[879] | 1 | SUBROUTINE cv3p_mixing(nloc,ncum,nd,na,ntra,icb,nk,inb |
---|
| 2 | : ,ph,t,rr,rs,u,v,tra,h,lv,qnk |
---|
| 3 | : ,unk,vnk,hp,tv,tvp,ep,clw,sig |
---|
[991] | 4 | : ,ment,qent,hent,uent,vent,nent |
---|
[1742] | 5 | : ,sigij,elij,supmax,ments,qents,traent) |
---|
[879] | 6 | *************************************************************** |
---|
| 7 | * * |
---|
| 8 | * CV3P_MIXING : compute mixed draught properties and, * |
---|
| 9 | * within a scaling factor, mixed draught * |
---|
| 10 | * mass fluxes. * |
---|
| 11 | * written by : VTJ Philips,JY Grandpeix, 21/05/2003, 09.14.15* |
---|
| 12 | * modified by : * |
---|
| 13 | *************************************************************** |
---|
| 14 | * |
---|
| 15 | implicit none |
---|
| 16 | c |
---|
[1861] | 17 | include "cvthermo.h" |
---|
| 18 | include "cv3param.h" |
---|
| 19 | include "YOMCST2.h" |
---|
[879] | 20 | |
---|
| 21 | c inputs: |
---|
| 22 | integer ncum, nd, na, ntra, nloc |
---|
| 23 | integer icb(nloc), inb(nloc), nk(nloc) |
---|
| 24 | real sig(nloc,nd) |
---|
| 25 | real qnk(nloc),unk(nloc),vnk(nloc) |
---|
| 26 | real ph(nloc,nd+1) |
---|
| 27 | real t(nloc,nd), rr(nloc,nd), rs(nloc,nd) |
---|
| 28 | real u(nloc,nd), v(nloc,nd) |
---|
| 29 | real tra(nloc,nd,ntra) ! input of convect3 |
---|
| 30 | real lv(nloc,na) |
---|
| 31 | real h(nloc,na) !liquid water static energy of environment |
---|
| 32 | real hp(nloc,na) !liquid water static energy of air shed from adiab. asc. |
---|
| 33 | real tv(nloc,na), tvp(nloc,na), ep(nloc,na), clw(nloc,na) |
---|
| 34 | |
---|
| 35 | c outputs: |
---|
| 36 | real ment(nloc,na,na), qent(nloc,na,na) |
---|
| 37 | real uent(nloc,na,na), vent(nloc,na,na) |
---|
[1742] | 38 | real sigij(nloc,na,na), elij(nloc,na,na) |
---|
[879] | 39 | real supmax(nloc,na) ! Highest mixing fraction of mixed updraughts |
---|
| 40 | ! with the sign of (h-hp) |
---|
| 41 | real traent(nloc,nd,nd,ntra) |
---|
| 42 | real ments(nloc,nd,nd), qents(nloc,nd,nd) |
---|
| 43 | real hent(nloc,nd,nd) |
---|
[991] | 44 | integer nent(nloc,nd) |
---|
[879] | 45 | |
---|
| 46 | c local variables: |
---|
| 47 | integer i, j, k, il, im, jm |
---|
| 48 | integer num1, num2 |
---|
| 49 | real rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
| 50 | real alt, delp, delm |
---|
| 51 | real Qmixmax(nloc), Rmixmax(nloc), SQmRmax(nloc) |
---|
| 52 | real Qmixmin(nloc), Rmixmin(nloc), SQmRmin(nloc) |
---|
| 53 | real signhpmh(nloc) |
---|
[1494] | 54 | real Sx(nloc), Scrit2 |
---|
[879] | 55 | real smid(nloc), sjmin(nloc), sjmax(nloc) |
---|
| 56 | real Sbef(nloc), Sup(nloc), Smin(nloc) |
---|
| 57 | real asij(nloc), smax(nloc), scrit(nloc) |
---|
[1742] | 58 | real sij(nloc,nd,nd) |
---|
[879] | 59 | real csum(nloc,nd) |
---|
| 60 | real awat |
---|
| 61 | logical lwork(nloc) |
---|
| 62 | c |
---|
| 63 | REAL amxupcrit, df, ff |
---|
| 64 | INTEGER nstep |
---|
| 65 | C |
---|
| 66 | c -- Mixing probability distribution functions |
---|
| 67 | c |
---|
| 68 | real Qcoef1,Qcoef2,QFF,QFFF,Qmix,Rmix,Qmix1,Rmix1,Qmix2,Rmix2,F |
---|
| 69 | Qcoef1(F) = tanh(F/gammas) |
---|
| 70 | Qcoef2(F) = ( tanh(F/gammas) + gammas * |
---|
| 71 | $ log(cosh((1.- F)/gammas)/cosh(F/gammas))) |
---|
| 72 | QFF(F) = Max(Min(F,1.),0.) |
---|
| 73 | QFFF(F) = Min(QFF(F),scut) |
---|
| 74 | Qmix1(F) = ( tanh((QFF(F) - Fmax)/gammas)+Qcoef1max )/ |
---|
| 75 | $ Qcoef2max |
---|
| 76 | Rmix1(F) = ( gammas*log(cosh((QFF(F)-Fmax)/gammas)) |
---|
| 77 | 1 +QFF(F)*Qcoef1max ) / Qcoef2max |
---|
| 78 | Qmix2(F) = -Log(1.-QFFF(F))/scut |
---|
| 79 | Rmix2(F) = (QFFF(F)+(1.-QFF(F))*Log(1.-QFFF(F)))/scut |
---|
| 80 | Qmix(F) = qqa1*Qmix1(F) + qqa2*Qmix2(F) |
---|
| 81 | Rmix(F) = qqa1*Rmix1(F) + qqa2*Rmix2(F) |
---|
| 82 | C |
---|
[1573] | 83 | INTEGER, SAVE :: ifrst |
---|
[879] | 84 | DATA ifrst/0/ |
---|
[1519] | 85 | c$OMP THREADPRIVATE(ifrst) |
---|
[879] | 86 | C |
---|
| 87 | |
---|
| 88 | c===================================================================== |
---|
| 89 | c --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 90 | c===================================================================== |
---|
| 91 | c |
---|
| 92 | c -- Initialize mixing PDF coefficients |
---|
| 93 | IF (ifrst .EQ. 0) THEN |
---|
| 94 | ifrst = 1 |
---|
| 95 | Qcoef1max = Qcoef1(Fmax) |
---|
| 96 | Qcoef2max = Qcoef2(Fmax) |
---|
| 97 | c |
---|
| 98 | ENDIF |
---|
| 99 | c |
---|
| 100 | |
---|
| 101 | c ori do 360 i=1,ncum*nlp |
---|
| 102 | do 361 j=1,nl |
---|
| 103 | do 360 i=1,ncum |
---|
| 104 | nent(i,j)=0 |
---|
| 105 | c in convect3, m is computed in cv3_closure |
---|
| 106 | c ori m(i,1)=0.0 |
---|
| 107 | 360 continue |
---|
| 108 | 361 continue |
---|
| 109 | |
---|
| 110 | c ori do 400 k=1,nlp |
---|
| 111 | c ori do 390 j=1,nlp |
---|
| 112 | do 400 j=1,nl |
---|
| 113 | do 390 k=1,nl |
---|
| 114 | do 385 i=1,ncum |
---|
| 115 | qent(i,k,j)=rr(i,j) |
---|
| 116 | uent(i,k,j)=u(i,j) |
---|
| 117 | vent(i,k,j)=v(i,j) |
---|
| 118 | elij(i,k,j)=0.0 |
---|
| 119 | hent(i,k,j)=0.0 |
---|
[1650] | 120 | !AC! ment(i,k,j)=0.0 |
---|
| 121 | !AC! sij(i,k,j)=0.0 |
---|
[879] | 122 | 385 continue |
---|
| 123 | 390 continue |
---|
| 124 | 400 continue |
---|
| 125 | |
---|
[1650] | 126 | !AC! |
---|
| 127 | ment(1:ncum,1:nd,1:nd)=0.0 |
---|
| 128 | sij(1:ncum,1:nd,1:nd)=0.0 |
---|
| 129 | !AC! |
---|
| 130 | |
---|
[879] | 131 | do k=1,ntra |
---|
| 132 | do j=1,nd ! instead nlp |
---|
| 133 | do i=1,nd ! instead nlp |
---|
| 134 | do il=1,ncum |
---|
| 135 | traent(il,i,j,k)=tra(il,j,k) |
---|
| 136 | enddo |
---|
| 137 | enddo |
---|
| 138 | enddo |
---|
| 139 | enddo |
---|
| 140 | |
---|
| 141 | c===================================================================== |
---|
| 142 | c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 143 | c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 144 | c --- FRACTION (sij) |
---|
| 145 | c===================================================================== |
---|
| 146 | |
---|
| 147 | do 750 i=minorig+1, nl |
---|
| 148 | |
---|
| 149 | do 710 j=minorig,nl |
---|
| 150 | do 700 il=1,ncum |
---|
| 151 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
| 152 | : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
| 153 | |
---|
| 154 | rti=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 155 | bf2=1.+lv(il,j)*lv(il,j)*rs(il,j)/(rrv*t(il,j)*t(il,j)*cpd) |
---|
| 156 | anum=h(il,j)-hp(il,i)+(cpv-cpd)*t(il,j)*(rti-rr(il,j)) |
---|
| 157 | denom=h(il,i)-hp(il,i)+(cpd-cpv)*(rr(il,i)-rti)*t(il,j) |
---|
| 158 | dei=denom |
---|
| 159 | if(abs(dei).lt.0.01)dei=0.01 |
---|
| 160 | sij(il,i,j)=anum/dei |
---|
| 161 | sij(il,i,i)=1.0 |
---|
| 162 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
| 163 | altem=altem/bf2 |
---|
| 164 | cwat=clw(il,j)*(1.-ep(il,j)) |
---|
| 165 | stemp=sij(il,i,j) |
---|
| 166 | if((stemp.lt.0.0.or.stemp.gt.1.0.or.altem.gt.cwat) |
---|
| 167 | : .and.j.gt.i)then |
---|
| 168 | anum=anum-lv(il,j)*(rti-rs(il,j)-cwat*bf2) |
---|
| 169 | denom=denom+lv(il,j)*(rr(il,i)-rti) |
---|
| 170 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 171 | sij(il,i,j)=anum/denom |
---|
| 172 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
| 173 | altem=altem-(bf2-1.)*cwat |
---|
| 174 | end if |
---|
| 175 | if(sij(il,i,j).gt.0.0)then |
---|
| 176 | ccc ment(il,i,j)=m(il,i) |
---|
| 177 | ment(il,i,j)=1. |
---|
| 178 | elij(il,i,j)=altem |
---|
| 179 | elij(il,i,j)=amax1(0.0,elij(il,i,j)) |
---|
| 180 | nent(il,i)=nent(il,i)+1 |
---|
| 181 | endif |
---|
| 182 | |
---|
| 183 | sij(il,i,j)=amax1(0.0,sij(il,i,j)) |
---|
| 184 | sij(il,i,j)=amin1(1.0,sij(il,i,j)) |
---|
| 185 | endif ! new |
---|
| 186 | 700 continue |
---|
| 187 | 710 continue |
---|
| 188 | |
---|
| 189 | c |
---|
| 190 | c *** if no air can entrain at level i assume that updraft detrains *** |
---|
| 191 | c *** at that level and calculate detrained air flux and properties *** |
---|
| 192 | c |
---|
| 193 | |
---|
| 194 | c@ do 170 i=icb(il),inb(il) |
---|
| 195 | |
---|
| 196 | do 740 il=1,ncum |
---|
| 197 | if ((i.ge.icb(il)).and.(i.le.inb(il)) |
---|
| 198 | : .and.(nent(il,i).eq.0)) then |
---|
| 199 | c@ if(nent(il,i).eq.0)then |
---|
| 200 | ccc ment(il,i,i)=m(il,i) |
---|
| 201 | ment(il,i,i)=1. |
---|
| 202 | qent(il,i,i)=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 203 | uent(il,i,i)=unk(il) |
---|
| 204 | vent(il,i,i)=vnk(il) |
---|
| 205 | elij(il,i,i)=clw(il,i)*(1.-ep(il,i)) |
---|
| 206 | sij(il,i,i)=0.0 |
---|
| 207 | end if |
---|
| 208 | 740 continue |
---|
| 209 | 750 continue |
---|
| 210 | |
---|
| 211 | do j=1,ntra |
---|
| 212 | do i=minorig+1,nl |
---|
| 213 | do il=1,ncum |
---|
| 214 | if (i.ge.icb(il) .and. i.le.inb(il) |
---|
| 215 | : .and. nent(il,i).eq.0) then |
---|
| 216 | traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 217 | endif |
---|
| 218 | enddo |
---|
| 219 | enddo |
---|
| 220 | enddo |
---|
| 221 | |
---|
| 222 | do 100 j=minorig,nl |
---|
| 223 | do 101 i=minorig,nl |
---|
| 224 | do 102 il=1,ncum |
---|
| 225 | if ((j.ge.(icb(il)-1)).and.(j.le.inb(il)) |
---|
| 226 | : .and.(i.ge.icb(il)).and.(i.le.inb(il)))then |
---|
| 227 | sigij(il,i,j)=sij(il,i,j) |
---|
| 228 | endif |
---|
| 229 | 102 continue |
---|
| 230 | 101 continue |
---|
| 231 | 100 continue |
---|
| 232 | c@ enddo |
---|
| 233 | |
---|
| 234 | c@170 continue |
---|
| 235 | |
---|
| 236 | c===================================================================== |
---|
| 237 | c --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 238 | c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 239 | c===================================================================== |
---|
| 240 | |
---|
| 241 | call zilch(csum,nloc*nd) |
---|
| 242 | |
---|
| 243 | do il=1,ncum |
---|
| 244 | lwork(il) = .FALSE. |
---|
| 245 | enddo |
---|
| 246 | |
---|
[1494] | 247 | c--------------------------------------------------------------- |
---|
| 248 | DO 789 i=minorig+1,nl !Loop on origin level "i" |
---|
| 249 | c--------------------------------------------------------------- |
---|
[879] | 250 | |
---|
| 251 | num1=0 |
---|
| 252 | do il=1,ncum |
---|
| 253 | if ( i.ge.icb(il) .and. i.le.inb(il) ) num1=num1+1 |
---|
| 254 | enddo |
---|
| 255 | if (num1.le.0) goto 789 |
---|
| 256 | |
---|
[1494] | 257 | c |
---|
| 258 | cjyg1 Find maximum of SIJ for J>I, if any. |
---|
| 259 | c |
---|
| 260 | Sx(:) = 0. |
---|
| 261 | c |
---|
| 262 | DO il = 1,ncum |
---|
| 263 | IF ( i.ge.icb(il) .and. i.le.inb(il) ) THEN |
---|
| 264 | Signhpmh(il) = sign(1.,hp(il,i)-h(il,i)) |
---|
| 265 | Sbef(il) = max(0.,signhpmh(il)) |
---|
| 266 | ENDIF |
---|
| 267 | ENDDO |
---|
[879] | 268 | |
---|
[1494] | 269 | DO j = i+1,nl |
---|
| 270 | DO il = 1,ncum |
---|
| 271 | IF ( i.ge.icb(il) .and. i.le.inb(il) |
---|
| 272 | : .and. j.le.inb(il) ) THEN |
---|
| 273 | IF (Sbef(il) .LT. Sij(il,i,j)) THEN |
---|
| 274 | Sx(il) = max(Sij(il,i,j),Sx(il)) |
---|
| 275 | ENDIF |
---|
| 276 | Sbef(il) = Sij(il,i,j) |
---|
| 277 | ENDIF |
---|
| 278 | ENDDO |
---|
| 279 | ENDDO |
---|
| 280 | c |
---|
| 281 | |
---|
[879] | 282 | do 781 il=1,ncum |
---|
| 283 | if ( i.ge.icb(il) .and. i.le.inb(il) ) then |
---|
| 284 | lwork(il)=(nent(il,i).ne.0) |
---|
| 285 | qp=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 286 | anum=h(il,i)-hp(il,i)-lv(il,i)*(qp-rs(il,i)) |
---|
| 287 | : +(cpv-cpd)*t(il,i)*(qp-rr(il,i)) |
---|
| 288 | denom=h(il,i)-hp(il,i)+lv(il,i)*(rr(il,i)-qp) |
---|
| 289 | : +(cpd-cpv)*t(il,i)*(rr(il,i)-qp) |
---|
| 290 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 291 | scrit(il)=min(anum/denom,1.) |
---|
| 292 | alt=qp-rs(il,i)+scrit(il)*(rr(il,i)-qp) |
---|
| 293 | c |
---|
[1494] | 294 | cjyg1 Find new critical value Scrit2 |
---|
[879] | 295 | c such that : Sij > Scrit2 => mixed draught will detrain at J<I |
---|
| 296 | c Sij < Scrit2 => mixed draught will detrain at J>I |
---|
| 297 | c |
---|
[1494] | 298 | Scrit2 = min(Scrit(il),Sx(il))*max(0.,-signhpmh(il)) |
---|
[879] | 299 | : +Scrit(il)*max(0.,signhpmh(il)) |
---|
| 300 | c |
---|
| 301 | Scrit(il) = Scrit2 |
---|
| 302 | c |
---|
| 303 | cjyg Correction pour la nouvelle logique; la correction pour ALT |
---|
| 304 | c est un peu au hazard |
---|
| 305 | if(scrit(il).le.0.0)scrit(il)=0.0 |
---|
| 306 | if(alt.le.0.0) scrit(il)=1.0 |
---|
| 307 | C |
---|
| 308 | smax(il)=0.0 |
---|
| 309 | asij(il)=0.0 |
---|
| 310 | Sup(il)=0. ! upper S-value reached by descending draughts |
---|
| 311 | endif |
---|
| 312 | 781 continue |
---|
| 313 | |
---|
[1494] | 314 | c--------------------------------------------------------------- |
---|
| 315 | do 175 j=minorig,nl !Loop on destination level "j" |
---|
| 316 | c--------------------------------------------------------------- |
---|
[879] | 317 | |
---|
| 318 | num2=0 |
---|
| 319 | do il=1,ncum |
---|
| 320 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 321 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 322 | : .and. lwork(il) ) num2=num2+1 |
---|
| 323 | enddo |
---|
| 324 | if (num2.le.0) goto 175 |
---|
| 325 | |
---|
| 326 | c ----------------------------------------------- |
---|
| 327 | IF (j .GT. i) THEN |
---|
| 328 | c ----------------------------------------------- |
---|
| 329 | do 782 il=1,ncum |
---|
| 330 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 331 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 332 | : .and. lwork(il) ) then |
---|
| 333 | if(sij(il,i,j).gt.0.0)then |
---|
| 334 | Smid(il)=min(Sij(il,i,j),Scrit(il)) |
---|
| 335 | Sjmax(il)=Smid(il) |
---|
| 336 | Sjmin(il)=Smid(il) |
---|
| 337 | IF (Smid(il) .LT. Smin(il) .AND. |
---|
| 338 | 1 Sij(il,i,j+1) .LT. Smid(il)) THEN |
---|
| 339 | Smin(il)=Smid(il) |
---|
| 340 | Sjmax(il)=min( (Sij(il,i,j+1)+Sij(il,i,j))/2. , |
---|
| 341 | 1 Sij(il,i,j) , |
---|
| 342 | 1 Scrit(il) ) |
---|
| 343 | Sjmin(il)=max( (Sbef(il)+Sij(il,i,j))/2. , |
---|
| 344 | 1 Sij(il,i,j) ) |
---|
| 345 | Sjmin(il)=min(Sjmin(il),Scrit(il)) |
---|
| 346 | Sbef(il) = Sij(il,i,j) |
---|
| 347 | ENDIF |
---|
| 348 | endif |
---|
| 349 | endif |
---|
| 350 | 782 continue |
---|
| 351 | c ----------------------------------------------- |
---|
| 352 | ELSE IF (j .EQ. i) THEN |
---|
| 353 | c ----------------------------------------------- |
---|
| 354 | do 783 il=1,ncum |
---|
| 355 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 356 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 357 | : .and. lwork(il) ) then |
---|
| 358 | if(sij(il,i,j).gt.0.0)then |
---|
| 359 | Smid(il) = 1. |
---|
| 360 | Sjmin(il) = max((Sij(il,i,j-1)+Smid(il))/2.,Scrit(il)) |
---|
| 361 | 1 *max(0.,-signhpmh(il)) |
---|
| 362 | 1 +min((Sij(il,i,j+1)+Smid(il))/2.,Scrit(il)) |
---|
| 363 | 1 *max(0., signhpmh(il)) |
---|
| 364 | Sjmin(il) = max(Sjmin(il),Sup(il)) |
---|
| 365 | Sjmax(il) = 1. |
---|
| 366 | c |
---|
| 367 | c- preparation des variables Scrit, Smin et Sbef pour la partie j>i |
---|
| 368 | Scrit(il) = min(Sjmin(il),Sjmax(il),Scrit(il)) |
---|
| 369 | |
---|
| 370 | Smin(il) = 1. |
---|
| 371 | Sbef(il) = max(0.,signhpmh(il)) |
---|
| 372 | Supmax(il,i) = sign(Scrit(il),-signhpmh(il)) |
---|
| 373 | endif |
---|
| 374 | endif |
---|
| 375 | 783 continue |
---|
| 376 | c ----------------------------------------------- |
---|
| 377 | ELSE IF ( j .LT. i) THEN |
---|
| 378 | c ----------------------------------------------- |
---|
| 379 | do 784 il=1,ncum |
---|
| 380 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 381 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 382 | : .and. lwork(il) ) then |
---|
| 383 | if(sij(il,i,j).gt.0.0)then |
---|
| 384 | Smid(il)=max(Sij(il,i,j),Scrit(il)) |
---|
| 385 | Sjmax(il) = Smid(il) |
---|
| 386 | Sjmin(il) = Smid(il) |
---|
| 387 | IF (Smid(il) .GT. Smax(il) .AND. |
---|
| 388 | 1 Sij(il,i,j+1) .GT. Smid(il)) THEN |
---|
| 389 | Smax(il) = Smid(il) |
---|
| 390 | Sjmax(il) = max( (Sij(il,i,j+1)+Sij(il,i,j))/2. , |
---|
| 391 | 1 Sij(il,i,j) ) |
---|
| 392 | Sjmax(il) = max(Sjmax(il),Scrit(il)) |
---|
| 393 | Sjmin(il) = min( (Sbef(il)+Sij(il,i,j))/2. , |
---|
| 394 | 1 Sij(il,i,j) ) |
---|
| 395 | Sjmin(il) = max(Sjmin(il),Scrit(il)) |
---|
| 396 | Sbef(il) = Sij(il,i,j) |
---|
| 397 | ENDIF |
---|
| 398 | IF (abs(Sjmin(il)-Sjmax(il)) .GT. 1.e-10) Sup(il)= |
---|
| 399 | 1 max(Sjmin(il),Sjmax(il),Sup(il)) |
---|
| 400 | endif |
---|
| 401 | endif |
---|
| 402 | 784 continue |
---|
| 403 | c ----------------------------------------------- |
---|
| 404 | END IF |
---|
| 405 | c ----------------------------------------------- |
---|
| 406 | c |
---|
| 407 | c |
---|
| 408 | do il=1,ncum |
---|
| 409 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 410 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 411 | : .and. lwork(il) ) then |
---|
| 412 | if(sij(il,i,j).gt.0.0)then |
---|
[1050] | 413 | rti=qnk(il)-ep(il,i)*clw(il,i) |
---|
[879] | 414 | Qmixmax(il)=Qmix(Sjmax(il)) |
---|
| 415 | Qmixmin(il)=Qmix(Sjmin(il)) |
---|
| 416 | Rmixmax(il)=Rmix(Sjmax(il)) |
---|
| 417 | Rmixmin(il)=Rmix(Sjmin(il)) |
---|
| 418 | SQmRmax(il)= Sjmax(il)*Qmix(Sjmax(il))-Rmix(Sjmax(il)) |
---|
| 419 | SQmRmin(il)= Sjmin(il)*Qmix(Sjmin(il))-Rmix(Sjmin(il)) |
---|
| 420 | c |
---|
| 421 | Ment(il,i,j) = abs(Qmixmax(il)-Qmixmin(il))*Ment(il,i,j) |
---|
| 422 | c |
---|
| 423 | c Sigij(i,j) is the 'true' mixing fraction of mixture Ment(i,j) |
---|
| 424 | IF (abs(Qmixmax(il)-Qmixmin(il)) .GT. 1.e-10) THEN |
---|
| 425 | Sigij(il,i,j) = |
---|
| 426 | : (SQmRmax(il)-SQmRmin(il))/(Qmixmax(il)-Qmixmin(il)) |
---|
| 427 | ELSE |
---|
| 428 | Sigij(il,i,j) = 0. |
---|
| 429 | ENDIF |
---|
| 430 | c |
---|
| 431 | c -- Compute Qent, uent, vent according to the true mixing fraction |
---|
| 432 | Qent(il,i,j) = (1.-Sigij(il,i,j))*rti |
---|
| 433 | : + Sigij(il,i,j)*rr(il,i) |
---|
| 434 | uent(il,i,j) = (1.-Sigij(il,i,j))*unk(il) |
---|
| 435 | : + Sigij(il,i,j)*u(il,i) |
---|
| 436 | vent(il,i,j) = (1.-Sigij(il,i,j))*vnk(il) |
---|
| 437 | : + Sigij(il,i,j)*v(il,i) |
---|
| 438 | c |
---|
| 439 | c-- Compute liquid water static energy of mixed draughts |
---|
[1041] | 440 | c IF (j .GT. i) THEN |
---|
| 441 | c awat=elij(il,i,j)-(1.-ep(il,j))*clw(il,j) |
---|
| 442 | c awat=amax1(awat,0.0) |
---|
| 443 | c ELSE |
---|
| 444 | c awat = 0. |
---|
| 445 | c ENDIF |
---|
| 446 | c Hent(il,i,j) = (1.-Sigij(il,i,j))*HP(il,i) |
---|
| 447 | c : + Sigij(il,i,j)*H(il,i) |
---|
| 448 | c : + (LV(il,j)+(cpd-cpv)*t(il,j))*awat |
---|
| 449 | cIM 301008 beg |
---|
| 450 | Hent(il,i,j) = (1.-Sigij(il,i,j))*HP(il,i) |
---|
| 451 | : + Sigij(il,i,j)*H(il,i) |
---|
| 452 | |
---|
| 453 | Elij(il,i,j) = Qent(il,i,j)-rs(il,j) |
---|
| 454 | Elij(il,i,j) = Elij(il,i,j) |
---|
| 455 | : + ((h(il,j)-Hent(il,i,j))*rs(il,j)*LV(il,j) |
---|
| 456 | : / ((cpd*(1.-Qent(il,i,j))+Qent(il,i,j)*cpv) |
---|
| 457 | : * rrv*t(il,j)*t(il,j))) |
---|
| 458 | Elij(il,i,j) = Elij(il,i,j) |
---|
| 459 | : / (1.+LV(il,j)*LV(il,j)*rs(il,j) |
---|
| 460 | : / ((cpd*(1.-Qent(il,i,j))+Qent(il,i,j)*cpv) |
---|
| 461 | : * rrv*t(il,j)*t(il,j))) |
---|
| 462 | |
---|
| 463 | Elij(il,i,j) = max(elij(il,i,j),0.) |
---|
| 464 | |
---|
| 465 | Elij(il,i,j) = min(elij(il,i,j),Qent(il,i,j)) |
---|
| 466 | |
---|
[879] | 467 | IF (j .GT. i) THEN |
---|
| 468 | awat=elij(il,i,j)-(1.-ep(il,j))*clw(il,j) |
---|
| 469 | awat=amax1(awat,0.0) |
---|
| 470 | ELSE |
---|
| 471 | awat = 0. |
---|
| 472 | ENDIF |
---|
[1041] | 473 | |
---|
| 474 | c print *,h(il,j)-hent(il,i,j),LV(il,j)*rs(il,j)/(cpd*rrv*t(il,j)* |
---|
| 475 | c : t(il,j)) |
---|
| 476 | |
---|
| 477 | Hent(il,i,j) = Hent(il,i,j)+(LV(il,j)+(cpd-cpv)*t(il,j)) |
---|
| 478 | : * awat |
---|
| 479 | cIM 301008 end |
---|
[879] | 480 | c |
---|
| 481 | c print *,'mix : i,j,hent(il,i,j),sigij(il,i,j) ', |
---|
| 482 | c : i,j,hent(il,i,j),sigij(il,i,j) |
---|
| 483 | c |
---|
| 484 | c -- ASij is the integral of P(F) over the relevant F interval |
---|
| 485 | ASij(il) = ASij(il) |
---|
| 486 | 1 + abs(Qmixmax(il)*(1.-Sjmax(il))+Rmixmax(il) |
---|
| 487 | 1 -Qmixmin(il)*(1.-Sjmin(il))-Rmixmin(il)) |
---|
| 488 | c |
---|
| 489 | endif |
---|
| 490 | endif |
---|
| 491 | enddo |
---|
| 492 | do k=1,ntra |
---|
| 493 | do il=1,ncum |
---|
| 494 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
| 495 | : (j.ge.(icb(il)-1)).and.(j.le.inb(il)) |
---|
| 496 | : .and. lwork(il) ) then |
---|
| 497 | if(sij(il,i,j).gt.0.0)then |
---|
| 498 | traent(il,i,j,k)=sigij(il,i,j)*tra(il,i,k) |
---|
| 499 | : +(1.-sigij(il,i,j))*tra(il,nk(il),k) |
---|
| 500 | endif |
---|
| 501 | endif |
---|
| 502 | enddo |
---|
| 503 | enddo |
---|
| 504 | c |
---|
| 505 | c -- If I=J (detrainement and entrainement at the same level), then only the |
---|
| 506 | c -- adiabatic ascent part of the mixture is considered |
---|
| 507 | IF (I .EQ. J) THEN |
---|
| 508 | do il=1,ncum |
---|
| 509 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 510 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 511 | : .and. lwork(il) ) then |
---|
| 512 | if(sij(il,i,j).gt.0.0)then |
---|
| 513 | rti=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 514 | ccc Ment(il,i,i) = m(il,i)*abs(Qmixmax(il)*(1.-Sjmax(il)) |
---|
| 515 | Ment(il,i,i) = abs(Qmixmax(il)*(1.-Sjmax(il)) |
---|
| 516 | 1 +Rmixmax(il) |
---|
| 517 | 1 -Qmixmin(il)*(1.-Sjmin(il))-Rmixmin(il)) |
---|
| 518 | Qent(il,i,i) = rti |
---|
| 519 | uent(il,i,i) = unk(il) |
---|
| 520 | vent(il,i,i) = vnk(il) |
---|
| 521 | Hent(il,i,i) = hp(il,i) |
---|
| 522 | Elij(il,i,i) = clw(il,i)*(1.-ep(il,i)) |
---|
| 523 | Sigij(il,i,i) = 0. |
---|
| 524 | endif |
---|
| 525 | endif |
---|
| 526 | enddo |
---|
| 527 | do k=1,ntra |
---|
| 528 | do il=1,ncum |
---|
| 529 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
| 530 | : (j.ge.(icb(il)-1)).and.(j.le.inb(il)) |
---|
| 531 | : .and. lwork(il) ) then |
---|
| 532 | if(sij(il,i,j).gt.0.0)then |
---|
| 533 | traent(il,i,i,k)=tra(il,nk(il),k) |
---|
| 534 | endif |
---|
| 535 | endif |
---|
| 536 | enddo |
---|
| 537 | enddo |
---|
| 538 | c |
---|
| 539 | ENDIF |
---|
| 540 | c |
---|
| 541 | 175 continue |
---|
| 542 | |
---|
| 543 | do il=1,ncum |
---|
| 544 | if (i.ge.icb(il).and.i.le.inb(il).and.lwork(il)) then |
---|
| 545 | asij(il)=amax1(1.0e-16,asij(il)) |
---|
| 546 | asij(il)=1.0/asij(il) |
---|
| 547 | csum(il,i)=0.0 |
---|
| 548 | endif |
---|
| 549 | enddo |
---|
| 550 | |
---|
| 551 | do 180 j=minorig,nl |
---|
| 552 | do il=1,ncum |
---|
| 553 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 554 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 555 | ment(il,i,j)=ment(il,i,j)*asij(il) |
---|
| 556 | endif |
---|
| 557 | enddo |
---|
| 558 | 180 continue |
---|
| 559 | |
---|
| 560 | do 197 j=minorig,nl |
---|
| 561 | do il=1,ncum |
---|
| 562 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 563 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 564 | csum(il,i)=csum(il,i)+ment(il,i,j) |
---|
| 565 | endif |
---|
| 566 | enddo |
---|
| 567 | 197 continue |
---|
| 568 | |
---|
| 569 | do il=1,ncum |
---|
| 570 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 571 | : .and. csum(il,i).lt.1. ) then |
---|
| 572 | ccc : .and. csum(il,i).lt.m(il,i) ) then |
---|
| 573 | nent(il,i)=0 |
---|
| 574 | ccc ment(il,i,i)=m(il,i) |
---|
| 575 | ment(il,i,i)=1. |
---|
| 576 | qent(il,i,i)=qnk(il)-ep(il,i)*clw(il,i) |
---|
| 577 | uent(il,i,i)=unk(il) |
---|
| 578 | vent(il,i,i)=vnk(il) |
---|
| 579 | elij(il,i,i)=clw(il,i)*(1.-ep(il,i)) |
---|
| 580 | sij(il,i,i)=0.0 |
---|
| 581 | endif |
---|
| 582 | enddo ! il |
---|
| 583 | |
---|
| 584 | do j=1,ntra |
---|
| 585 | do il=1,ncum |
---|
| 586 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 587 | : .and. csum(il,i).lt.1. ) then |
---|
| 588 | ccc : .and. csum(il,i).lt.m(il,i) ) then |
---|
| 589 | traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 590 | endif |
---|
| 591 | enddo |
---|
| 592 | enddo |
---|
| 593 | c |
---|
| 594 | 789 continue |
---|
| 595 | c |
---|
| 596 | return |
---|
| 597 | end |
---|
| 598 | |
---|