endif |
---|
| 750 | |
---|
| 751 | if (tend_rayo.eq.1) then |
---|
| 752 | dt_cooling(l) = dtrad_mod_cas(l) |
---|
[2307] | 753 | ! print *,'dt_cooling=',dt_cooling(l) |
---|
[2191] | 754 | else |
---|
| 755 | dt_cooling(l) = 0.0 |
---|
| 756 | endif |
---|
| 757 | enddo |
---|
| 758 | |
---|
| 759 | endif ! forcing_case |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 763 | |
---|