[1992] | 1 | |
---|
[1403] | 2 | ! $Id: cv3_cine.F90 2416 2015-12-24 11:58:33Z crisi $ |
---|
[879] | 3 | |
---|
[1992] | 4 | SUBROUTINE cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, & |
---|
| 5 | cina, cinb, plfc) |
---|
| 6 | |
---|
| 7 | ! ************************************************************** |
---|
| 8 | ! * |
---|
| 9 | ! CV3_CINE * |
---|
| 10 | ! * |
---|
| 11 | ! * |
---|
| 12 | ! written by : Frederique Cheruy * |
---|
| 13 | ! vectorization: Jean-Yves Grandpeix, 19/06/2003, 11.54.43 * |
---|
| 14 | ! modified by : * |
---|
| 15 | ! ************************************************************** |
---|
| 16 | |
---|
| 17 | IMPLICIT NONE |
---|
| 18 | |
---|
| 19 | include "YOMCST.h" |
---|
| 20 | include "cvthermo.h" |
---|
| 21 | include "cv3param.h" |
---|
| 22 | ! input: |
---|
| 23 | INTEGER ncum, nd, nloc |
---|
| 24 | INTEGER icb(nloc), inb(nloc) |
---|
| 25 | REAL pbase(nloc), plcl(nloc) |
---|
| 26 | REAL p(nloc, nd), ph(nloc, nd+1) |
---|
| 27 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
| 28 | |
---|
| 29 | ! output |
---|
| 30 | REAL cina(nloc), cinb(nloc), plfc(nloc) |
---|
| 31 | |
---|
| 32 | ! local variables |
---|
| 33 | INTEGER il, i, j, k |
---|
| 34 | INTEGER itop(nloc), ineg(nloc), ilow(nloc) |
---|
| 35 | INTEGER ifst(nloc), isublcl(nloc) |
---|
[2416] | 36 | LOGICAL lswitch(nloc), lswitch1(nloc), lswitch2(nloc), lswitch3(nloc) |
---|
[1992] | 37 | LOGICAL exist_lfc(nloc) |
---|
| 38 | REAL dpmax |
---|
| 39 | REAL deltap, dcin |
---|
| 40 | REAL buoylcl(nloc), tvplcl(nloc), tvlcl(nloc) |
---|
| 41 | REAL p0(nloc) |
---|
| 42 | REAL buoyz(nloc), buoy(nloc, nd) |
---|
| 43 | |
---|
| 44 | ! ------------------------------------------------------------- |
---|
| 45 | ! Initialization |
---|
| 46 | ! ------------------------------------------------------------- |
---|
| 47 | DO il = 1, ncum |
---|
| 48 | cina(il) = 0. |
---|
| 49 | cinb(il) = 0. |
---|
| 50 | END DO |
---|
| 51 | |
---|
| 52 | ! -------------------------------------------------------------- |
---|
| 53 | ! Recompute buoyancies |
---|
| 54 | ! -------------------------------------------------------------- |
---|
| 55 | DO k = 1, nd |
---|
| 56 | DO il = 1, ncum |
---|
| 57 | ! print*,'tvp tv=',tvp(il,k),tv(il,k) |
---|
| 58 | buoy(il, k) = tvp(il, k) - tv(il, k) |
---|
| 59 | END DO |
---|
| 60 | END DO |
---|
| 61 | ! --------------------------------------------------------------- |
---|
| 62 | |
---|
| 63 | ! calcul de la flottabilite a LCL (Buoylcl) |
---|
| 64 | ! ifst = first P-level above lcl |
---|
| 65 | ! isublcl = highest P-level below lcl. |
---|
| 66 | ! --------------------------------------------------------------- |
---|
| 67 | |
---|
| 68 | DO il = 1, ncum |
---|
| 69 | tvplcl(il) = tvp(il, 1)*(plcl(il)/p(il,1))**(2./7.) !For dry air, R/Cp=2/7 |
---|
| 70 | END DO |
---|
| 71 | |
---|
| 72 | DO il = 1, ncum |
---|
| 73 | IF (plcl(il)>p(il,icb(il))) THEN |
---|
| 74 | ifst(il) = icb(il) |
---|
| 75 | isublcl(il) = icb(il) - 1 |
---|
| 76 | ELSE |
---|
| 77 | ifst(il) = icb(il) + 1 |
---|
| 78 | isublcl(il) = icb(il) |
---|
| 79 | END IF |
---|
| 80 | END DO |
---|
| 81 | |
---|
| 82 | DO il = 1, ncum |
---|
| 83 | tvlcl(il) = tv(il, ifst(il)-1) + (tv(il,ifst(il))-tv(il,ifst(il)-1))*( & |
---|
| 84 | plcl(il)-p(il,ifst(il)-1))/(p(il,ifst(il))-p(il,ifst(il)-1)) |
---|
| 85 | END DO |
---|
| 86 | |
---|
| 87 | DO il = 1, ncum |
---|
| 88 | buoylcl(il) = tvplcl(il) - tvlcl(il) |
---|
| 89 | END DO |
---|
| 90 | |
---|
| 91 | ! --------------------------------------------------------------- |
---|
| 92 | ! premiere couche contenant un niveau de flotabilite positive |
---|
| 93 | ! et premiere couche contenant un niveau de flotabilite negative |
---|
| 94 | ! au dessus du niveau de condensation |
---|
| 95 | ! --------------------------------------------------------------- |
---|
| 96 | DO il = 1, ncum |
---|
| 97 | itop(il) = nl - 1 |
---|
| 98 | ineg(il) = nl - 1 |
---|
| 99 | exist_lfc(il) = .FALSE. |
---|
| 100 | END DO |
---|
| 101 | DO k = nl - 1, 1, -1 |
---|
| 102 | DO il = 1, ncum |
---|
| 103 | IF (k>=ifst(il)) THEN |
---|
| 104 | IF (buoy(il,k)>0.) THEN |
---|
| 105 | itop(il) = k |
---|
[1146] | 106 | exist_lfc(il) = .TRUE. |
---|
[1992] | 107 | ELSE |
---|
| 108 | ineg(il) = k |
---|
| 109 | END IF |
---|
| 110 | END IF |
---|
| 111 | END DO |
---|
| 112 | END DO |
---|
| 113 | |
---|
| 114 | ! --------------------------------------------------------------- |
---|
| 115 | ! When there is no positive buoyancy level, set Plfc, Cina and Cinb |
---|
| 116 | ! to arbitrary extreme values. |
---|
| 117 | ! --------------------------------------------------------------- |
---|
| 118 | DO il = 1, ncum |
---|
| 119 | IF (.NOT. exist_lfc(il)) THEN |
---|
| 120 | plfc(il) = 1.111 |
---|
| 121 | cinb(il) = -1111. |
---|
| 122 | cina(il) = -1112. |
---|
| 123 | END IF |
---|
| 124 | END DO |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | ! --------------------------------------------------------------- |
---|
| 128 | ! -- Two cases : BUOYlcl >= 0 and BUOYlcl < 0. |
---|
| 129 | ! --------------------------------------------------------------- |
---|
| 130 | |
---|
| 131 | ! -------------------- |
---|
| 132 | ! -- 1.0 BUOYlcl >=0. |
---|
| 133 | ! -------------------- |
---|
| 134 | |
---|
| 135 | dpmax = 50. |
---|
| 136 | DO il = 1, ncum |
---|
| 137 | lswitch1(il) = buoylcl(il) >= 0. .AND. exist_lfc(il) |
---|
| 138 | lswitch(il) = lswitch1(il) |
---|
| 139 | END DO |
---|
| 140 | |
---|
| 141 | ! 1.1 No inhibition case |
---|
| 142 | ! ---------------------- |
---|
| 143 | ! If buoyancy is positive at LCL and stays positive over a large enough |
---|
| 144 | ! pressure interval (=DPMAX), inhibition is set to zero, |
---|
| 145 | |
---|
| 146 | DO il = 1, ncum |
---|
| 147 | IF (lswitch(il)) THEN |
---|
| 148 | IF (p(il,ineg(il))<p(il,icb(il))-dpmax) THEN |
---|
| 149 | plfc(il) = plcl(il) |
---|
| 150 | cina(il) = 0. |
---|
| 151 | cinb(il) = 0. |
---|
| 152 | END IF |
---|
| 153 | END IF |
---|
| 154 | END DO |
---|
| 155 | |
---|
| 156 | ! 1.2 Upper inhibition only case |
---|
| 157 | ! ------------------------------ |
---|
| 158 | DO il = 1, ncum |
---|
| 159 | lswitch2(il) = p(il, ineg(il)) >= p(il, icb(il)) - dpmax |
---|
| 160 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
| 161 | END DO |
---|
| 162 | |
---|
[2416] | 163 | ! 1.2.1 Recompute itop (=1st layer with positive buoyancy above ineg) |
---|
| 164 | ! ------------------------------------------------------------------- |
---|
| 165 | |
---|
[1992] | 166 | DO il = 1, ncum |
---|
| 167 | IF (lswitch(il)) THEN |
---|
[2416] | 168 | itop(il) = nl - 1 |
---|
| 169 | END IF |
---|
| 170 | END DO |
---|
| 171 | |
---|
| 172 | DO k = nl, 1, -1 |
---|
| 173 | DO il = 1, ncum |
---|
| 174 | IF (lswitch(il)) THEN |
---|
| 175 | IF (k>=ineg(il) .AND. buoy(il,k)>0) THEN |
---|
| 176 | itop(il) = k |
---|
| 177 | END IF |
---|
| 178 | END IF |
---|
| 179 | END DO |
---|
| 180 | END DO |
---|
| 181 | |
---|
| 182 | ! If there is no layer with positive buoyancy above ineg, set Plfc, |
---|
| 183 | ! Cina and Cinb to arbitrary extreme values. |
---|
| 184 | DO il = 1, ncum |
---|
| 185 | IF (lswitch(il) .AND. itop(il) == nl - 1) THEN |
---|
| 186 | plfc(il) = 1.121 |
---|
| 187 | cinb(il) = -1121. |
---|
| 188 | cina(il) = -1122. |
---|
| 189 | END IF |
---|
| 190 | END DO |
---|
| 191 | |
---|
| 192 | DO il = 1, ncum |
---|
| 193 | lswitch3(il) = itop(il) < nl -1 |
---|
| 194 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) .AND. lswitch3(il) |
---|
| 195 | END DO |
---|
| 196 | |
---|
| 197 | DO il = 1, ncum |
---|
| 198 | IF (lswitch(il)) THEN |
---|
[1992] | 199 | cinb(il) = 0. |
---|
| 200 | |
---|
[2416] | 201 | ! 1.2.2 Calcul de la pression du niveau de flot. nulle juste au-dessus |
---|
[1992] | 202 | ! de LCL |
---|
| 203 | ! --------------------------------------------------------------------------- |
---|
| 204 | IF (ineg(il)>isublcl(il)+1) THEN |
---|
| 205 | ! In order to get P0, one may interpolate linearly buoyancies |
---|
| 206 | ! between P(ineg) and P(ineg-1). |
---|
[2416] | 207 | p0(il) = (buoy(il,ineg(il))*p(il,ineg(il)-1)-buoy(il,ineg(il)-1)*p(il,ineg(il)))/ & |
---|
| 208 | (buoy(il,ineg(il))-buoy(il,ineg(il)-1)) |
---|
[1992] | 209 | ELSE |
---|
| 210 | ! In order to get P0, one has to interpolate between P(ineg) and |
---|
| 211 | ! Plcl. |
---|
| 212 | p0(il) = (buoy(il,ineg(il))*plcl(il)-buoylcl(il)*p(il,ineg(il)))/ & |
---|
| 213 | (buoy(il,ineg(il))-buoylcl(il)) |
---|
| 214 | END IF |
---|
| 215 | END IF |
---|
| 216 | END DO |
---|
| 217 | |
---|
| 218 | ! 1.2.3 Computation of PLFC |
---|
| 219 | ! ------------------------- |
---|
| 220 | DO il = 1, ncum |
---|
| 221 | IF (lswitch(il)) THEN |
---|
| 222 | plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( & |
---|
| 223 | il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1)) |
---|
| 224 | END IF |
---|
| 225 | END DO |
---|
| 226 | |
---|
| 227 | ! 1.2.4 Computation of CINA |
---|
| 228 | ! ------------------------- |
---|
| 229 | |
---|
| 230 | ! Upper part of CINA : integral from P(itop-1) to Plfc |
---|
| 231 | DO il = 1, ncum |
---|
| 232 | IF (lswitch(il)) THEN |
---|
| 233 | deltap = p(il, itop(il)-1) - plfc(il) |
---|
| 234 | dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il)) |
---|
| 235 | cina(il) = min(0., dcin) |
---|
| 236 | END IF |
---|
| 237 | END DO |
---|
| 238 | |
---|
| 239 | ! Middle part of CINA : integral from P(ineg) to P(itop-1) |
---|
| 240 | DO k = 1, nl |
---|
| 241 | DO il = 1, ncum |
---|
[879] | 242 | IF (lswitch(il)) THEN |
---|
[1992] | 243 | IF (k>=ineg(il) .AND. k<=itop(il)-2) THEN |
---|
| 244 | deltap = p(il, k) - p(il, k+1) |
---|
| 245 | dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1) |
---|
| 246 | cina(il) = cina(il) + min(0., dcin) |
---|
| 247 | END IF |
---|
| 248 | END IF |
---|
| 249 | END DO |
---|
| 250 | END DO |
---|
[879] | 251 | |
---|
[1992] | 252 | ! Lower part of CINA : integral from P0 to P(ineg) |
---|
| 253 | DO il = 1, ncum |
---|
| 254 | IF (lswitch(il)) THEN |
---|
| 255 | deltap = p0(il) - p(il, ineg(il)) |
---|
| 256 | dcin = rd*buoy(il, ineg(il))*deltap/(p(il,ineg(il))+p0(il)) |
---|
| 257 | cina(il) = cina(il) + min(0., dcin) |
---|
| 258 | END IF |
---|
| 259 | END DO |
---|
[879] | 260 | |
---|
[1992] | 261 | |
---|
| 262 | ! ------------------ |
---|
| 263 | ! -- 2.0 BUOYlcl <0. |
---|
| 264 | ! ------------------ |
---|
| 265 | |
---|
| 266 | DO il = 1, ncum |
---|
| 267 | lswitch1(il) = buoylcl(il) < 0. .AND. exist_lfc(il) |
---|
| 268 | lswitch(il) = lswitch1(il) |
---|
| 269 | END DO |
---|
| 270 | |
---|
| 271 | ! 2.0.1 Premiere couche ou la flotabilite est negative au dessus du sol |
---|
| 272 | ! ---------------------------------------------------- |
---|
| 273 | ! au cas ou elle existe sinon ilow=1 (nk apres) |
---|
| 274 | ! on suppose que la parcelle part de la premiere couche |
---|
| 275 | |
---|
| 276 | DO il = 1, ncum |
---|
| 277 | IF (lswitch(il)) THEN |
---|
| 278 | ilow(il) = 1 |
---|
| 279 | END IF |
---|
| 280 | END DO |
---|
| 281 | |
---|
| 282 | DO k = nl, 1, -1 |
---|
| 283 | DO il = 1, ncum |
---|
| 284 | IF (lswitch(il) .AND. k<=icb(il)-1) THEN |
---|
| 285 | IF (buoy(il,k)<0.) THEN |
---|
| 286 | ilow(il) = k |
---|
| 287 | END IF |
---|
| 288 | END IF |
---|
| 289 | END DO |
---|
| 290 | END DO |
---|
| 291 | |
---|
| 292 | ! 2.0.2 Calcul de la pression du niveau de flot. nulle sous le nuage |
---|
| 293 | ! ---------------------------------------------------- |
---|
| 294 | DO il = 1, ncum |
---|
| 295 | IF (lswitch(il)) THEN |
---|
| 296 | IF (ilow(il)>1) THEN |
---|
| 297 | p0(il) = (buoy(il,ilow(il))*p(il,ilow(il)-1)-buoy(il,ilow( & |
---|
| 298 | il)-1)*p(il,ilow(il)))/(buoy(il,ilow(il))-buoy(il,ilow(il)-1)) |
---|
| 299 | buoyz(il) = 0. |
---|
| 300 | ELSE |
---|
| 301 | p0(il) = p(il, 1) |
---|
| 302 | buoyz(il) = buoy(il, 1) |
---|
| 303 | END IF |
---|
| 304 | END IF |
---|
| 305 | END DO |
---|
| 306 | |
---|
| 307 | ! 2.1. Computation of CINB |
---|
| 308 | ! ----------------------- |
---|
| 309 | |
---|
| 310 | DO il = 1, ncum |
---|
| 311 | lswitch2(il) = (isublcl(il)==1 .AND. ilow(il)==1) .OR. & |
---|
| 312 | (isublcl(il)==ilow(il)-1) |
---|
| 313 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
| 314 | END DO |
---|
| 315 | ! c IF ( (isublcl .EQ. 1 .AND. ilow .EQ. 1) |
---|
| 316 | ! c $ .OR.(isublcl .EQ. ilow-1)) THEN |
---|
| 317 | |
---|
| 318 | ! 2.1.1 First case : Plcl just above P0 |
---|
| 319 | ! ------------------------------------- |
---|
| 320 | DO il = 1, ncum |
---|
| 321 | IF (lswitch(il)) THEN |
---|
| 322 | deltap = p0(il) - plcl(il) |
---|
| 323 | dcin = rd*(buoyz(il)+buoylcl(il))*deltap/(p0(il)+plcl(il)) |
---|
| 324 | cinb(il) = min(0., dcin) |
---|
| 325 | END IF |
---|
| 326 | END DO |
---|
| 327 | |
---|
| 328 | DO il = 1, ncum |
---|
| 329 | lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il) |
---|
| 330 | END DO |
---|
| 331 | ! c ELSE |
---|
| 332 | |
---|
| 333 | ! 2.1.2 Second case : there is at least one P-level between P0 and Plcl |
---|
| 334 | ! --------------------------------------------------------------------- |
---|
| 335 | |
---|
| 336 | ! Lower part of CINB : integral from P0 to P(ilow) |
---|
| 337 | DO il = 1, ncum |
---|
| 338 | IF (lswitch(il)) THEN |
---|
| 339 | deltap = p0(il) - p(il, ilow(il)) |
---|
| 340 | dcin = rd*(buoyz(il)+buoy(il,ilow(il)))*deltap/(p0(il)+p(il,ilow(il))) |
---|
| 341 | cinb(il) = min(0., dcin) |
---|
| 342 | END IF |
---|
| 343 | END DO |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | ! Middle part of CINB : integral from P(ilow) to P(isublcl) |
---|
| 347 | ! c DO k = ilow,isublcl-1 |
---|
| 348 | DO k = 1, nl |
---|
| 349 | DO il = 1, ncum |
---|
| 350 | IF (lswitch(il) .AND. k>=ilow(il) .AND. k<=isublcl(il)-1) THEN |
---|
| 351 | deltap = p(il, k) - p(il, k+1) |
---|
| 352 | dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1) |
---|
| 353 | cinb(il) = cinb(il) + min(0., dcin) |
---|
| 354 | END IF |
---|
| 355 | END DO |
---|
| 356 | END DO |
---|
| 357 | |
---|
| 358 | ! Upper part of CINB : integral from P(isublcl) to Plcl |
---|
| 359 | DO il = 1, ncum |
---|
| 360 | IF (lswitch(il)) THEN |
---|
| 361 | deltap = p(il, isublcl(il)) - plcl(il) |
---|
| 362 | dcin = rd*(buoy(il,isublcl(il))+buoylcl(il))*deltap/ & |
---|
| 363 | (p(il,isublcl(il))+plcl(il)) |
---|
| 364 | cinb(il) = cinb(il) + min(0., dcin) |
---|
| 365 | END IF |
---|
| 366 | END DO |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | ! c ENDIF |
---|
| 370 | |
---|
| 371 | ! 2.2 Computation of CINA |
---|
| 372 | ! --------------------- |
---|
| 373 | |
---|
| 374 | DO il = 1, ncum |
---|
| 375 | lswitch2(il) = plcl(il) > p(il, itop(il)-1) |
---|
| 376 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
| 377 | END DO |
---|
| 378 | |
---|
| 379 | ! 2.2.1 FIrst case : Plcl > P(itop-1) |
---|
| 380 | ! --------------------------------- |
---|
| 381 | ! In order to get Plfc, one may interpolate linearly buoyancies |
---|
| 382 | ! between P(itop) and P(itop-1). |
---|
| 383 | DO il = 1, ncum |
---|
| 384 | IF (lswitch(il)) THEN |
---|
| 385 | plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( & |
---|
| 386 | il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1)) |
---|
| 387 | END IF |
---|
| 388 | END DO |
---|
| 389 | |
---|
| 390 | ! Upper part of CINA : integral from P(itop-1) to Plfc |
---|
| 391 | DO il = 1, ncum |
---|
| 392 | IF (lswitch(il)) THEN |
---|
| 393 | deltap = p(il, itop(il)-1) - plfc(il) |
---|
| 394 | dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il)) |
---|
| 395 | cina(il) = min(0., dcin) |
---|
| 396 | END IF |
---|
| 397 | END DO |
---|
| 398 | |
---|
| 399 | ! Middle part of CINA : integral from P(icb+1) to P(itop-1) |
---|
| 400 | DO k = 1, nl |
---|
| 401 | DO il = 1, ncum |
---|
| 402 | IF (lswitch(il) .AND. k>=icb(il)+1 .AND. k<=itop(il)-2) THEN |
---|
| 403 | deltap = p(il, k) - p(il, k+1) |
---|
| 404 | dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1) |
---|
| 405 | cina(il) = cina(il) + min(0., dcin) |
---|
| 406 | END IF |
---|
| 407 | END DO |
---|
| 408 | END DO |
---|
| 409 | |
---|
| 410 | ! Lower part of CINA : integral from Plcl to P(icb+1) |
---|
| 411 | DO il = 1, ncum |
---|
| 412 | IF (lswitch(il)) THEN |
---|
| 413 | IF (plcl(il)>p(il,icb(il))) THEN |
---|
| 414 | IF (icb(il)<itop(il)-1) THEN |
---|
| 415 | deltap = p(il, icb(il)) - p(il, icb(il)+1) |
---|
| 416 | dcin = 0.5*rd*(buoy(il,icb(il))+buoy(il,icb(il)+1))*deltap/ & |
---|
| 417 | ph(il, icb(il)+1) |
---|
| 418 | cina(il) = cina(il) + min(0., dcin) |
---|
| 419 | END IF |
---|
| 420 | |
---|
| 421 | deltap = plcl(il) - p(il, icb(il)) |
---|
| 422 | dcin = rd*(buoylcl(il)+buoy(il,icb(il)))*deltap/ & |
---|
| 423 | (plcl(il)+p(il,icb(il))) |
---|
| 424 | cina(il) = cina(il) + min(0., dcin) |
---|
| 425 | ELSE |
---|
| 426 | deltap = plcl(il) - p(il, icb(il)+1) |
---|
| 427 | dcin = rd*(buoylcl(il)+buoy(il,icb(il)+1))*deltap/ & |
---|
| 428 | (plcl(il)+p(il,icb(il)+1)) |
---|
| 429 | cina(il) = cina(il) + min(0., dcin) |
---|
| 430 | END IF |
---|
| 431 | END IF |
---|
| 432 | END DO |
---|
| 433 | |
---|
| 434 | DO il = 1, ncum |
---|
| 435 | lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il) |
---|
| 436 | END DO |
---|
| 437 | ! c ELSE |
---|
| 438 | |
---|
| 439 | ! 2.2.2 Second case : Plcl lies between P(itop-1) and P(itop); |
---|
| 440 | ! ---------------------------------------------------------- |
---|
| 441 | ! In order to get Plfc, one has to interpolate between P(itop) and Plcl. |
---|
| 442 | DO il = 1, ncum |
---|
| 443 | IF (lswitch(il)) THEN |
---|
| 444 | plfc(il) = (buoy(il,itop(il))*plcl(il)-buoylcl(il)*p(il,itop(il)))/ & |
---|
| 445 | (buoy(il,itop(il))-buoylcl(il)) |
---|
| 446 | END IF |
---|
| 447 | END DO |
---|
| 448 | |
---|
| 449 | DO il = 1, ncum |
---|
| 450 | IF (lswitch(il)) THEN |
---|
| 451 | deltap = plcl(il) - plfc(il) |
---|
| 452 | dcin = rd*buoylcl(il)*deltap/(plcl(il)+plfc(il)) |
---|
| 453 | cina(il) = min(0., dcin) |
---|
| 454 | END IF |
---|
| 455 | END DO |
---|
| 456 | ! c ENDIF |
---|
| 457 | |
---|
| 458 | |
---|
| 459 | |
---|
| 460 | RETURN |
---|
| 461 | END SUBROUTINE cv3_cine |
---|