| 1 | |
|---|
| 2 | ! $Id: cv3_routines.F90 2208 2015-02-13 12:42:13Z jescribano $ |
|---|
| 3 | |
|---|
| 4 | |
|---|
| 5 | |
|---|
| 6 | |
|---|
| 7 | SUBROUTINE cv3_param(nd, delt) |
|---|
| 8 | |
|---|
| 9 | use mod_phys_lmdz_para |
|---|
| 10 | IMPLICIT NONE |
|---|
| 11 | |
|---|
| 12 | !------------------------------------------------------------ |
|---|
| 13 | !Set parameters for convectL for iflag_con = 3 |
|---|
| 14 | !------------------------------------------------------------ |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | !*** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
|---|
| 18 | !*** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
|---|
| 19 | !*** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
|---|
| 20 | !*** EFFICIENCY IS ASSUMED TO BE UNITY *** |
|---|
| 21 | !*** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
|---|
| 22 | !*** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
|---|
| 23 | !*** OF CLOUD *** |
|---|
| 24 | |
|---|
| 25 | ![TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
|---|
| 26 | !*** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
|---|
| 27 | !*** APPROACH TO QUASI-EQUILIBRIUM *** |
|---|
| 28 | !*** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
|---|
| 29 | !*** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
|---|
| 30 | |
|---|
| 31 | !*** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
|---|
| 32 | !*** APPROACH TO QUASI-EQUILIBRIUM *** |
|---|
| 33 | !*** IT MUST BE LESS THAN 0 *** |
|---|
| 34 | |
|---|
| 35 | include "cv3param.h" |
|---|
| 36 | include "conema3.h" |
|---|
| 37 | |
|---|
| 38 | INTEGER nd |
|---|
| 39 | REAL delt ! timestep (seconds) |
|---|
| 40 | |
|---|
| 41 | |
|---|
| 42 | CHARACTER (LEN=20) :: modname = 'cv3_param' |
|---|
| 43 | CHARACTER (LEN=80) :: abort_message |
|---|
| 44 | |
|---|
| 45 | LOGICAL, SAVE :: first = .TRUE. |
|---|
| 46 | !$OMP THREADPRIVATE(first) |
|---|
| 47 | |
|---|
| 48 | !glb noff: integer limit for convection (nd-noff) |
|---|
| 49 | ! minorig: First level of convection |
|---|
| 50 | |
|---|
| 51 | ! -- limit levels for convection: |
|---|
| 52 | |
|---|
| 53 | noff = 1 |
|---|
| 54 | minorig = 1 |
|---|
| 55 | nl = nd - noff |
|---|
| 56 | nlp = nl + 1 |
|---|
| 57 | nlm = nl - 1 |
|---|
| 58 | |
|---|
| 59 | IF (first) THEN |
|---|
| 60 | |
|---|
| 61 | ! -- "microphysical" parameters: |
|---|
| 62 | sigdz = 0.01 |
|---|
| 63 | spfac = 0.15 |
|---|
| 64 | pbcrit = 150.0 |
|---|
| 65 | ptcrit = 500.0 |
|---|
| 66 | ! IM beg: ajout fis. reglage ep |
|---|
| 67 | flag_epkeorig = 1 |
|---|
| 68 | elcrit = 0.0003 |
|---|
| 69 | tlcrit = -55.0 |
|---|
| 70 | ! IM lu dans physiq.def via conf_phys.F90 epmax = 0.993 |
|---|
| 71 | |
|---|
| 72 | omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
|---|
| 73 | |
|---|
| 74 | ! -- misc: |
|---|
| 75 | |
|---|
| 76 | dtovsh = -0.2 ! dT for overshoot |
|---|
| 77 | dpbase = -40. ! definition cloud base (400m above LCL) |
|---|
| 78 | ! cc dttrig = 5. ! (loose) condition for triggering |
|---|
| 79 | dttrig = 10. ! (loose) condition for triggering |
|---|
| 80 | flag_wb = 1 |
|---|
| 81 | wbmax = 6. ! (m/s) adiab updraught speed at LFC (used in cv3p1_closure) |
|---|
| 82 | |
|---|
| 83 | ! -- rate of approach to quasi-equilibrium: |
|---|
| 84 | |
|---|
| 85 | dtcrit = -2.0 |
|---|
| 86 | tau = 8000. |
|---|
| 87 | |
|---|
| 88 | ! -- interface cloud parameterization: |
|---|
| 89 | |
|---|
| 90 | delta = 0.01 ! cld |
|---|
| 91 | |
|---|
| 92 | ! -- interface with boundary-layer (gust factor): (sb) |
|---|
| 93 | |
|---|
| 94 | betad = 10.0 ! original value (from convect 4.3) |
|---|
| 95 | |
|---|
| 96 | !$OMP MASTER |
|---|
| 97 | OPEN (99, FILE='conv_param.data', STATUS='old', FORM='formatted', ERR=9999) |
|---|
| 98 | READ (99, *, END=9998) dpbase |
|---|
| 99 | READ (99, *, END=9998) pbcrit |
|---|
| 100 | READ (99, *, END=9998) ptcrit |
|---|
| 101 | READ (99, *, END=9998) sigdz |
|---|
| 102 | READ (99, *, END=9998) spfac |
|---|
| 103 | READ (99, *, END=9998) tau |
|---|
| 104 | READ (99, *, END=9998) flag_wb |
|---|
| 105 | READ (99, *, END=9998) wbmax |
|---|
| 106 | 9998 CONTINUE |
|---|
| 107 | CLOSE (99) |
|---|
| 108 | 9999 CONTINUE |
|---|
| 109 | WRITE (*, *) 'dpbase=', dpbase |
|---|
| 110 | WRITE (*, *) 'pbcrit=', pbcrit |
|---|
| 111 | WRITE (*, *) 'ptcrit=', ptcrit |
|---|
| 112 | WRITE (*, *) 'sigdz=', sigdz |
|---|
| 113 | WRITE (*, *) 'spfac=', spfac |
|---|
| 114 | WRITE (*, *) 'tau=', tau |
|---|
| 115 | WRITE (*, *) 'flag_wb =', flag_wb |
|---|
| 116 | WRITE (*, *) 'wbmax =', wbmax |
|---|
| 117 | |
|---|
| 118 | ! IM Lecture du fichier ep_param.data |
|---|
| 119 | OPEN (79, FILE='ep_param.data', STATUS='old', FORM='formatted', ERR=7999) |
|---|
| 120 | READ (79, *, END=7998) flag_epkeorig |
|---|
| 121 | READ (79, *, END=7998) elcrit |
|---|
| 122 | READ (79, *, END=7998) tlcrit |
|---|
| 123 | 7998 CONTINUE |
|---|
| 124 | CLOSE (79) |
|---|
| 125 | 7999 CONTINUE |
|---|
| 126 | WRITE (*, *) 'flag_epKEorig', flag_epkeorig |
|---|
| 127 | WRITE (*, *) 'elcrit=', elcrit |
|---|
| 128 | WRITE (*, *) 'tlcrit=', tlcrit |
|---|
| 129 | ! IM end: ajout fis. reglage ep |
|---|
| 130 | !$OMP END MASTER |
|---|
| 131 | |
|---|
| 132 | CALL bcast(dpbase) |
|---|
| 133 | CALL bcast(pbcrit) |
|---|
| 134 | CALL bcast(ptcrit) |
|---|
| 135 | CALL bcast(sigdz) |
|---|
| 136 | CALL bcast(spfac) |
|---|
| 137 | CALL bcast(tau) |
|---|
| 138 | CALL bcast(flag_wb) |
|---|
| 139 | CALL bcast(wbmax) |
|---|
| 140 | |
|---|
| 141 | CALL bcast(flag_epkeorig) |
|---|
| 142 | CALL bcast(elcrit) |
|---|
| 143 | CALL bcast(tlcrit) |
|---|
| 144 | |
|---|
| 145 | first = .FALSE. |
|---|
| 146 | |
|---|
| 147 | END IF ! (first) |
|---|
| 148 | |
|---|
| 149 | beta = 1.0 - delt/tau |
|---|
| 150 | alpha1 = 1.5E-3 |
|---|
| 151 | !JYG Correction bug alpha |
|---|
| 152 | alpha1 = alpha1*1.5 |
|---|
| 153 | alpha = alpha1*delt/tau |
|---|
| 154 | !JYG Bug |
|---|
| 155 | ! cc increase alpha to compensate W decrease: |
|---|
| 156 | ! c alpha = alpha*1.5 |
|---|
| 157 | |
|---|
| 158 | RETURN |
|---|
| 159 | END SUBROUTINE cv3_param |
|---|
| 160 | |
|---|
| 161 | SUBROUTINE cv3_prelim(len, nd, ndp1, t, q, p, ph, & |
|---|
| 162 | lv, lf, cpn, tv, gz, h, hm, th) |
|---|
| 163 | IMPLICIT NONE |
|---|
| 164 | |
|---|
| 165 | ! ===================================================================== |
|---|
| 166 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
|---|
| 167 | ! "ori": from convect4.3 (vectorized) |
|---|
| 168 | ! "convect3": to be exactly consistent with convect3 |
|---|
| 169 | ! ===================================================================== |
|---|
| 170 | |
|---|
| 171 | ! inputs: |
|---|
| 172 | INTEGER len, nd, ndp1 |
|---|
| 173 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
|---|
| 174 | |
|---|
| 175 | ! outputs: |
|---|
| 176 | REAL lv(len, nd), lf(len, nd), cpn(len, nd), tv(len, nd) |
|---|
| 177 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
|---|
| 178 | REAL th(len, nd) |
|---|
| 179 | |
|---|
| 180 | ! local variables: |
|---|
| 181 | INTEGER k, i |
|---|
| 182 | REAL rdcp |
|---|
| 183 | REAL tvx, tvy ! convect3 |
|---|
| 184 | REAL cpx(len, nd) |
|---|
| 185 | |
|---|
| 186 | include "cvthermo.h" |
|---|
| 187 | include "cv3param.h" |
|---|
| 188 | |
|---|
| 189 | |
|---|
| 190 | ! ori do 110 k=1,nlp |
|---|
| 191 | ! abderr do 110 k=1,nl ! convect3 |
|---|
| 192 | DO k = 1, nlp |
|---|
| 193 | |
|---|
| 194 | DO i = 1, len |
|---|
| 195 | ! debug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
|---|
| 196 | lv(i, k) = lv0 - clmcpv*(t(i,k)-273.15) |
|---|
| 197 | lf(i, k) = lf0 - clmci*(t(i,k)-273.15) |
|---|
| 198 | cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
|---|
| 199 | cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
|---|
| 200 | ! ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
|---|
| 201 | tv(i, k) = t(i, k)*(1.0+q(i,k)/eps-q(i,k)) |
|---|
| 202 | rdcp = (rrd*(1.-q(i,k))+q(i,k)*rrv)/cpn(i, k) |
|---|
| 203 | th(i, k) = t(i, k)*(1000.0/p(i,k))**rdcp |
|---|
| 204 | END DO |
|---|
| 205 | END DO |
|---|
| 206 | |
|---|
| 207 | ! gz = phi at the full levels (same as p). |
|---|
| 208 | |
|---|
| 209 | DO i = 1, len |
|---|
| 210 | gz(i, 1) = 0.0 |
|---|
| 211 | END DO |
|---|
| 212 | ! ori do 140 k=2,nlp |
|---|
| 213 | DO k = 2, nl ! convect3 |
|---|
| 214 | DO i = 1, len |
|---|
| 215 | tvx = t(i, k)*(1.+q(i,k)/eps-q(i,k)) !convect3 |
|---|
| 216 | tvy = t(i, k-1)*(1.+q(i,k-1)/eps-q(i,k-1)) !convect3 |
|---|
| 217 | gz(i, k) = gz(i, k-1) + 0.5*rrd*(tvx+tvy)* & !convect3 |
|---|
| 218 | (p(i,k-1)-p(i,k))/ph(i, k) !convect3 |
|---|
| 219 | |
|---|
| 220 | ! c print *,' gz(',k,')',gz(i,k),' tvx',tvx,' tvy ',tvy |
|---|
| 221 | |
|---|
| 222 | ! ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
|---|
| 223 | ! ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
|---|
| 224 | END DO |
|---|
| 225 | END DO |
|---|
| 226 | |
|---|
| 227 | ! h = phi + cpT (dry static energy). |
|---|
| 228 | ! hm = phi + cp(T-Tbase)+Lq |
|---|
| 229 | |
|---|
| 230 | ! ori do 170 k=1,nlp |
|---|
| 231 | DO k = 1, nl ! convect3 |
|---|
| 232 | DO i = 1, len |
|---|
| 233 | h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
|---|
| 234 | hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
|---|
| 235 | END DO |
|---|
| 236 | END DO |
|---|
| 237 | |
|---|
| 238 | RETURN |
|---|
| 239 | END SUBROUTINE cv3_prelim |
|---|
| 240 | |
|---|
| 241 | SUBROUTINE cv3_feed(len, nd, ok_conserv_q, & |
|---|
| 242 | t, q, u, v, p, ph, hm, gz, & |
|---|
| 243 | p1feed, p2feed, wght, & |
|---|
| 244 | wghti, tnk, thnk, qnk, qsnk, unk, vnk, & |
|---|
| 245 | cpnk, hnk, nk, icb, icbmax, iflag, gznk, plcl) |
|---|
| 246 | IMPLICIT NONE |
|---|
| 247 | |
|---|
| 248 | ! ================================================================ |
|---|
| 249 | ! Purpose: CONVECTIVE FEED |
|---|
| 250 | |
|---|
| 251 | ! Main differences with cv_feed: |
|---|
| 252 | ! - ph added in input |
|---|
| 253 | ! - here, nk(i)=minorig |
|---|
| 254 | ! - icb defined differently (plcl compared with ph instead of p) |
|---|
| 255 | |
|---|
| 256 | ! Main differences with convect3: |
|---|
| 257 | ! - we do not compute dplcldt and dplcldr of CLIFT anymore |
|---|
| 258 | ! - values iflag different (but tests identical) |
|---|
| 259 | ! - A,B explicitely defined (!...) |
|---|
| 260 | ! ================================================================ |
|---|
| 261 | |
|---|
| 262 | include "cv3param.h" |
|---|
| 263 | include "cvthermo.h" |
|---|
| 264 | |
|---|
| 265 | !inputs: |
|---|
| 266 | INTEGER len, nd |
|---|
| 267 | LOGICAL ok_conserv_q |
|---|
| 268 | REAL t(len, nd), q(len, nd), p(len, nd) |
|---|
| 269 | REAL u(len, nd), v(len, nd) |
|---|
| 270 | REAL hm(len, nd), gz(len, nd) |
|---|
| 271 | REAL ph(len, nd+1) |
|---|
| 272 | REAL p1feed(len) |
|---|
| 273 | ! , wght(len) |
|---|
| 274 | REAL wght(nd) |
|---|
| 275 | !input-output |
|---|
| 276 | REAL p2feed(len) |
|---|
| 277 | !outputs: |
|---|
| 278 | INTEGER iflag(len), nk(len), icb(len), icbmax |
|---|
| 279 | ! real wghti(len) |
|---|
| 280 | REAL wghti(len, nd) |
|---|
| 281 | REAL tnk(len), thnk(len), qnk(len), qsnk(len) |
|---|
| 282 | REAL unk(len), vnk(len) |
|---|
| 283 | REAL cpnk(len), hnk(len), gznk(len) |
|---|
| 284 | REAL plcl(len) |
|---|
| 285 | |
|---|
| 286 | !local variables: |
|---|
| 287 | INTEGER i, k, iter, niter |
|---|
| 288 | INTEGER ihmin(len) |
|---|
| 289 | REAL work(len) |
|---|
| 290 | REAL pup(len), plo(len), pfeed(len) |
|---|
| 291 | REAL plclup(len), plcllo(len), plclfeed(len) |
|---|
| 292 | REAL pfeedmin(len) |
|---|
| 293 | REAL posit(len) |
|---|
| 294 | LOGICAL nocond(len) |
|---|
| 295 | |
|---|
| 296 | !jyg20140217< |
|---|
| 297 | INTEGER iostat |
|---|
| 298 | LOGICAL, SAVE :: first |
|---|
| 299 | LOGICAL, SAVE :: ok_new_feed |
|---|
| 300 | REAL, SAVE :: dp_lcl_feed |
|---|
| 301 | !$OMP THREADPRIVATE (first,ok_new_feed,dp_lcl_feed) |
|---|
| 302 | DATA first/.TRUE./ |
|---|
| 303 | DATA dp_lcl_feed/2./ |
|---|
| 304 | |
|---|
| 305 | IF (first) THEN |
|---|
| 306 | !$OMP MASTER |
|---|
| 307 | ok_new_feed = ok_conserv_q |
|---|
| 308 | OPEN (98, FILE='cv3feed_param.data', STATUS='old', FORM='formatted', IOSTAT=iostat) |
|---|
| 309 | IF (iostat==0) THEN |
|---|
| 310 | READ (98, *, END=998) ok_new_feed |
|---|
| 311 | 998 CONTINUE |
|---|
| 312 | CLOSE (98) |
|---|
| 313 | END IF |
|---|
| 314 | PRINT *, ' ok_new_feed: ', ok_new_feed |
|---|
| 315 | first = .FALSE. |
|---|
| 316 | !$OMP END MASTER |
|---|
| 317 | END IF |
|---|
| 318 | !jyg> |
|---|
| 319 | ! ------------------------------------------------------------------- |
|---|
| 320 | ! --- Origin level of ascending parcels for convect3: |
|---|
| 321 | ! ------------------------------------------------------------------- |
|---|
| 322 | |
|---|
| 323 | DO i = 1, len |
|---|
| 324 | nk(i) = minorig |
|---|
| 325 | gznk(i) = gz(i, nk(i)) |
|---|
| 326 | END DO |
|---|
| 327 | |
|---|
| 328 | ! ------------------------------------------------------------------- |
|---|
| 329 | ! --- Adjust feeding layer thickness so that lifting up to the top of |
|---|
| 330 | ! --- the feeding layer does not induce condensation (i.e. so that |
|---|
| 331 | ! --- plcl < p2feed). |
|---|
| 332 | ! --- Method : iterative secant method. |
|---|
| 333 | ! ------------------------------------------------------------------- |
|---|
| 334 | |
|---|
| 335 | ! 1- First bracketing of the solution : ph(nk+1), p2feed |
|---|
| 336 | |
|---|
| 337 | ! 1.a- LCL associated with p2feed |
|---|
| 338 | DO i = 1, len |
|---|
| 339 | pup(i) = p2feed(i) |
|---|
| 340 | END DO |
|---|
| 341 | CALL cv3_vertmix(len, nd, iflag, p1feed, pup, p, ph, & |
|---|
| 342 | t, q, u, v, wght, & |
|---|
| 343 | wghti, nk, tnk, thnk, qnk, qsnk, unk, vnk, plclup) |
|---|
| 344 | ! 1.b- LCL associated with ph(nk+1) |
|---|
| 345 | DO i = 1, len |
|---|
| 346 | plo(i) = ph(i, nk(i)+1) |
|---|
| 347 | END DO |
|---|
| 348 | CALL cv3_vertmix(len, nd, iflag, p1feed, plo, p, ph, & |
|---|
| 349 | t, q, u, v, wght, & |
|---|
| 350 | wghti, nk, tnk, thnk, qnk, qsnk, unk, vnk, plcllo) |
|---|
| 351 | ! 2- Iterations |
|---|
| 352 | niter = 5 |
|---|
| 353 | DO iter = 1, niter |
|---|
| 354 | DO i = 1, len |
|---|
| 355 | plcllo(i) = min(plo(i), plcllo(i)) |
|---|
| 356 | plclup(i) = max(pup(i), plclup(i)) |
|---|
| 357 | nocond(i) = plclup(i) <= pup(i) |
|---|
| 358 | END DO |
|---|
| 359 | DO i = 1, len |
|---|
| 360 | IF (nocond(i)) THEN |
|---|
| 361 | pfeed(i) = pup(i) |
|---|
| 362 | ELSE |
|---|
| 363 | !JYG20140217< |
|---|
| 364 | IF (ok_new_feed) THEN |
|---|
| 365 | pfeed(i) = (pup(i)*(plo(i)-plcllo(i)-dp_lcl_feed)+ & |
|---|
| 366 | plo(i)*(plclup(i)-pup(i)+dp_lcl_feed))/ & |
|---|
| 367 | (plo(i)-plcllo(i)+plclup(i)-pup(i)) |
|---|
| 368 | ELSE |
|---|
| 369 | pfeed(i) = (pup(i)*(plo(i)-plcllo(i))+ & |
|---|
| 370 | plo(i)*(plclup(i)-pup(i)))/ & |
|---|
| 371 | (plo(i)-plcllo(i)+plclup(i)-pup(i)) |
|---|
| 372 | END IF |
|---|
| 373 | !JYG> |
|---|
| 374 | END IF |
|---|
| 375 | END DO |
|---|
| 376 | !jyg20140217< |
|---|
| 377 | ! For the last iteration, make sure that the top of the feeding layer |
|---|
| 378 | ! and LCL are not in the same layer: |
|---|
| 379 | IF (ok_new_feed) THEN |
|---|
| 380 | IF (iter==niter) THEN |
|---|
| 381 | DO k = minorig, nd |
|---|
| 382 | DO i = 1, len |
|---|
| 383 | IF (ph(i,k)>=plclfeed(i)) pfeedmin(i) = ph(i, k) |
|---|
| 384 | END DO |
|---|
| 385 | END DO |
|---|
| 386 | DO i = 1, len |
|---|
| 387 | pfeed(i) = max(pfeedmin(i), pfeed(i)) |
|---|
| 388 | END DO |
|---|
| 389 | END IF |
|---|
| 390 | END IF |
|---|
| 391 | !jyg> |
|---|
| 392 | |
|---|
| 393 | CALL cv3_vertmix(len, nd, iflag, p1feed, pfeed, p, ph, & |
|---|
| 394 | t, q, u, v, wght, & |
|---|
| 395 | wghti, nk, tnk, thnk, qnk, qsnk, unk, vnk, plclfeed) |
|---|
| 396 | !jyg20140217< |
|---|
| 397 | IF (ok_new_feed) THEN |
|---|
| 398 | DO i = 1, len |
|---|
| 399 | posit(i) = (sign(1.,plclfeed(i)-pfeed(i)+dp_lcl_feed)+1.)*0.5 |
|---|
| 400 | IF (plclfeed(i)-pfeed(i)+dp_lcl_feed==0.) posit(i) = 1. |
|---|
| 401 | END DO |
|---|
| 402 | ELSE |
|---|
| 403 | DO i = 1, len |
|---|
| 404 | posit(i) = (sign(1.,plclfeed(i)-pfeed(i))+1.)*0.5 |
|---|
| 405 | IF (plclfeed(i)==pfeed(i)) posit(i) = 1. |
|---|
| 406 | END DO |
|---|
| 407 | END IF |
|---|
| 408 | !jyg> |
|---|
| 409 | DO i = 1, len |
|---|
| 410 | ! - posit = 1 when lcl is below top of feeding layer (plclfeed>pfeed) |
|---|
| 411 | ! - => pup=pfeed |
|---|
| 412 | ! - posit = 0 when lcl is above top of feeding layer (plclfeed<pfeed) |
|---|
| 413 | ! - => plo=pfeed |
|---|
| 414 | pup(i) = posit(i)*pfeed(i) + (1.-posit(i))*pup(i) |
|---|
| 415 | plo(i) = (1.-posit(i))*pfeed(i) + posit(i)*plo(i) |
|---|
| 416 | plclup(i) = posit(i)*plclfeed(i) + (1.-posit(i))*plclup(i) |
|---|
| 417 | plcllo(i) = (1.-posit(i))*plclfeed(i) + posit(i)*plcllo(i) |
|---|
| 418 | END DO |
|---|
| 419 | END DO ! iter |
|---|
| 420 | DO i = 1, len |
|---|
| 421 | p2feed(i) = pfeed(i) |
|---|
| 422 | plcl(i) = plclfeed(i) |
|---|
| 423 | END DO |
|---|
| 424 | |
|---|
| 425 | DO i = 1, len |
|---|
| 426 | cpnk(i) = cpd*(1.0-qnk(i)) + cpv*qnk(i) |
|---|
| 427 | hnk(i) = gz(i, 1) + cpnk(i)*tnk(i) |
|---|
| 428 | END DO |
|---|
| 429 | |
|---|
| 430 | ! ------------------------------------------------------------------- |
|---|
| 431 | ! --- Check whether parcel level temperature and specific humidity |
|---|
| 432 | ! --- are reasonable |
|---|
| 433 | ! ------------------------------------------------------------------- |
|---|
| 434 | DO i = 1, len |
|---|
| 435 | IF (((tnk(i)<250.0) .OR. (qnk(i)<=0.0)) .AND. (iflag(i)==0)) iflag(i) = 7 |
|---|
| 436 | END DO |
|---|
| 437 | |
|---|
| 438 | ! ------------------------------------------------------------------- |
|---|
| 439 | ! --- Calculate first level above lcl (=icb) |
|---|
| 440 | ! ------------------------------------------------------------------- |
|---|
| 441 | |
|---|
| 442 | !@ do 270 i=1,len |
|---|
| 443 | !@ icb(i)=nlm |
|---|
| 444 | !@ 270 continue |
|---|
| 445 | !@c |
|---|
| 446 | !@ do 290 k=minorig,nl |
|---|
| 447 | !@ do 280 i=1,len |
|---|
| 448 | !@ if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
|---|
| 449 | !@ & icb(i)=min(icb(i),k) |
|---|
| 450 | !@ 280 continue |
|---|
| 451 | !@ 290 continue |
|---|
| 452 | !@c |
|---|
| 453 | !@ do 300 i=1,len |
|---|
| 454 | !@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
|---|
| 455 | !@ 300 continue |
|---|
| 456 | |
|---|
| 457 | DO i = 1, len |
|---|
| 458 | icb(i) = nlm |
|---|
| 459 | END DO |
|---|
| 460 | |
|---|
| 461 | ! la modification consiste a comparer plcl a ph et non a p: |
|---|
| 462 | ! icb est defini par : ph(icb)<plcl<ph(icb-1) |
|---|
| 463 | !@ do 290 k=minorig,nl |
|---|
| 464 | DO k = 3, nl - 1 ! modif pour que icb soit sup/egal a 2 |
|---|
| 465 | DO i = 1, len |
|---|
| 466 | IF (ph(i,k)<plcl(i)) icb(i) = min(icb(i), k) |
|---|
| 467 | END DO |
|---|
| 468 | END DO |
|---|
| 469 | |
|---|
| 470 | |
|---|
| 471 | ! print*,'icb dans cv3_feed ' |
|---|
| 472 | ! write(*,'(64i2)') icb(2:len-1) |
|---|
| 473 | ! call dump2d(64,43,'plcl dans cv3_feed ',plcl(2:len-1)) |
|---|
| 474 | |
|---|
| 475 | DO i = 1, len |
|---|
| 476 | !@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
|---|
| 477 | IF ((icb(i)==nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
|---|
| 478 | END DO |
|---|
| 479 | |
|---|
| 480 | DO i = 1, len |
|---|
| 481 | icb(i) = icb(i) - 1 ! icb sup ou egal a 2 |
|---|
| 482 | END DO |
|---|
| 483 | |
|---|
| 484 | ! Compute icbmax. |
|---|
| 485 | |
|---|
| 486 | icbmax = 2 |
|---|
| 487 | DO i = 1, len |
|---|
| 488 | !! icbmax=max(icbmax,icb(i)) |
|---|
| 489 | IF (iflag(i)<7) icbmax = max(icbmax, icb(i)) ! sb Jun7th02 |
|---|
| 490 | END DO |
|---|
| 491 | |
|---|
| 492 | RETURN |
|---|
| 493 | END SUBROUTINE cv3_feed |
|---|
| 494 | |
|---|
| 495 | SUBROUTINE cv3_undilute1(len, nd, t, qs, gz, plcl, p, icb, tnk, qnk, gznk, & |
|---|
| 496 | tp, tvp, clw, icbs) |
|---|
| 497 | IMPLICIT NONE |
|---|
| 498 | |
|---|
| 499 | ! ---------------------------------------------------------------- |
|---|
| 500 | ! Equivalent de TLIFT entre NK et ICB+1 inclus |
|---|
| 501 | |
|---|
| 502 | ! Differences with convect4: |
|---|
| 503 | ! - specify plcl in input |
|---|
| 504 | ! - icbs is the first level above LCL (may differ from icb) |
|---|
| 505 | ! - in the iterations, used x(icbs) instead x(icb) |
|---|
| 506 | ! - many minor differences in the iterations |
|---|
| 507 | ! - tvp is computed in only one time |
|---|
| 508 | ! - icbs: first level above Plcl (IMIN de TLIFT) in output |
|---|
| 509 | ! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
|---|
| 510 | ! ---------------------------------------------------------------- |
|---|
| 511 | |
|---|
| 512 | include "cvthermo.h" |
|---|
| 513 | include "cv3param.h" |
|---|
| 514 | |
|---|
| 515 | ! inputs: |
|---|
| 516 | INTEGER len, nd |
|---|
| 517 | INTEGER icb(len) |
|---|
| 518 | REAL t(len, nd), qs(len, nd), gz(len, nd) |
|---|
| 519 | REAL tnk(len), qnk(len), gznk(len) |
|---|
| 520 | REAL p(len, nd) |
|---|
| 521 | REAL plcl(len) ! convect3 |
|---|
| 522 | |
|---|
| 523 | ! outputs: |
|---|
| 524 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
|---|
| 525 | |
|---|
| 526 | ! local variables: |
|---|
| 527 | INTEGER i, k |
|---|
| 528 | INTEGER icb1(len), icbs(len), icbsmax2 ! convect3 |
|---|
| 529 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
|---|
| 530 | REAL ah0(len), cpp(len) |
|---|
| 531 | REAL ticb(len), gzicb(len) |
|---|
| 532 | REAL qsicb(len) ! convect3 |
|---|
| 533 | REAL cpinv(len) ! convect3 |
|---|
| 534 | |
|---|
| 535 | ! ------------------------------------------------------------------- |
|---|
| 536 | ! --- Calculates the lifted parcel virtual temperature at nk, |
|---|
| 537 | ! --- the actual temperature, and the adiabatic |
|---|
| 538 | ! --- liquid water content. The procedure is to solve the equation. |
|---|
| 539 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
|---|
| 540 | ! ------------------------------------------------------------------- |
|---|
| 541 | |
|---|
| 542 | |
|---|
| 543 | ! *** Calculate certain parcel quantities, including static energy *** |
|---|
| 544 | |
|---|
| 545 | DO i = 1, len |
|---|
| 546 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)-273.15)) + gznk(i) |
|---|
| 547 | cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
|---|
| 548 | cpinv(i) = 1./cpp(i) |
|---|
| 549 | END DO |
|---|
| 550 | |
|---|
| 551 | ! *** Calculate lifted parcel quantities below cloud base *** |
|---|
| 552 | |
|---|
| 553 | DO i = 1, len !convect3 |
|---|
| 554 | icb1(i) = max(icb(i), 2) !convect3 |
|---|
| 555 | icb1(i) = min(icb(i), nl) !convect3 |
|---|
| 556 | ! if icb is below LCL, start loop at ICB+1: |
|---|
| 557 | ! (icbs est le premier niveau au-dessus du LCL) |
|---|
| 558 | icbs(i) = icb1(i) !convect3 |
|---|
| 559 | IF (plcl(i)<p(i,icb1(i))) THEN |
|---|
| 560 | icbs(i) = min(icbs(i)+1, nl) !convect3 |
|---|
| 561 | END IF |
|---|
| 562 | END DO !convect3 |
|---|
| 563 | |
|---|
| 564 | DO i = 1, len !convect3 |
|---|
| 565 | ticb(i) = t(i, icbs(i)) !convect3 |
|---|
| 566 | gzicb(i) = gz(i, icbs(i)) !convect3 |
|---|
| 567 | qsicb(i) = qs(i, icbs(i)) !convect3 |
|---|
| 568 | END DO !convect3 |
|---|
| 569 | |
|---|
| 570 | |
|---|
| 571 | ! Re-compute icbsmax (icbsmax2): !convect3 |
|---|
| 572 | ! !convect3 |
|---|
| 573 | icbsmax2 = 2 !convect3 |
|---|
| 574 | DO i = 1, len !convect3 |
|---|
| 575 | icbsmax2 = max(icbsmax2, icbs(i)) !convect3 |
|---|
| 576 | END DO !convect3 |
|---|
| 577 | |
|---|
| 578 | ! initialization outputs: |
|---|
| 579 | |
|---|
| 580 | DO k = 1, icbsmax2 ! convect3 |
|---|
| 581 | DO i = 1, len ! convect3 |
|---|
| 582 | tp(i, k) = 0.0 ! convect3 |
|---|
| 583 | tvp(i, k) = 0.0 ! convect3 |
|---|
| 584 | clw(i, k) = 0.0 ! convect3 |
|---|
| 585 | END DO ! convect3 |
|---|
| 586 | END DO ! convect3 |
|---|
| 587 | |
|---|
| 588 | ! tp and tvp below cloud base: |
|---|
| 589 | |
|---|
| 590 | DO k = minorig, icbsmax2 - 1 |
|---|
| 591 | DO i = 1, len |
|---|
| 592 | tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))*cpinv(i) |
|---|
| 593 | tvp(i, k) = tp(i, k)*(1.+qnk(i)/eps-qnk(i)) !whole thing (convect3) |
|---|
| 594 | END DO |
|---|
| 595 | END DO |
|---|
| 596 | |
|---|
| 597 | ! *** Find lifted parcel quantities above cloud base *** |
|---|
| 598 | |
|---|
| 599 | DO i = 1, len |
|---|
| 600 | tg = ticb(i) |
|---|
| 601 | ! ori qg=qs(i,icb(i)) |
|---|
| 602 | qg = qsicb(i) ! convect3 |
|---|
| 603 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
|---|
| 604 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
|---|
| 605 | |
|---|
| 606 | ! First iteration. |
|---|
| 607 | |
|---|
| 608 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
|---|
| 609 | s = cpd*(1.-qnk(i)) + cl*qnk(i) + & ! convect3 |
|---|
| 610 | alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
|---|
| 611 | s = 1./s |
|---|
| 612 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
|---|
| 613 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
|---|
| 614 | tg = tg + s*(ah0(i)-ahg) |
|---|
| 615 | ! ori tg=max(tg,35.0) |
|---|
| 616 | ! debug tc=tg-t0 |
|---|
| 617 | tc = tg - 273.15 |
|---|
| 618 | denom = 243.5 + tc |
|---|
| 619 | denom = max(denom, 1.0) ! convect3 |
|---|
| 620 | ! ori if(tc.ge.0.0)then |
|---|
| 621 | es = 6.112*exp(17.67*tc/denom) |
|---|
| 622 | ! ori else |
|---|
| 623 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
|---|
| 624 | ! ori endif |
|---|
| 625 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
|---|
| 626 | qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
|---|
| 627 | |
|---|
| 628 | ! Second iteration. |
|---|
| 629 | |
|---|
| 630 | |
|---|
| 631 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
|---|
| 632 | ! ori s=1./s |
|---|
| 633 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
|---|
| 634 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
|---|
| 635 | tg = tg + s*(ah0(i)-ahg) |
|---|
| 636 | ! ori tg=max(tg,35.0) |
|---|
| 637 | ! debug tc=tg-t0 |
|---|
| 638 | tc = tg - 273.15 |
|---|
| 639 | denom = 243.5 + tc |
|---|
| 640 | denom = max(denom, 1.0) ! convect3 |
|---|
| 641 | ! ori if(tc.ge.0.0)then |
|---|
| 642 | es = 6.112*exp(17.67*tc/denom) |
|---|
| 643 | ! ori else |
|---|
| 644 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
|---|
| 645 | ! ori end if |
|---|
| 646 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
|---|
| 647 | qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
|---|
| 648 | |
|---|
| 649 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
|---|
| 650 | |
|---|
| 651 | ! ori c approximation here: |
|---|
| 652 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
|---|
| 653 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
|---|
| 654 | |
|---|
| 655 | ! convect3: no approximation: |
|---|
| 656 | tp(i, icbs(i)) = (ah0(i)-gz(i,icbs(i))-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
|---|
| 657 | |
|---|
| 658 | ! ori clw(i,icb(i))=qnk(i)-qg |
|---|
| 659 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
|---|
| 660 | clw(i, icbs(i)) = qnk(i) - qg |
|---|
| 661 | clw(i, icbs(i)) = max(0.0, clw(i,icbs(i))) |
|---|
| 662 | |
|---|
| 663 | rg = qg/(1.-qnk(i)) |
|---|
| 664 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
|---|
| 665 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
|---|
| 666 | tvp(i, icbs(i)) = tp(i, icbs(i))*(1.+qg/eps-qnk(i)) !whole thing |
|---|
| 667 | |
|---|
| 668 | END DO |
|---|
| 669 | |
|---|
| 670 | ! ori do 380 k=minorig,icbsmax2 |
|---|
| 671 | ! ori do 370 i=1,len |
|---|
| 672 | ! ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
|---|
| 673 | ! ori 370 continue |
|---|
| 674 | ! ori 380 continue |
|---|
| 675 | |
|---|
| 676 | |
|---|
| 677 | ! -- The following is only for convect3: |
|---|
| 678 | |
|---|
| 679 | ! * icbs is the first level above the LCL: |
|---|
| 680 | ! if plcl<p(icb), then icbs=icb+1 |
|---|
| 681 | ! if plcl>p(icb), then icbs=icb |
|---|
| 682 | |
|---|
| 683 | ! * the routine above computes tvp from minorig to icbs (included). |
|---|
| 684 | |
|---|
| 685 | ! * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
|---|
| 686 | ! must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
|---|
| 687 | |
|---|
| 688 | ! * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
|---|
| 689 | ! (tvp at other levels will be computed in cv3_undilute2.F) |
|---|
| 690 | |
|---|
| 691 | |
|---|
| 692 | DO i = 1, len |
|---|
| 693 | ticb(i) = t(i, icb(i)+1) |
|---|
| 694 | gzicb(i) = gz(i, icb(i)+1) |
|---|
| 695 | qsicb(i) = qs(i, icb(i)+1) |
|---|
| 696 | END DO |
|---|
| 697 | |
|---|
| 698 | DO i = 1, len |
|---|
| 699 | tg = ticb(i) |
|---|
| 700 | qg = qsicb(i) ! convect3 |
|---|
| 701 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
|---|
| 702 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
|---|
| 703 | |
|---|
| 704 | ! First iteration. |
|---|
| 705 | |
|---|
| 706 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
|---|
| 707 | s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
|---|
| 708 | +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
|---|
| 709 | s = 1./s |
|---|
| 710 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
|---|
| 711 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
|---|
| 712 | tg = tg + s*(ah0(i)-ahg) |
|---|
| 713 | ! ori tg=max(tg,35.0) |
|---|
| 714 | ! debug tc=tg-t0 |
|---|
| 715 | tc = tg - 273.15 |
|---|
| 716 | denom = 243.5 + tc |
|---|
| 717 | denom = max(denom, 1.0) ! convect3 |
|---|
| 718 | ! ori if(tc.ge.0.0)then |
|---|
| 719 | es = 6.112*exp(17.67*tc/denom) |
|---|
| 720 | ! ori else |
|---|
| 721 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
|---|
| 722 | ! ori endif |
|---|
| 723 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
|---|
| 724 | qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
|---|
| 725 | |
|---|
| 726 | ! Second iteration. |
|---|
| 727 | |
|---|
| 728 | |
|---|
| 729 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
|---|
| 730 | ! ori s=1./s |
|---|
| 731 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
|---|
| 732 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
|---|
| 733 | tg = tg + s*(ah0(i)-ahg) |
|---|
| 734 | ! ori tg=max(tg,35.0) |
|---|
| 735 | ! debug tc=tg-t0 |
|---|
| 736 | tc = tg - 273.15 |
|---|
| 737 | denom = 243.5 + tc |
|---|
| 738 | denom = max(denom, 1.0) ! convect3 |
|---|
| 739 | ! ori if(tc.ge.0.0)then |
|---|
| 740 | es = 6.112*exp(17.67*tc/denom) |
|---|
| 741 | ! ori else |
|---|
| 742 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
|---|
| 743 | ! ori end if |
|---|
| 744 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
|---|
| 745 | qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
|---|
| 746 | |
|---|
| 747 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
|---|
| 748 | |
|---|
| 749 | ! ori c approximation here: |
|---|
| 750 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
|---|
| 751 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
|---|
| 752 | |
|---|
| 753 | ! convect3: no approximation: |
|---|
| 754 | tp(i, icb(i)+1) = (ah0(i)-gz(i,icb(i)+1)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
|---|
| 755 | |
|---|
| 756 | ! ori clw(i,icb(i))=qnk(i)-qg |
|---|
| 757 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
|---|
| 758 | clw(i, icb(i)+1) = qnk(i) - qg |
|---|
| 759 | clw(i, icb(i)+1) = max(0.0, clw(i,icb(i)+1)) |
|---|
| 760 | |
|---|
| 761 | rg = qg/(1.-qnk(i)) |
|---|
| 762 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
|---|
| 763 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
|---|
| 764 | tvp(i, icb(i)+1) = tp(i, icb(i)+1)*(1.+qg/eps-qnk(i)) !whole thing |
|---|
| 765 | |
|---|
| 766 | END DO |
|---|
| 767 | |
|---|
| 768 | RETURN |
|---|
| 769 | END SUBROUTINE cv3_undilute1 |
|---|
| 770 | |
|---|
| 771 | SUBROUTINE cv3_trigger(len, nd, icb, plcl, p, th, tv, tvp, thnk, & |
|---|
| 772 | pbase, buoybase, iflag, sig, w0) |
|---|
| 773 | IMPLICIT NONE |
|---|
| 774 | |
|---|
| 775 | ! ------------------------------------------------------------------- |
|---|
| 776 | ! --- TRIGGERING |
|---|
| 777 | |
|---|
| 778 | ! - computes the cloud base |
|---|
| 779 | ! - triggering (crude in this version) |
|---|
| 780 | ! - relaxation of sig and w0 when no convection |
|---|
| 781 | |
|---|
| 782 | ! Caution1: if no convection, we set iflag=4 |
|---|
| 783 | ! (it used to be 0 in convect3) |
|---|
| 784 | |
|---|
| 785 | ! Caution2: at this stage, tvp (and thus buoy) are know up |
|---|
| 786 | ! through icb only! |
|---|
| 787 | ! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
|---|
| 788 | ! ------------------------------------------------------------------- |
|---|
| 789 | |
|---|
| 790 | include "cv3param.h" |
|---|
| 791 | |
|---|
| 792 | ! input: |
|---|
| 793 | INTEGER len, nd |
|---|
| 794 | INTEGER icb(len) |
|---|
| 795 | REAL plcl(len), p(len, nd) |
|---|
| 796 | REAL th(len, nd), tv(len, nd), tvp(len, nd) |
|---|
| 797 | REAL thnk(len) |
|---|
| 798 | |
|---|
| 799 | ! output: |
|---|
| 800 | REAL pbase(len), buoybase(len) |
|---|
| 801 | |
|---|
| 802 | ! input AND output: |
|---|
| 803 | INTEGER iflag(len) |
|---|
| 804 | REAL sig(len, nd), w0(len, nd) |
|---|
| 805 | |
|---|
| 806 | ! local variables: |
|---|
| 807 | INTEGER i, k |
|---|
| 808 | REAL tvpbase, tvbase, tdif, ath, ath1 |
|---|
| 809 | |
|---|
| 810 | |
|---|
| 811 | ! *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
|---|
| 812 | |
|---|
| 813 | DO i = 1, len |
|---|
| 814 | pbase(i) = plcl(i) + dpbase |
|---|
| 815 | tvpbase = tvp(i, icb(i)) *(pbase(i)-p(i,icb(i)+1))/(p(i,icb(i))-p(i,icb(i)+1)) + & |
|---|
| 816 | tvp(i, icb(i)+1)*(p(i,icb(i))-pbase(i)) /(p(i,icb(i))-p(i,icb(i)+1)) |
|---|
| 817 | tvbase = tv(i, icb(i)) *(pbase(i)-p(i,icb(i)+1))/(p(i,icb(i))-p(i,icb(i)+1)) + & |
|---|
| 818 | tv(i, icb(i)+1)*(p(i,icb(i))-pbase(i)) /(p(i,icb(i))-p(i,icb(i)+1)) |
|---|
| 819 | buoybase(i) = tvpbase - tvbase |
|---|
| 820 | END DO |
|---|
| 821 | |
|---|
| 822 | |
|---|
| 823 | ! *** make sure that column is dry adiabatic between the surface *** |
|---|
| 824 | ! *** and cloud base, and that lifted air is positively buoyant *** |
|---|
| 825 | ! *** at cloud base *** |
|---|
| 826 | ! *** if not, return to calling program after resetting *** |
|---|
| 827 | ! *** sig(i) and w0(i) *** |
|---|
| 828 | |
|---|
| 829 | |
|---|
| 830 | ! oct3 do 200 i=1,len |
|---|
| 831 | ! oct3 |
|---|
| 832 | ! oct3 tdif = buoybase(i) |
|---|
| 833 | ! oct3 ath1 = th(i,1) |
|---|
| 834 | ! oct3 ath = th(i,icb(i)-1) - dttrig |
|---|
| 835 | ! oct3 |
|---|
| 836 | ! oct3 if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
|---|
| 837 | ! oct3 do 60 k=1,nl |
|---|
| 838 | ! oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
|---|
| 839 | ! oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
|---|
| 840 | ! oct3 w0(i,k) = beta*w0(i,k) |
|---|
| 841 | ! oct3 60 continue |
|---|
| 842 | ! oct3 iflag(i)=4 ! pour version vectorisee |
|---|
| 843 | ! oct3c convect3 iflag(i)=0 |
|---|
| 844 | ! oct3cccc return |
|---|
| 845 | ! oct3 endif |
|---|
| 846 | ! oct3 |
|---|
| 847 | ! oct3200 continue |
|---|
| 848 | |
|---|
| 849 | ! -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
|---|
| 850 | |
|---|
| 851 | DO k = 1, nl |
|---|
| 852 | DO i = 1, len |
|---|
| 853 | |
|---|
| 854 | tdif = buoybase(i) |
|---|
| 855 | ath1 = thnk(i) |
|---|
| 856 | ath = th(i, icb(i)-1) - dttrig |
|---|
| 857 | |
|---|
| 858 | IF (tdif<dtcrit .OR. ath>ath1) THEN |
|---|
| 859 | sig(i, k) = beta*sig(i, k) - 2.*alpha*tdif*tdif |
|---|
| 860 | sig(i, k) = amax1(sig(i,k), 0.0) |
|---|
| 861 | w0(i, k) = beta*w0(i, k) |
|---|
| 862 | iflag(i) = 4 ! pour version vectorisee |
|---|
| 863 | ! convect3 iflag(i)=0 |
|---|
| 864 | END IF |
|---|
| 865 | |
|---|
| 866 | END DO |
|---|
| 867 | END DO |
|---|
| 868 | |
|---|
| 869 | ! fin oct3 -- |
|---|
| 870 | |
|---|
| 871 | RETURN |
|---|
| 872 | END SUBROUTINE cv3_trigger |
|---|
| 873 | |
|---|
| 874 | SUBROUTINE cv3_compress(len, nloc, ncum, nd, ntra, & |
|---|
| 875 | iflag1, nk1, icb1, icbs1, & |
|---|
| 876 | plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, & |
|---|
| 877 | t1, q1, qs1, u1, v1, gz1, th1, & |
|---|
| 878 | tra1, & |
|---|
| 879 | h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, & |
|---|
| 880 | sig1, w01, & |
|---|
| 881 | iflag, nk, icb, icbs, & |
|---|
| 882 | plcl, tnk, qnk, gznk, pbase, buoybase, & |
|---|
| 883 | t, q, qs, u, v, gz, th, & |
|---|
| 884 | tra, & |
|---|
| 885 | h, lv, cpn, p, ph, tv, tp, tvp, clw, & |
|---|
| 886 | sig, w0) |
|---|
| 887 | IMPLICIT NONE |
|---|
| 888 | |
|---|
| 889 | include "cv3param.h" |
|---|
| 890 | include 'iniprint.h' |
|---|
| 891 | |
|---|
| 892 | !inputs: |
|---|
| 893 | INTEGER len, ncum, nd, ntra, nloc |
|---|
| 894 | INTEGER iflag1(len), nk1(len), icb1(len), icbs1(len) |
|---|
| 895 | REAL plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
|---|
| 896 | REAL pbase1(len), buoybase1(len) |
|---|
| 897 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
|---|
| 898 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
|---|
| 899 | REAL p1(len, nd), ph1(len, nd+1), tv1(len, nd), tp1(len, nd) |
|---|
| 900 | REAL tvp1(len, nd), clw1(len, nd) |
|---|
| 901 | REAL th1(len, nd) |
|---|
| 902 | REAL sig1(len, nd), w01(len, nd) |
|---|
| 903 | REAL tra1(len, nd, ntra) |
|---|
| 904 | |
|---|
| 905 | !outputs: |
|---|
| 906 | ! en fait, on a nloc=len pour l'instant (cf cv_driver) |
|---|
| 907 | INTEGER iflag(nloc), nk(nloc), icb(nloc), icbs(nloc) |
|---|
| 908 | REAL plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
|---|
| 909 | REAL pbase(nloc), buoybase(nloc) |
|---|
| 910 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
|---|
| 911 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
|---|
| 912 | REAL p(nloc, nd), ph(nloc, nd+1), tv(nloc, nd), tp(nloc, nd) |
|---|
| 913 | REAL tvp(nloc, nd), clw(nloc, nd) |
|---|
| 914 | REAL th(nloc, nd) |
|---|
| 915 | REAL sig(nloc, nd), w0(nloc, nd) |
|---|
| 916 | REAL tra(nloc, nd, ntra) |
|---|
| 917 | |
|---|
| 918 | !local variables: |
|---|
| 919 | INTEGER i, k, nn, j |
|---|
| 920 | |
|---|
| 921 | CHARACTER (LEN=20) :: modname = 'cv3_compress' |
|---|
| 922 | CHARACTER (LEN=80) :: abort_message |
|---|
| 923 | |
|---|
| 924 | DO k = 1, nl + 1 |
|---|
| 925 | nn = 0 |
|---|
| 926 | DO i = 1, len |
|---|
| 927 | IF (iflag1(i)==0) THEN |
|---|
| 928 | nn = nn + 1 |
|---|
| 929 | sig(nn, k) = sig1(i, k) |
|---|
| 930 | w0(nn, k) = w01(i, k) |
|---|
| 931 | t(nn, k) = t1(i, k) |
|---|
| 932 | q(nn, k) = q1(i, k) |
|---|
| 933 | qs(nn, k) = qs1(i, k) |
|---|
| 934 | u(nn, k) = u1(i, k) |
|---|
| 935 | v(nn, k) = v1(i, k) |
|---|
| 936 | gz(nn, k) = gz1(i, k) |
|---|
| 937 | h(nn, k) = h1(i, k) |
|---|
| 938 | lv(nn, k) = lv1(i, k) |
|---|
| 939 | cpn(nn, k) = cpn1(i, k) |
|---|
| 940 | p(nn, k) = p1(i, k) |
|---|
| 941 | ph(nn, k) = ph1(i, k) |
|---|
| 942 | tv(nn, k) = tv1(i, k) |
|---|
| 943 | tp(nn, k) = tp1(i, k) |
|---|
| 944 | tvp(nn, k) = tvp1(i, k) |
|---|
| 945 | clw(nn, k) = clw1(i, k) |
|---|
| 946 | th(nn, k) = th1(i, k) |
|---|
| 947 | END IF |
|---|
| 948 | END DO |
|---|
| 949 | END DO |
|---|
| 950 | |
|---|
| 951 | !AC! do 121 j=1,ntra |
|---|
| 952 | !AC!ccccc do 111 k=1,nl+1 |
|---|
| 953 | !AC! do 111 k=1,nd |
|---|
| 954 | !AC! nn=0 |
|---|
| 955 | !AC! do 101 i=1,len |
|---|
| 956 | !AC! if(iflag1(i).eq.0)then |
|---|
| 957 | !AC! nn=nn+1 |
|---|
| 958 | !AC! tra(nn,k,j)=tra1(i,k,j) |
|---|
| 959 | !AC! endif |
|---|
| 960 | !AC! 101 continue |
|---|
| 961 | !AC! 111 continue |
|---|
| 962 | !AC! 121 continue |
|---|
| 963 | |
|---|
| 964 | IF (nn/=ncum) THEN |
|---|
| 965 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
|---|
| 966 | abort_message = '' |
|---|
| 967 | CALL abort_gcm(modname, abort_message, 1) |
|---|
| 968 | END IF |
|---|
| 969 | |
|---|
| 970 | nn = 0 |
|---|
| 971 | DO i = 1, len |
|---|
| 972 | IF (iflag1(i)==0) THEN |
|---|
| 973 | nn = nn + 1 |
|---|
| 974 | pbase(nn) = pbase1(i) |
|---|
| 975 | buoybase(nn) = buoybase1(i) |
|---|
| 976 | plcl(nn) = plcl1(i) |
|---|
| 977 | tnk(nn) = tnk1(i) |
|---|
| 978 | qnk(nn) = qnk1(i) |
|---|
| 979 | gznk(nn) = gznk1(i) |
|---|
| 980 | nk(nn) = nk1(i) |
|---|
| 981 | icb(nn) = icb1(i) |
|---|
| 982 | icbs(nn) = icbs1(i) |
|---|
| 983 | iflag(nn) = iflag1(i) |
|---|
| 984 | END IF |
|---|
| 985 | END DO |
|---|
| 986 | |
|---|
| 987 | RETURN |
|---|
| 988 | END SUBROUTINE cv3_compress |
|---|
| 989 | |
|---|
| 990 | SUBROUTINE icefrac(t, clw, qi, nl, len) |
|---|
| 991 | IMPLICIT NONE |
|---|
| 992 | |
|---|
| 993 | |
|---|
| 994 | !JAM-------------------------------------------------------------------- |
|---|
| 995 | ! Calcul de la quantité d'eau sous forme de glace |
|---|
| 996 | ! -------------------------------------------------------------------- |
|---|
| 997 | INTEGER nl, len |
|---|
| 998 | REAL qi(len, nl) |
|---|
| 999 | REAL t(len, nl), clw(len, nl) |
|---|
| 1000 | REAL fracg |
|---|
| 1001 | INTEGER k, i |
|---|
| 1002 | |
|---|
| 1003 | DO k = 3, nl |
|---|
| 1004 | DO i = 1, len |
|---|
| 1005 | IF (t(i,k)>263.15) THEN |
|---|
| 1006 | qi(i, k) = 0. |
|---|
| 1007 | ELSE |
|---|
| 1008 | IF (t(i,k)<243.15) THEN |
|---|
| 1009 | qi(i, k) = clw(i, k) |
|---|
| 1010 | ELSE |
|---|
| 1011 | fracg = (263.15-t(i,k))/20 |
|---|
| 1012 | qi(i, k) = clw(i, k)*fracg |
|---|
| 1013 | END IF |
|---|
| 1014 | END IF |
|---|
| 1015 | ! print*,t(i,k),qi(i,k),'temp,testglace' |
|---|
| 1016 | END DO |
|---|
| 1017 | END DO |
|---|
| 1018 | |
|---|
| 1019 | RETURN |
|---|
| 1020 | |
|---|
| 1021 | END SUBROUTINE icefrac |
|---|
| 1022 | |
|---|
| 1023 | SUBROUTINE cv3_undilute2(nloc, ncum, nd, icb, icbs, nk, & |
|---|
| 1024 | tnk, qnk, gznk, hnk, t, q, qs, gz, & |
|---|
| 1025 | p, h, tv, lv, lf, pbase, buoybase, plcl, & |
|---|
| 1026 | inb, tp, tvp, clw, hp, ep, sigp, buoy, frac) |
|---|
| 1027 | IMPLICIT NONE |
|---|
| 1028 | |
|---|
| 1029 | ! --------------------------------------------------------------------- |
|---|
| 1030 | ! Purpose: |
|---|
| 1031 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
|---|
| 1032 | ! & |
|---|
| 1033 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
|---|
| 1034 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
|---|
| 1035 | ! & |
|---|
| 1036 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
|---|
| 1037 | |
|---|
| 1038 | ! Main differences convect3/convect4: |
|---|
| 1039 | ! - icbs (input) is the first level above LCL (may differ from icb) |
|---|
| 1040 | ! - many minor differences in the iterations |
|---|
| 1041 | ! - condensed water not removed from tvp in convect3 |
|---|
| 1042 | ! - vertical profile of buoyancy computed here (use of buoybase) |
|---|
| 1043 | ! - the determination of inb is different |
|---|
| 1044 | ! - no inb1, only inb in output |
|---|
| 1045 | ! --------------------------------------------------------------------- |
|---|
| 1046 | |
|---|
| 1047 | include "cvthermo.h" |
|---|
| 1048 | include "cv3param.h" |
|---|
| 1049 | include "conema3.h" |
|---|
| 1050 | include "cvflag.h" |
|---|
| 1051 | |
|---|
| 1052 | !inputs: |
|---|
| 1053 | INTEGER ncum, nd, nloc, j |
|---|
| 1054 | INTEGER icb(nloc), icbs(nloc), nk(nloc) |
|---|
| 1055 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
|---|
| 1056 | REAL p(nloc, nd) |
|---|
| 1057 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
|---|
| 1058 | REAL hnk(nloc) |
|---|
| 1059 | REAL lv(nloc, nd), lf(nloc, nd), tv(nloc, nd), h(nloc, nd) |
|---|
| 1060 | REAL pbase(nloc), buoybase(nloc), plcl(nloc) |
|---|
| 1061 | |
|---|
| 1062 | !outputs: |
|---|
| 1063 | INTEGER inb(nloc) |
|---|
| 1064 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
|---|
| 1065 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
|---|
| 1066 | REAL buoy(nloc, nd) |
|---|
| 1067 | |
|---|
| 1068 | !local variables: |
|---|
| 1069 | INTEGER i, k |
|---|
| 1070 | REAL tg, qg, ahg, alv, alf, s, tc, es, esi, denom, rg, tca, elacrit |
|---|
| 1071 | REAL als |
|---|
| 1072 | REAL qsat_new, snew, qi(nloc, nd) |
|---|
| 1073 | REAL by, defrac, pden, tbis |
|---|
| 1074 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
|---|
| 1075 | REAL frac(nloc, nd) |
|---|
| 1076 | LOGICAL lcape(nloc) |
|---|
| 1077 | INTEGER iposit(nloc) |
|---|
| 1078 | REAL fracg |
|---|
| 1079 | |
|---|
| 1080 | ! ===================================================================== |
|---|
| 1081 | ! --- SOME INITIALIZATIONS |
|---|
| 1082 | ! ===================================================================== |
|---|
| 1083 | |
|---|
| 1084 | DO k = 1, nl |
|---|
| 1085 | DO i = 1, ncum |
|---|
| 1086 | ep(i, k) = 0.0 |
|---|
| 1087 | sigp(i, k) = spfac |
|---|
| 1088 | qi(i, k) = 0. |
|---|
| 1089 | END DO |
|---|
| 1090 | END DO |
|---|
| 1091 | |
|---|
| 1092 | ! ===================================================================== |
|---|
| 1093 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
|---|
| 1094 | ! ===================================================================== |
|---|
| 1095 | |
|---|
| 1096 | ! --- The procedure is to solve the equation. |
|---|
| 1097 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
|---|
| 1098 | |
|---|
| 1099 | ! *** Calculate certain parcel quantities, including static energy *** |
|---|
| 1100 | |
|---|
| 1101 | |
|---|
| 1102 | DO i = 1, ncum |
|---|
| 1103 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i)+ & |
|---|
| 1104 | ! debug qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
|---|
| 1105 | qnk(i)*(lv0-clmcpv*(tnk(i)-273.15)) + gznk(i) |
|---|
| 1106 | END DO |
|---|
| 1107 | |
|---|
| 1108 | |
|---|
| 1109 | ! *** Find lifted parcel quantities above cloud base *** |
|---|
| 1110 | |
|---|
| 1111 | |
|---|
| 1112 | DO k = minorig + 1, nl |
|---|
| 1113 | DO i = 1, ncum |
|---|
| 1114 | ! ori if(k.ge.(icb(i)+1))then |
|---|
| 1115 | IF (k>=(icbs(i)+1)) THEN ! convect3 |
|---|
| 1116 | tg = t(i, k) |
|---|
| 1117 | qg = qs(i, k) |
|---|
| 1118 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
|---|
| 1119 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
|---|
| 1120 | |
|---|
| 1121 | ! First iteration. |
|---|
| 1122 | |
|---|
| 1123 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
|---|
| 1124 | s = cpd*(1.-qnk(i)) + cl*qnk(i) + & ! convect3 |
|---|
| 1125 | alv*alv*qg/(rrv*t(i,k)*t(i,k)) ! convect3 |
|---|
| 1126 | s = 1./s |
|---|
| 1127 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
|---|
| 1128 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
|---|
| 1129 | tg = tg + s*(ah0(i)-ahg) |
|---|
| 1130 | ! ori tg=max(tg,35.0) |
|---|
| 1131 | ! debug tc=tg-t0 |
|---|
| 1132 | tc = tg - 273.15 |
|---|
| 1133 | denom = 243.5 + tc |
|---|
| 1134 | denom = max(denom, 1.0) ! convect3 |
|---|
| 1135 | ! ori if(tc.ge.0.0)then |
|---|
| 1136 | es = 6.112*exp(17.67*tc/denom) |
|---|
| 1137 | ! ori else |
|---|
| 1138 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
|---|
| 1139 | ! ori endif |
|---|
| 1140 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
|---|
| 1141 | |
|---|
| 1142 | ! Second iteration. |
|---|
| 1143 | |
|---|
| 1144 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
|---|
| 1145 | ! ori s=1./s |
|---|
| 1146 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
|---|
| 1147 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
|---|
| 1148 | tg = tg + s*(ah0(i)-ahg) |
|---|
| 1149 | ! ori tg=max(tg,35.0) |
|---|
| 1150 | ! debug tc=tg-t0 |
|---|
| 1151 | tc = tg - 273.15 |
|---|
| 1152 | denom = 243.5 + tc |
|---|
| 1153 | denom = max(denom, 1.0) ! convect3 |
|---|
| 1154 | ! ori if(tc.ge.0.0)then |
|---|
| 1155 | es = 6.112*exp(17.67*tc/denom) |
|---|
| 1156 | ! ori else |
|---|
| 1157 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
|---|
| 1158 | ! ori endif |
|---|
| 1159 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
|---|
| 1160 | |
|---|
| 1161 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
|---|
| 1162 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
|---|
| 1163 | ! print*,'cpd dans convect2 ',cpd |
|---|
| 1164 | ! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
|---|
| 1165 | ! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
|---|
| 1166 | |
|---|
| 1167 | ! ori c approximation here: |
|---|
| 1168 | ! ori tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
|---|
| 1169 | |
|---|
| 1170 | ! convect3: no approximation: |
|---|
| 1171 | IF (cvflag_ice) THEN |
|---|
| 1172 | tp(i, k) = max(0., (ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i))) |
|---|
| 1173 | ELSE |
|---|
| 1174 | tp(i, k) = (ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
|---|
| 1175 | END IF |
|---|
| 1176 | |
|---|
| 1177 | clw(i, k) = qnk(i) - qg |
|---|
| 1178 | clw(i, k) = max(0.0, clw(i,k)) |
|---|
| 1179 | rg = qg/(1.-qnk(i)) |
|---|
| 1180 | ! ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
|---|
| 1181 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg): |
|---|
| 1182 | tvp(i, k) = tp(i, k)*(1.+qg/eps-qnk(i)) ! whole thing |
|---|
| 1183 | IF (cvflag_ice) THEN |
|---|
| 1184 | IF (clw(i,k)<1.E-11) THEN |
|---|
| 1185 | tp(i, k) = tv(i, k) |
|---|
| 1186 | tvp(i, k) = tv(i, k) |
|---|
| 1187 | END IF |
|---|
| 1188 | END IF |
|---|
| 1189 | END IF |
|---|
| 1190 | |
|---|
| 1191 | IF (cvflag_ice) THEN |
|---|
| 1192 | !CR:attention boucle en klon dans Icefrac |
|---|
| 1193 | ! Call Icefrac(t,clw,qi,nl,nloc) |
|---|
| 1194 | IF (t(i,k)>263.15) THEN |
|---|
| 1195 | qi(i, k) = 0. |
|---|
| 1196 | ELSE |
|---|
| 1197 | IF (t(i,k)<243.15) THEN |
|---|
| 1198 | qi(i, k) = clw(i, k) |
|---|
| 1199 | ELSE |
|---|
| 1200 | fracg = (263.15-t(i,k))/20 |
|---|
| 1201 | qi(i, k) = clw(i, k)*fracg |
|---|
| 1202 | END IF |
|---|
| 1203 | END IF |
|---|
| 1204 | !CR: fin test |
|---|
| 1205 | IF (t(i,k)<263.15) THEN |
|---|
| 1206 | !CR: on commente les calculs d'Arnaud car division par zero |
|---|
| 1207 | ! nouveau calcul propose par JYG |
|---|
| 1208 | ! alv=lv0-clmcpv*(t(i,k)-273.15) |
|---|
| 1209 | ! alf=lf0-clmci*(t(i,k)-273.15) |
|---|
| 1210 | ! tg=tp(i,k) |
|---|
| 1211 | ! tc=tp(i,k)-273.15 |
|---|
| 1212 | ! denom=243.5+tc |
|---|
| 1213 | ! do j=1,3 |
|---|
| 1214 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 1215 | ! il faudra que esi vienne en argument de la convection |
|---|
| 1216 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 1217 | ! tbis=t(i,k)+(tp(i,k)-tg) |
|---|
| 1218 | ! esi=exp(23.33086-(6111.72784/tbis) + & |
|---|
| 1219 | ! 0.15215*log(tbis)) |
|---|
| 1220 | ! qsat_new=eps*esi/(p(i,k)-esi*(1.-eps)) |
|---|
| 1221 | ! snew=cpd*(1.-qnk(i))+cl*qnk(i)+alv*alv*qsat_new/ & |
|---|
| 1222 | ! (rrv*tbis*tbis) |
|---|
| 1223 | ! snew=1./snew |
|---|
| 1224 | ! print*,esi,qsat_new,snew,'esi,qsat,snew' |
|---|
| 1225 | ! tp(i,k)=tg+(alf*qi(i,k)+alv*qg*(1.-(esi/es)))*snew |
|---|
| 1226 | ! print*,k,tp(i,k),qnk(i),'avec glace' |
|---|
| 1227 | ! print*,'tpNAN',tg,alf,qi(i,k),alv,qg,esi,es,snew |
|---|
| 1228 | ! enddo |
|---|
| 1229 | |
|---|
| 1230 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
|---|
| 1231 | alf = lf0 + clmci*(t(i,k)-273.15) |
|---|
| 1232 | als = alf + alv |
|---|
| 1233 | tg = tp(i, k) |
|---|
| 1234 | tp(i, k) = t(i, k) |
|---|
| 1235 | DO j = 1, 3 |
|---|
| 1236 | esi = exp(23.33086-(6111.72784/tp(i,k))+0.15215*log(tp(i,k))) |
|---|
| 1237 | qsat_new = eps*esi/(p(i,k)-esi*(1.-eps)) |
|---|
| 1238 | snew = cpd*(1.-qnk(i)) + cl*qnk(i) + alv*als*qsat_new/ & |
|---|
| 1239 | (rrv*tp(i,k)*tp(i,k)) |
|---|
| 1240 | snew = 1./snew |
|---|
| 1241 | ! c print*,esi,qsat_new,snew,'esi,qsat,snew' |
|---|
| 1242 | tp(i, k) = tp(i, k) + & |
|---|
| 1243 | ((cpd*(1.-qnk(i))+cl*qnk(i))*(tg-tp(i,k)) + & |
|---|
| 1244 | alv*(qg-qsat_new)+alf*qi(i,k))*snew |
|---|
| 1245 | ! print*,k,tp(i,k),qsat_new,qnk(i),qi(i,k), & |
|---|
| 1246 | ! 'k,tp,q,qt,qi avec glace' |
|---|
| 1247 | END DO |
|---|
| 1248 | |
|---|
| 1249 | !CR:reprise du code AJ |
|---|
| 1250 | clw(i, k) = qnk(i) - qsat_new |
|---|
| 1251 | clw(i, k) = max(0.0, clw(i,k)) |
|---|
| 1252 | tvp(i, k) = max(0., tp(i,k)*(1.+qsat_new/eps-qnk(i))) |
|---|
| 1253 | ! print*,tvp(i,k),'tvp' |
|---|
| 1254 | END IF |
|---|
| 1255 | IF (clw(i,k)<1.E-11) THEN |
|---|
| 1256 | tp(i, k) = tv(i, k) |
|---|
| 1257 | tvp(i, k) = tv(i, k) |
|---|
| 1258 | END IF |
|---|
| 1259 | END IF ! (cvflag_ice) |
|---|
| 1260 | |
|---|
| 1261 | END DO |
|---|
| 1262 | END DO |
|---|
| 1263 | |
|---|
| 1264 | ! ===================================================================== |
|---|
| 1265 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
|---|
| 1266 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
|---|
| 1267 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
|---|
| 1268 | ! ===================================================================== |
|---|
| 1269 | |
|---|
| 1270 | IF (flag_epkeorig/=1) THEN |
|---|
| 1271 | DO k = 1, nl ! convect3 |
|---|
| 1272 | DO i = 1, ncum |
|---|
| 1273 | pden = ptcrit - pbcrit |
|---|
| 1274 | ep(i, k) = (plcl(i)-p(i,k)-pbcrit)/pden*epmax |
|---|
| 1275 | ep(i, k) = max(ep(i,k), 0.0) |
|---|
| 1276 | ep(i, k) = min(ep(i,k), epmax) |
|---|
| 1277 | sigp(i, k) = spfac |
|---|
| 1278 | END DO |
|---|
| 1279 | END DO |
|---|
| 1280 | ELSE |
|---|
| 1281 | DO k = 1, nl |
|---|
| 1282 | DO i = 1, ncum |
|---|
| 1283 | IF (k>=(nk(i)+1)) THEN |
|---|
| 1284 | tca = tp(i, k) - t0 |
|---|
| 1285 | IF (tca>=0.0) THEN |
|---|
| 1286 | elacrit = elcrit |
|---|
| 1287 | ELSE |
|---|
| 1288 | elacrit = elcrit*(1.0-tca/tlcrit) |
|---|
| 1289 | END IF |
|---|
| 1290 | elacrit = max(elacrit, 0.0) |
|---|
| 1291 | ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) |
|---|
| 1292 | ep(i, k) = max(ep(i,k), 0.0) |
|---|
| 1293 | ep(i, k) = min(ep(i,k), epmax) |
|---|
| 1294 | sigp(i, k) = spfac |
|---|
| 1295 | END IF |
|---|
| 1296 | END DO |
|---|
| 1297 | END DO |
|---|
| 1298 | END IF |
|---|
| 1299 | ! ===================================================================== |
|---|
| 1300 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
|---|
| 1301 | ! --- VIRTUAL TEMPERATURE |
|---|
| 1302 | ! ===================================================================== |
|---|
| 1303 | |
|---|
| 1304 | ! dans convect3, tvp est calcule en une seule fois, et sans retirer |
|---|
| 1305 | ! l'eau condensee (~> reversible CAPE) |
|---|
| 1306 | |
|---|
| 1307 | ! ori do 340 k=minorig+1,nl |
|---|
| 1308 | ! ori do 330 i=1,ncum |
|---|
| 1309 | ! ori if(k.ge.(icb(i)+1))then |
|---|
| 1310 | ! ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
|---|
| 1311 | ! oric print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
|---|
| 1312 | ! oric print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
|---|
| 1313 | ! ori endif |
|---|
| 1314 | ! ori 330 continue |
|---|
| 1315 | ! ori 340 continue |
|---|
| 1316 | |
|---|
| 1317 | ! ori do 350 i=1,ncum |
|---|
| 1318 | ! ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
|---|
| 1319 | ! ori 350 continue |
|---|
| 1320 | |
|---|
| 1321 | DO i = 1, ncum ! convect3 |
|---|
| 1322 | tp(i, nlp) = tp(i, nl) ! convect3 |
|---|
| 1323 | END DO ! convect3 |
|---|
| 1324 | |
|---|
| 1325 | ! ===================================================================== |
|---|
| 1326 | ! --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
|---|
| 1327 | ! ===================================================================== |
|---|
| 1328 | |
|---|
| 1329 | ! -- this is for convect3 only: |
|---|
| 1330 | |
|---|
| 1331 | ! first estimate of buoyancy: |
|---|
| 1332 | |
|---|
| 1333 | DO i = 1, ncum |
|---|
| 1334 | DO k = 1, nl |
|---|
| 1335 | buoy(i, k) = tvp(i, k) - tv(i, k) |
|---|
| 1336 | END DO |
|---|
| 1337 | END DO |
|---|
| 1338 | |
|---|
| 1339 | ! set buoyancy=buoybase for all levels below base |
|---|
| 1340 | ! for safety, set buoy(icb)=buoybase |
|---|
| 1341 | |
|---|
| 1342 | DO i = 1, ncum |
|---|
| 1343 | DO k = 1, nl |
|---|
| 1344 | IF ((k>=icb(i)) .AND. (k<=nl) .AND. (p(i,k)>=pbase(i))) THEN |
|---|
| 1345 | buoy(i, k) = buoybase(i) |
|---|
| 1346 | END IF |
|---|
| 1347 | END DO |
|---|
| 1348 | ! buoy(icb(i),k)=buoybase(i) |
|---|
| 1349 | buoy(i, icb(i)) = buoybase(i) |
|---|
| 1350 | END DO |
|---|
| 1351 | |
|---|
| 1352 | ! -- end convect3 |
|---|
| 1353 | |
|---|
| 1354 | ! ===================================================================== |
|---|
| 1355 | ! --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
|---|
| 1356 | ! --- LEVEL OF NEUTRAL BUOYANCY |
|---|
| 1357 | ! ===================================================================== |
|---|
| 1358 | |
|---|
| 1359 | ! -- this is for convect3 only: |
|---|
| 1360 | |
|---|
| 1361 | DO i = 1, ncum |
|---|
| 1362 | inb(i) = nl - 1 |
|---|
| 1363 | iposit(i) = nl |
|---|
| 1364 | END DO |
|---|
| 1365 | |
|---|
| 1366 | |
|---|
| 1367 | ! -- iposit(i) = first level, above icb, with positive buoyancy |
|---|
| 1368 | DO k = 1, nl - 1 |
|---|
| 1369 | DO i = 1, ncum |
|---|
| 1370 | IF (k>=icb(i) .AND. buoy(i,k)>0.) THEN |
|---|
| 1371 | iposit(i) = min(iposit(i), k) |
|---|
| 1372 | END IF |
|---|
| 1373 | END DO |
|---|
| 1374 | END DO |
|---|
| 1375 | |
|---|
| 1376 | DO i = 1, ncum |
|---|
| 1377 | IF (iposit(i)==nl) THEN |
|---|
| 1378 | iposit(i) = icb(i) |
|---|
| 1379 | END IF |
|---|
| 1380 | END DO |
|---|
| 1381 | |
|---|
| 1382 | DO k = 1, nl - 1 |
|---|
| 1383 | DO i = 1, ncum |
|---|
| 1384 | IF ((k>=iposit(i)) .AND. (buoy(i,k)<dtovsh)) THEN |
|---|
| 1385 | inb(i) = min(inb(i), k) |
|---|
| 1386 | END IF |
|---|
| 1387 | END DO |
|---|
| 1388 | END DO |
|---|
| 1389 | |
|---|
| 1390 | ! -- end convect3 |
|---|
| 1391 | |
|---|
| 1392 | ! ori do 510 i=1,ncum |
|---|
| 1393 | ! ori cape(i)=0.0 |
|---|
| 1394 | ! ori capem(i)=0.0 |
|---|
| 1395 | ! ori inb(i)=icb(i)+1 |
|---|
| 1396 | ! ori inb1(i)=inb(i) |
|---|
| 1397 | ! ori 510 continue |
|---|
| 1398 | |
|---|
| 1399 | ! Originial Code |
|---|
| 1400 | |
|---|
| 1401 | ! do 530 k=minorig+1,nl-1 |
|---|
| 1402 | ! do 520 i=1,ncum |
|---|
| 1403 | ! if(k.ge.(icb(i)+1))then |
|---|
| 1404 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
|---|
| 1405 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
|---|
| 1406 | ! cape(i)=cape(i)+by |
|---|
| 1407 | ! if(by.ge.0.0)inb1(i)=k+1 |
|---|
| 1408 | ! if(cape(i).gt.0.0)then |
|---|
| 1409 | ! inb(i)=k+1 |
|---|
| 1410 | ! capem(i)=cape(i) |
|---|
| 1411 | ! endif |
|---|
| 1412 | ! endif |
|---|
| 1413 | !520 continue |
|---|
| 1414 | !530 continue |
|---|
| 1415 | ! do 540 i=1,ncum |
|---|
| 1416 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
|---|
| 1417 | ! cape(i)=capem(i)+byp |
|---|
| 1418 | ! defrac=capem(i)-cape(i) |
|---|
| 1419 | ! defrac=max(defrac,0.001) |
|---|
| 1420 | ! frac(i)=-cape(i)/defrac |
|---|
| 1421 | ! frac(i)=min(frac(i),1.0) |
|---|
| 1422 | ! frac(i)=max(frac(i),0.0) |
|---|
| 1423 | !540 continue |
|---|
| 1424 | |
|---|
| 1425 | ! K Emanuel fix |
|---|
| 1426 | |
|---|
| 1427 | ! call zilch(byp,ncum) |
|---|
| 1428 | ! do 530 k=minorig+1,nl-1 |
|---|
| 1429 | ! do 520 i=1,ncum |
|---|
| 1430 | ! if(k.ge.(icb(i)+1))then |
|---|
| 1431 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
|---|
| 1432 | ! cape(i)=cape(i)+by |
|---|
| 1433 | ! if(by.ge.0.0)inb1(i)=k+1 |
|---|
| 1434 | ! if(cape(i).gt.0.0)then |
|---|
| 1435 | ! inb(i)=k+1 |
|---|
| 1436 | ! capem(i)=cape(i) |
|---|
| 1437 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
|---|
| 1438 | ! endif |
|---|
| 1439 | ! endif |
|---|
| 1440 | !520 continue |
|---|
| 1441 | !530 continue |
|---|
| 1442 | ! do 540 i=1,ncum |
|---|
| 1443 | ! inb(i)=max(inb(i),inb1(i)) |
|---|
| 1444 | ! cape(i)=capem(i)+byp(i) |
|---|
| 1445 | ! defrac=capem(i)-cape(i) |
|---|
| 1446 | ! defrac=max(defrac,0.001) |
|---|
| 1447 | ! frac(i)=-cape(i)/defrac |
|---|
| 1448 | ! frac(i)=min(frac(i),1.0) |
|---|
| 1449 | ! frac(i)=max(frac(i),0.0) |
|---|
| 1450 | !540 continue |
|---|
| 1451 | |
|---|
| 1452 | ! J Teixeira fix |
|---|
| 1453 | |
|---|
| 1454 | ! ori call zilch(byp,ncum) |
|---|
| 1455 | ! ori do 515 i=1,ncum |
|---|
| 1456 | ! ori lcape(i)=.true. |
|---|
| 1457 | ! ori 515 continue |
|---|
| 1458 | ! ori do 530 k=minorig+1,nl-1 |
|---|
| 1459 | ! ori do 520 i=1,ncum |
|---|
| 1460 | ! ori if(cape(i).lt.0.0)lcape(i)=.false. |
|---|
| 1461 | ! ori if((k.ge.(icb(i)+1)).and.lcape(i))then |
|---|
| 1462 | ! ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
|---|
| 1463 | ! ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
|---|
| 1464 | ! ori cape(i)=cape(i)+by |
|---|
| 1465 | ! ori if(by.ge.0.0)inb1(i)=k+1 |
|---|
| 1466 | ! ori if(cape(i).gt.0.0)then |
|---|
| 1467 | ! ori inb(i)=k+1 |
|---|
| 1468 | ! ori capem(i)=cape(i) |
|---|
| 1469 | ! ori endif |
|---|
| 1470 | ! ori endif |
|---|
| 1471 | ! ori 520 continue |
|---|
| 1472 | ! ori 530 continue |
|---|
| 1473 | ! ori do 540 i=1,ncum |
|---|
| 1474 | ! ori cape(i)=capem(i)+byp(i) |
|---|
| 1475 | ! ori defrac=capem(i)-cape(i) |
|---|
| 1476 | ! ori defrac=max(defrac,0.001) |
|---|
| 1477 | ! ori frac(i)=-cape(i)/defrac |
|---|
| 1478 | ! ori frac(i)=min(frac(i),1.0) |
|---|
| 1479 | ! ori frac(i)=max(frac(i),0.0) |
|---|
| 1480 | ! ori 540 continue |
|---|
| 1481 | |
|---|
| 1482 | ! ===================================================================== |
|---|
| 1483 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
|---|
| 1484 | ! ===================================================================== |
|---|
| 1485 | |
|---|
| 1486 | DO k = 1, nd |
|---|
| 1487 | DO i = 1, ncum |
|---|
| 1488 | hp(i, k) = h(i, k) |
|---|
| 1489 | END DO |
|---|
| 1490 | END DO |
|---|
| 1491 | |
|---|
| 1492 | DO k = minorig + 1, nl |
|---|
| 1493 | DO i = 1, ncum |
|---|
| 1494 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
|---|
| 1495 | |
|---|
| 1496 | IF (cvflag_ice) THEN |
|---|
| 1497 | frac(i, k) = 1. - (t(i,k)-243.15)/(263.15-243.15) |
|---|
| 1498 | frac(i, k) = min(max(frac(i,k),0.0), 1.0) |
|---|
| 1499 | hp(i, k) = hnk(i) + (lv(i,k)+(cpd-cpv)*t(i,k)+frac(i,k)*lf(i,k))* & |
|---|
| 1500 | ep(i, k)*clw(i, k) |
|---|
| 1501 | |
|---|
| 1502 | ELSE |
|---|
| 1503 | hp(i, k) = hnk(i) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k) |
|---|
| 1504 | END IF |
|---|
| 1505 | |
|---|
| 1506 | END IF |
|---|
| 1507 | END DO |
|---|
| 1508 | END DO |
|---|
| 1509 | |
|---|
| 1510 | RETURN |
|---|
| 1511 | END SUBROUTINE cv3_undilute2 |
|---|
| 1512 | |
|---|
| 1513 | SUBROUTINE cv3_closure(nloc, ncum, nd, icb, inb, & |
|---|
| 1514 | pbase, p, ph, tv, buoy, & |
|---|
| 1515 | sig, w0, cape, m, iflag) |
|---|
| 1516 | IMPLICIT NONE |
|---|
| 1517 | |
|---|
| 1518 | ! =================================================================== |
|---|
| 1519 | ! --- CLOSURE OF CONVECT3 |
|---|
| 1520 | ! |
|---|
| 1521 | ! vectorization: S. Bony |
|---|
| 1522 | ! =================================================================== |
|---|
| 1523 | |
|---|
| 1524 | include "cvthermo.h" |
|---|
| 1525 | include "cv3param.h" |
|---|
| 1526 | |
|---|
| 1527 | !input: |
|---|
| 1528 | INTEGER ncum, nd, nloc |
|---|
| 1529 | INTEGER icb(nloc), inb(nloc) |
|---|
| 1530 | REAL pbase(nloc) |
|---|
| 1531 | REAL p(nloc, nd), ph(nloc, nd+1) |
|---|
| 1532 | REAL tv(nloc, nd), buoy(nloc, nd) |
|---|
| 1533 | |
|---|
| 1534 | !input/output: |
|---|
| 1535 | REAL sig(nloc, nd), w0(nloc, nd) |
|---|
| 1536 | INTEGER iflag(nloc) |
|---|
| 1537 | |
|---|
| 1538 | !output: |
|---|
| 1539 | REAL cape(nloc) |
|---|
| 1540 | REAL m(nloc, nd) |
|---|
| 1541 | |
|---|
| 1542 | !local variables: |
|---|
| 1543 | INTEGER i, j, k, icbmax |
|---|
| 1544 | REAL deltap, fac, w, amu |
|---|
| 1545 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
|---|
| 1546 | REAL cbmflast(nloc) |
|---|
| 1547 | |
|---|
| 1548 | |
|---|
| 1549 | ! ------------------------------------------------------- |
|---|
| 1550 | ! -- Initialization |
|---|
| 1551 | ! ------------------------------------------------------- |
|---|
| 1552 | |
|---|
| 1553 | DO k = 1, nl |
|---|
| 1554 | DO i = 1, ncum |
|---|
| 1555 | m(i, k) = 0.0 |
|---|
| 1556 | END DO |
|---|
| 1557 | END DO |
|---|
| 1558 | |
|---|
| 1559 | ! ------------------------------------------------------- |
|---|
| 1560 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
|---|
| 1561 | ! ------------------------------------------------------- |
|---|
| 1562 | |
|---|
| 1563 | ! update sig and w0 above LNB: |
|---|
| 1564 | |
|---|
| 1565 | DO k = 1, nl - 1 |
|---|
| 1566 | DO i = 1, ncum |
|---|
| 1567 | IF ((inb(i)<(nl-1)) .AND. (k>=(inb(i)+1))) THEN |
|---|
| 1568 | sig(i, k) = beta*sig(i, k) + & |
|---|
| 1569 | 2.*alpha*buoy(i, inb(i))*abs(buoy(i,inb(i))) |
|---|
| 1570 | sig(i, k) = amax1(sig(i,k), 0.0) |
|---|
| 1571 | w0(i, k) = beta*w0(i, k) |
|---|
| 1572 | END IF |
|---|
| 1573 | END DO |
|---|
| 1574 | END DO |
|---|
| 1575 | |
|---|
| 1576 | ! compute icbmax: |
|---|
| 1577 | |
|---|
| 1578 | icbmax = 2 |
|---|
| 1579 | DO i = 1, ncum |
|---|
| 1580 | icbmax = max(icbmax, icb(i)) |
|---|
| 1581 | END DO |
|---|
| 1582 | |
|---|
| 1583 | ! update sig and w0 below cloud base: |
|---|
| 1584 | |
|---|
| 1585 | DO k = 1, icbmax |
|---|
| 1586 | DO i = 1, ncum |
|---|
| 1587 | IF (k<=icb(i)) THEN |
|---|
| 1588 | sig(i, k) = beta*sig(i, k) - & |
|---|
| 1589 | 2.*alpha*buoy(i, icb(i))*buoy(i, icb(i)) |
|---|
| 1590 | sig(i, k) = max(sig(i,k), 0.0) |
|---|
| 1591 | w0(i, k) = beta*w0(i, k) |
|---|
| 1592 | END IF |
|---|
| 1593 | END DO |
|---|
| 1594 | END DO |
|---|
| 1595 | |
|---|
| 1596 | !! if(inb.lt.(nl-1))then |
|---|
| 1597 | !! do 85 i=inb+1,nl-1 |
|---|
| 1598 | !! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
|---|
| 1599 | !! 1 abs(buoy(inb)) |
|---|
| 1600 | !! sig(i)=max(sig(i),0.0) |
|---|
| 1601 | !! w0(i)=beta*w0(i) |
|---|
| 1602 | !! 85 continue |
|---|
| 1603 | !! end if |
|---|
| 1604 | |
|---|
| 1605 | !! do 87 i=1,icb |
|---|
| 1606 | !! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
|---|
| 1607 | !! sig(i)=max(sig(i),0.0) |
|---|
| 1608 | !! w0(i)=beta*w0(i) |
|---|
| 1609 | !! 87 continue |
|---|
| 1610 | |
|---|
| 1611 | ! ------------------------------------------------------------- |
|---|
| 1612 | ! -- Reset fractional areas of updrafts and w0 at initial time |
|---|
| 1613 | ! -- and after 10 time steps of no convection |
|---|
| 1614 | ! ------------------------------------------------------------- |
|---|
| 1615 | |
|---|
| 1616 | DO k = 1, nl - 1 |
|---|
| 1617 | DO i = 1, ncum |
|---|
| 1618 | IF (sig(i,nd)<1.5 .OR. sig(i,nd)>12.0) THEN |
|---|
| 1619 | sig(i, k) = 0.0 |
|---|
| 1620 | w0(i, k) = 0.0 |
|---|
| 1621 | END IF |
|---|
| 1622 | END DO |
|---|
| 1623 | END DO |
|---|
| 1624 | |
|---|
| 1625 | ! ------------------------------------------------------------- |
|---|
| 1626 | ! -- Calculate convective available potential energy (cape), |
|---|
| 1627 | ! -- vertical velocity (w), fractional area covered by |
|---|
| 1628 | ! -- undilute updraft (sig), and updraft mass flux (m) |
|---|
| 1629 | ! ------------------------------------------------------------- |
|---|
| 1630 | |
|---|
| 1631 | DO i = 1, ncum |
|---|
| 1632 | cape(i) = 0.0 |
|---|
| 1633 | END DO |
|---|
| 1634 | |
|---|
| 1635 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
|---|
| 1636 | |
|---|
| 1637 | DO i = 1, ncum |
|---|
| 1638 | DO k = 1, nl |
|---|
| 1639 | dtmin(i, k) = 100.0 |
|---|
| 1640 | END DO |
|---|
| 1641 | END DO |
|---|
| 1642 | |
|---|
| 1643 | DO i = 1, ncum |
|---|
| 1644 | DO k = 1, nl |
|---|
| 1645 | DO j = minorig, nl |
|---|
| 1646 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i)) .AND. (j>=icb(i)) .AND. (j<=(k-1))) THEN |
|---|
| 1647 | dtmin(i, k) = amin1(dtmin(i,k), buoy(i,j)) |
|---|
| 1648 | END IF |
|---|
| 1649 | END DO |
|---|
| 1650 | END DO |
|---|
| 1651 | END DO |
|---|
| 1652 | |
|---|
| 1653 | ! the interval on which cape is computed starts at pbase : |
|---|
| 1654 | |
|---|
| 1655 | DO k = 1, nl |
|---|
| 1656 | DO i = 1, ncum |
|---|
| 1657 | |
|---|
| 1658 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
|---|
| 1659 | |
|---|
| 1660 | deltap = min(pbase(i), ph(i,k-1)) - min(pbase(i), ph(i,k)) |
|---|
| 1661 | cape(i) = cape(i) + rrd*buoy(i, k-1)*deltap/p(i, k-1) |
|---|
| 1662 | cape(i) = amax1(0.0, cape(i)) |
|---|
| 1663 | sigold(i, k) = sig(i, k) |
|---|
| 1664 | |
|---|
| 1665 | ! dtmin(i,k)=100.0 |
|---|
| 1666 | ! do 97 j=icb(i),k-1 ! mauvaise vectorisation |
|---|
| 1667 | ! dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
|---|
| 1668 | ! 97 continue |
|---|
| 1669 | |
|---|
| 1670 | sig(i, k) = beta*sig(i, k) + alpha*dtmin(i, k)*abs(dtmin(i,k)) |
|---|
| 1671 | sig(i, k) = max(sig(i,k), 0.0) |
|---|
| 1672 | sig(i, k) = amin1(sig(i,k), 0.01) |
|---|
| 1673 | fac = amin1(((dtcrit-dtmin(i,k))/dtcrit), 1.0) |
|---|
| 1674 | w = (1.-beta)*fac*sqrt(cape(i)) + beta*w0(i, k) |
|---|
| 1675 | amu = 0.5*(sig(i,k)+sigold(i,k))*w |
|---|
| 1676 | m(i, k) = amu*0.007*p(i, k)*(ph(i,k)-ph(i,k+1))/tv(i, k) |
|---|
| 1677 | w0(i, k) = w |
|---|
| 1678 | END IF |
|---|
| 1679 | |
|---|
| 1680 | END DO |
|---|
| 1681 | END DO |
|---|
| 1682 | |
|---|
| 1683 | DO i = 1, ncum |
|---|
| 1684 | w0(i, icb(i)) = 0.5*w0(i, icb(i)+1) |
|---|
| 1685 | m(i, icb(i)) = 0.5*m(i, icb(i)+1)*(ph(i,icb(i))-ph(i,icb(i)+1))/(ph(i,icb(i)+1)-ph(i,icb(i)+2)) |
|---|
| 1686 | sig(i, icb(i)) = sig(i, icb(i)+1) |
|---|
| 1687 | sig(i, icb(i)-1) = sig(i, icb(i)) |
|---|
| 1688 | END DO |
|---|
| 1689 | |
|---|
| 1690 | ! ccc 3. Compute final cloud base mass flux and set iflag to 3 if |
|---|
| 1691 | ! ccc cloud base mass flux is exceedingly small and is decreasing (i.e. if |
|---|
| 1692 | ! ccc the final mass flux (cbmflast) is greater than the target mass flux |
|---|
| 1693 | ! ccc (cbmf) ??). |
|---|
| 1694 | ! cc |
|---|
| 1695 | ! c do i = 1,ncum |
|---|
| 1696 | ! c cbmflast(i) = 0. |
|---|
| 1697 | ! c enddo |
|---|
| 1698 | ! cc |
|---|
| 1699 | ! c do k= 1,nl |
|---|
| 1700 | ! c do i = 1,ncum |
|---|
| 1701 | ! c IF (k .ge. icb(i) .and. k .le. inb(i)) THEN |
|---|
| 1702 | ! c cbmflast(i) = cbmflast(i)+M(i,k) |
|---|
| 1703 | ! c ENDIF |
|---|
| 1704 | ! c enddo |
|---|
| 1705 | ! c enddo |
|---|
| 1706 | ! cc |
|---|
| 1707 | ! c do i = 1,ncum |
|---|
| 1708 | ! c IF (cbmflast(i) .lt. 1.e-6) THEN |
|---|
| 1709 | ! c iflag(i) = 3 |
|---|
| 1710 | ! c ENDIF |
|---|
| 1711 | ! c enddo |
|---|
| 1712 | ! cc |
|---|
| 1713 | ! c do k= 1,nl |
|---|
| 1714 | ! c do i = 1,ncum |
|---|
| 1715 | ! c IF (iflag(i) .ge. 3) THEN |
|---|
| 1716 | ! c M(i,k) = 0. |
|---|
| 1717 | ! c sig(i,k) = 0. |
|---|
| 1718 | ! c w0(i,k) = 0. |
|---|
| 1719 | ! c ENDIF |
|---|
| 1720 | ! c enddo |
|---|
| 1721 | ! c enddo |
|---|
| 1722 | ! cc |
|---|
| 1723 | !! cape=0.0 |
|---|
| 1724 | !! do 98 i=icb+1,inb |
|---|
| 1725 | !! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
|---|
| 1726 | !! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
|---|
| 1727 | !! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
|---|
| 1728 | !! dlnp=deltap/p(i-1) |
|---|
| 1729 | !! cape=max(0.0,cape) |
|---|
| 1730 | !! sigold=sig(i) |
|---|
| 1731 | |
|---|
| 1732 | !! dtmin=100.0 |
|---|
| 1733 | !! do 97 j=icb,i-1 |
|---|
| 1734 | !! dtmin=amin1(dtmin,buoy(j)) |
|---|
| 1735 | !! 97 continue |
|---|
| 1736 | |
|---|
| 1737 | !! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
|---|
| 1738 | !! sig(i)=max(sig(i),0.0) |
|---|
| 1739 | !! sig(i)=amin1(sig(i),0.01) |
|---|
| 1740 | !! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
|---|
| 1741 | !! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
|---|
| 1742 | !! amu=0.5*(sig(i)+sigold)*w |
|---|
| 1743 | !! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
|---|
| 1744 | !! w0(i)=w |
|---|
| 1745 | !! 98 continue |
|---|
| 1746 | !! w0(icb)=0.5*w0(icb+1) |
|---|
| 1747 | !! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
|---|
| 1748 | !! sig(icb)=sig(icb+1) |
|---|
| 1749 | !! sig(icb-1)=sig(icb) |
|---|
| 1750 | |
|---|
| 1751 | RETURN |
|---|
| 1752 | END SUBROUTINE cv3_closure |
|---|
| 1753 | |
|---|
| 1754 | SUBROUTINE cv3_mixing(nloc, ncum, nd, na, ntra, icb, nk, inb, & |
|---|
| 1755 | ph, t, rr, rs, u, v, tra, h, lv, lf, frac, qnk, & |
|---|
| 1756 | unk, vnk, hp, tv, tvp, ep, clw, m, sig, & |
|---|
| 1757 | ment, qent, uent, vent, nent, sij, elij, ments, qents, traent) |
|---|
| 1758 | IMPLICIT NONE |
|---|
| 1759 | |
|---|
| 1760 | ! --------------------------------------------------------------------- |
|---|
| 1761 | ! a faire: |
|---|
| 1762 | ! - vectorisation de la partie normalisation des flux (do 789...) |
|---|
| 1763 | ! --------------------------------------------------------------------- |
|---|
| 1764 | |
|---|
| 1765 | include "cvthermo.h" |
|---|
| 1766 | include "cv3param.h" |
|---|
| 1767 | include "cvflag.h" |
|---|
| 1768 | |
|---|
| 1769 | !inputs: |
|---|
| 1770 | INTEGER ncum, nd, na, ntra, nloc |
|---|
| 1771 | INTEGER icb(nloc), inb(nloc), nk(nloc) |
|---|
| 1772 | REAL sig(nloc, nd) |
|---|
| 1773 | REAL qnk(nloc), unk(nloc), vnk(nloc) |
|---|
| 1774 | REAL ph(nloc, nd+1) |
|---|
| 1775 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
|---|
| 1776 | REAL u(nloc, nd), v(nloc, nd) |
|---|
| 1777 | REAL tra(nloc, nd, ntra) ! input of convect3 |
|---|
| 1778 | REAL lv(nloc, na), h(nloc, na), hp(nloc, na) |
|---|
| 1779 | REAL lf(nloc, na), frac(nloc, na) |
|---|
| 1780 | REAL tv(nloc, na), tvp(nloc, na), ep(nloc, na), clw(nloc, na) |
|---|
| 1781 | REAL m(nloc, na) ! input of convect3 |
|---|
| 1782 | |
|---|
| 1783 | !outputs: |
|---|
| 1784 | REAL ment(nloc, na, na), qent(nloc, na, na) |
|---|
| 1785 | REAL uent(nloc, na, na), vent(nloc, na, na) |
|---|
| 1786 | REAL sij(nloc, na, na), elij(nloc, na, na) |
|---|
| 1787 | REAL traent(nloc, nd, nd, ntra) |
|---|
| 1788 | REAL ments(nloc, nd, nd), qents(nloc, nd, nd) |
|---|
| 1789 | REAL sigij(nloc, nd, nd) |
|---|
| 1790 | INTEGER nent(nloc, nd) |
|---|
| 1791 | |
|---|
| 1792 | !local variables: |
|---|
| 1793 | INTEGER i, j, k, il, im, jm |
|---|
| 1794 | INTEGER num1, num2 |
|---|
| 1795 | REAL rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
|---|
| 1796 | REAL alt, smid, sjmin, sjmax, delp, delm |
|---|
| 1797 | REAL asij(nloc), smax(nloc), scrit(nloc) |
|---|
| 1798 | REAL asum(nloc, nd), bsum(nloc, nd), csum(nloc, nd) |
|---|
| 1799 | REAL wgh |
|---|
| 1800 | REAL zm(nloc, na) |
|---|
| 1801 | LOGICAL lwork(nloc) |
|---|
| 1802 | |
|---|
| 1803 | ! ===================================================================== |
|---|
| 1804 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
|---|
| 1805 | ! ===================================================================== |
|---|
| 1806 | |
|---|
| 1807 | ! ori do 360 i=1,ncum*nlp |
|---|
| 1808 | DO j = 1, nl |
|---|
| 1809 | DO i = 1, ncum |
|---|
| 1810 | nent(i, j) = 0 |
|---|
| 1811 | ! in convect3, m is computed in cv3_closure |
|---|
| 1812 | ! ori m(i,1)=0.0 |
|---|
| 1813 | END DO |
|---|
| 1814 | END DO |
|---|
| 1815 | |
|---|
| 1816 | ! ori do 400 k=1,nlp |
|---|
| 1817 | ! ori do 390 j=1,nlp |
|---|
| 1818 | DO j = 1, nl |
|---|
| 1819 | DO k = 1, nl |
|---|
| 1820 | DO i = 1, ncum |
|---|
| 1821 | qent(i, k, j) = rr(i, j) |
|---|
| 1822 | uent(i, k, j) = u(i, j) |
|---|
| 1823 | vent(i, k, j) = v(i, j) |
|---|
| 1824 | elij(i, k, j) = 0.0 |
|---|
| 1825 | !ym ment(i,k,j)=0.0 |
|---|
| 1826 | !ym sij(i,k,j)=0.0 |
|---|
| 1827 | END DO |
|---|
| 1828 | END DO |
|---|
| 1829 | END DO |
|---|
| 1830 | |
|---|
| 1831 | !ym |
|---|
| 1832 | ment(1:ncum, 1:nd, 1:nd) = 0.0 |
|---|
| 1833 | sij(1:ncum, 1:nd, 1:nd) = 0.0 |
|---|
| 1834 | |
|---|
| 1835 | !AC! do k=1,ntra |
|---|
| 1836 | !AC! do j=1,nd ! instead nlp |
|---|
| 1837 | !AC! do i=1,nd ! instead nlp |
|---|
| 1838 | !AC! do il=1,ncum |
|---|
| 1839 | !AC! traent(il,i,j,k)=tra(il,j,k) |
|---|
| 1840 | !AC! enddo |
|---|
| 1841 | !AC! enddo |
|---|
| 1842 | !AC! enddo |
|---|
| 1843 | !AC! enddo |
|---|
| 1844 | zm(:, :) = 0. |
|---|
| 1845 | |
|---|
| 1846 | ! ===================================================================== |
|---|
| 1847 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
|---|
| 1848 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
|---|
| 1849 | ! --- FRACTION (sij) |
|---|
| 1850 | ! ===================================================================== |
|---|
| 1851 | |
|---|
| 1852 | DO i = minorig + 1, nl |
|---|
| 1853 | |
|---|
| 1854 | DO j = minorig, nl |
|---|
| 1855 | DO il = 1, ncum |
|---|
| 1856 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (j>=(icb(il)-1)) .AND. (j<=inb(il))) THEN |
|---|
| 1857 | |
|---|
| 1858 | rti = qnk(il) - ep(il, i)*clw(il, i) |
|---|
| 1859 | bf2 = 1. + lv(il, j)*lv(il, j)*rs(il, j)/(rrv*t(il,j)*t(il,j)*cpd) |
|---|
| 1860 | |
|---|
| 1861 | |
|---|
| 1862 | IF (cvflag_ice) THEN |
|---|
| 1863 | ! print*,cvflag_ice,'cvflag_ice dans do 700' |
|---|
| 1864 | IF (t(il,j)<=263.15) THEN |
|---|
| 1865 | bf2 = 1. + (lf(il,j)+lv(il,j))*(lv(il,j)+frac(il,j)* & |
|---|
| 1866 | lf(il,j))*rs(il, j)/(rrv*t(il,j)*t(il,j)*cpd) |
|---|
| 1867 | END IF |
|---|
| 1868 | END IF |
|---|
| 1869 | |
|---|
| 1870 | anum = h(il, j) - hp(il, i) + (cpv-cpd)*t(il, j)*(rti-rr(il,j)) |
|---|
| 1871 | denom = h(il, i) - hp(il, i) + (cpd-cpv)*(rr(il,i)-rti)*t(il, j) |
|---|
| 1872 | dei = denom |
|---|
| 1873 | IF (abs(dei)<0.01) dei = 0.01 |
|---|
| 1874 | sij(il, i, j) = anum/dei |
|---|
| 1875 | sij(il, i, i) = 1.0 |
|---|
| 1876 | altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - rs(il, j) |
|---|
| 1877 | altem = altem/bf2 |
|---|
| 1878 | cwat = clw(il, j)*(1.-ep(il,j)) |
|---|
| 1879 | stemp = sij(il, i, j) |
|---|
| 1880 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
|---|
| 1881 | |
|---|
| 1882 | IF (cvflag_ice) THEN |
|---|
| 1883 | anum = anum - (lv(il,j)+frac(il,j)*lf(il,j))*(rti-rs(il,j)-cwat*bf2) |
|---|
| 1884 | denom = denom + (lv(il,j)+frac(il,j)*lf(il,j))*(rr(il,i)-rti) |
|---|
| 1885 | ELSE |
|---|
| 1886 | anum = anum - lv(il, j)*(rti-rs(il,j)-cwat*bf2) |
|---|
| 1887 | denom = denom + lv(il, j)*(rr(il,i)-rti) |
|---|
| 1888 | END IF |
|---|
| 1889 | |
|---|
| 1890 | IF (abs(denom)<0.01) denom = 0.01 |
|---|
| 1891 | sij(il, i, j) = anum/denom |
|---|
| 1892 | altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - rs(il, j) |
|---|
| 1893 | altem = altem - (bf2-1.)*cwat |
|---|
| 1894 | END IF |
|---|
| 1895 | IF (sij(il,i,j)>0.0 .AND. sij(il,i,j)<0.95) THEN |
|---|
| 1896 | qent(il, i, j) = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti |
|---|
| 1897 | uent(il, i, j) = sij(il, i, j)*u(il, i) + (1.-sij(il,i,j))*unk(il) |
|---|
| 1898 | vent(il, i, j) = sij(il, i, j)*v(il, i) + (1.-sij(il,i,j))*vnk(il) |
|---|
| 1899 | !!!! do k=1,ntra |
|---|
| 1900 | !!!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
|---|
| 1901 | !!!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
|---|
| 1902 | !!!! end do |
|---|
| 1903 | elij(il, i, j) = altem |
|---|
| 1904 | elij(il, i, j) = max(0.0, elij(il,i,j)) |
|---|
| 1905 | ment(il, i, j) = m(il, i)/(1.-sij(il,i,j)) |
|---|
| 1906 | nent(il, i) = nent(il, i) + 1 |
|---|
| 1907 | END IF |
|---|
| 1908 | sij(il, i, j) = max(0.0, sij(il,i,j)) |
|---|
| 1909 | sij(il, i, j) = amin1(1.0, sij(il,i,j)) |
|---|
| 1910 | END IF ! new |
|---|
| 1911 | END DO |
|---|
| 1912 | END DO |
|---|
| 1913 | |
|---|
| 1914 | !AC! do k=1,ntra |
|---|
| 1915 | !AC! do j=minorig,nl |
|---|
| 1916 | !AC! do il=1,ncum |
|---|
| 1917 | !AC! if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
|---|
| 1918 | !AC! : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
|---|
| 1919 | !AC! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
|---|
| 1920 | !AC! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
|---|
| 1921 | !AC! endif |
|---|
| 1922 | !AC! enddo |
|---|
| 1923 | !AC! enddo |
|---|
| 1924 | !AC! enddo |
|---|
| 1925 | |
|---|
| 1926 | |
|---|
| 1927 | ! *** if no air can entrain at level i assume that updraft detrains *** |
|---|
| 1928 | ! *** at that level and calculate detrained air flux and properties *** |
|---|
| 1929 | |
|---|
| 1930 | |
|---|
| 1931 | ! @ do 170 i=icb(il),inb(il) |
|---|
| 1932 | |
|---|
| 1933 | DO il = 1, ncum |
|---|
| 1934 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (nent(il,i)==0)) THEN |
|---|
| 1935 | ! @ if(nent(il,i).eq.0)then |
|---|
| 1936 | ment(il, i, i) = m(il, i) |
|---|
| 1937 | qent(il, i, i) = qnk(il) - ep(il, i)*clw(il, i) |
|---|
| 1938 | uent(il, i, i) = unk(il) |
|---|
| 1939 | vent(il, i, i) = vnk(il) |
|---|
| 1940 | elij(il, i, i) = clw(il, i) |
|---|
| 1941 | ! MAF sij(il,i,i)=1.0 |
|---|
| 1942 | sij(il, i, i) = 0.0 |
|---|
| 1943 | END IF |
|---|
| 1944 | END DO |
|---|
| 1945 | END DO |
|---|
| 1946 | |
|---|
| 1947 | !AC! do j=1,ntra |
|---|
| 1948 | !AC! do i=minorig+1,nl |
|---|
| 1949 | !AC! do il=1,ncum |
|---|
| 1950 | !AC! if (i.ge.icb(il) .and. i.le.inb(il) .and. nent(il,i).eq.0) then |
|---|
| 1951 | !AC! traent(il,i,i,j)=tra(il,nk(il),j) |
|---|
| 1952 | !AC! endif |
|---|
| 1953 | !AC! enddo |
|---|
| 1954 | !AC! enddo |
|---|
| 1955 | !AC! enddo |
|---|
| 1956 | |
|---|
| 1957 | DO j = minorig, nl |
|---|
| 1958 | DO i = minorig, nl |
|---|
| 1959 | DO il = 1, ncum |
|---|
| 1960 | IF ((j>=(icb(il)-1)) .AND. (j<=inb(il)) .AND. (i>=icb(il)) .AND. (i<=inb(il))) THEN |
|---|
| 1961 | sigij(il, i, j) = sij(il, i, j) |
|---|
| 1962 | END IF |
|---|
| 1963 | END DO |
|---|
| 1964 | END DO |
|---|
| 1965 | END DO |
|---|
| 1966 | ! @ enddo |
|---|
| 1967 | |
|---|
| 1968 | ! @170 continue |
|---|
| 1969 | |
|---|
| 1970 | ! ===================================================================== |
|---|
| 1971 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
|---|
| 1972 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
|---|
| 1973 | ! ===================================================================== |
|---|
| 1974 | |
|---|
| 1975 | CALL zilch(asum, nloc*nd) |
|---|
| 1976 | CALL zilch(csum, nloc*nd) |
|---|
| 1977 | CALL zilch(csum, nloc*nd) |
|---|
| 1978 | |
|---|
| 1979 | DO il = 1, ncum |
|---|
| 1980 | lwork(il) = .FALSE. |
|---|
| 1981 | END DO |
|---|
| 1982 | |
|---|
| 1983 | DO i = minorig + 1, nl |
|---|
| 1984 | |
|---|
| 1985 | num1 = 0 |
|---|
| 1986 | DO il = 1, ncum |
|---|
| 1987 | IF (i>=icb(il) .AND. i<=inb(il)) num1 = num1 + 1 |
|---|
| 1988 | END DO |
|---|
| 1989 | IF (num1<=0) GO TO 789 |
|---|
| 1990 | |
|---|
| 1991 | |
|---|
| 1992 | DO il = 1, ncum |
|---|
| 1993 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
|---|
| 1994 | lwork(il) = (nent(il,i)/=0) |
|---|
| 1995 | qp = qnk(il) - ep(il, i)*clw(il, i) |
|---|
| 1996 | |
|---|
| 1997 | IF (cvflag_ice) THEN |
|---|
| 1998 | |
|---|
| 1999 | anum = h(il, i) - hp(il, i) - (lv(il,i)+frac(il,i)*lf(il,i))* & |
|---|
| 2000 | (qp-rs(il,i)) + (cpv-cpd)*t(il, i)*(qp-rr(il,i)) |
|---|
| 2001 | denom = h(il, i) - hp(il, i) + (lv(il,i)+frac(il,i)*lf(il,i))* & |
|---|
| 2002 | (rr(il,i)-qp) + (cpd-cpv)*t(il, i)*(rr(il,i)-qp) |
|---|
| 2003 | ELSE |
|---|
| 2004 | |
|---|
| 2005 | anum = h(il, i) - hp(il, i) - lv(il, i)*(qp-rs(il,i)) + & |
|---|
| 2006 | (cpv-cpd)*t(il, i)*(qp-rr(il,i)) |
|---|
| 2007 | denom = h(il, i) - hp(il, i) + lv(il, i)*(rr(il,i)-qp) + & |
|---|
| 2008 | (cpd-cpv)*t(il, i)*(rr(il,i)-qp) |
|---|
| 2009 | END IF |
|---|
| 2010 | |
|---|
| 2011 | IF (abs(denom)<0.01) denom = 0.01 |
|---|
| 2012 | scrit(il) = anum/denom |
|---|
| 2013 | alt = qp - rs(il, i) + scrit(il)*(rr(il,i)-qp) |
|---|
| 2014 | IF (scrit(il)<=0.0 .OR. alt<=0.0) scrit(il) = 1.0 |
|---|
| 2015 | smax(il) = 0.0 |
|---|
| 2016 | asij(il) = 0.0 |
|---|
| 2017 | END IF |
|---|
| 2018 | END DO |
|---|
| 2019 | |
|---|
| 2020 | DO j = nl, minorig, -1 |
|---|
| 2021 | |
|---|
| 2022 | num2 = 0 |
|---|
| 2023 | DO il = 1, ncum |
|---|
| 2024 | IF (i>=icb(il) .AND. i<=inb(il) .AND. & |
|---|
| 2025 | j>=(icb(il)-1) .AND. j<=inb(il) .AND. & |
|---|
| 2026 | lwork(il)) num2 = num2 + 1 |
|---|
| 2027 | END DO |
|---|
| 2028 | IF (num2<=0) GO TO 175 |
|---|
| 2029 | |
|---|
| 2030 | DO il = 1, ncum |
|---|
| 2031 | IF (i>=icb(il) .AND. i<=inb(il) .AND. & |
|---|
| 2032 | j>=(icb(il)-1) .AND. j<=inb(il) .AND. & |
|---|
| 2033 | lwork(il)) THEN |
|---|
| 2034 | |
|---|
| 2035 | IF (sij(il,i,j)>1.0E-16 .AND. sij(il,i,j)<0.95) THEN |
|---|
| 2036 | wgh = 1.0 |
|---|
| 2037 | IF (j>i) THEN |
|---|
| 2038 | sjmax = max(sij(il,i,j+1), smax(il)) |
|---|
| 2039 | sjmax = amin1(sjmax, scrit(il)) |
|---|
| 2040 | smax(il) = max(sij(il,i,j), smax(il)) |
|---|
| 2041 | sjmin = max(sij(il,i,j-1), smax(il)) |
|---|
| 2042 | sjmin = amin1(sjmin, scrit(il)) |
|---|
| 2043 | IF (sij(il,i,j)<(smax(il)-1.0E-16)) wgh = 0.0 |
|---|
| 2044 | smid = amin1(sij(il,i,j), scrit(il)) |
|---|
| 2045 | ELSE |
|---|
| 2046 | sjmax = max(sij(il,i,j+1), scrit(il)) |
|---|
| 2047 | smid = max(sij(il,i,j), scrit(il)) |
|---|
| 2048 | sjmin = 0.0 |
|---|
| 2049 | IF (j>1) sjmin = sij(il, i, j-1) |
|---|
| 2050 | sjmin = max(sjmin, scrit(il)) |
|---|
| 2051 | END IF |
|---|
| 2052 | delp = abs(sjmax-smid) |
|---|
| 2053 | delm = abs(sjmin-smid) |
|---|
| 2054 | asij(il) = asij(il) + wgh*(delp+delm) |
|---|
| 2055 | ment(il, i, j) = ment(il, i, j)*(delp+delm)*wgh |
|---|
| 2056 | END IF |
|---|
| 2057 | END IF |
|---|
| 2058 | END DO |
|---|
| 2059 | |
|---|
| 2060 | 175 END DO |
|---|
| 2061 | |
|---|
| 2062 | DO il = 1, ncum |
|---|
| 2063 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
|---|
| 2064 | asij(il) = max(1.0E-16, asij(il)) |
|---|
| 2065 | asij(il) = 1.0/asij(il) |
|---|
| 2066 | asum(il, i) = 0.0 |
|---|
| 2067 | bsum(il, i) = 0.0 |
|---|
| 2068 | csum(il, i) = 0.0 |
|---|
| 2069 | END IF |
|---|
| 2070 | END DO |
|---|
| 2071 | |
|---|
| 2072 | DO j = minorig, nl |
|---|
| 2073 | DO il = 1, ncum |
|---|
| 2074 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
|---|
| 2075 | j>=(icb(il)-1) .AND. j<=inb(il)) THEN |
|---|
| 2076 | ment(il, i, j) = ment(il, i, j)*asij(il) |
|---|
| 2077 | END IF |
|---|
| 2078 | END DO |
|---|
| 2079 | END DO |
|---|
| 2080 | |
|---|
| 2081 | DO j = minorig, nl |
|---|
| 2082 | DO il = 1, ncum |
|---|
| 2083 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
|---|
| 2084 | j>=(icb(il)-1) .AND. j<=inb(il)) THEN |
|---|
| 2085 | asum(il, i) = asum(il, i) + ment(il, i, j) |
|---|
| 2086 | ment(il, i, j) = ment(il, i, j)*sig(il, j) |
|---|
| 2087 | bsum(il, i) = bsum(il, i) + ment(il, i, j) |
|---|
| 2088 | END IF |
|---|
| 2089 | END DO |
|---|
| 2090 | END DO |
|---|
| 2091 | |
|---|
| 2092 | DO il = 1, ncum |
|---|
| 2093 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
|---|
| 2094 | bsum(il, i) = max(bsum(il,i), 1.0E-16) |
|---|
| 2095 | bsum(il, i) = 1.0/bsum(il, i) |
|---|
| 2096 | END IF |
|---|
| 2097 | END DO |
|---|
| 2098 | |
|---|
| 2099 | DO j = minorig, nl |
|---|
| 2100 | DO il = 1, ncum |
|---|
| 2101 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
|---|
| 2102 | j>=(icb(il)-1) .AND. j<=inb(il)) THEN |
|---|
| 2103 | ment(il, i, j) = ment(il, i, j)*asum(il, i)*bsum(il, i) |
|---|
| 2104 | END IF |
|---|
| 2105 | END DO |
|---|
| 2106 | END DO |
|---|
| 2107 | |
|---|
| 2108 | DO j = minorig, nl |
|---|
| 2109 | DO il = 1, ncum |
|---|
| 2110 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
|---|
| 2111 | j>=(icb(il)-1) .AND. j<=inb(il)) THEN |
|---|
| 2112 | csum(il, i) = csum(il, i) + ment(il, i, j) |
|---|
| 2113 | END IF |
|---|
| 2114 | END DO |
|---|
| 2115 | END DO |
|---|
| 2116 | |
|---|
| 2117 | DO il = 1, ncum |
|---|
| 2118 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
|---|
| 2119 | csum(il,i)<m(il,i)) THEN |
|---|
| 2120 | nent(il, i) = 0 |
|---|
| 2121 | ment(il, i, i) = m(il, i) |
|---|
| 2122 | qent(il, i, i) = qnk(il) - ep(il, i)*clw(il, i) |
|---|
| 2123 | uent(il, i, i) = unk(il) |
|---|
| 2124 | vent(il, i, i) = vnk(il) |
|---|
| 2125 | elij(il, i, i) = clw(il, i) |
|---|
| 2126 | ! MAF sij(il,i,i)=1.0 |
|---|
| 2127 | sij(il, i, i) = 0.0 |
|---|
| 2128 | END IF |
|---|
| 2129 | END DO ! il |
|---|
| 2130 | |
|---|
| 2131 | !AC! do j=1,ntra |
|---|
| 2132 | !AC! do il=1,ncum |
|---|
| 2133 | !AC! if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
|---|
| 2134 | !AC! : .and. csum(il,i).lt.m(il,i) ) then |
|---|
| 2135 | !AC! traent(il,i,i,j)=tra(il,nk(il),j) |
|---|
| 2136 | !AC! endif |
|---|
| 2137 | !AC! enddo |
|---|
| 2138 | !AC! enddo |
|---|
| 2139 | 789 END DO |
|---|
| 2140 | |
|---|
| 2141 | ! MAF: renormalisation de MENT |
|---|
| 2142 | CALL zilch(zm, nloc*na) |
|---|
| 2143 | DO jm = 1, nd |
|---|
| 2144 | DO im = 1, nd |
|---|
| 2145 | DO il = 1, ncum |
|---|
| 2146 | zm(il, im) = zm(il, im) + (1.-sij(il,im,jm))*ment(il, im, jm) |
|---|
| 2147 | END DO |
|---|
| 2148 | END DO |
|---|
| 2149 | END DO |
|---|
| 2150 | |
|---|
| 2151 | DO jm = 1, nd |
|---|
| 2152 | DO im = 1, nd |
|---|
| 2153 | DO il = 1, ncum |
|---|
| 2154 | IF (zm(il,im)/=0.) THEN |
|---|
| 2155 | ment(il, im, jm) = ment(il, im, jm)*m(il, im)/zm(il, im) |
|---|
| 2156 | END IF |
|---|
| 2157 | END DO |
|---|
| 2158 | END DO |
|---|
| 2159 | END DO |
|---|
| 2160 | |
|---|
| 2161 | DO jm = 1, nd |
|---|
| 2162 | DO im = 1, nd |
|---|
| 2163 | DO il = 1, ncum |
|---|
| 2164 | qents(il, im, jm) = qent(il, im, jm) |
|---|
| 2165 | ments(il, im, jm) = ment(il, im, jm) |
|---|
| 2166 | END DO |
|---|
| 2167 | END DO |
|---|
| 2168 | END DO |
|---|
| 2169 | |
|---|
| 2170 | RETURN |
|---|
| 2171 | END SUBROUTINE cv3_mixing |
|---|
| 2172 | |
|---|
| 2173 | SUBROUTINE cv3_unsat(nloc, ncum, nd, na, ntra, icb, inb, iflag, & |
|---|
| 2174 | t, rr, rs, gz, u, v, tra, p, ph, & |
|---|
| 2175 | th, tv, lv, lf, cpn, ep, sigp, clw, & |
|---|
| 2176 | m, ment, elij, delt, plcl, coef_clos, & |
|---|
| 2177 | mp, rp, up, vp, trap, wt, water, evap, fondue, ice, & |
|---|
| 2178 | faci, b, sigd, & |
|---|
| 2179 | wdtrainA, wdtrainM) ! RomP |
|---|
| 2180 | IMPLICIT NONE |
|---|
| 2181 | |
|---|
| 2182 | |
|---|
| 2183 | include "cvthermo.h" |
|---|
| 2184 | include "cv3param.h" |
|---|
| 2185 | include "cvflag.h" |
|---|
| 2186 | |
|---|
| 2187 | !inputs: |
|---|
| 2188 | INTEGER ncum, nd, na, ntra, nloc |
|---|
| 2189 | INTEGER icb(nloc), inb(nloc) |
|---|
| 2190 | REAL delt, plcl(nloc) |
|---|
| 2191 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd), gz(nloc, na) |
|---|
| 2192 | REAL u(nloc, nd), v(nloc, nd) |
|---|
| 2193 | REAL tra(nloc, nd, ntra) |
|---|
| 2194 | REAL p(nloc, nd), ph(nloc, nd+1) |
|---|
| 2195 | REAL ep(nloc, na), sigp(nloc, na), clw(nloc, na) |
|---|
| 2196 | REAL th(nloc, na), tv(nloc, na), lv(nloc, na), cpn(nloc, na) |
|---|
| 2197 | REAL lf(nloc, na) |
|---|
| 2198 | REAL m(nloc, na), ment(nloc, na, na), elij(nloc, na, na) |
|---|
| 2199 | REAL coef_clos(nloc) |
|---|
| 2200 | |
|---|
| 2201 | !input/output |
|---|
| 2202 | INTEGER iflag(nloc) |
|---|
| 2203 | |
|---|
| 2204 | !outputs: |
|---|
| 2205 | REAL mp(nloc, na), rp(nloc, na), up(nloc, na), vp(nloc, na) |
|---|
| 2206 | REAL water(nloc, na), evap(nloc, na), wt(nloc, na) |
|---|
| 2207 | REAL ice(nloc, na), fondue(nloc, na), faci(nloc, na) |
|---|
| 2208 | REAL trap(nloc, na, ntra) |
|---|
| 2209 | REAL b(nloc, na), sigd(nloc) |
|---|
| 2210 | ! 25/08/10 - RomP---- ajout des masses precipitantes ejectees |
|---|
| 2211 | ! de l ascendance adiabatique et des flux melanges Pa et Pm. |
|---|
| 2212 | ! Distinction des wdtrain |
|---|
| 2213 | ! Pa = wdtrainA Pm = wdtrainM |
|---|
| 2214 | REAL wdtrainA(nloc, na), wdtrainM(nloc, na) |
|---|
| 2215 | |
|---|
| 2216 | !local variables |
|---|
| 2217 | INTEGER i, j, k, il, num1, ndp1 |
|---|
| 2218 | REAL tinv, delti, coef |
|---|
| 2219 | REAL awat, afac, afac1, afac2, bfac |
|---|
| 2220 | REAL pr1, pr2, sigt, b6, c6, d6, e6, f6, revap, delth |
|---|
| 2221 | REAL amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
|---|
| 2222 | REAL ampmax, thaw |
|---|
| 2223 | REAL tevap(nloc) |
|---|
| 2224 | REAL lvcp(nloc, na), lfcp(nloc, na) |
|---|
| 2225 | REAL h(nloc, na), hm(nloc, na) |
|---|
| 2226 | REAL frac(nloc, na) |
|---|
| 2227 | REAL fraci(nloc, na), prec(nloc, na) |
|---|
| 2228 | REAL wdtrain(nloc) |
|---|
| 2229 | LOGICAL lwork(nloc), mplus(nloc) |
|---|
| 2230 | |
|---|
| 2231 | |
|---|
| 2232 | ! ------------------------------------------------------ |
|---|
| 2233 | |
|---|
| 2234 | delti = 1./delt |
|---|
| 2235 | tinv = 1./3. |
|---|
| 2236 | |
|---|
| 2237 | mp(:, :) = 0. |
|---|
| 2238 | |
|---|
| 2239 | DO i = 1, nl |
|---|
| 2240 | DO il = 1, ncum |
|---|
| 2241 | mp(il, i) = 0.0 |
|---|
| 2242 | rp(il, i) = rr(il, i) |
|---|
| 2243 | up(il, i) = u(il, i) |
|---|
| 2244 | vp(il, i) = v(il, i) |
|---|
| 2245 | wt(il, i) = 0.001 |
|---|
| 2246 | water(il, i) = 0.0 |
|---|
| 2247 | frac(il, i) = 0.0 |
|---|
| 2248 | faci(il, i) = 0.0 |
|---|
| 2249 | fraci(il, i) = 0.0 |
|---|
| 2250 | ice(il, i) = 0.0 |
|---|
| 2251 | prec(il, i) = 0.0 |
|---|
| 2252 | fondue(il, i) = 0.0 |
|---|
| 2253 | evap(il, i) = 0.0 |
|---|
| 2254 | b(il, i) = 0.0 |
|---|
| 2255 | lvcp(il, i) = lv(il, i)/cpn(il, i) |
|---|
| 2256 | lfcp(il, i) = lf(il, i)/cpn(il, i) |
|---|
| 2257 | END DO |
|---|
| 2258 | END DO |
|---|
| 2259 | !AC! do k=1,ntra |
|---|
| 2260 | !AC! do i=1,nd |
|---|
| 2261 | !AC! do il=1,ncum |
|---|
| 2262 | !AC! trap(il,i,k)=tra(il,i,k) |
|---|
| 2263 | !AC! enddo |
|---|
| 2264 | !AC! enddo |
|---|
| 2265 | !AC! enddo |
|---|
| 2266 | !! RomP >>> |
|---|
| 2267 | DO i = 1, nd |
|---|
| 2268 | DO il = 1, ncum |
|---|
| 2269 | wdtrainA(il, i) = 0.0 |
|---|
| 2270 | wdtrainM(il, i) = 0.0 |
|---|
| 2271 | END DO |
|---|
| 2272 | END DO |
|---|
| 2273 | !! RomP <<< |
|---|
| 2274 | |
|---|
| 2275 | ! *** check whether ep(inb)=0, if so, skip precipitating *** |
|---|
| 2276 | ! *** downdraft calculation *** |
|---|
| 2277 | |
|---|
| 2278 | |
|---|
| 2279 | DO il = 1, ncum |
|---|
| 2280 | !! lwork(il)=.TRUE. |
|---|
| 2281 | !! if(ep(il,inb(il)).lt.0.0001)lwork(il)=.FALSE. |
|---|
| 2282 | lwork(il) = ep(il, inb(il)) >= 0.0001 |
|---|
| 2283 | END DO |
|---|
| 2284 | |
|---|
| 2285 | ! *** Set the fractionnal area sigd of precipitating downdraughts |
|---|
| 2286 | DO il = 1, ncum |
|---|
| 2287 | sigd(il) = sigdz*coef_clos(il) |
|---|
| 2288 | END DO |
|---|
| 2289 | |
|---|
| 2290 | |
|---|
| 2291 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 2292 | ! |
|---|
| 2293 | ! *** begin downdraft loop *** |
|---|
| 2294 | ! |
|---|
| 2295 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 2296 | |
|---|
| 2297 | DO i = nl + 1, 1, -1 |
|---|
| 2298 | |
|---|
| 2299 | num1 = 0 |
|---|
| 2300 | DO il = 1, ncum |
|---|
| 2301 | IF (i<=inb(il) .AND. lwork(il)) num1 = num1 + 1 |
|---|
| 2302 | END DO |
|---|
| 2303 | IF (num1<=0) GO TO 400 |
|---|
| 2304 | |
|---|
| 2305 | CALL zilch(wdtrain, ncum) |
|---|
| 2306 | |
|---|
| 2307 | |
|---|
| 2308 | ! *** integrate liquid water equation to find condensed water *** |
|---|
| 2309 | ! *** and condensed water flux *** |
|---|
| 2310 | ! |
|---|
| 2311 | ! |
|---|
| 2312 | ! *** calculate detrained precipitation *** |
|---|
| 2313 | |
|---|
| 2314 | DO il = 1, ncum |
|---|
| 2315 | IF (i<=inb(il) .AND. lwork(il)) THEN |
|---|
| 2316 | IF (cvflag_grav) THEN |
|---|
| 2317 | wdtrain(il) = grav*ep(il, i)*m(il, i)*clw(il, i) |
|---|
| 2318 | wdtrainA(il, i) = wdtrain(il)/grav ! Pa RomP |
|---|
| 2319 | ELSE |
|---|
| 2320 | wdtrain(il) = 10.0*ep(il, i)*m(il, i)*clw(il, i) |
|---|
| 2321 | wdtrainA(il, i) = wdtrain(il)/10. ! Pa RomP |
|---|
| 2322 | END IF |
|---|
| 2323 | END IF |
|---|
| 2324 | END DO |
|---|
| 2325 | |
|---|
| 2326 | IF (i>1) THEN |
|---|
| 2327 | DO j = 1, i - 1 |
|---|
| 2328 | DO il = 1, ncum |
|---|
| 2329 | IF (i<=inb(il) .AND. lwork(il)) THEN |
|---|
| 2330 | awat = elij(il, j, i) - (1.-ep(il,i))*clw(il, i) |
|---|
| 2331 | awat = max(awat, 0.0) |
|---|
| 2332 | IF (cvflag_grav) THEN |
|---|
| 2333 | wdtrain(il) = wdtrain(il) + grav*awat*ment(il, j, i) |
|---|
| 2334 | wdtrainM(il, i) = wdtrain(il)/grav - wdtrainA(il, i) ! Pm RomP |
|---|
| 2335 | ELSE |
|---|
| 2336 | wdtrain(il) = wdtrain(il) + 10.0*awat*ment(il, j, i) |
|---|
| 2337 | wdtrainM(il, i) = wdtrain(il)/10. - wdtrainA(il, i) ! Pm RomP |
|---|
| 2338 | END IF |
|---|
| 2339 | END IF |
|---|
| 2340 | END DO |
|---|
| 2341 | END DO |
|---|
| 2342 | END IF |
|---|
| 2343 | |
|---|
| 2344 | |
|---|
| 2345 | ! *** find rain water and evaporation using provisional *** |
|---|
| 2346 | ! *** estimates of rp(i)and rp(i-1) *** |
|---|
| 2347 | |
|---|
| 2348 | |
|---|
| 2349 | DO il = 1, ncum |
|---|
| 2350 | IF (i<=inb(il) .AND. lwork(il)) THEN |
|---|
| 2351 | |
|---|
| 2352 | wt(il, i) = 45.0 |
|---|
| 2353 | |
|---|
| 2354 | IF (cvflag_ice) THEN |
|---|
| 2355 | frac(il, inb(il)) = 1. - (t(il,inb(il))-243.15)/(263.15-243.15) |
|---|
| 2356 | frac(il, inb(il)) = min(max(frac(il,inb(il)),0.), 1.) |
|---|
| 2357 | fraci(il, inb(il)) = frac(il, inb(il)) |
|---|
| 2358 | ELSE |
|---|
| 2359 | CONTINUE |
|---|
| 2360 | END IF |
|---|
| 2361 | |
|---|
| 2362 | IF (i<inb(il)) THEN |
|---|
| 2363 | |
|---|
| 2364 | IF (cvflag_ice) THEN |
|---|
| 2365 | thaw = (t(il,i)-273.15)/(275.15-273.15) |
|---|
| 2366 | thaw = min(max(thaw,0.0), 1.0) |
|---|
| 2367 | frac(il, i) = frac(il, i)*(1.-thaw) |
|---|
| 2368 | ELSE |
|---|
| 2369 | CONTINUE |
|---|
| 2370 | END IF |
|---|
| 2371 | |
|---|
| 2372 | rp(il, i) = rp(il, i+1) + & |
|---|
| 2373 | (cpd*(t(il,i+1)-t(il,i))+gz(il,i+1)-gz(il,i))/lv(il, i) |
|---|
| 2374 | rp(il, i) = 0.5*(rp(il,i)+rr(il,i)) |
|---|
| 2375 | END IF |
|---|
| 2376 | fraci(il, i) = 1. - (t(il,i)-243.15)/(263.15-243.15) |
|---|
| 2377 | fraci(il, i) = min(max(fraci(il,i),0.0), 1.0) |
|---|
| 2378 | rp(il, i) = max(rp(il,i), 0.0) |
|---|
| 2379 | rp(il, i) = amin1(rp(il,i), rs(il,i)) |
|---|
| 2380 | rp(il, inb(il)) = rr(il, inb(il)) |
|---|
| 2381 | |
|---|
| 2382 | IF (i==1) THEN |
|---|
| 2383 | afac = p(il, 1)*(rs(il,1)-rp(il,1))/(1.0E4+2000.0*p(il,1)*rs(il,1)) |
|---|
| 2384 | IF (cvflag_ice) THEN |
|---|
| 2385 | afac1 = p(il, i)*(rs(il,1)-rp(il,1))/(1.0E4+2000.0*p(il,1)*rs(il,1)) |
|---|
| 2386 | END IF |
|---|
| 2387 | ELSE |
|---|
| 2388 | rp(il, i-1) = rp(il, i) + (cpd*(t(il,i)-t(il,i-1))+gz(il,i)-gz(il,i-1))/lv(il, i) |
|---|
| 2389 | rp(il, i-1) = 0.5*(rp(il,i-1)+rr(il,i-1)) |
|---|
| 2390 | rp(il, i-1) = amin1(rp(il,i-1), rs(il,i-1)) |
|---|
| 2391 | rp(il, i-1) = max(rp(il,i-1), 0.0) |
|---|
| 2392 | afac1 = p(il, i)*(rs(il,i)-rp(il,i))/(1.0E4+2000.0*p(il,i)*rs(il,i)) |
|---|
| 2393 | afac2 = p(il, i-1)*(rs(il,i-1)-rp(il,i-1))/(1.0E4+2000.0*p(il,i-1)*rs(il,i-1)) |
|---|
| 2394 | afac = 0.5*(afac1+afac2) |
|---|
| 2395 | END IF |
|---|
| 2396 | IF (i==inb(il)) afac = 0.0 |
|---|
| 2397 | afac = max(afac, 0.0) |
|---|
| 2398 | bfac = 1./(sigd(il)*wt(il,i)) |
|---|
| 2399 | |
|---|
| 2400 | !JYG1 |
|---|
| 2401 | ! cc sigt=1.0 |
|---|
| 2402 | ! cc if(i.ge.icb)sigt=sigp(i) |
|---|
| 2403 | ! prise en compte de la variation progressive de sigt dans |
|---|
| 2404 | ! les couches icb et icb-1: |
|---|
| 2405 | ! pour plcl<ph(i+1), pr1=0 & pr2=1 |
|---|
| 2406 | ! pour plcl>ph(i), pr1=1 & pr2=0 |
|---|
| 2407 | ! pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
|---|
| 2408 | ! sur le nuage, et pr2 est la proportion sous la base du |
|---|
| 2409 | ! nuage. |
|---|
| 2410 | pr1 = (plcl(il)-ph(il,i+1))/(ph(il,i)-ph(il,i+1)) |
|---|
| 2411 | pr1 = max(0., min(1.,pr1)) |
|---|
| 2412 | pr2 = (ph(il,i)-plcl(il))/(ph(il,i)-ph(il,i+1)) |
|---|
| 2413 | pr2 = max(0., min(1.,pr2)) |
|---|
| 2414 | sigt = sigp(il, i)*pr1 + pr2 |
|---|
| 2415 | !JYG2 |
|---|
| 2416 | |
|---|
| 2417 | !JYG---- |
|---|
| 2418 | ! b6 = bfac*100.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
|---|
| 2419 | ! c6 = water(il,i+1) + wdtrain(il)*bfac |
|---|
| 2420 | ! c6 = prec(il,i+1) + wdtrain(il)*bfac |
|---|
| 2421 | ! revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
|---|
| 2422 | ! evap(il,i)=sigt*afac*revap |
|---|
| 2423 | ! water(il,i)=revap*revap |
|---|
| 2424 | ! prec(il,i)=revap*revap |
|---|
| 2425 | !! print *,' i,b6,c6,revap,evap(il,i),water(il,i),wdtrain(il) ', & |
|---|
| 2426 | !! i,b6,c6,revap,evap(il,i),water(il,i),wdtrain(il) |
|---|
| 2427 | !!---end jyg--- |
|---|
| 2428 | |
|---|
| 2429 | ! --------retour à la formulation originale d'Emanuel. |
|---|
| 2430 | IF (cvflag_ice) THEN |
|---|
| 2431 | |
|---|
| 2432 | ! b6=bfac*50.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
|---|
| 2433 | ! c6=prec(il,i+1)+bfac*wdtrain(il) & |
|---|
| 2434 | ! -50.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il,i+1) |
|---|
| 2435 | ! if(c6.gt.0.0)then |
|---|
| 2436 | ! revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
|---|
| 2437 | |
|---|
| 2438 | !JAM Attention: evap=sigt*E |
|---|
| 2439 | ! Modification: evap devient l'évaporation en milieu de couche |
|---|
| 2440 | ! car nécessaire dans cv3_yield |
|---|
| 2441 | ! Du coup, il faut modifier pas mal d'équations... |
|---|
| 2442 | ! et l'expression de afac qui devient afac1 |
|---|
| 2443 | ! revap=sqrt((prec(i+1)+prec(i))/2) |
|---|
| 2444 | |
|---|
| 2445 | b6 = bfac*50.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac1 |
|---|
| 2446 | c6 = prec(il, i+1) + 0.5*bfac*wdtrain(il) |
|---|
| 2447 | ! print *,'bfac,sigd(il),sigt,afac1 ',bfac,sigd(il),sigt,afac1 |
|---|
| 2448 | ! print *,'prec(il,i+1),wdtrain(il) ',prec(il,i+1),wdtrain(il) |
|---|
| 2449 | ! print *,'b6,c6,b6*b6+4.*c6 ',b6,c6,b6*b6+4.*c6 |
|---|
| 2450 | IF (c6>b6*b6+1.E-20) THEN |
|---|
| 2451 | revap = 2.*c6/(b6+sqrt(b6*b6+4.*c6)) |
|---|
| 2452 | ELSE |
|---|
| 2453 | revap = (-b6+sqrt(b6*b6+4.*c6))/2. |
|---|
| 2454 | END IF |
|---|
| 2455 | prec(il, i) = max(0., 2.*revap*revap-prec(il,i+1)) |
|---|
| 2456 | ! print*,prec(il,i),'neige' |
|---|
| 2457 | |
|---|
| 2458 | !JYG Dans sa formulation originale, Emanuel calcule l'evaporation par: |
|---|
| 2459 | ! c evap(il,i)=sigt*afac*revap |
|---|
| 2460 | ! ce qui n'est pas correct. Dans cv_routines, la formulation a été modifiee. |
|---|
| 2461 | ! Ici,l'evaporation evap est simplement calculee par l'equation de |
|---|
| 2462 | ! conservation. |
|---|
| 2463 | ! prec(il,i)=revap*revap |
|---|
| 2464 | ! else |
|---|
| 2465 | !JYG---- Correction : si c6 <= 0, water(il,i)=0. |
|---|
| 2466 | ! prec(il,i)=0. |
|---|
| 2467 | ! endif |
|---|
| 2468 | |
|---|
| 2469 | !JYG--- Dans tous les cas, evaporation = [tt ce qui entre dans la couche i] |
|---|
| 2470 | ! moins [tt ce qui sort de la couche i] |
|---|
| 2471 | ! print *, 'evap avec ice' |
|---|
| 2472 | evap(il, i) = (wdtrain(il)+sigd(il)*wt(il,i)*(prec(il,i+1)-prec(il,i))) / & |
|---|
| 2473 | (sigd(il)*(ph(il,i)-ph(il,i+1))*100.) |
|---|
| 2474 | |
|---|
| 2475 | d6 = bfac*wdtrain(il) - 100.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il, i) |
|---|
| 2476 | e6 = bfac*wdtrain(il) |
|---|
| 2477 | f6 = -100.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il, i) |
|---|
| 2478 | |
|---|
| 2479 | thaw = (t(il,i)-273.15)/(275.15-273.15) |
|---|
| 2480 | thaw = min(max(thaw,0.0), 1.0) |
|---|
| 2481 | water(il, i) = water(il, i+1) + (1-fraci(il,i))*d6 |
|---|
| 2482 | water(il, i) = max(water(il,i), 0.) |
|---|
| 2483 | ice(il, i) = ice(il, i+1) + fraci(il, i)*d6 |
|---|
| 2484 | ice(il, i) = max(ice(il,i), 0.) |
|---|
| 2485 | fondue(il, i) = ice(il, i)*thaw |
|---|
| 2486 | water(il, i) = water(il, i) + fondue(il, i) |
|---|
| 2487 | ice(il, i) = ice(il, i) - fondue(il, i) |
|---|
| 2488 | |
|---|
| 2489 | IF (water(il,i)+ice(il,i)<1.E-30) THEN |
|---|
| 2490 | faci(il, i) = 0. |
|---|
| 2491 | ELSE |
|---|
| 2492 | faci(il, i) = ice(il, i)/(water(il,i)+ice(il,i)) |
|---|
| 2493 | END IF |
|---|
| 2494 | |
|---|
| 2495 | ! water(il,i)=water(il,i+1)+(1.-fraci(il,i))*e6+(1.-faci(il,i))*f6 |
|---|
| 2496 | ! water(il,i)=max(water(il,i),0.) |
|---|
| 2497 | ! ice(il,i)=ice(il,i+1)+fraci(il,i)*e6+faci(il,i)*f6 |
|---|
| 2498 | ! ice(il,i)=max(ice(il,i),0.) |
|---|
| 2499 | ! fondue(il,i)=ice(il,i)*thaw |
|---|
| 2500 | ! water(il,i)=water(il,i)+fondue(il,i) |
|---|
| 2501 | ! ice(il,i)=ice(il,i)-fondue(il,i) |
|---|
| 2502 | |
|---|
| 2503 | ! if((water(il,i)+ice(il,i)).lt.1.e-30)then |
|---|
| 2504 | ! faci(il,i)=0. |
|---|
| 2505 | ! else |
|---|
| 2506 | ! faci(il,i)=ice(il,i)/(water(il,i)+ice(il,i)) |
|---|
| 2507 | ! endif |
|---|
| 2508 | |
|---|
| 2509 | ELSE |
|---|
| 2510 | b6 = bfac*50.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
|---|
| 2511 | c6 = water(il, i+1) + bfac*wdtrain(il) - & |
|---|
| 2512 | 50.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il, i+1) |
|---|
| 2513 | IF (c6>0.0) THEN |
|---|
| 2514 | revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
|---|
| 2515 | water(il, i) = revap*revap |
|---|
| 2516 | ELSE |
|---|
| 2517 | water(il, i) = 0. |
|---|
| 2518 | END IF |
|---|
| 2519 | ! print *, 'evap sans ice' |
|---|
| 2520 | evap(il, i) = (wdtrain(il)+sigd(il)*wt(il,i)*(water(il,i+1)-water(il,i)))/ & |
|---|
| 2521 | (sigd(il)*(ph(il,i)-ph(il,i+1))*100.) |
|---|
| 2522 | |
|---|
| 2523 | END IF |
|---|
| 2524 | END IF !(i.le.inb(il) .and. lwork(il)) |
|---|
| 2525 | END DO |
|---|
| 2526 | ! ---------------------------------------------------------------- |
|---|
| 2527 | |
|---|
| 2528 | ! cc |
|---|
| 2529 | ! *** calculate precipitating downdraft mass flux under *** |
|---|
| 2530 | ! *** hydrostatic approximation *** |
|---|
| 2531 | |
|---|
| 2532 | DO il = 1, ncum |
|---|
| 2533 | IF (i<=inb(il) .AND. lwork(il) .AND. i/=1) THEN |
|---|
| 2534 | |
|---|
| 2535 | tevap(il) = max(0.0, evap(il,i)) |
|---|
| 2536 | delth = max(0.001, (th(il,i)-th(il,i-1))) |
|---|
| 2537 | IF (cvflag_ice) THEN |
|---|
| 2538 | IF (cvflag_grav) THEN |
|---|
| 2539 | mp(il, i) = 100.*ginv*(lvcp(il,i)*sigd(il)*tevap(il)* & |
|---|
| 2540 | (p(il,i-1)-p(il,i))/delth + & |
|---|
| 2541 | lfcp(il,i)*sigd(il)*faci(il,i)*tevap(il)* & |
|---|
| 2542 | (p(il,i-1)-p(il,i))/delth + & |
|---|
| 2543 | lfcp(il,i)*sigd(il)*wt(il,i)/100.*fondue(il,i)* & |
|---|
| 2544 | (p(il,i-1)-p(il,i))/delth/(ph(il,i)-ph(il,i+1))) |
|---|
| 2545 | ELSE |
|---|
| 2546 | mp(il, i) = 10.*(lvcp(il,i)*sigd(il)*tevap(il)* & |
|---|
| 2547 | (p(il,i-1)-p(il,i))/delth + & |
|---|
| 2548 | lfcp(il,i)*sigd(il)*faci(il,i)*tevap(il)* & |
|---|
| 2549 | (p(il,i-1)-p(il,i))/delth + & |
|---|
| 2550 | lfcp(il,i)*sigd(il)*wt(il,i)/100.*fondue(il,i)* & |
|---|
| 2551 | (p(il,i-1)-p(il,i))/delth/(ph(il,i)-ph(il,i+1))) |
|---|
| 2552 | |
|---|
| 2553 | END IF |
|---|
| 2554 | ELSE |
|---|
| 2555 | IF (cvflag_grav) THEN |
|---|
| 2556 | mp(il, i) = 100.*ginv*lvcp(il, i)*sigd(il)*tevap(il)* & |
|---|
| 2557 | (p(il,i-1)-p(il,i))/delth |
|---|
| 2558 | ELSE |
|---|
| 2559 | mp(il, i) = 10.*lvcp(il, i)*sigd(il)*tevap(il)* & |
|---|
| 2560 | (p(il,i-1)-p(il,i))/delth |
|---|
| 2561 | END IF |
|---|
| 2562 | |
|---|
| 2563 | END IF |
|---|
| 2564 | |
|---|
| 2565 | END IF !(i.le.inb(il) .and. lwork(il) .and. i.ne.1) |
|---|
| 2566 | END DO |
|---|
| 2567 | ! ---------------------------------------------------------------- |
|---|
| 2568 | |
|---|
| 2569 | ! *** if hydrostatic assumption fails, *** |
|---|
| 2570 | ! *** solve cubic difference equation for downdraft theta *** |
|---|
| 2571 | ! *** and mass flux from two simultaneous differential eqns *** |
|---|
| 2572 | |
|---|
| 2573 | DO il = 1, ncum |
|---|
| 2574 | IF (i<=inb(il) .AND. lwork(il) .AND. i/=1) THEN |
|---|
| 2575 | |
|---|
| 2576 | amfac = sigd(il)*sigd(il)*70.0*ph(il, i)*(p(il,i-1)-p(il,i))* & |
|---|
| 2577 | (th(il,i)-th(il,i-1))/(tv(il,i)*th(il,i)) |
|---|
| 2578 | amp2 = abs(mp(il,i+1)*mp(il,i+1)-mp(il,i)*mp(il,i)) |
|---|
| 2579 | |
|---|
| 2580 | IF (amp2>(0.1*amfac)) THEN |
|---|
| 2581 | xf = 100.0*sigd(il)*sigd(il)*sigd(il)*(ph(il,i)-ph(il,i+1)) |
|---|
| 2582 | tf = b(il, i) - 5.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
|---|
| 2583 | (lvcp(il,i)*sigd(il)*th(il,i)) |
|---|
| 2584 | af = xf*tf + mp(il, i+1)*mp(il, i+1)*tinv |
|---|
| 2585 | |
|---|
| 2586 | IF (cvflag_ice) THEN |
|---|
| 2587 | bf = 2.*(tinv*mp(il,i+1))**3 + tinv*mp(il, i+1)*xf*tf + & |
|---|
| 2588 | 50.*(p(il,i-1)-p(il,i))*xf*(tevap(il)*(1.+(lf(il,i)/lv(il,i))*faci(il,i)) + & |
|---|
| 2589 | (lf(il,i)/lv(il,i))*wt(il,i)/100.*fondue(il,i)/(ph(il,i)-ph(il,i+1))) |
|---|
| 2590 | ELSE |
|---|
| 2591 | |
|---|
| 2592 | bf = 2.*(tinv*mp(il,i+1))**3 + tinv*mp(il, i+1)*xf*tf + & |
|---|
| 2593 | 50.*(p(il,i-1)-p(il,i))*xf*tevap(il) |
|---|
| 2594 | END IF |
|---|
| 2595 | |
|---|
| 2596 | fac2 = 1.0 |
|---|
| 2597 | IF (bf<0.0) fac2 = -1.0 |
|---|
| 2598 | bf = abs(bf) |
|---|
| 2599 | ur = 0.25*bf*bf - af*af*af*tinv*tinv*tinv |
|---|
| 2600 | IF (ur>=0.0) THEN |
|---|
| 2601 | sru = sqrt(ur) |
|---|
| 2602 | fac = 1.0 |
|---|
| 2603 | IF ((0.5*bf-sru)<0.0) fac = -1.0 |
|---|
| 2604 | mp(il, i) = mp(il, i+1)*tinv + (0.5*bf+sru)**tinv + & |
|---|
| 2605 | fac*(abs(0.5*bf-sru))**tinv |
|---|
| 2606 | ELSE |
|---|
| 2607 | d = atan(2.*sqrt(-ur)/(bf+1.0E-28)) |
|---|
| 2608 | IF (fac2<0.0) d = 3.14159 - d |
|---|
| 2609 | mp(il, i) = mp(il, i+1)*tinv + 2.*sqrt(af*tinv)*cos(d*tinv) |
|---|
| 2610 | END IF |
|---|
| 2611 | mp(il, i) = max(0.0, mp(il,i)) |
|---|
| 2612 | |
|---|
| 2613 | IF (cvflag_ice) THEN |
|---|
| 2614 | IF (cvflag_grav) THEN |
|---|
| 2615 | !JYG : il y a vraisemblablement une erreur dans la ligne 2 suivante: |
|---|
| 2616 | ! il faut diviser par (mp(il,i)*sigd(il)*grav) et non par (mp(il,i)+sigd(il)*0.1). |
|---|
| 2617 | ! Et il faut bien revoir les facteurs 100. |
|---|
| 2618 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))* & |
|---|
| 2619 | (tevap(il)*(1.+(lf(il,i)/lv(il,i))*faci(il,i)) + & |
|---|
| 2620 | (lf(il,i)/lv(il,i))*wt(il,i)/100.*fondue(il,i) / & |
|---|
| 2621 | (ph(il,i)-ph(il,i+1))) / & |
|---|
| 2622 | (mp(il,i)+sigd(il)*0.1) - & |
|---|
| 2623 | 10.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
|---|
| 2624 | (lvcp(il,i)*sigd(il)*th(il,i)) |
|---|
| 2625 | ELSE |
|---|
| 2626 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*& |
|---|
| 2627 | (tevap(il)*(1.+(lf(il,i)/lv(il,i))*faci(il,i)) + & |
|---|
| 2628 | (lf(il,i)/lv(il,i))*wt(il,i)/100.*fondue(il,i) / & |
|---|
| 2629 | (ph(il,i)-ph(il,i+1))) / & |
|---|
| 2630 | (mp(il,i)+sigd(il)*0.1) - & |
|---|
| 2631 | 10.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
|---|
| 2632 | (lvcp(il,i)*sigd(il)*th(il,i)) |
|---|
| 2633 | END IF |
|---|
| 2634 | ELSE |
|---|
| 2635 | IF (cvflag_grav) THEN |
|---|
| 2636 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap(il) / & |
|---|
| 2637 | (mp(il,i)+sigd(il)*0.1) - & |
|---|
| 2638 | 10.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
|---|
| 2639 | (lvcp(il,i)*sigd(il)*th(il,i)) |
|---|
| 2640 | ELSE |
|---|
| 2641 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap(il) / & |
|---|
| 2642 | (mp(il,i)+sigd(il)*0.1) - & |
|---|
| 2643 | 10.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
|---|
| 2644 | (lvcp(il,i)*sigd(il)*th(il,i)) |
|---|
| 2645 | END IF |
|---|
| 2646 | END IF |
|---|
| 2647 | b(il, i-1) = max(b(il,i-1), 0.0) |
|---|
| 2648 | |
|---|
| 2649 | END IF !(amp2.gt.(0.1*amfac)) |
|---|
| 2650 | |
|---|
| 2651 | ! *** limit magnitude of mp(i) to meet cfl condition *** |
|---|
| 2652 | |
|---|
| 2653 | ampmax = 2.0*(ph(il,i)-ph(il,i+1))*delti |
|---|
| 2654 | amp2 = 2.0*(ph(il,i-1)-ph(il,i))*delti |
|---|
| 2655 | ampmax = min(ampmax, amp2) |
|---|
| 2656 | mp(il, i) = min(mp(il,i), ampmax) |
|---|
| 2657 | |
|---|
| 2658 | ! *** force mp to decrease linearly to zero *** |
|---|
| 2659 | ! *** between cloud base and the surface *** |
|---|
| 2660 | |
|---|
| 2661 | |
|---|
| 2662 | ! c if(p(il,i).gt.p(il,icb(il)))then |
|---|
| 2663 | ! c mp(il,i)=mp(il,icb(il))*(p(il,1)-p(il,i))/(p(il,1)-p(il,icb(il))) |
|---|
| 2664 | ! c endif |
|---|
| 2665 | IF (ph(il,i)>0.9*plcl(il)) THEN |
|---|
| 2666 | mp(il, i) = mp(il, i)*(ph(il,1)-ph(il,i))/(ph(il,1)-0.9*plcl(il)) |
|---|
| 2667 | END IF |
|---|
| 2668 | |
|---|
| 2669 | END IF ! (i.le.inb(il) .and. lwork(il) .and. i.ne.1) |
|---|
| 2670 | END DO |
|---|
| 2671 | ! ---------------------------------------------------------------- |
|---|
| 2672 | |
|---|
| 2673 | ! *** find mixing ratio of precipitating downdraft *** |
|---|
| 2674 | |
|---|
| 2675 | DO il = 1, ncum |
|---|
| 2676 | IF (i<inb(il) .AND. lwork(il)) THEN |
|---|
| 2677 | mplus(il) = mp(il, i) > mp(il, i+1) |
|---|
| 2678 | END IF ! (i.lt.inb(il) .and. lwork(il)) |
|---|
| 2679 | END DO |
|---|
| 2680 | |
|---|
| 2681 | DO il = 1, ncum |
|---|
| 2682 | IF (i<inb(il) .AND. lwork(il)) THEN |
|---|
| 2683 | |
|---|
| 2684 | rp(il, i) = rr(il, i) |
|---|
| 2685 | |
|---|
| 2686 | IF (mplus(il)) THEN |
|---|
| 2687 | |
|---|
| 2688 | IF (cvflag_grav) THEN |
|---|
| 2689 | rp(il, i) = rp(il, i+1)*mp(il, i+1) + rr(il, i)*(mp(il,i)-mp(il,i+1)) + & |
|---|
| 2690 | 100.*ginv*0.5*sigd(il)*(ph(il,i)-ph(il,i+1))*(evap(il,i+1)+evap(il,i)) |
|---|
| 2691 | ELSE |
|---|
| 2692 | rp(il, i) = rp(il, i+1)*mp(il, i+1) + rr(il, i)*(mp(il,i)-mp(il,i+1)) + & |
|---|
| 2693 | 5.*sigd(il)*(ph(il,i)-ph(il,i+1))*(evap(il,i+1)+evap(il,i)) |
|---|
| 2694 | END IF |
|---|
| 2695 | rp(il, i) = rp(il, i)/mp(il, i) |
|---|
| 2696 | up(il, i) = up(il, i+1)*mp(il, i+1) + u(il, i)*(mp(il,i)-mp(il,i+1)) |
|---|
| 2697 | up(il, i) = up(il, i)/mp(il, i) |
|---|
| 2698 | vp(il, i) = vp(il, i+1)*mp(il, i+1) + v(il, i)*(mp(il,i)-mp(il,i+1)) |
|---|
| 2699 | vp(il, i) = vp(il, i)/mp(il, i) |
|---|
| 2700 | |
|---|
| 2701 | ELSE ! if (mplus(il)) |
|---|
| 2702 | |
|---|
| 2703 | IF (mp(il,i+1)>1.0E-16) THEN |
|---|
| 2704 | IF (cvflag_grav) THEN |
|---|
| 2705 | rp(il, i) = rp(il,i+1) + 100.*ginv*0.5*sigd(il)*(ph(il,i)-ph(il,i+1)) * & |
|---|
| 2706 | (evap(il,i+1)+evap(il,i))/mp(il,i+1) |
|---|
| 2707 | ELSE |
|---|
| 2708 | rp(il, i) = rp(il,i+1) + 5.*sigd(il)*(ph(il,i)-ph(il,i+1)) * & |
|---|
| 2709 | (evap(il,i+1)+evap(il,i))/mp(il, i+1) |
|---|
| 2710 | END IF |
|---|
| 2711 | up(il, i) = up(il, i+1) |
|---|
| 2712 | vp(il, i) = vp(il, i+1) |
|---|
| 2713 | END IF ! (mp(il,i+1).gt.1.0e-16) |
|---|
| 2714 | END IF ! (mplus(il)) else if (.not.mplus(il)) |
|---|
| 2715 | |
|---|
| 2716 | rp(il, i) = amin1(rp(il,i), rs(il,i)) |
|---|
| 2717 | rp(il, i) = max(rp(il,i), 0.0) |
|---|
| 2718 | |
|---|
| 2719 | END IF ! (i.lt.inb(il) .and. lwork(il)) |
|---|
| 2720 | END DO |
|---|
| 2721 | ! ---------------------------------------------------------------- |
|---|
| 2722 | |
|---|
| 2723 | ! *** find tracer concentrations in precipitating downdraft *** |
|---|
| 2724 | |
|---|
| 2725 | !AC! do j=1,ntra |
|---|
| 2726 | !AC! do il = 1,ncum |
|---|
| 2727 | !AC! if (i.lt.inb(il) .and. lwork(il)) then |
|---|
| 2728 | !AC!c |
|---|
| 2729 | !AC! if(mplus(il))then |
|---|
| 2730 | !AC! trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
|---|
| 2731 | !AC! : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
|---|
| 2732 | !AC! trap(il,i,j)=trap(il,i,j)/mp(il,i) |
|---|
| 2733 | !AC! else ! if (mplus(il)) |
|---|
| 2734 | !AC! if(mp(il,i+1).gt.1.0e-16)then |
|---|
| 2735 | !AC! trap(il,i,j)=trap(il,i+1,j) |
|---|
| 2736 | !AC! endif |
|---|
| 2737 | !AC! endif ! (mplus(il)) else if (.not.mplus(il)) |
|---|
| 2738 | !AC!c |
|---|
| 2739 | !AC! endif ! (i.lt.inb(il) .and. lwork(il)) |
|---|
| 2740 | !AC! enddo |
|---|
| 2741 | !AC! end do |
|---|
| 2742 | |
|---|
| 2743 | 400 END DO |
|---|
| 2744 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 2745 | |
|---|
| 2746 | ! *** end of downdraft loop *** |
|---|
| 2747 | |
|---|
| 2748 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|---|
| 2749 | |
|---|
| 2750 | |
|---|
| 2751 | RETURN |
|---|
| 2752 | END SUBROUTINE cv3_unsat |
|---|
| 2753 | |
|---|
| 2754 | SUBROUTINE cv3_yield(nloc, ncum, nd, na, ntra, ok_conserv_q, & |
|---|
| 2755 | icb, inb, delt, & |
|---|
| 2756 | t, rr, t_wake, rr_wake, s_wake, u, v, tra, & |
|---|
| 2757 | gz, p, ph, h, hp, lv, lf, cpn, th, th_wake, & |
|---|
| 2758 | ep, clw, m, tp, mp, rp, up, vp, trap, & |
|---|
| 2759 | wt, water, ice, evap, fondue, faci, b, sigd, & |
|---|
| 2760 | ment, qent, hent, iflag_mix, uent, vent, & |
|---|
| 2761 | nent, elij, traent, sig, & |
|---|
| 2762 | tv, tvp, wghti, & |
|---|
| 2763 | iflag, precip, Vprecip, ft, fr, fu, fv, ftra, & |
|---|
| 2764 | cbmf, upwd, dnwd, dnwd0, ma, mip, & |
|---|
| 2765 | tls, tps, qcondc, wd, & |
|---|
| 2766 | ftd, fqd, qnk, qtc, sigt, tau_cld_cv, coefw_cld_cv) |
|---|
| 2767 | |
|---|
| 2768 | IMPLICIT NONE |
|---|
| 2769 | |
|---|
| 2770 | include "cvthermo.h" |
|---|
| 2771 | include "cv3param.h" |
|---|
| 2772 | include "cvflag.h" |
|---|
| 2773 | include "conema3.h" |
|---|
| 2774 | |
|---|
| 2775 | !inputs: |
|---|
| 2776 | INTEGER iflag_mix |
|---|
| 2777 | INTEGER ncum, nd, na, ntra, nloc |
|---|
| 2778 | LOGICAL ok_conserv_q |
|---|
| 2779 | INTEGER icb(nloc), inb(nloc) |
|---|
| 2780 | REAL delt |
|---|
| 2781 | REAL t(nloc, nd), rr(nloc, nd), u(nloc, nd), v(nloc, nd) |
|---|
| 2782 | REAL t_wake(nloc, nd), rr_wake(nloc, nd) |
|---|
| 2783 | REAL s_wake(nloc) |
|---|
| 2784 | REAL tra(nloc, nd, ntra), sig(nloc, nd) |
|---|
| 2785 | REAL gz(nloc, na), ph(nloc, nd+1), h(nloc, na), hp(nloc, na) |
|---|
| 2786 | REAL th(nloc, na), p(nloc, nd), tp(nloc, na) |
|---|
| 2787 | REAL lv(nloc, na), cpn(nloc, na), ep(nloc, na), clw(nloc, na) |
|---|
| 2788 | REAL lf(nloc, na) |
|---|
| 2789 | REAL m(nloc, na), mp(nloc, na), rp(nloc, na), up(nloc, na) |
|---|
| 2790 | REAL vp(nloc, na), wt(nloc, nd), trap(nloc, nd, ntra) |
|---|
| 2791 | REAL water(nloc, na), evap(nloc, na), b(nloc, na), sigd(nloc) |
|---|
| 2792 | REAL fondue(nloc, na), faci(nloc, na), ice(nloc, na) |
|---|
| 2793 | REAL ment(nloc, na, na), qent(nloc, na, na), uent(nloc, na, na) |
|---|
| 2794 | REAL hent(nloc, na, na) |
|---|
| 2795 | !IM bug real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
|---|
| 2796 | REAL vent(nloc, na, na), elij(nloc, na, na) |
|---|
| 2797 | INTEGER nent(nloc, nd) |
|---|
| 2798 | REAL traent(nloc, na, na, ntra) |
|---|
| 2799 | REAL tv(nloc, nd), tvp(nloc, nd), wghti(nloc, nd) |
|---|
| 2800 | ! |
|---|
| 2801 | !input/output: |
|---|
| 2802 | INTEGER iflag(nloc) |
|---|
| 2803 | REAL,INTENT(in) :: tau_cld_cv, coefw_cld_cv |
|---|
| 2804 | ! |
|---|
| 2805 | !outputs: |
|---|
| 2806 | REAL precip(nloc) |
|---|
| 2807 | REAL ft(nloc, nd), fr(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
|---|
| 2808 | REAL ftd(nloc, nd), fqd(nloc, nd) |
|---|
| 2809 | REAL ftra(nloc, nd, ntra) |
|---|
| 2810 | REAL upwd(nloc, nd), dnwd(nloc, nd), ma(nloc, nd) |
|---|
| 2811 | REAL dnwd0(nloc, nd), mip(nloc, nd) |
|---|
| 2812 | REAL Vprecip(nloc, nd+1) |
|---|
| 2813 | REAL tls(nloc, nd), tps(nloc, nd) |
|---|
| 2814 | REAL qcondc(nloc, nd) ! cld |
|---|
| 2815 | REAL qtc(nloc,nd), sigt(nloc,nd) ! cld |
|---|
| 2816 | REAL wd(nloc) ! gust |
|---|
| 2817 | REAL cbmf(nloc) |
|---|
| 2818 | ! |
|---|
| 2819 | !local variables: |
|---|
| 2820 | INTEGER i, k, il, n, j, num1 |
|---|
| 2821 | REAL rat, delti |
|---|
| 2822 | REAL ax, bx, cx, dx, ex |
|---|
| 2823 | REAL cpinv, rdcp, dpinv |
|---|
| 2824 | REAL awat(nloc) |
|---|
| 2825 | REAL lvcp(nloc, na), lfcp(nloc, na), mke(nloc, na) |
|---|
| 2826 | REAL am(nloc), work(nloc), ad(nloc), amp1(nloc) |
|---|
| 2827 | !! real up1(nloc), dn1(nloc) |
|---|
| 2828 | REAL up1(nloc, nd, nd), dn1(nloc, nd, nd) |
|---|
| 2829 | REAL asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
|---|
| 2830 | REAL esum(nloc), fsum(nloc), gsum(nloc), hsum(nloc) |
|---|
| 2831 | REAL th_wake(nloc, nd) |
|---|
| 2832 | REAL alpha_qpos(nloc), alpha_qpos1(nloc) |
|---|
| 2833 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
|---|
| 2834 | REAL siga(nloc, nd), sax(nloc, nd), mac(nloc, nd) ! cld |
|---|
| 2835 | REAL sument(nloc), sigment(nloc,nd), qtment(nloc,nd) ! cld |
|---|
| 2836 | REAL qnk(nloc) |
|---|
| 2837 | REAL sumdq !jyg |
|---|
| 2838 | ! |
|---|
| 2839 | ! ------------------------------------------------------------- |
|---|
| 2840 | |
|---|
| 2841 | ! initialization: |
|---|
| 2842 | |
|---|
| 2843 | delti = 1.0/delt |
|---|
| 2844 | ! print*,'cv3_yield initialisation delt', delt |
|---|
| 2845 | ! |
|---|
| 2846 | DO il = 1, ncum |
|---|
| 2847 | precip(il) = 0.0 |
|---|
| 2848 | Vprecip(il, nd+1) = 0.0 |
|---|
| 2849 | wd(il) = 0.0 ! gust |
|---|
| 2850 | END DO |
|---|
| 2851 | |
|---|
| 2852 | DO i = 1, nd |
|---|
| 2853 | DO il = 1, ncum |
|---|
| 2854 | Vprecip(il, i) = 0.0 |
|---|
| 2855 | ft(il, i) = 0.0 |
|---|
| 2856 | fr(il, i) = 0.0 |
|---|
| 2857 | fu(il, i) = 0.0 |
|---|
| 2858 | fv(il, i) = 0.0 |
|---|
| 2859 | upwd(il, i) = 0.0 |
|---|
| 2860 | dnwd(il, i) = 0.0 |
|---|
| 2861 | dnwd0(il, i) = 0.0 |
|---|
| 2862 | mip(il, i) = 0.0 |
|---|
| 2863 | ftd(il, i) = 0.0 |
|---|
| 2864 | fqd(il, i) = 0.0 |
|---|
| 2865 | qcondc(il, i) = 0.0 ! cld |
|---|
| 2866 | qcond(il, i) = 0.0 ! cld |
|---|
| 2867 | qtc(il, i) = 0.0 ! cld |
|---|
| 2868 | qtment(il, i) = 0.0 ! cld |
|---|
| 2869 | sigment(il, i) = 0.0 ! cld |
|---|
| 2870 | sigt(il, i) = 0.0 ! cld |
|---|
| 2871 | nqcond(il, i) = 0.0 ! cld |
|---|
| 2872 | END DO |
|---|
| 2873 | END DO |
|---|
| 2874 | ! print*,'cv3_yield initialisation 2' |
|---|
| 2875 | !AC! do j=1,ntra |
|---|
| 2876 | !AC! do i=1,nd |
|---|
| 2877 | !AC! do il=1,ncum |
|---|
| 2878 | !AC! ftra(il,i,j)=0.0 |
|---|
| 2879 | !AC! enddo |
|---|
| 2880 | !AC! enddo |
|---|
| 2881 | !AC! enddo |
|---|
| 2882 | ! print*,'cv3_yield initialisation 3' |
|---|
| 2883 | DO i = 1, nl |
|---|
| 2884 | DO il = 1, ncum |
|---|
| 2885 | lvcp(il, i) = lv(il, i)/cpn(il, i) |
|---|
| 2886 | lfcp(il, i) = lf(il, i)/cpn(il, i) |
|---|
| 2887 | END DO |
|---|
| 2888 | END DO |
|---|
| 2889 | |
|---|
| 2890 | |
|---|
| 2891 | |
|---|
| 2892 | ! *** calculate surface precipitation in mm/day *** |
|---|
| 2893 | |
|---|
| 2894 | DO il = 1, ncum |
|---|
| 2895 | IF (ep(il,inb(il))>=0.0001 .AND. iflag(il)<=1) THEN |
|---|
| 2896 | IF (cvflag_ice) THEN |
|---|
| 2897 | precip(il) = wt(il, 1)*sigd(il)*(water(il,1)+ice(il,1)) & |
|---|
| 2898 | *86400.*1000./(rowl*grav) |
|---|
| 2899 | ELSE |
|---|
| 2900 | precip(il) = wt(il, 1)*sigd(il)*water(il, 1) & |
|---|
| 2901 | *86400.*1000./(rowl*grav) |
|---|
| 2902 | END IF |
|---|
| 2903 | END IF |
|---|
| 2904 | END DO |
|---|
| 2905 | ! print*,'cv3_yield apres calcul precip' |
|---|
| 2906 | |
|---|
| 2907 | |
|---|
| 2908 | ! === calculate vertical profile of precipitation in kg/m2/s === |
|---|
| 2909 | |
|---|
| 2910 | DO i = 1, nl |
|---|
| 2911 | DO il = 1, ncum |
|---|
| 2912 | IF (ep(il,inb(il))>=0.0001 .AND. i<=inb(il) .AND. iflag(il)<=1) THEN |
|---|
| 2913 | IF (cvflag_ice) THEN |
|---|
| 2914 | Vprecip(il, i) = wt(il, i)*sigd(il)*(water(il,i)+ice(il,i))/grav |
|---|
| 2915 | ELSE |
|---|
| 2916 | Vprecip(il, i) = wt(il, i)*sigd(il)*water(il, i)/grav |
|---|
| 2917 | END IF |
|---|
| 2918 | END IF |
|---|
| 2919 | END DO |
|---|
| 2920 | END DO |
|---|
| 2921 | |
|---|
| 2922 | |
|---|
| 2923 | ! *** Calculate downdraft velocity scale *** |
|---|
| 2924 | ! *** NE PAS UTILISER POUR L'INSTANT *** |
|---|
| 2925 | |
|---|
| 2926 | !! do il=1,ncum |
|---|
| 2927 | !! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) & |
|---|
| 2928 | !! /(sigd(il)*p(il,icb(il))) |
|---|
| 2929 | !! enddo |
|---|
| 2930 | |
|---|
| 2931 | |
|---|
| 2932 | ! *** calculate tendencies of lowest level potential temperature *** |
|---|
| 2933 | ! *** and mixing ratio *** |
|---|
| 2934 | |
|---|
| 2935 | DO il = 1, ncum |
|---|
| 2936 | work(il) = 1.0/(ph(il,1)-ph(il,2)) |
|---|
| 2937 | cbmf(il) = 0.0 |
|---|
| 2938 | END DO |
|---|
| 2939 | |
|---|
| 2940 | DO k = 2, nl |
|---|
| 2941 | DO il = 1, ncum |
|---|
| 2942 | IF (k>=icb(il)) THEN |
|---|
| 2943 | cbmf(il) = cbmf(il) + m(il, k) |
|---|
| 2944 | END IF |
|---|
| 2945 | END DO |
|---|
| 2946 | END DO |
|---|
| 2947 | |
|---|
| 2948 | ! print*,'cv3_yield avant ft' |
|---|
| 2949 | ! am is the part of cbmf taken from the first level |
|---|
| 2950 | DO il = 1, ncum |
|---|
| 2951 | am(il) = cbmf(il)*wghti(il, 1) |
|---|
| 2952 | END DO |
|---|
| 2953 | |
|---|
| 2954 | DO il = 1, ncum |
|---|
| 2955 | IF (iflag(il)<=1) THEN |
|---|
| 2956 | ! convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
|---|
| 2957 | !JYG Correction pour conserver l'eau |
|---|
| 2958 | ! cc ft(il,1)=-0.5*lvcp(il,1)*sigd(il)*(evap(il,1)+evap(il,2)) !precip |
|---|
| 2959 | IF (cvflag_ice) THEN |
|---|
| 2960 | ft(il, 1) = -lvcp(il, 1)*sigd(il)*evap(il, 1) - & |
|---|
| 2961 | lfcp(il, 1)*sigd(il)*evap(il, 1)*faci(il, 1) - & |
|---|
| 2962 | lfcp(il, 1)*sigd(il)*(fondue(il,1)*wt(il,1)) / & |
|---|
| 2963 | (100.*(ph(il,1)-ph(il,2))) !precip |
|---|
| 2964 | ELSE |
|---|
| 2965 | ft(il, 1) = -lvcp(il, 1)*sigd(il)*evap(il, 1) |
|---|
| 2966 | END IF |
|---|
| 2967 | |
|---|
| 2968 | ft(il, 1) = ft(il, 1) - 0.009*grav*sigd(il)*mp(il, 2)*t_wake(il, 1)*b(il, 1)*work(il) |
|---|
| 2969 | |
|---|
| 2970 | IF (cvflag_ice) THEN |
|---|
| 2971 | ft(il, 1) = ft(il, 1) + 0.01*sigd(il)*wt(il, 1)*(cl-cpd)*water(il, 2) * & |
|---|
| 2972 | (t_wake(il,2)-t_wake(il,1))*work(il)/cpn(il, 1) + & |
|---|
| 2973 | 0.01*sigd(il)*wt(il, 1)*(ci-cpd)*ice(il, 2) * & |
|---|
| 2974 | (t_wake(il,2)-t_wake(il,1))*work(il)/cpn(il, 1) |
|---|
| 2975 | ELSE |
|---|
| 2976 | ft(il, 1) = ft(il, 1) + 0.01*sigd(il)*wt(il, 1)*(cl-cpd)*water(il, 2) * & |
|---|
| 2977 | (t_wake(il,2)-t_wake(il,1))*work(il)/cpn(il, 1) |
|---|
| 2978 | END IF |
|---|
| 2979 | |
|---|
| 2980 | ftd(il, 1) = ft(il, 1) ! fin precip |
|---|
| 2981 | |
|---|
| 2982 | IF ((0.01*grav*work(il)*am(il))>=delti) iflag(il) = 1 !consist vect |
|---|
| 2983 | ft(il, 1) = ft(il, 1) + 0.01*grav*work(il)*am(il) * & |
|---|
| 2984 | (t(il,2)-t(il,1)+(gz(il,2)-gz(il,1))/cpn(il,1)) |
|---|
| 2985 | END IF ! iflag |
|---|
| 2986 | END DO |
|---|
| 2987 | |
|---|
| 2988 | |
|---|
| 2989 | DO j = 2, nl |
|---|
| 2990 | IF (iflag_mix>0) THEN |
|---|
| 2991 | DO il = 1, ncum |
|---|
| 2992 | ! FH WARNING a modifier : |
|---|
| 2993 | cpinv = 0. |
|---|
| 2994 | ! cpinv=1.0/cpn(il,1) |
|---|
| 2995 | IF (j<=inb(il) .AND. iflag(il)<=1) THEN |
|---|
| 2996 | ft(il, 1) = ft(il, 1) + 0.01*grav*work(il)*ment(il, j, 1) * & |
|---|
| 2997 | (hent(il,j,1)-h(il,1)+t(il,1)*(cpv-cpd)*(rr(il,1)-qent(il,j,1)))*cpinv |
|---|
| 2998 | END IF ! j |
|---|
| 2999 | END DO |
|---|
| 3000 | END IF |
|---|
| 3001 | END DO |
|---|
| 3002 | ! fin sature |
|---|
| 3003 | |
|---|
| 3004 | |
|---|
| 3005 | DO il = 1, ncum |
|---|
| 3006 | IF (iflag(il)<=1) THEN |
|---|
| 3007 | !JYG1 Correction pour mieux conserver l'eau (conformite avec CONVECT4.3) |
|---|
| 3008 | fr(il, 1) = 0.01*grav*mp(il, 2)*(rp(il,2)-rr_wake(il,1))*work(il) + & |
|---|
| 3009 | sigd(il)*evap(il, 1) |
|---|
| 3010 | !!! sigd(il)*0.5*(evap(il,1)+evap(il,2)) |
|---|
| 3011 | |
|---|
| 3012 | fqd(il, 1) = fr(il, 1) !precip |
|---|
| 3013 | |
|---|
| 3014 | fr(il, 1) = fr(il, 1) + 0.01*grav*am(il)*(rr(il,2)-rr(il,1))*work(il) !sature |
|---|
| 3015 | |
|---|
| 3016 | fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(up(il,2)-u(il,1)) + & |
|---|
| 3017 | am(il)*(u(il,2)-u(il,1))) |
|---|
| 3018 | fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(vp(il,2)-v(il,1)) + & |
|---|
| 3019 | am(il)*(v(il,2)-v(il,1))) |
|---|
| 3020 | END IF ! iflag |
|---|
| 3021 | END DO ! il |
|---|
| 3022 | |
|---|
| 3023 | |
|---|
| 3024 | !AC! do j=1,ntra |
|---|
| 3025 | !AC! do il=1,ncum |
|---|
| 3026 | !AC! if (iflag(il) .le. 1) then |
|---|
| 3027 | !AC! if (cvflag_grav) then |
|---|
| 3028 | !AC! ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
|---|
| 3029 | !AC! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
|---|
| 3030 | !AC! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
|---|
| 3031 | !AC! else |
|---|
| 3032 | !AC! ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
|---|
| 3033 | !AC! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
|---|
| 3034 | !AC! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
|---|
| 3035 | !AC! endif |
|---|
| 3036 | !AC! endif ! iflag |
|---|
| 3037 | !AC! enddo |
|---|
| 3038 | !AC! enddo |
|---|
| 3039 | |
|---|
| 3040 | DO j = 2, nl |
|---|
| 3041 | DO il = 1, ncum |
|---|
| 3042 | IF (j<=inb(il) .AND. iflag(il)<=1) THEN |
|---|
| 3043 | fr(il, 1) = fr(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(qent(il,j,1)-rr(il,1)) |
|---|
| 3044 | fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(uent(il,j,1)-u(il,1)) |
|---|
| 3045 | fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(vent(il,j,1)-v(il,1)) |
|---|
| 3046 | END IF ! j |
|---|
| 3047 | END DO |
|---|
| 3048 | END DO |
|---|
| 3049 | |
|---|
| 3050 | !AC! do k=1,ntra |
|---|
| 3051 | !AC! do j=2,nl |
|---|
| 3052 | !AC! do il=1,ncum |
|---|
| 3053 | !AC! if (j.le.inb(il) .and. iflag(il) .le. 1) then |
|---|
| 3054 | !AC! |
|---|
| 3055 | !AC! if (cvflag_grav) then |
|---|
| 3056 | !AC! ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
|---|
| 3057 | !AC! : *(traent(il,j,1,k)-tra(il,1,k)) |
|---|
| 3058 | !AC! else |
|---|
| 3059 | !AC! ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
|---|
| 3060 | !AC! : *(traent(il,j,1,k)-tra(il,1,k)) |
|---|
| 3061 | !AC! endif |
|---|
| 3062 | !AC! |
|---|
| 3063 | !AC! endif |
|---|
| 3064 | !AC! enddo |
|---|
| 3065 | !AC! enddo |
|---|
| 3066 | !AC! enddo |
|---|
| 3067 | ! print*,'cv3_yield apres ft' |
|---|
| 3068 | |
|---|
| 3069 | ! *** calculate tendencies of potential temperature and mixing ratio *** |
|---|
| 3070 | ! *** at levels above the lowest level *** |
|---|
| 3071 | |
|---|
| 3072 | ! *** first find the net saturated updraft and downdraft mass fluxes *** |
|---|
| 3073 | ! *** through each level *** |
|---|
| 3074 | |
|---|
| 3075 | |
|---|
| 3076 | DO i = 2, nl + 1 ! newvecto: mettre nl au lieu nl+1? |
|---|
| 3077 | |
|---|
| 3078 | num1 = 0 |
|---|
| 3079 | DO il = 1, ncum |
|---|
| 3080 | IF (i<=inb(il) .AND. iflag(il)<=1) num1 = num1 + 1 |
|---|
| 3081 | END DO |
|---|
| 3082 | IF (num1<=0) GO TO 500 |
|---|
| 3083 | |
|---|
| 3084 | CALL zilch(amp1, ncum) |
|---|
| 3085 | CALL zilch(ad, ncum) |
|---|
| 3086 | |
|---|
| 3087 | DO k = 1, nl + 1 |
|---|
| 3088 | DO il = 1, ncum |
|---|
| 3089 | IF (i>=icb(il)) THEN |
|---|
| 3090 | IF (k>=i+1 .AND. k<=(inb(il)+1)) THEN |
|---|
| 3091 | amp1(il) = amp1(il) + m(il, k) |
|---|
| 3092 | END IF |
|---|
| 3093 | ELSE |
|---|
| 3094 | ! AMP1 is the part of cbmf taken from layers I and lower |
|---|
| 3095 | IF (k<=i) THEN |
|---|
| 3096 | amp1(il) = amp1(il) + cbmf(il)*wghti(il, k) |
|---|
| 3097 | END IF |
|---|
| 3098 | END IF |
|---|
| 3099 | END DO |
|---|
| 3100 | END DO |
|---|
| 3101 | |
|---|
| 3102 | DO k = 1, i |
|---|
| 3103 | DO j = i + 1, nl + 1 |
|---|
| 3104 | DO il = 1, ncum |
|---|
| 3105 | IF (i<=inb(il) .AND. j<=(inb(il)+1)) THEN |
|---|
| 3106 | amp1(il) = amp1(il) + ment(il, k, j) |
|---|
| 3107 | END IF |
|---|
| 3108 | END DO |
|---|
| 3109 | END DO |
|---|
| 3110 | END DO |
|---|
| 3111 | |
|---|
| 3112 | DO k = 1, i - 1 |
|---|
| 3113 | DO j = i, nl + 1 ! newvecto: nl au lieu nl+1? |
|---|
| 3114 | DO il = 1, ncum |
|---|
| 3115 | IF (i<=inb(il) .AND. j<=inb(il)) THEN |
|---|
| 3116 | ad(il) = ad(il) + ment(il, j, k) |
|---|
| 3117 | END IF |
|---|
| 3118 | END DO |
|---|
| 3119 | END DO |
|---|
| 3120 | END DO |
|---|
| 3121 | |
|---|
| 3122 | DO il = 1, ncum |
|---|
| 3123 | IF (i<=inb(il) .AND. iflag(il)<=1) THEN |
|---|
| 3124 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3125 | cpinv = 1.0/cpn(il, i) |
|---|
| 3126 | |
|---|
| 3127 | ! convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
|---|
| 3128 | IF ((0.01*grav*dpinv*amp1(il))>=delti) iflag(il) = 1 ! vecto |
|---|
| 3129 | |
|---|
| 3130 | ! precip |
|---|
| 3131 | ! cc ft(il,i)= -0.5*sigd(il)*lvcp(il,i)*(evap(il,i)+evap(il,i+1)) |
|---|
| 3132 | IF (cvflag_ice) THEN |
|---|
| 3133 | ft(il, i) = -sigd(il)*lvcp(il, i)*evap(il, i) - & |
|---|
| 3134 | sigd(il)*lfcp(il, i)*evap(il, i)*faci(il, i) - & |
|---|
| 3135 | sigd(il)*lfcp(il, i)*fondue(il, i)*wt(il, i)/(100.*(p(il,i-1)-p(il,i))) |
|---|
| 3136 | ELSE |
|---|
| 3137 | ft(il, i) = -sigd(il)*lvcp(il, i)*evap(il, i) |
|---|
| 3138 | END IF |
|---|
| 3139 | |
|---|
| 3140 | rat = cpn(il, i-1)*cpinv |
|---|
| 3141 | |
|---|
| 3142 | ft(il, i) = ft(il, i) - 0.009*grav*sigd(il) * & |
|---|
| 3143 | (mp(il,i+1)*t_wake(il,i)*b(il,i)-mp(il,i)*t_wake(il,i-1)*rat*b(il,i-1))*dpinv |
|---|
| 3144 | IF (cvflag_ice) THEN |
|---|
| 3145 | ft(il, i) = ft(il, i) + 0.01*sigd(il)*wt(il, i)*(cl-cpd)*water(il, i+1) * & |
|---|
| 3146 | (t_wake(il,i+1)-t_wake(il,i))*dpinv*cpinv + & |
|---|
| 3147 | 0.01*sigd(il)*wt(il, i)*(ci-cpd)*ice(il, i+1) * & |
|---|
| 3148 | (t_wake(il,i+1)-t_wake(il,i))*dpinv*cpinv |
|---|
| 3149 | ELSE |
|---|
| 3150 | ft(il, i) = ft(il, i) + 0.01*sigd(il)*wt(il, i)*(cl-cpd)*water(il, i+1) * & |
|---|
| 3151 | (t_wake(il,i+1)-t_wake(il,i))*dpinv* & |
|---|
| 3152 | cpinv |
|---|
| 3153 | END IF |
|---|
| 3154 | |
|---|
| 3155 | ftd(il, i) = ft(il, i) |
|---|
| 3156 | ! fin precip |
|---|
| 3157 | |
|---|
| 3158 | ! sature |
|---|
| 3159 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv * & |
|---|
| 3160 | (amp1(il)*(t(il,i+1)-t(il,i) + (gz(il,i+1)-gz(il,i))*cpinv) - & |
|---|
| 3161 | ad(il)*(t(il,i)-t(il,i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) |
|---|
| 3162 | |
|---|
| 3163 | |
|---|
| 3164 | IF (iflag_mix==0) THEN |
|---|
| 3165 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, i, i)*(hp(il,i)-h(il,i) + & |
|---|
| 3166 | t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
|---|
| 3167 | END IF |
|---|
| 3168 | |
|---|
| 3169 | |
|---|
| 3170 | |
|---|
| 3171 | ! sb: on ne fait pas encore la correction permettant de mieux |
|---|
| 3172 | ! conserver l'eau: |
|---|
| 3173 | !JYG: correction permettant de mieux conserver l'eau: |
|---|
| 3174 | ! cc fr(il,i)=0.5*sigd(il)*(evap(il,i)+evap(il,i+1)) |
|---|
| 3175 | fr(il, i) = sigd(il)*evap(il, i) + 0.01*grav*(mp(il,i+1)*(rp(il,i+1)-rr_wake(il,i)) - & |
|---|
| 3176 | mp(il,i)*(rp(il,i)-rr_wake(il,i-1)))*dpinv |
|---|
| 3177 | fqd(il, i) = fr(il, i) ! precip |
|---|
| 3178 | |
|---|
| 3179 | fu(il, i) = 0.01*grav*(mp(il,i+1)*(up(il,i+1)-u(il,i)) - & |
|---|
| 3180 | mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
|---|
| 3181 | fv(il, i) = 0.01*grav*(mp(il,i+1)*(vp(il,i+1)-v(il,i)) - & |
|---|
| 3182 | mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
|---|
| 3183 | |
|---|
| 3184 | |
|---|
| 3185 | fr(il, i) = fr(il, i) + 0.01*grav*dpinv*(amp1(il)*(rr(il,i+1)-rr(il,i)) - & |
|---|
| 3186 | ad(il)*(rr(il,i)-rr(il,i-1))) |
|---|
| 3187 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*(amp1(il)*(u(il,i+1)-u(il,i)) - & |
|---|
| 3188 | ad(il)*(u(il,i)-u(il,i-1))) |
|---|
| 3189 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*(amp1(il)*(v(il,i+1)-v(il,i)) - & |
|---|
| 3190 | ad(il)*(v(il,i)-v(il,i-1))) |
|---|
| 3191 | |
|---|
| 3192 | END IF ! i |
|---|
| 3193 | END DO |
|---|
| 3194 | |
|---|
| 3195 | !AC! do k=1,ntra |
|---|
| 3196 | !AC! do il=1,ncum |
|---|
| 3197 | !AC! if (i.le.inb(il) .and. iflag(il) .le. 1) then |
|---|
| 3198 | !AC! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3199 | !AC! cpinv=1.0/cpn(il,i) |
|---|
| 3200 | !AC! if (cvflag_grav) then |
|---|
| 3201 | !AC! ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
|---|
| 3202 | !AC! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
|---|
| 3203 | !AC! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
|---|
| 3204 | !AC! else |
|---|
| 3205 | !AC! ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
|---|
| 3206 | !AC! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
|---|
| 3207 | !AC! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
|---|
| 3208 | !AC! endif |
|---|
| 3209 | !AC! endif |
|---|
| 3210 | !AC! enddo |
|---|
| 3211 | !AC! enddo |
|---|
| 3212 | |
|---|
| 3213 | DO k = 1, i - 1 |
|---|
| 3214 | |
|---|
| 3215 | DO il = 1, ncum |
|---|
| 3216 | awat(il) = elij(il, k, i) - (1.-ep(il,i))*clw(il, i) |
|---|
| 3217 | awat(il) = max(awat(il), 0.0) |
|---|
| 3218 | END DO |
|---|
| 3219 | |
|---|
| 3220 | IF (iflag_mix/=0) THEN |
|---|
| 3221 | DO il = 1, ncum |
|---|
| 3222 | IF (i<=inb(il) .AND. iflag(il)<=1) THEN |
|---|
| 3223 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3224 | cpinv = 1.0/cpn(il, i) |
|---|
| 3225 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, k, i) * & |
|---|
| 3226 | (hent(il,k,i)-h(il,i)+t(il,i)*(cpv-cpd)*(rr(il,i)+awat(il)-qent(il,k,i)))*cpinv |
|---|
| 3227 | ! |
|---|
| 3228 | ! |
|---|
| 3229 | END IF ! i |
|---|
| 3230 | END DO |
|---|
| 3231 | END IF |
|---|
| 3232 | |
|---|
| 3233 | DO il = 1, ncum |
|---|
| 3234 | IF (i<=inb(il) .AND. iflag(il)<=1) THEN |
|---|
| 3235 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3236 | cpinv = 1.0/cpn(il, i) |
|---|
| 3237 | fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i) * & |
|---|
| 3238 | (qent(il,k,i)-awat(il)-rr(il,i)) |
|---|
| 3239 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k,i)-u(il,i)) |
|---|
| 3240 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k,i)-v(il,i)) |
|---|
| 3241 | |
|---|
| 3242 | ! (saturated updrafts resulting from mixing) ! cld |
|---|
| 3243 | qcond(il, i) = qcond(il, i) + (elij(il,k,i)-awat(il)) ! cld |
|---|
| 3244 | qtment(il, i) = qtment(il, i) + qent(il,k,i) ! cld |
|---|
| 3245 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
|---|
| 3246 | END IF ! i |
|---|
| 3247 | END DO |
|---|
| 3248 | END DO |
|---|
| 3249 | |
|---|
| 3250 | !AC! do j=1,ntra |
|---|
| 3251 | !AC! do k=1,i-1 |
|---|
| 3252 | !AC! do il=1,ncum |
|---|
| 3253 | !AC! if (i.le.inb(il) .and. iflag(il) .le. 1) then |
|---|
| 3254 | !AC! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3255 | !AC! cpinv=1.0/cpn(il,i) |
|---|
| 3256 | !AC! if (cvflag_grav) then |
|---|
| 3257 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
|---|
| 3258 | !AC! : *(traent(il,k,i,j)-tra(il,i,j)) |
|---|
| 3259 | !AC! else |
|---|
| 3260 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
|---|
| 3261 | !AC! : *(traent(il,k,i,j)-tra(il,i,j)) |
|---|
| 3262 | !AC! endif |
|---|
| 3263 | !AC! endif |
|---|
| 3264 | !AC! enddo |
|---|
| 3265 | !AC! enddo |
|---|
| 3266 | !AC! enddo |
|---|
| 3267 | |
|---|
| 3268 | DO k = i, nl + 1 |
|---|
| 3269 | |
|---|
| 3270 | IF (iflag_mix/=0) THEN |
|---|
| 3271 | DO il = 1, ncum |
|---|
| 3272 | IF (i<=inb(il) .AND. k<=inb(il) .AND. iflag(il)<=1) THEN |
|---|
| 3273 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3274 | cpinv = 1.0/cpn(il, i) |
|---|
| 3275 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, k, i) * & |
|---|
| 3276 | (hent(il,k,i)-h(il,i)+t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,k,i)))*cpinv |
|---|
| 3277 | |
|---|
| 3278 | |
|---|
| 3279 | END IF ! i |
|---|
| 3280 | END DO |
|---|
| 3281 | END IF |
|---|
| 3282 | |
|---|
| 3283 | DO il = 1, ncum |
|---|
| 3284 | IF (i<=inb(il) .AND. k<=inb(il) .AND. iflag(il)<=1) THEN |
|---|
| 3285 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3286 | cpinv = 1.0/cpn(il, i) |
|---|
| 3287 | |
|---|
| 3288 | fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(qent(il,k,i)-rr(il,i)) |
|---|
| 3289 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k,i)-u(il,i)) |
|---|
| 3290 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k,i)-v(il,i)) |
|---|
| 3291 | END IF ! i and k |
|---|
| 3292 | END DO |
|---|
| 3293 | END DO |
|---|
| 3294 | |
|---|
| 3295 | !AC! do j=1,ntra |
|---|
| 3296 | !AC! do k=i,nl+1 |
|---|
| 3297 | !AC! do il=1,ncum |
|---|
| 3298 | !AC! if (i.le.inb(il) .and. k.le.inb(il) |
|---|
| 3299 | !AC! $ .and. iflag(il) .le. 1) then |
|---|
| 3300 | !AC! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3301 | !AC! cpinv=1.0/cpn(il,i) |
|---|
| 3302 | !AC! if (cvflag_grav) then |
|---|
| 3303 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
|---|
| 3304 | !AC! : *(traent(il,k,i,j)-tra(il,i,j)) |
|---|
| 3305 | !AC! else |
|---|
| 3306 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
|---|
| 3307 | !AC! : *(traent(il,k,i,j)-tra(il,i,j)) |
|---|
| 3308 | !AC! endif |
|---|
| 3309 | !AC! endif ! i and k |
|---|
| 3310 | !AC! enddo |
|---|
| 3311 | !AC! enddo |
|---|
| 3312 | !AC! enddo |
|---|
| 3313 | |
|---|
| 3314 | ! sb: interface with the cloud parameterization: ! cld |
|---|
| 3315 | |
|---|
| 3316 | DO k = i + 1, nl |
|---|
| 3317 | DO il = 1, ncum |
|---|
| 3318 | IF (k<=inb(il) .AND. i<=inb(il) .AND. iflag(il)<=1) THEN ! cld |
|---|
| 3319 | ! (saturated downdrafts resulting from mixing) ! cld |
|---|
| 3320 | qcond(il, i) = qcond(il, i) + elij(il, k, i) ! cld |
|---|
| 3321 | qtment(il, i) = qent(il,k,i) + qtment(il,i) ! cld |
|---|
| 3322 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
|---|
| 3323 | END IF ! cld |
|---|
| 3324 | END DO ! cld |
|---|
| 3325 | END DO ! cld |
|---|
| 3326 | |
|---|
| 3327 | ! (particular case: no detraining level is found) ! cld |
|---|
| 3328 | DO il = 1, ncum ! cld |
|---|
| 3329 | IF (i<=inb(il) .AND. nent(il,i)==0 .AND. iflag(il)<=1) THEN ! cld |
|---|
| 3330 | qcond(il, i) = qcond(il, i) + (1.-ep(il,i))*clw(il, i) ! cld |
|---|
| 3331 | qtment(il, i) = qent(il,k,i) + qtment(il,i) ! cld |
|---|
| 3332 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
|---|
| 3333 | END IF ! cld |
|---|
| 3334 | END DO ! cld |
|---|
| 3335 | |
|---|
| 3336 | DO il = 1, ncum ! cld |
|---|
| 3337 | IF (i<=inb(il) .AND. nqcond(il,i)/=0 .AND. iflag(il)<=1) THEN ! cld |
|---|
| 3338 | qcond(il, i) = qcond(il, i)/nqcond(il, i) ! cld |
|---|
| 3339 | qtment(il, i) = qtment(il,i)/nqcond(il, i) ! cld |
|---|
| 3340 | END IF ! cld |
|---|
| 3341 | END DO |
|---|
| 3342 | |
|---|
| 3343 | !AC! do j=1,ntra |
|---|
| 3344 | !AC! do il=1,ncum |
|---|
| 3345 | !AC! if (i.le.inb(il) .and. iflag(il) .le. 1) then |
|---|
| 3346 | !AC! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
|---|
| 3347 | !AC! cpinv=1.0/cpn(il,i) |
|---|
| 3348 | !AC! |
|---|
| 3349 | !AC! if (cvflag_grav) then |
|---|
| 3350 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
|---|
| 3351 | !AC! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
|---|
| 3352 | !AC! : -mp(il,i)*(trap(il,i,j)-trap(il,i-1,j))) |
|---|
| 3353 | !AC! else |
|---|
| 3354 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
|---|
| 3355 | !AC! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
|---|
| 3356 | !AC! : -mp(il,i)*(trap(il,i,j)-trap(il,i-1,j))) |
|---|
| 3357 | !AC! endif |
|---|
| 3358 | !AC! endif ! i |
|---|
| 3359 | !AC! enddo |
|---|
| 3360 | !AC! enddo |
|---|
| 3361 | |
|---|
| 3362 | |
|---|
| 3363 | 500 END DO |
|---|
| 3364 | |
|---|
| 3365 | !JYG< |
|---|
| 3366 | !Conservation de l'eau |
|---|
| 3367 | ! sumdq = 0. |
|---|
| 3368 | ! DO k = 1, nl |
|---|
| 3369 | ! sumdq = sumdq + fr(1, k)*100.*(ph(1,k)-ph(1,k+1))/grav |
|---|
| 3370 | ! END DO |
|---|
| 3371 | ! PRINT *, 'cv3_yield, apres 500, sum(dq), precip, somme ', sumdq, Vprecip(1, 1), sumdq + vprecip(1, 1) |
|---|
| 3372 | !JYG> |
|---|
| 3373 | ! *** move the detrainment at level inb down to level inb-1 *** |
|---|
| 3374 | ! *** in such a way as to preserve the vertically *** |
|---|
| 3375 | ! *** integrated enthalpy and water tendencies *** |
|---|
| 3376 | |
|---|
| 3377 | ! Correction bug le 18-03-09 |
|---|
| 3378 | DO il = 1, ncum |
|---|
| 3379 | IF (iflag(il)<=1) THEN |
|---|
| 3380 | ax = 0.01*grav*ment(il, inb(il), inb(il))* & |
|---|
| 3381 | (hp(il,inb(il))-h(il,inb(il))+t(il,inb(il))*(cpv-cpd)*(rr(il,inb(il))-qent(il,inb(il),inb(il))))/ & |
|---|
| 3382 | (cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
|---|
| 3383 | ft(il, inb(il)) = ft(il, inb(il)) - ax |
|---|
| 3384 | ft(il, inb(il)-1) = ft(il, inb(il)-1) + ax*cpn(il, inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))/ & |
|---|
| 3385 | (cpn(il,inb(il)-1)*(ph(il,inb(il)-1)-ph(il,inb(il)))) |
|---|
| 3386 | |
|---|
| 3387 | bx = 0.01*grav*ment(il, inb(il), inb(il))*(qent(il,inb(il),inb(il))-rr(il,inb(il)))/ & |
|---|
| 3388 | (ph(il,inb(il))-ph(il,inb(il)+1)) |
|---|
| 3389 | fr(il, inb(il)) = fr(il, inb(il)) - bx |
|---|
| 3390 | fr(il, inb(il)-1) = fr(il, inb(il)-1) + bx*(ph(il,inb(il))-ph(il,inb(il)+1))/ & |
|---|
| 3391 | (ph(il,inb(il)-1)-ph(il,inb(il))) |
|---|
| 3392 | |
|---|
| 3393 | cx = 0.01*grav*ment(il, inb(il), inb(il))*(uent(il,inb(il),inb(il))-u(il,inb(il)))/ & |
|---|
| 3394 | (ph(il,inb(il))-ph(il,inb(il)+1)) |
|---|
| 3395 | fu(il, inb(il)) = fu(il, inb(il)) - cx |
|---|
| 3396 | fu(il, inb(il)-1) = fu(il, inb(il)-1) + cx*(ph(il,inb(il))-ph(il,inb(il)+1))/ & |
|---|
| 3397 | (ph(il,inb(il)-1)-ph(il,inb(il))) |
|---|
| 3398 | |
|---|
| 3399 | dx = 0.01*grav*ment(il, inb(il), inb(il))*(vent(il,inb(il),inb(il))-v(il,inb(il)))/ & |
|---|
| 3400 | (ph(il,inb(il))-ph(il,inb(il)+1)) |
|---|
| 3401 | fv(il, inb(il)) = fv(il, inb(il)) - dx |
|---|
| 3402 | fv(il, inb(il)-1) = fv(il, inb(il)-1) + dx*(ph(il,inb(il))-ph(il,inb(il)+1))/ & |
|---|
| 3403 | (ph(il,inb(il)-1)-ph(il,inb(il))) |
|---|
| 3404 | END IF !iflag |
|---|
| 3405 | END DO |
|---|
| 3406 | |
|---|
| 3407 | !JYG< |
|---|
| 3408 | !Conservation de l'eau |
|---|
| 3409 | ! sumdq = 0. |
|---|
| 3410 | ! DO k = 1, nl |
|---|
| 3411 | ! sumdq = sumdq + fr(1, k)*100.*(ph(1,k)-ph(1,k+1))/grav |
|---|
| 3412 | ! END DO |
|---|
| 3413 | ! PRINT *, 'cv3_yield, apres 503, sum(dq), precip, somme ', sumdq, Vprecip(1, 1), sumdq + vprecip(1, 1) |
|---|
| 3414 | !JYG> |
|---|
| 3415 | |
|---|
| 3416 | !AC! do j=1,ntra |
|---|
| 3417 | !AC! do il=1,ncum |
|---|
| 3418 | !AC! IF (iflag(il) .le. 1) THEN |
|---|
| 3419 | !AC! IF (cvflag_grav) then |
|---|
| 3420 | !AC! ex=0.01*grav*ment(il,inb(il),inb(il)) |
|---|
| 3421 | !AC! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
|---|
| 3422 | !AC! : /(ph(i l,inb(il))-ph(il,inb(il)+1)) |
|---|
| 3423 | !AC! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
|---|
| 3424 | !AC! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
|---|
| 3425 | !AC! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
|---|
| 3426 | !AC! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
|---|
| 3427 | !AC! else |
|---|
| 3428 | !AC! ex=0.1*ment(il,inb(il),inb(il)) |
|---|
| 3429 | !AC! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
|---|
| 3430 | !AC! : /(ph(i l,inb(il))-ph(il,inb(il)+1)) |
|---|
| 3431 | !AC! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
|---|
| 3432 | !AC! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
|---|
| 3433 | !AC! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
|---|
| 3434 | !AC! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
|---|
| 3435 | !AC! ENDIF !cvflag grav |
|---|
| 3436 | !AC! ENDIF !iflag |
|---|
| 3437 | !AC! enddo |
|---|
| 3438 | !AC! enddo |
|---|
| 3439 | |
|---|
| 3440 | |
|---|
| 3441 | ! *** homogenize tendencies below cloud base *** |
|---|
| 3442 | |
|---|
| 3443 | |
|---|
| 3444 | DO il = 1, ncum |
|---|
| 3445 | asum(il) = 0.0 |
|---|
| 3446 | bsum(il) = 0.0 |
|---|
| 3447 | csum(il) = 0.0 |
|---|
| 3448 | dsum(il) = 0.0 |
|---|
| 3449 | esum(il) = 0.0 |
|---|
| 3450 | fsum(il) = 0.0 |
|---|
| 3451 | gsum(il) = 0.0 |
|---|
| 3452 | hsum(il) = 0.0 |
|---|
| 3453 | END DO |
|---|
| 3454 | |
|---|
| 3455 | !do i=1,nl |
|---|
| 3456 | !do il=1,ncum |
|---|
| 3457 | !th_wake(il,i)=t_wake(il,i)*(1000.0/p(il,i))**rdcp |
|---|
| 3458 | !enddo |
|---|
| 3459 | !enddo |
|---|
| 3460 | |
|---|
| 3461 | DO i = 1, nl |
|---|
| 3462 | DO il = 1, ncum |
|---|
| 3463 | IF (i<=(icb(il)-1) .AND. iflag(il)<=1) THEN |
|---|
| 3464 | !jyg Saturated part : use T profile |
|---|
| 3465 | asum(il) = asum(il) + (ft(il,i)-ftd(il,i))*(ph(il,i)-ph(il,i+1)) |
|---|
| 3466 | !jyg<20140311 |
|---|
| 3467 | !Correction pour conserver l eau |
|---|
| 3468 | IF (ok_conserv_q) THEN |
|---|
| 3469 | bsum(il) = bsum(il) + (fr(il,i)-fqd(il,i))*(ph(il,i)-ph(il,i+1)) |
|---|
| 3470 | csum(il) = csum(il) + (ph(il,i)-ph(il,i+1)) |
|---|
| 3471 | |
|---|
| 3472 | ELSE |
|---|
| 3473 | bsum(il)=bsum(il)+(fr(il,i)-fqd(il,i))*(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1)))* & |
|---|
| 3474 | (ph(il,i)-ph(il,i+1)) |
|---|
| 3475 | csum(il)=csum(il)+(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1)))* & |
|---|
| 3476 | (ph(il,i)-ph(il,i+1)) |
|---|
| 3477 | ENDIF ! (ok_conserv_q) |
|---|
| 3478 | !jyg> |
|---|
| 3479 | dsum(il) = dsum(il) + t(il, i)*(ph(il,i)-ph(il,i+1))/th(il, i) |
|---|
| 3480 | !jyg Unsaturated part : use T_wake profile |
|---|
| 3481 | esum(il) = esum(il) + ftd(il, i)*(ph(il,i)-ph(il,i+1)) |
|---|
| 3482 | !jyg<20140311 |
|---|
| 3483 | !Correction pour conserver l eau |
|---|
| 3484 | IF (ok_conserv_q) THEN |
|---|
| 3485 | fsum(il) = fsum(il) + fqd(il, i)*(ph(il,i)-ph(il,i+1)) |
|---|
| 3486 | gsum(il) = gsum(il) + (ph(il,i)-ph(il,i+1)) |
|---|
| 3487 | ELSE |
|---|
| 3488 | fsum(il)=fsum(il)+fqd(il,i)*(lv(il,i)+(cl-cpd)*(t_wake(il,i)-t_wake(il,1)))* & |
|---|
| 3489 | (ph(il,i)-ph(il,i+1)) |
|---|
| 3490 | gsum(il)=gsum(il)+(lv(il,i)+(cl-cpd)*(t_wake(il,i)-t_wake(il,1)))* & |
|---|
| 3491 | (ph(il,i)-ph(il,i+1)) |
|---|
| 3492 | ENDIF ! (ok_conserv_q) |
|---|
| 3493 | !jyg> |
|---|
| 3494 | hsum(il) = hsum(il) + t_wake(il, i)*(ph(il,i)-ph(il,i+1))/th_wake(il, i) |
|---|
| 3495 | END IF |
|---|
| 3496 | END DO |
|---|
| 3497 | END DO |
|---|
| 3498 | |
|---|
| 3499 | !!!! do 700 i=1,icb(il)-1 |
|---|
| 3500 | DO i = 1, nl |
|---|
| 3501 | DO il = 1, ncum |
|---|
| 3502 | IF (i<=(icb(il)-1) .AND. iflag(il)<=1) THEN |
|---|
| 3503 | ftd(il, i) = esum(il)*t_wake(il, i)/(th_wake(il,i)*hsum(il)) |
|---|
| 3504 | fqd(il, i) = fsum(il)/gsum(il) |
|---|
| 3505 | ft(il, i) = ftd(il, i) + asum(il)*t(il, i)/(th(il,i)*dsum(il)) |
|---|
| 3506 | fr(il, i) = fqd(il, i) + bsum(il)/csum(il) |
|---|
| 3507 | END IF |
|---|
| 3508 | END DO |
|---|
| 3509 | END DO |
|---|
| 3510 | |
|---|
| 3511 | !jyg< |
|---|
| 3512 | !Conservation de l'eau |
|---|
| 3513 | !! sumdq = 0. |
|---|
| 3514 | !! DO k = 1, nl |
|---|
| 3515 | !! sumdq = sumdq + fr(1, k)*100.*(ph(1,k)-ph(1,k+1))/grav |
|---|
| 3516 | !! END DO |
|---|
| 3517 | !! PRINT *, 'cv3_yield, apres hom, sum(dq), precip, somme ', sumdq, Vprecip(1, 1), sumdq + vprecip(1, 1) |
|---|
| 3518 | !jyg> |
|---|
| 3519 | |
|---|
| 3520 | |
|---|
| 3521 | ! *** Check that moisture stays positive. If not, scale tendencies |
|---|
| 3522 | ! in order to ensure moisture positivity |
|---|
| 3523 | DO il = 1, ncum |
|---|
| 3524 | alpha_qpos(il) = 1. |
|---|
| 3525 | IF (iflag(il)<=1) THEN |
|---|
| 3526 | IF (fr(il,1)<=0.) THEN |
|---|
| 3527 | alpha_qpos(il) = max(alpha_qpos(il), (-delt*fr(il,1))/(s_wake(il)*rr_wake(il,1)+(1.-s_wake(il))*rr(il,1))) |
|---|
| 3528 | END IF |
|---|
| 3529 | END IF |
|---|
| 3530 | END DO |
|---|
| 3531 | DO i = 2, nl |
|---|
| 3532 | DO il = 1, ncum |
|---|
| 3533 | IF (iflag(il)<=1) THEN |
|---|
| 3534 | IF (fr(il,i)<=0.) THEN |
|---|
| 3535 | alpha_qpos1(il) = max(1., (-delt*fr(il,i))/(s_wake(il)*rr_wake(il,i)+(1.-s_wake(il))*rr(il,i))) |
|---|
| 3536 | IF (alpha_qpos1(il)>=alpha_qpos(il)) alpha_qpos(il) = alpha_qpos1(il) |
|---|
| 3537 | END IF |
|---|
| 3538 | END IF |
|---|
| 3539 | END DO |
|---|
| 3540 | END DO |
|---|
| 3541 | DO il = 1, ncum |
|---|
| 3542 | IF (iflag(il)<=1 .AND. alpha_qpos(il)>1.001) THEN |
|---|
| 3543 | alpha_qpos(il) = alpha_qpos(il)*1.1 |
|---|
| 3544 | END IF |
|---|
| 3545 | END DO |
|---|
| 3546 | DO il = 1, ncum |
|---|
| 3547 | IF (iflag(il)<=1) THEN |
|---|
| 3548 | sigd(il) = sigd(il)/alpha_qpos(il) |
|---|
| 3549 | precip(il) = precip(il)/alpha_qpos(il) |
|---|
| 3550 | END IF |
|---|
| 3551 | END DO |
|---|
| 3552 | DO i = 1, nl |
|---|
| 3553 | DO il = 1, ncum |
|---|
| 3554 | IF (iflag(il)<=1) THEN |
|---|
| 3555 | fr(il, i) = fr(il, i)/alpha_qpos(il) |
|---|
| 3556 | ft(il, i) = ft(il, i)/alpha_qpos(il) |
|---|
| 3557 | fqd(il, i) = fqd(il, i)/alpha_qpos(il) |
|---|
| 3558 | ftd(il, i) = ftd(il, i)/alpha_qpos(il) |
|---|
| 3559 | fu(il, i) = fu(il, i)/alpha_qpos(il) |
|---|
| 3560 | fv(il, i) = fv(il, i)/alpha_qpos(il) |
|---|
| 3561 | m(il, i) = m(il, i)/alpha_qpos(il) |
|---|
| 3562 | mp(il, i) = mp(il, i)/alpha_qpos(il) |
|---|
| 3563 | Vprecip(il, i) = vprecip(il, i)/alpha_qpos(il) |
|---|
| 3564 | END IF |
|---|
| 3565 | END DO |
|---|
| 3566 | END DO |
|---|
| 3567 | DO i = 1, nl |
|---|
| 3568 | DO j = 1, nl |
|---|
| 3569 | DO il = 1, ncum |
|---|
| 3570 | IF (iflag(il)<=1) THEN |
|---|
| 3571 | ment(il, i, j) = ment(il, i, j)/alpha_qpos(il) |
|---|
| 3572 | END IF |
|---|
| 3573 | END DO |
|---|
| 3574 | END DO |
|---|
| 3575 | END DO |
|---|
| 3576 | |
|---|
| 3577 | !AC! DO j = 1,ntra |
|---|
| 3578 | !AC! DO i = 1,nl |
|---|
| 3579 | !AC! DO il = 1,ncum |
|---|
| 3580 | !AC! IF (iflag(il) .le. 1) THEN |
|---|
| 3581 | !AC! ftra(il,i,j) = ftra(il,i,j)/alpha_qpos(il) |
|---|
| 3582 | !AC! ENDIF |
|---|
| 3583 | !AC! ENDDO |
|---|
| 3584 | !AC! ENDDO |
|---|
| 3585 | !AC! ENDDO |
|---|
| 3586 | |
|---|
| 3587 | |
|---|
| 3588 | ! *** reset counter and return *** |
|---|
| 3589 | |
|---|
| 3590 | DO il = 1, ncum |
|---|
| 3591 | sig(il, nd) = 2.0 |
|---|
| 3592 | END DO |
|---|
| 3593 | |
|---|
| 3594 | |
|---|
| 3595 | DO i = 1, nd |
|---|
| 3596 | DO il = 1, ncum |
|---|
| 3597 | upwd(il, i) = 0.0 |
|---|
| 3598 | dnwd(il, i) = 0.0 |
|---|
| 3599 | END DO |
|---|
| 3600 | END DO |
|---|
| 3601 | |
|---|
| 3602 | DO i = 1, nl |
|---|
| 3603 | DO il = 1, ncum |
|---|
| 3604 | dnwd0(il, i) = -mp(il, i) |
|---|
| 3605 | END DO |
|---|
| 3606 | END DO |
|---|
| 3607 | DO i = nl + 1, nd |
|---|
| 3608 | DO il = 1, ncum |
|---|
| 3609 | dnwd0(il, i) = 0. |
|---|
| 3610 | END DO |
|---|
| 3611 | END DO |
|---|
| 3612 | |
|---|
| 3613 | |
|---|
| 3614 | DO i = 1, nl |
|---|
| 3615 | DO il = 1, ncum |
|---|
| 3616 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
|---|
| 3617 | upwd(il, i) = 0.0 |
|---|
| 3618 | dnwd(il, i) = 0.0 |
|---|
| 3619 | END IF |
|---|
| 3620 | END DO |
|---|
| 3621 | END DO |
|---|
| 3622 | |
|---|
| 3623 | DO i = 1, nl |
|---|
| 3624 | DO k = 1, nl |
|---|
| 3625 | DO il = 1, ncum |
|---|
| 3626 | up1(il, k, i) = 0.0 |
|---|
| 3627 | dn1(il, k, i) = 0.0 |
|---|
| 3628 | END DO |
|---|
| 3629 | END DO |
|---|
| 3630 | END DO |
|---|
| 3631 | |
|---|
| 3632 | DO i = 1, nl |
|---|
| 3633 | DO k = i, nl |
|---|
| 3634 | DO n = 1, i - 1 |
|---|
| 3635 | DO il = 1, ncum |
|---|
| 3636 | IF (i>=icb(il) .AND. i<=inb(il) .AND. k<=inb(il)) THEN |
|---|
| 3637 | up1(il, k, i) = up1(il, k, i) + ment(il, n, k) |
|---|
| 3638 | dn1(il, k, i) = dn1(il, k, i) - ment(il, k, n) |
|---|
| 3639 | END IF |
|---|
| 3640 | END DO |
|---|
| 3641 | END DO |
|---|
| 3642 | END DO |
|---|
| 3643 | END DO |
|---|
| 3644 | |
|---|
| 3645 | DO i = 1, nl |
|---|
| 3646 | DO k = 1, nl |
|---|
| 3647 | DO il = 1, ncum |
|---|
| 3648 | IF (i>=icb(il)) THEN |
|---|
| 3649 | IF (k>=i .AND. k<=(inb(il))) THEN |
|---|
| 3650 | upwd(il, i) = upwd(il, i) + m(il, k) |
|---|
| 3651 | END IF |
|---|
| 3652 | ELSE |
|---|
| 3653 | IF (k<i) THEN |
|---|
| 3654 | upwd(il, i) = upwd(il, i) + cbmf(il)*wghti(il, k) |
|---|
| 3655 | END IF |
|---|
| 3656 | END IF |
|---|
| 3657 | ! c print *,'cbmf',il,i,k,cbmf(il),wghti(il,k) |
|---|
| 3658 | END DO |
|---|
| 3659 | END DO |
|---|
| 3660 | END DO |
|---|
| 3661 | |
|---|
| 3662 | DO i = 2, nl |
|---|
| 3663 | DO k = i, nl |
|---|
| 3664 | DO il = 1, ncum |
|---|
| 3665 | ! test if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) then |
|---|
| 3666 | IF (i<=inb(il) .AND. k<=inb(il)) THEN |
|---|
| 3667 | upwd(il, i) = upwd(il, i) + up1(il, k, i) |
|---|
| 3668 | dnwd(il, i) = dnwd(il, i) + dn1(il, k, i) |
|---|
| 3669 | END IF |
|---|
| 3670 | ! c print *,'upwd',il,i,k,inb(il),upwd(il,i),m(il,k),up1(il,k,i) |
|---|
| 3671 | END DO |
|---|
| 3672 | END DO |
|---|
| 3673 | END DO |
|---|
| 3674 | |
|---|
| 3675 | |
|---|
| 3676 | !!!! DO il=1,ncum |
|---|
| 3677 | !!!! do i=icb(il),inb(il) |
|---|
| 3678 | !!!! |
|---|
| 3679 | !!!! upwd(il,i)=0.0 |
|---|
| 3680 | !!!! dnwd(il,i)=0.0 |
|---|
| 3681 | !!!! do k=i,inb(il) |
|---|
| 3682 | !!!! up1=0.0 |
|---|
| 3683 | !!!! dn1=0.0 |
|---|
| 3684 | !!!! do n=1,i-1 |
|---|
| 3685 | !!!! up1=up1+ment(il,n,k) |
|---|
| 3686 | !!!! dn1=dn1-ment(il,k,n) |
|---|
| 3687 | !!!! enddo |
|---|
| 3688 | !!!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
|---|
| 3689 | !!!! dnwd(il,i)=dnwd(il,i)+dn1 |
|---|
| 3690 | !!!! enddo |
|---|
| 3691 | !!!! enddo |
|---|
| 3692 | !!!! |
|---|
| 3693 | !!!! ENDDO |
|---|
| 3694 | |
|---|
| 3695 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 3696 | ! determination de la variation de flux ascendant entre |
|---|
| 3697 | ! deux niveau non dilue mip |
|---|
| 3698 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 3699 | |
|---|
| 3700 | DO i = 1, nl |
|---|
| 3701 | DO il = 1, ncum |
|---|
| 3702 | mip(il, i) = m(il, i) |
|---|
| 3703 | END DO |
|---|
| 3704 | END DO |
|---|
| 3705 | |
|---|
| 3706 | DO i = nl + 1, nd |
|---|
| 3707 | DO il = 1, ncum |
|---|
| 3708 | mip(il, i) = 0. |
|---|
| 3709 | END DO |
|---|
| 3710 | END DO |
|---|
| 3711 | |
|---|
| 3712 | DO i = 1, nd |
|---|
| 3713 | DO il = 1, ncum |
|---|
| 3714 | ma(il, i) = 0 |
|---|
| 3715 | END DO |
|---|
| 3716 | END DO |
|---|
| 3717 | |
|---|
| 3718 | DO i = 1, nl |
|---|
| 3719 | DO j = i, nl |
|---|
| 3720 | DO il = 1, ncum |
|---|
| 3721 | ma(il, i) = ma(il, i) + m(il, j) |
|---|
| 3722 | END DO |
|---|
| 3723 | END DO |
|---|
| 3724 | END DO |
|---|
| 3725 | |
|---|
| 3726 | DO i = nl + 1, nd |
|---|
| 3727 | DO il = 1, ncum |
|---|
| 3728 | ma(il, i) = 0. |
|---|
| 3729 | END DO |
|---|
| 3730 | END DO |
|---|
| 3731 | |
|---|
| 3732 | DO i = 1, nl |
|---|
| 3733 | DO il = 1, ncum |
|---|
| 3734 | IF (i<=(icb(il)-1)) THEN |
|---|
| 3735 | ma(il, i) = 0 |
|---|
| 3736 | END IF |
|---|
| 3737 | END DO |
|---|
| 3738 | END DO |
|---|
| 3739 | |
|---|
| 3740 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 3741 | ! icb represente de niveau ou se trouve la |
|---|
| 3742 | ! base du nuage , et inb le top du nuage |
|---|
| 3743 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 3744 | |
|---|
| 3745 | DO i = 1, nd |
|---|
| 3746 | DO il = 1, ncum |
|---|
| 3747 | mke(il, i) = upwd(il, i) + dnwd(il, i) |
|---|
| 3748 | END DO |
|---|
| 3749 | END DO |
|---|
| 3750 | |
|---|
| 3751 | DO i = 1, nd |
|---|
| 3752 | DO il = 1, ncum |
|---|
| 3753 | rdcp = (rrd*(1.-rr(il,i))-rr(il,i)*rrv)/(cpd*(1.-rr(il,i))+rr(il,i)*cpv) |
|---|
| 3754 | tls(il, i) = t(il, i)*(1000.0/p(il,i))**rdcp |
|---|
| 3755 | tps(il, i) = tp(il, i) |
|---|
| 3756 | END DO |
|---|
| 3757 | END DO |
|---|
| 3758 | |
|---|
| 3759 | |
|---|
| 3760 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
|---|
| 3761 | ! *** of condensed water *** ! cld |
|---|
| 3762 | !! cld |
|---|
| 3763 | |
|---|
| 3764 | DO i = 1, nd ! cld |
|---|
| 3765 | DO il = 1, ncum ! cld |
|---|
| 3766 | mac(il, i) = 0.0 ! cld |
|---|
| 3767 | wa(il, i) = 0.0 ! cld |
|---|
| 3768 | siga(il, i) = 0.0 ! cld |
|---|
| 3769 | sax(il, i) = 0.0 ! cld |
|---|
| 3770 | END DO ! cld |
|---|
| 3771 | END DO ! cld |
|---|
| 3772 | |
|---|
| 3773 | DO i = minorig, nl ! cld |
|---|
| 3774 | DO k = i + 1, nl + 1 ! cld |
|---|
| 3775 | DO il = 1, ncum ! cld |
|---|
| 3776 | IF (i<=inb(il) .AND. k<=(inb(il)+1) .AND. iflag(il)<=1) THEN ! cld |
|---|
| 3777 | mac(il, i) = mac(il, i) + m(il, k) ! cld |
|---|
| 3778 | END IF ! cld |
|---|
| 3779 | END DO ! cld |
|---|
| 3780 | END DO ! cld |
|---|
| 3781 | END DO ! cld |
|---|
| 3782 | |
|---|
| 3783 | DO i = 1, nl ! cld |
|---|
| 3784 | DO j = 1, i ! cld |
|---|
| 3785 | DO il = 1, ncum ! cld |
|---|
| 3786 | IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
|---|
| 3787 | .AND. j>=icb(il) .AND. iflag(il)<=1) THEN ! cld |
|---|
| 3788 | sax(il, i) = sax(il, i) + rrd*(tvp(il,j)-tv(il,j)) & ! cld |
|---|
| 3789 | *(ph(il,j)-ph(il,j+1))/p(il, j) ! cld |
|---|
| 3790 | END IF ! cld |
|---|
| 3791 | END DO ! cld |
|---|
| 3792 | END DO ! cld |
|---|
| 3793 | END DO ! cld |
|---|
| 3794 | |
|---|
| 3795 | DO i = 1, nl ! cld |
|---|
| 3796 | DO il = 1, ncum ! cld |
|---|
| 3797 | IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
|---|
| 3798 | .AND. sax(il,i)>0.0 .AND. iflag(il)<=1) THEN ! cld |
|---|
| 3799 | wa(il, i) = sqrt(2.*sax(il,i)) ! cld |
|---|
| 3800 | END IF ! cld |
|---|
| 3801 | END DO ! cld |
|---|
| 3802 | END DO |
|---|
| 3803 | ! cld |
|---|
| 3804 | DO i = 1, nl |
|---|
| 3805 | |
|---|
| 3806 | ! 14/01/15 AJ je remets les parties manquantes cf JYG |
|---|
| 3807 | ! Initialize sument to 0 |
|---|
| 3808 | |
|---|
| 3809 | DO il = 1,ncum |
|---|
| 3810 | sument(il) = 0. |
|---|
| 3811 | ENDDO |
|---|
| 3812 | |
|---|
| 3813 | ! Sum mixed mass fluxes in sument |
|---|
| 3814 | |
|---|
| 3815 | DO k = 1,nl |
|---|
| 3816 | DO il = 1,ncum |
|---|
| 3817 | IF (k<=inb(il) .AND. i<=inb(il) .AND. iflag(il)<=1) THEN ! cld |
|---|
| 3818 | sument(il) =sument(il) + abs(ment(il,k,i)) |
|---|
| 3819 | ENDIF |
|---|
| 3820 | ENDDO ! il |
|---|
| 3821 | ENDDO ! k |
|---|
| 3822 | |
|---|
| 3823 | ! 14/01/15 AJ delta n'a rien à faire là... |
|---|
| 3824 | DO il = 1, ncum ! cld |
|---|
| 3825 | IF (wa(il,i)>0.0 .AND. iflag(il)<=1) & ! cld |
|---|
| 3826 | siga(il, i) = mac(il, i)/(coefw_cld_cv*wa(il, i)) & ! cld |
|---|
| 3827 | *rrd*tvp(il, i)/p(il, i)/100. ! cld |
|---|
| 3828 | |
|---|
| 3829 | siga(il, i) = min(siga(il,i), 1.0) ! cld |
|---|
| 3830 | |
|---|
| 3831 | ! IM cf. FH |
|---|
| 3832 | ! 14/01/15 AJ ne correspond pas à ce qui a été codé par JYG et SB |
|---|
| 3833 | |
|---|
| 3834 | IF (iflag_clw==0) THEN ! cld |
|---|
| 3835 | qcondc(il, i) = siga(il, i)*clw(il, i)*(1.-ep(il,i)) & ! cld |
|---|
| 3836 | +(1.-siga(il,i))*qcond(il, i) ! cld |
|---|
| 3837 | |
|---|
| 3838 | |
|---|
| 3839 | sigment(il,i)=sument(il)*tau_cld_cv/(ph(il,i)-ph(il,i+1)) ! cld |
|---|
| 3840 | sigment(il, i) = min(1.e-4+sigment(il,i), 1.0 - siga(il,i)) ! cld |
|---|
| 3841 | qtc(il, i) = (siga(il,i)*qnk(il)+sigment(il,i)*qtment(il,i)) & ! cld |
|---|
| 3842 | /(siga(il,i)+sigment(il,i)) ! cld |
|---|
| 3843 | sigt(il,i) = sigment(il, i) + siga(il, i) |
|---|
| 3844 | |
|---|
| 3845 | ! qtc(il, i) = siga(il,i)*qnk(il)+(1.-siga(il,i))*qtment(il,i) ! cld |
|---|
| 3846 | ! print*,'BIGAUSSIAN CONV',siga(il,i),sigment(il,i),qtc(il,i) |
|---|
| 3847 | |
|---|
| 3848 | ELSE IF (iflag_clw==1) THEN ! cld |
|---|
| 3849 | qcondc(il, i) = qcond(il, i) ! cld |
|---|
| 3850 | qtc(il,i) = qtment(il,i) ! cld |
|---|
| 3851 | END IF ! cld |
|---|
| 3852 | |
|---|
| 3853 | END DO ! cld |
|---|
| 3854 | END DO |
|---|
| 3855 | ! print*,'cv3_yield fin' |
|---|
| 3856 | |
|---|
| 3857 | RETURN |
|---|
| 3858 | END SUBROUTINE cv3_yield |
|---|
| 3859 | |
|---|
| 3860 | !AC! et !RomP >>> |
|---|
| 3861 | SUBROUTINE cv3_tracer(nloc, len, ncum, nd, na, & |
|---|
| 3862 | ment, sigij, da, phi, phi2, d1a, dam, & |
|---|
| 3863 | ep, Vprecip, elij, clw, epmlmMm, eplaMm, & |
|---|
| 3864 | icb, inb) |
|---|
| 3865 | IMPLICIT NONE |
|---|
| 3866 | |
|---|
| 3867 | include "cv3param.h" |
|---|
| 3868 | |
|---|
| 3869 | !inputs: |
|---|
| 3870 | INTEGER ncum, nd, na, nloc, len |
|---|
| 3871 | REAL ment(nloc, na, na), sigij(nloc, na, na) |
|---|
| 3872 | REAL clw(nloc, nd), elij(nloc, na, na) |
|---|
| 3873 | REAL ep(nloc, na) |
|---|
| 3874 | INTEGER icb(nloc), inb(nloc) |
|---|
| 3875 | REAL Vprecip(nloc, nd+1) |
|---|
| 3876 | !ouputs: |
|---|
| 3877 | REAL da(nloc, na), phi(nloc, na, na) |
|---|
| 3878 | REAL phi2(nloc, na, na) |
|---|
| 3879 | REAL d1a(nloc, na), dam(nloc, na) |
|---|
| 3880 | REAL epmlmMm(nloc, na, na), eplaMm(nloc, na) |
|---|
| 3881 | ! variables pour tracer dans precip de l'AA et des mel |
|---|
| 3882 | !local variables: |
|---|
| 3883 | INTEGER i, j, k |
|---|
| 3884 | REAL epm(nloc, na, na) |
|---|
| 3885 | |
|---|
| 3886 | ! variables d'Emanuel : du second indice au troisieme |
|---|
| 3887 | ! ---> tab(i,k,j) -> de l origine k a l arrivee j |
|---|
| 3888 | ! ment, sigij, elij |
|---|
| 3889 | ! variables personnelles : du troisieme au second indice |
|---|
| 3890 | ! ---> tab(i,j,k) -> de k a j |
|---|
| 3891 | ! phi, phi2 |
|---|
| 3892 | |
|---|
| 3893 | ! initialisations |
|---|
| 3894 | |
|---|
| 3895 | da(:, :) = 0. |
|---|
| 3896 | d1a(:, :) = 0. |
|---|
| 3897 | dam(:, :) = 0. |
|---|
| 3898 | epm(:, :, :) = 0. |
|---|
| 3899 | eplaMm(:, :) = 0. |
|---|
| 3900 | epmlmMm(:, :, :) = 0. |
|---|
| 3901 | phi(:, :, :) = 0. |
|---|
| 3902 | phi2(:, :, :) = 0. |
|---|
| 3903 | |
|---|
| 3904 | ! fraction deau condensee dans les melanges convertie en precip : epm |
|---|
| 3905 | ! et eau condensée précipitée dans masse d'air saturé : l_m*dM_m/dzdz.dzdz |
|---|
| 3906 | DO j = 1, na |
|---|
| 3907 | DO k = 1, na |
|---|
| 3908 | DO i = 1, ncum |
|---|
| 3909 | IF (k>=icb(i) .AND. k<=inb(i) .AND. & |
|---|
| 3910 | !!jyg j.ge.k.and.j.le.inb(i)) then |
|---|
| 3911 | !!jyg epm(i,j,k)=1.-(1.-ep(i,j))*clw(i,j)/elij(i,k,j) |
|---|
| 3912 | j>k .AND. j<=inb(i)) THEN |
|---|
| 3913 | epm(i, j, k) = 1. - (1.-ep(i,j))*clw(i, j)/max(elij(i,k,j), 1.E-16) |
|---|
| 3914 | !! |
|---|
| 3915 | epm(i, j, k) = max(epm(i,j,k), 0.0) |
|---|
| 3916 | END IF |
|---|
| 3917 | END DO |
|---|
| 3918 | END DO |
|---|
| 3919 | END DO |
|---|
| 3920 | |
|---|
| 3921 | |
|---|
| 3922 | DO j = 1, na |
|---|
| 3923 | DO k = 1, na |
|---|
| 3924 | DO i = 1, ncum |
|---|
| 3925 | IF (k>=icb(i) .AND. k<=inb(i)) THEN |
|---|
| 3926 | eplaMm(i, j) = eplamm(i, j) + & |
|---|
| 3927 | ep(i, j)*clw(i, j)*ment(i, j, k)*(1.-sigij(i,j,k)) |
|---|
| 3928 | END IF |
|---|
| 3929 | END DO |
|---|
| 3930 | END DO |
|---|
| 3931 | END DO |
|---|
| 3932 | |
|---|
| 3933 | DO j = 1, na |
|---|
| 3934 | DO k = 1, j - 1 |
|---|
| 3935 | DO i = 1, ncum |
|---|
| 3936 | IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
|---|
| 3937 | epmlmMm(i, j, k) = epm(i, j, k)*elij(i, k, j)*ment(i, k, j) |
|---|
| 3938 | END IF |
|---|
| 3939 | END DO |
|---|
| 3940 | END DO |
|---|
| 3941 | END DO |
|---|
| 3942 | |
|---|
| 3943 | ! matrices pour calculer la tendance des concentrations dans cvltr.F90 |
|---|
| 3944 | DO j = 1, na |
|---|
| 3945 | DO k = 1, na |
|---|
| 3946 | DO i = 1, ncum |
|---|
| 3947 | da(i, j) = da(i, j) + (1.-sigij(i,k,j))*ment(i, k, j) |
|---|
| 3948 | phi(i, j, k) = sigij(i, k, j)*ment(i, k, j) |
|---|
| 3949 | d1a(i, j) = d1a(i, j) + ment(i, k, j)*ep(i, k)*(1.-sigij(i,k,j)) |
|---|
| 3950 | IF (k<=j) THEN |
|---|
| 3951 | dam(i, j) = dam(i, j) + ment(i, k, j)*epm(i, k, j)*(1.-ep(i,k))*(1.-sigij(i,k,j)) |
|---|
| 3952 | phi2(i, j, k) = phi(i, j, k)*epm(i, j, k) |
|---|
| 3953 | END IF |
|---|
| 3954 | END DO |
|---|
| 3955 | END DO |
|---|
| 3956 | END DO |
|---|
| 3957 | |
|---|
| 3958 | RETURN |
|---|
| 3959 | END SUBROUTINE cv3_tracer |
|---|
| 3960 | !AC! et !RomP <<< |
|---|
| 3961 | |
|---|
| 3962 | SUBROUTINE cv3_uncompress(nloc, len, ncum, nd, ntra, idcum, & |
|---|
| 3963 | iflag, & |
|---|
| 3964 | precip, sig, w0, & |
|---|
| 3965 | ft, fq, fu, fv, ftra, & |
|---|
| 3966 | Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, & |
|---|
| 3967 | iflag1, & |
|---|
| 3968 | precip1, sig1, w01, & |
|---|
| 3969 | ft1, fq1, fu1, fv1, ftra1, & |
|---|
| 3970 | Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1) |
|---|
| 3971 | IMPLICIT NONE |
|---|
| 3972 | |
|---|
| 3973 | include "cv3param.h" |
|---|
| 3974 | |
|---|
| 3975 | !inputs: |
|---|
| 3976 | INTEGER len, ncum, nd, ntra, nloc |
|---|
| 3977 | INTEGER idcum(nloc) |
|---|
| 3978 | INTEGER iflag(nloc) |
|---|
| 3979 | REAL precip(nloc) |
|---|
| 3980 | REAL sig(nloc, nd), w0(nloc, nd) |
|---|
| 3981 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
|---|
| 3982 | REAL ftra(nloc, nd, ntra) |
|---|
| 3983 | REAL ma(nloc, nd) |
|---|
| 3984 | REAL upwd(nloc, nd), dnwd(nloc, nd), dnwd0(nloc, nd) |
|---|
| 3985 | REAL qcondc(nloc, nd) |
|---|
| 3986 | REAL wd(nloc), cape(nloc) |
|---|
| 3987 | |
|---|
| 3988 | !outputs: |
|---|
| 3989 | INTEGER iflag1(len) |
|---|
| 3990 | REAL precip1(len) |
|---|
| 3991 | REAL sig1(len, nd), w01(len, nd) |
|---|
| 3992 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
|---|
| 3993 | REAL ftra1(len, nd, ntra) |
|---|
| 3994 | REAL ma1(len, nd) |
|---|
| 3995 | REAL upwd1(len, nd), dnwd1(len, nd), dnwd01(len, nd) |
|---|
| 3996 | REAL qcondc1(nloc, nd) |
|---|
| 3997 | REAL wd1(nloc), cape1(nloc) |
|---|
| 3998 | |
|---|
| 3999 | !local variables: |
|---|
| 4000 | INTEGER i, k, j |
|---|
| 4001 | |
|---|
| 4002 | DO i = 1, ncum |
|---|
| 4003 | precip1(idcum(i)) = precip(i) |
|---|
| 4004 | iflag1(idcum(i)) = iflag(i) |
|---|
| 4005 | wd1(idcum(i)) = wd(i) |
|---|
| 4006 | cape1(idcum(i)) = cape(i) |
|---|
| 4007 | END DO |
|---|
| 4008 | |
|---|
| 4009 | DO k = 1, nl |
|---|
| 4010 | DO i = 1, ncum |
|---|
| 4011 | sig1(idcum(i), k) = sig(i, k) |
|---|
| 4012 | w01(idcum(i), k) = w0(i, k) |
|---|
| 4013 | ft1(idcum(i), k) = ft(i, k) |
|---|
| 4014 | fq1(idcum(i), k) = fq(i, k) |
|---|
| 4015 | fu1(idcum(i), k) = fu(i, k) |
|---|
| 4016 | fv1(idcum(i), k) = fv(i, k) |
|---|
| 4017 | ma1(idcum(i), k) = ma(i, k) |
|---|
| 4018 | upwd1(idcum(i), k) = upwd(i, k) |
|---|
| 4019 | dnwd1(idcum(i), k) = dnwd(i, k) |
|---|
| 4020 | dnwd01(idcum(i), k) = dnwd0(i, k) |
|---|
| 4021 | qcondc1(idcum(i), k) = qcondc(i, k) |
|---|
| 4022 | END DO |
|---|
| 4023 | END DO |
|---|
| 4024 | |
|---|
| 4025 | DO i = 1, ncum |
|---|
| 4026 | sig1(idcum(i), nd) = sig(i, nd) |
|---|
| 4027 | END DO |
|---|
| 4028 | |
|---|
| 4029 | |
|---|
| 4030 | !AC! do 2100 j=1,ntra |
|---|
| 4031 | !AC!c oct3 do 2110 k=1,nl |
|---|
| 4032 | !AC! do 2110 k=1,nd ! oct3 |
|---|
| 4033 | !AC! do 2120 i=1,ncum |
|---|
| 4034 | !AC! ftra1(idcum(i),k,j)=ftra(i,k,j) |
|---|
| 4035 | !AC! 2120 continue |
|---|
| 4036 | !AC! 2110 continue |
|---|
| 4037 | !AC! 2100 continue |
|---|
| 4038 | ! |
|---|
| 4039 | RETURN |
|---|
| 4040 | END SUBROUTINE cv3_uncompress |
|---|