[1992] | 1 | |
---|
[1403] | 2 | ! $Id: cv30_routines.F90 2520 2016-05-23 08:32:55Z fhourdin $ |
---|
[879] | 3 | |
---|
| 4 | |
---|
| 5 | |
---|
[1992] | 6 | SUBROUTINE cv30_param(nd, delt) |
---|
| 7 | IMPLICIT NONE |
---|
[879] | 8 | |
---|
[1992] | 9 | ! ------------------------------------------------------------ |
---|
| 10 | ! Set parameters for convectL for iflag_con = 3 |
---|
| 11 | ! ------------------------------------------------------------ |
---|
[879] | 12 | |
---|
| 13 | |
---|
[1992] | 14 | ! *** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
---|
| 15 | ! *** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
---|
| 16 | ! *** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
---|
| 17 | ! *** EFFICIENCY IS ASSUMED TO BE UNITY *** |
---|
| 18 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 19 | ! *** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 20 | ! *** OF CLOUD *** |
---|
[879] | 21 | |
---|
[1992] | 22 | ! [TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
---|
| 23 | ! *** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 24 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 25 | ! *** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
---|
| 26 | ! *** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
---|
[879] | 27 | |
---|
[1992] | 28 | ! *** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
---|
| 29 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 30 | ! *** IT MUST BE LESS THAN 0 *** |
---|
[879] | 31 | |
---|
[1992] | 32 | include "cv30param.h" |
---|
| 33 | include "conema3.h" |
---|
[879] | 34 | |
---|
[1992] | 35 | INTEGER nd |
---|
| 36 | REAL delt ! timestep (seconds) |
---|
[879] | 37 | |
---|
[1992] | 38 | ! noff: integer limit for convection (nd-noff) |
---|
| 39 | ! minorig: First level of convection |
---|
[879] | 40 | |
---|
[1992] | 41 | ! -- limit levels for convection: |
---|
[879] | 42 | |
---|
[1992] | 43 | noff = 1 |
---|
| 44 | minorig = 1 |
---|
| 45 | nl = nd - noff |
---|
| 46 | nlp = nl + 1 |
---|
| 47 | nlm = nl - 1 |
---|
[879] | 48 | |
---|
[1992] | 49 | ! -- "microphysical" parameters: |
---|
[879] | 50 | |
---|
[1992] | 51 | sigd = 0.01 |
---|
| 52 | spfac = 0.15 |
---|
| 53 | pbcrit = 150.0 |
---|
| 54 | ptcrit = 500.0 |
---|
| 55 | ! IM cf. FH epmax = 0.993 |
---|
[879] | 56 | |
---|
[1992] | 57 | omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
---|
[879] | 58 | |
---|
[1992] | 59 | ! -- misc: |
---|
[879] | 60 | |
---|
[1992] | 61 | dtovsh = -0.2 ! dT for overshoot |
---|
| 62 | dpbase = -40. ! definition cloud base (400m above LCL) |
---|
| 63 | dttrig = 5. ! (loose) condition for triggering |
---|
[879] | 64 | |
---|
[1992] | 65 | ! -- rate of approach to quasi-equilibrium: |
---|
[879] | 66 | |
---|
[1992] | 67 | dtcrit = -2.0 |
---|
| 68 | tau = 8000. |
---|
| 69 | beta = 1.0 - delt/tau |
---|
| 70 | alpha = 1.5E-3*delt/tau |
---|
| 71 | ! increase alpha to compensate W decrease: |
---|
| 72 | alpha = alpha*1.5 |
---|
[879] | 73 | |
---|
[1992] | 74 | ! -- interface cloud parameterization: |
---|
[879] | 75 | |
---|
[1992] | 76 | delta = 0.01 ! cld |
---|
[879] | 77 | |
---|
[1992] | 78 | ! -- interface with boundary-layer (gust factor): (sb) |
---|
[879] | 79 | |
---|
[1992] | 80 | betad = 10.0 ! original value (from convect 4.3) |
---|
[879] | 81 | |
---|
[1992] | 82 | RETURN |
---|
| 83 | END SUBROUTINE cv30_param |
---|
[879] | 84 | |
---|
[1992] | 85 | SUBROUTINE cv30_prelim(len, nd, ndp1, t, q, p, ph, lv, cpn, tv, gz, h, hm, & |
---|
| 86 | th) |
---|
| 87 | IMPLICIT NONE |
---|
[879] | 88 | |
---|
[1992] | 89 | ! ===================================================================== |
---|
| 90 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
| 91 | ! "ori": from convect4.3 (vectorized) |
---|
| 92 | ! "convect3": to be exactly consistent with convect3 |
---|
| 93 | ! ===================================================================== |
---|
[879] | 94 | |
---|
[1992] | 95 | ! inputs: |
---|
| 96 | INTEGER len, nd, ndp1 |
---|
| 97 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
---|
[879] | 98 | |
---|
[1992] | 99 | ! outputs: |
---|
| 100 | REAL lv(len, nd), cpn(len, nd), tv(len, nd) |
---|
| 101 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
---|
| 102 | REAL th(len, nd) |
---|
[879] | 103 | |
---|
[1992] | 104 | ! local variables: |
---|
| 105 | INTEGER k, i |
---|
| 106 | REAL rdcp |
---|
| 107 | REAL tvx, tvy ! convect3 |
---|
| 108 | REAL cpx(len, nd) |
---|
[879] | 109 | |
---|
[1992] | 110 | include "cvthermo.h" |
---|
| 111 | include "cv30param.h" |
---|
[879] | 112 | |
---|
| 113 | |
---|
[1992] | 114 | ! ori do 110 k=1,nlp |
---|
| 115 | DO k = 1, nl ! convect3 |
---|
| 116 | DO i = 1, len |
---|
| 117 | ! debug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
| 118 | lv(i, k) = lv0 - clmcpv*(t(i,k)-273.15) |
---|
| 119 | cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
---|
| 120 | cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
---|
| 121 | ! ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
| 122 | tv(i, k) = t(i, k)*(1.0+q(i,k)/eps-q(i,k)) |
---|
| 123 | rdcp = (rrd*(1.-q(i,k))+q(i,k)*rrv)/cpn(i, k) |
---|
| 124 | th(i, k) = t(i, k)*(1000.0/p(i,k))**rdcp |
---|
| 125 | END DO |
---|
| 126 | END DO |
---|
[879] | 127 | |
---|
[1992] | 128 | ! gz = phi at the full levels (same as p). |
---|
[879] | 129 | |
---|
[1992] | 130 | DO i = 1, len |
---|
| 131 | gz(i, 1) = 0.0 |
---|
| 132 | END DO |
---|
| 133 | ! ori do 140 k=2,nlp |
---|
| 134 | DO k = 2, nl ! convect3 |
---|
| 135 | DO i = 1, len |
---|
| 136 | tvx = t(i, k)*(1.+q(i,k)/eps-q(i,k)) !convect3 |
---|
| 137 | tvy = t(i, k-1)*(1.+q(i,k-1)/eps-q(i,k-1)) !convect3 |
---|
| 138 | gz(i, k) = gz(i, k-1) + 0.5*rrd*(tvx+tvy) & !convect3 |
---|
| 139 | *(p(i,k-1)-p(i,k))/ph(i, k) !convect3 |
---|
[879] | 140 | |
---|
[1992] | 141 | ! ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
| 142 | ! ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
| 143 | END DO |
---|
| 144 | END DO |
---|
[879] | 145 | |
---|
[1992] | 146 | ! h = phi + cpT (dry static energy). |
---|
| 147 | ! hm = phi + cp(T-Tbase)+Lq |
---|
[879] | 148 | |
---|
[1992] | 149 | ! ori do 170 k=1,nlp |
---|
| 150 | DO k = 1, nl ! convect3 |
---|
| 151 | DO i = 1, len |
---|
| 152 | h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
---|
| 153 | hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
---|
| 154 | END DO |
---|
| 155 | END DO |
---|
[879] | 156 | |
---|
[1992] | 157 | RETURN |
---|
| 158 | END SUBROUTINE cv30_prelim |
---|
[879] | 159 | |
---|
[1992] | 160 | SUBROUTINE cv30_feed(len, nd, t, q, qs, p, ph, hm, gz, nk, icb, icbmax, & |
---|
| 161 | iflag, tnk, qnk, gznk, plcl) |
---|
| 162 | IMPLICIT NONE |
---|
[879] | 163 | |
---|
[1992] | 164 | ! ================================================================ |
---|
| 165 | ! Purpose: CONVECTIVE FEED |
---|
[879] | 166 | |
---|
[1992] | 167 | ! Main differences with cv_feed: |
---|
| 168 | ! - ph added in input |
---|
| 169 | ! - here, nk(i)=minorig |
---|
| 170 | ! - icb defined differently (plcl compared with ph instead of p) |
---|
[879] | 171 | |
---|
[1992] | 172 | ! Main differences with convect3: |
---|
| 173 | ! - we do not compute dplcldt and dplcldr of CLIFT anymore |
---|
| 174 | ! - values iflag different (but tests identical) |
---|
| 175 | ! - A,B explicitely defined (!...) |
---|
| 176 | ! ================================================================ |
---|
[879] | 177 | |
---|
[1992] | 178 | include "cv30param.h" |
---|
[879] | 179 | |
---|
[1992] | 180 | ! inputs: |
---|
| 181 | INTEGER len, nd |
---|
| 182 | REAL t(len, nd), q(len, nd), qs(len, nd), p(len, nd) |
---|
| 183 | REAL hm(len, nd), gz(len, nd) |
---|
| 184 | REAL ph(len, nd+1) |
---|
[879] | 185 | |
---|
[1992] | 186 | ! outputs: |
---|
| 187 | INTEGER iflag(len), nk(len), icb(len), icbmax |
---|
| 188 | REAL tnk(len), qnk(len), gznk(len), plcl(len) |
---|
[879] | 189 | |
---|
[1992] | 190 | ! local variables: |
---|
| 191 | INTEGER i, k |
---|
| 192 | INTEGER ihmin(len) |
---|
| 193 | REAL work(len) |
---|
| 194 | REAL pnk(len), qsnk(len), rh(len), chi(len) |
---|
| 195 | REAL a, b ! convect3 |
---|
| 196 | ! ym |
---|
| 197 | plcl = 0.0 |
---|
| 198 | ! @ !------------------------------------------------------------------- |
---|
| 199 | ! @ ! --- Find level of minimum moist static energy |
---|
| 200 | ! @ ! --- If level of minimum moist static energy coincides with |
---|
| 201 | ! @ ! --- or is lower than minimum allowable parcel origin level, |
---|
| 202 | ! @ ! --- set iflag to 6. |
---|
| 203 | ! @ !------------------------------------------------------------------- |
---|
| 204 | ! @ |
---|
| 205 | ! @ do 180 i=1,len |
---|
| 206 | ! @ work(i)=1.0e12 |
---|
| 207 | ! @ ihmin(i)=nl |
---|
| 208 | ! @ 180 continue |
---|
| 209 | ! @ do 200 k=2,nlp |
---|
| 210 | ! @ do 190 i=1,len |
---|
| 211 | ! @ if((hm(i,k).lt.work(i)).and. |
---|
| 212 | ! @ & (hm(i,k).lt.hm(i,k-1)))then |
---|
| 213 | ! @ work(i)=hm(i,k) |
---|
| 214 | ! @ ihmin(i)=k |
---|
| 215 | ! @ endif |
---|
| 216 | ! @ 190 continue |
---|
| 217 | ! @ 200 continue |
---|
| 218 | ! @ do 210 i=1,len |
---|
| 219 | ! @ ihmin(i)=min(ihmin(i),nlm) |
---|
| 220 | ! @ if(ihmin(i).le.minorig)then |
---|
| 221 | ! @ iflag(i)=6 |
---|
| 222 | ! @ endif |
---|
| 223 | ! @ 210 continue |
---|
| 224 | ! @ c |
---|
| 225 | ! @ !------------------------------------------------------------------- |
---|
| 226 | ! @ ! --- Find that model level below the level of minimum moist static |
---|
| 227 | ! @ ! --- energy that has the maximum value of moist static energy |
---|
| 228 | ! @ !------------------------------------------------------------------- |
---|
| 229 | ! @ |
---|
| 230 | ! @ do 220 i=1,len |
---|
| 231 | ! @ work(i)=hm(i,minorig) |
---|
| 232 | ! @ nk(i)=minorig |
---|
| 233 | ! @ 220 continue |
---|
| 234 | ! @ do 240 k=minorig+1,nl |
---|
| 235 | ! @ do 230 i=1,len |
---|
| 236 | ! @ if((hm(i,k).gt.work(i)).and.(k.le.ihmin(i)))then |
---|
| 237 | ! @ work(i)=hm(i,k) |
---|
| 238 | ! @ nk(i)=k |
---|
| 239 | ! @ endif |
---|
| 240 | ! @ 230 continue |
---|
| 241 | ! @ 240 continue |
---|
[879] | 242 | |
---|
[1992] | 243 | ! ------------------------------------------------------------------- |
---|
| 244 | ! --- Origin level of ascending parcels for convect3: |
---|
| 245 | ! ------------------------------------------------------------------- |
---|
[879] | 246 | |
---|
[1992] | 247 | DO i = 1, len |
---|
| 248 | nk(i) = minorig |
---|
| 249 | END DO |
---|
[879] | 250 | |
---|
[1992] | 251 | ! ------------------------------------------------------------------- |
---|
| 252 | ! --- Check whether parcel level temperature and specific humidity |
---|
| 253 | ! --- are reasonable |
---|
| 254 | ! ------------------------------------------------------------------- |
---|
| 255 | DO i = 1, len |
---|
| 256 | IF (((t(i,nk(i))<250.0) .OR. (q(i,nk(i))<=0.0)) & ! @ & .or.( |
---|
| 257 | ! p(i,ihmin(i)).lt.400.0 |
---|
| 258 | ! ) ) |
---|
| 259 | .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
| 260 | END DO |
---|
| 261 | ! ------------------------------------------------------------------- |
---|
| 262 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
| 263 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
| 264 | ! ------------------------------------------------------------------- |
---|
[879] | 265 | |
---|
[1992] | 266 | a = 1669.0 ! convect3 |
---|
| 267 | b = 122.0 ! convect3 |
---|
[879] | 268 | |
---|
[1992] | 269 | DO i = 1, len |
---|
[879] | 270 | |
---|
[1992] | 271 | IF (iflag(i)/=7) THEN ! modif sb Jun7th 2002 |
---|
[879] | 272 | |
---|
[1992] | 273 | tnk(i) = t(i, nk(i)) |
---|
| 274 | qnk(i) = q(i, nk(i)) |
---|
| 275 | gznk(i) = gz(i, nk(i)) |
---|
| 276 | pnk(i) = p(i, nk(i)) |
---|
| 277 | qsnk(i) = qs(i, nk(i)) |
---|
[879] | 278 | |
---|
[1992] | 279 | rh(i) = qnk(i)/qsnk(i) |
---|
| 280 | ! ori rh(i)=min(1.0,rh(i)) ! removed for convect3 |
---|
| 281 | ! ori chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
| 282 | chi(i) = tnk(i)/(a-b*rh(i)-tnk(i)) ! convect3 |
---|
| 283 | plcl(i) = pnk(i)*(rh(i)**chi(i)) |
---|
| 284 | IF (((plcl(i)<200.0) .OR. (plcl(i)>=2000.0)) .AND. (iflag(i)==0)) iflag & |
---|
| 285 | (i) = 8 |
---|
[879] | 286 | |
---|
[1992] | 287 | END IF ! iflag=7 |
---|
[879] | 288 | |
---|
[1992] | 289 | END DO |
---|
[879] | 290 | |
---|
[1992] | 291 | ! ------------------------------------------------------------------- |
---|
| 292 | ! --- Calculate first level above lcl (=icb) |
---|
| 293 | ! ------------------------------------------------------------------- |
---|
[879] | 294 | |
---|
[1992] | 295 | ! @ do 270 i=1,len |
---|
| 296 | ! @ icb(i)=nlm |
---|
| 297 | ! @ 270 continue |
---|
| 298 | ! @c |
---|
| 299 | ! @ do 290 k=minorig,nl |
---|
| 300 | ! @ do 280 i=1,len |
---|
| 301 | ! @ if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
---|
| 302 | ! @ & icb(i)=min(icb(i),k) |
---|
| 303 | ! @ 280 continue |
---|
| 304 | ! @ 290 continue |
---|
| 305 | ! @c |
---|
| 306 | ! @ do 300 i=1,len |
---|
| 307 | ! @ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 308 | ! @ 300 continue |
---|
[879] | 309 | |
---|
[1992] | 310 | DO i = 1, len |
---|
| 311 | icb(i) = nlm |
---|
| 312 | END DO |
---|
[879] | 313 | |
---|
[1992] | 314 | ! la modification consiste a comparer plcl a ph et non a p: |
---|
| 315 | ! icb est defini par : ph(icb)<plcl<ph(icb-1) |
---|
| 316 | ! @ do 290 k=minorig,nl |
---|
| 317 | DO k = 3, nl - 1 ! modif pour que icb soit sup/egal a 2 |
---|
| 318 | DO i = 1, len |
---|
| 319 | IF (ph(i,k)<plcl(i)) icb(i) = min(icb(i), k) |
---|
| 320 | END DO |
---|
| 321 | END DO |
---|
[879] | 322 | |
---|
[1992] | 323 | DO i = 1, len |
---|
| 324 | ! @ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 325 | IF ((icb(i)==nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
| 326 | END DO |
---|
[879] | 327 | |
---|
[1992] | 328 | DO i = 1, len |
---|
| 329 | icb(i) = icb(i) - 1 ! icb sup ou egal a 2 |
---|
| 330 | END DO |
---|
[879] | 331 | |
---|
[1992] | 332 | ! Compute icbmax. |
---|
[879] | 333 | |
---|
[1992] | 334 | icbmax = 2 |
---|
| 335 | DO i = 1, len |
---|
| 336 | ! ! icbmax=max(icbmax,icb(i)) |
---|
| 337 | IF (iflag(i)<7) icbmax = max(icbmax, icb(i)) ! sb Jun7th02 |
---|
| 338 | END DO |
---|
[879] | 339 | |
---|
[1992] | 340 | RETURN |
---|
| 341 | END SUBROUTINE cv30_feed |
---|
[879] | 342 | |
---|
[1992] | 343 | SUBROUTINE cv30_undilute1(len, nd, t, q, qs, gz, plcl, p, nk, icb, tp, tvp, & |
---|
| 344 | clw, icbs) |
---|
| 345 | IMPLICIT NONE |
---|
[879] | 346 | |
---|
[1992] | 347 | ! ---------------------------------------------------------------- |
---|
| 348 | ! Equivalent de TLIFT entre NK et ICB+1 inclus |
---|
[879] | 349 | |
---|
[1992] | 350 | ! Differences with convect4: |
---|
| 351 | ! - specify plcl in input |
---|
| 352 | ! - icbs is the first level above LCL (may differ from icb) |
---|
| 353 | ! - in the iterations, used x(icbs) instead x(icb) |
---|
| 354 | ! - many minor differences in the iterations |
---|
| 355 | ! - tvp is computed in only one time |
---|
| 356 | ! - icbs: first level above Plcl (IMIN de TLIFT) in output |
---|
| 357 | ! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
---|
| 358 | ! ---------------------------------------------------------------- |
---|
[879] | 359 | |
---|
[1992] | 360 | include "cvthermo.h" |
---|
| 361 | include "cv30param.h" |
---|
[879] | 362 | |
---|
[1992] | 363 | ! inputs: |
---|
| 364 | INTEGER len, nd |
---|
| 365 | INTEGER nk(len), icb(len) |
---|
| 366 | REAL t(len, nd), q(len, nd), qs(len, nd), gz(len, nd) |
---|
| 367 | REAL p(len, nd) |
---|
| 368 | REAL plcl(len) ! convect3 |
---|
[879] | 369 | |
---|
[1992] | 370 | ! outputs: |
---|
| 371 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
---|
[879] | 372 | |
---|
[1992] | 373 | ! local variables: |
---|
| 374 | INTEGER i, k |
---|
| 375 | INTEGER icb1(len), icbs(len), icbsmax2 ! convect3 |
---|
| 376 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
| 377 | REAL ah0(len), cpp(len) |
---|
| 378 | REAL tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
| 379 | REAL qsicb(len) ! convect3 |
---|
| 380 | REAL cpinv(len) ! convect3 |
---|
[879] | 381 | |
---|
[1992] | 382 | ! ------------------------------------------------------------------- |
---|
| 383 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
| 384 | ! --- the actual temperature, and the adiabatic |
---|
| 385 | ! --- liquid water content. The procedure is to solve the equation. |
---|
| 386 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 387 | ! ------------------------------------------------------------------- |
---|
[879] | 388 | |
---|
[1992] | 389 | DO i = 1, len |
---|
| 390 | tnk(i) = t(i, nk(i)) |
---|
| 391 | qnk(i) = q(i, nk(i)) |
---|
| 392 | gznk(i) = gz(i, nk(i)) |
---|
| 393 | ! ori ticb(i)=t(i,icb(i)) |
---|
| 394 | ! ori gzicb(i)=gz(i,icb(i)) |
---|
| 395 | END DO |
---|
[879] | 396 | |
---|
[1992] | 397 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
[879] | 398 | |
---|
[1992] | 399 | DO i = 1, len |
---|
| 400 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
---|
| 401 | 273.15)) + gznk(i) |
---|
| 402 | cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
---|
| 403 | cpinv(i) = 1./cpp(i) |
---|
| 404 | END DO |
---|
[879] | 405 | |
---|
[1992] | 406 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
[879] | 407 | |
---|
[1992] | 408 | DO i = 1, len !convect3 |
---|
[2520] | 409 | icb1(i) = min(max(icb(i), 2), nl) |
---|
[1992] | 410 | ! if icb is below LCL, start loop at ICB+1: |
---|
| 411 | ! (icbs est le premier niveau au-dessus du LCL) |
---|
| 412 | icbs(i) = icb1(i) !convect3 |
---|
| 413 | IF (plcl(i)<p(i,icb1(i))) THEN |
---|
| 414 | icbs(i) = min(icbs(i)+1, nl) !convect3 |
---|
| 415 | END IF |
---|
| 416 | END DO !convect3 |
---|
[879] | 417 | |
---|
[1992] | 418 | DO i = 1, len !convect3 |
---|
| 419 | ticb(i) = t(i, icbs(i)) !convect3 |
---|
| 420 | gzicb(i) = gz(i, icbs(i)) !convect3 |
---|
| 421 | qsicb(i) = qs(i, icbs(i)) !convect3 |
---|
| 422 | END DO !convect3 |
---|
[879] | 423 | |
---|
| 424 | |
---|
[1992] | 425 | ! Re-compute icbsmax (icbsmax2): !convect3 |
---|
| 426 | ! !convect3 |
---|
| 427 | icbsmax2 = 2 !convect3 |
---|
| 428 | DO i = 1, len !convect3 |
---|
| 429 | icbsmax2 = max(icbsmax2, icbs(i)) !convect3 |
---|
| 430 | END DO !convect3 |
---|
[879] | 431 | |
---|
[1992] | 432 | ! initialization outputs: |
---|
[879] | 433 | |
---|
[1992] | 434 | DO k = 1, icbsmax2 ! convect3 |
---|
| 435 | DO i = 1, len ! convect3 |
---|
| 436 | tp(i, k) = 0.0 ! convect3 |
---|
| 437 | tvp(i, k) = 0.0 ! convect3 |
---|
| 438 | clw(i, k) = 0.0 ! convect3 |
---|
| 439 | END DO ! convect3 |
---|
| 440 | END DO ! convect3 |
---|
[879] | 441 | |
---|
[1992] | 442 | ! tp and tvp below cloud base: |
---|
[879] | 443 | |
---|
[1992] | 444 | DO k = minorig, icbsmax2 - 1 |
---|
| 445 | DO i = 1, len |
---|
| 446 | tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))*cpinv(i) |
---|
| 447 | tvp(i, k) = tp(i, k)*(1.+qnk(i)/eps-qnk(i)) !whole thing (convect3) |
---|
| 448 | END DO |
---|
| 449 | END DO |
---|
[879] | 450 | |
---|
[1992] | 451 | ! *** Find lifted parcel quantities above cloud base *** |
---|
[879] | 452 | |
---|
[1992] | 453 | DO i = 1, len |
---|
| 454 | tg = ticb(i) |
---|
| 455 | ! ori qg=qs(i,icb(i)) |
---|
| 456 | qg = qsicb(i) ! convect3 |
---|
| 457 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 458 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
[879] | 459 | |
---|
[1992] | 460 | ! First iteration. |
---|
[879] | 461 | |
---|
[1992] | 462 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 463 | s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
---|
| 464 | +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
| 465 | s = 1./s |
---|
| 466 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 467 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
---|
| 468 | tg = tg + s*(ah0(i)-ahg) |
---|
| 469 | ! ori tg=max(tg,35.0) |
---|
| 470 | ! debug tc=tg-t0 |
---|
| 471 | tc = tg - 273.15 |
---|
| 472 | denom = 243.5 + tc |
---|
| 473 | denom = max(denom, 1.0) ! convect3 |
---|
| 474 | ! ori if(tc.ge.0.0)then |
---|
| 475 | es = 6.112*exp(17.67*tc/denom) |
---|
| 476 | ! ori else |
---|
| 477 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 478 | ! ori endif |
---|
| 479 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 480 | qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
[879] | 481 | |
---|
[1992] | 482 | ! Second iteration. |
---|
[879] | 483 | |
---|
| 484 | |
---|
[1992] | 485 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 486 | ! ori s=1./s |
---|
| 487 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 488 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
---|
| 489 | tg = tg + s*(ah0(i)-ahg) |
---|
| 490 | ! ori tg=max(tg,35.0) |
---|
| 491 | ! debug tc=tg-t0 |
---|
| 492 | tc = tg - 273.15 |
---|
| 493 | denom = 243.5 + tc |
---|
| 494 | denom = max(denom, 1.0) ! convect3 |
---|
| 495 | ! ori if(tc.ge.0.0)then |
---|
| 496 | es = 6.112*exp(17.67*tc/denom) |
---|
| 497 | ! ori else |
---|
| 498 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 499 | ! ori end if |
---|
| 500 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 501 | qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
[879] | 502 | |
---|
[1992] | 503 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
[879] | 504 | |
---|
[1992] | 505 | ! ori c approximation here: |
---|
| 506 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 507 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
[879] | 508 | |
---|
[1992] | 509 | ! convect3: no approximation: |
---|
| 510 | tp(i, icbs(i)) = (ah0(i)-gz(i,icbs(i))-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
[879] | 511 | |
---|
[1992] | 512 | ! ori clw(i,icb(i))=qnk(i)-qg |
---|
| 513 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 514 | clw(i, icbs(i)) = qnk(i) - qg |
---|
| 515 | clw(i, icbs(i)) = max(0.0, clw(i,icbs(i))) |
---|
[879] | 516 | |
---|
[1992] | 517 | rg = qg/(1.-qnk(i)) |
---|
| 518 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 519 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
| 520 | tvp(i, icbs(i)) = tp(i, icbs(i))*(1.+qg/eps-qnk(i)) !whole thing |
---|
[879] | 521 | |
---|
[1992] | 522 | END DO |
---|
[879] | 523 | |
---|
[1992] | 524 | ! ori do 380 k=minorig,icbsmax2 |
---|
| 525 | ! ori do 370 i=1,len |
---|
| 526 | ! ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
| 527 | ! ori 370 continue |
---|
| 528 | ! ori 380 continue |
---|
[879] | 529 | |
---|
| 530 | |
---|
[1992] | 531 | ! -- The following is only for convect3: |
---|
[879] | 532 | |
---|
[1992] | 533 | ! * icbs is the first level above the LCL: |
---|
| 534 | ! if plcl<p(icb), then icbs=icb+1 |
---|
| 535 | ! if plcl>p(icb), then icbs=icb |
---|
[1403] | 536 | |
---|
[1992] | 537 | ! * the routine above computes tvp from minorig to icbs (included). |
---|
[879] | 538 | |
---|
[1992] | 539 | ! * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
---|
| 540 | ! must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
---|
[879] | 541 | |
---|
[1992] | 542 | ! * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
---|
| 543 | ! (tvp at other levels will be computed in cv3_undilute2.F) |
---|
[879] | 544 | |
---|
| 545 | |
---|
[1992] | 546 | DO i = 1, len |
---|
| 547 | ticb(i) = t(i, icb(i)+1) |
---|
| 548 | gzicb(i) = gz(i, icb(i)+1) |
---|
| 549 | qsicb(i) = qs(i, icb(i)+1) |
---|
| 550 | END DO |
---|
[879] | 551 | |
---|
[1992] | 552 | DO i = 1, len |
---|
| 553 | tg = ticb(i) |
---|
| 554 | qg = qsicb(i) ! convect3 |
---|
| 555 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 556 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
[879] | 557 | |
---|
[1992] | 558 | ! First iteration. |
---|
[879] | 559 | |
---|
[1992] | 560 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 561 | s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
---|
| 562 | +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
| 563 | s = 1./s |
---|
| 564 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 565 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
---|
| 566 | tg = tg + s*(ah0(i)-ahg) |
---|
| 567 | ! ori tg=max(tg,35.0) |
---|
| 568 | ! debug tc=tg-t0 |
---|
| 569 | tc = tg - 273.15 |
---|
| 570 | denom = 243.5 + tc |
---|
| 571 | denom = max(denom, 1.0) ! convect3 |
---|
| 572 | ! ori if(tc.ge.0.0)then |
---|
| 573 | es = 6.112*exp(17.67*tc/denom) |
---|
| 574 | ! ori else |
---|
| 575 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 576 | ! ori endif |
---|
| 577 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 578 | qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
[879] | 579 | |
---|
[1992] | 580 | ! Second iteration. |
---|
[879] | 581 | |
---|
| 582 | |
---|
[1992] | 583 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 584 | ! ori s=1./s |
---|
| 585 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 586 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
---|
| 587 | tg = tg + s*(ah0(i)-ahg) |
---|
| 588 | ! ori tg=max(tg,35.0) |
---|
| 589 | ! debug tc=tg-t0 |
---|
| 590 | tc = tg - 273.15 |
---|
| 591 | denom = 243.5 + tc |
---|
| 592 | denom = max(denom, 1.0) ! convect3 |
---|
| 593 | ! ori if(tc.ge.0.0)then |
---|
| 594 | es = 6.112*exp(17.67*tc/denom) |
---|
| 595 | ! ori else |
---|
| 596 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 597 | ! ori end if |
---|
| 598 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 599 | qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
[879] | 600 | |
---|
[1992] | 601 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
[879] | 602 | |
---|
[1992] | 603 | ! ori c approximation here: |
---|
| 604 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 605 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
[879] | 606 | |
---|
[1992] | 607 | ! convect3: no approximation: |
---|
| 608 | tp(i, icb(i)+1) = (ah0(i)-gz(i,icb(i)+1)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
[879] | 609 | |
---|
[1992] | 610 | ! ori clw(i,icb(i))=qnk(i)-qg |
---|
| 611 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 612 | clw(i, icb(i)+1) = qnk(i) - qg |
---|
| 613 | clw(i, icb(i)+1) = max(0.0, clw(i,icb(i)+1)) |
---|
[879] | 614 | |
---|
[1992] | 615 | rg = qg/(1.-qnk(i)) |
---|
| 616 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 617 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
| 618 | tvp(i, icb(i)+1) = tp(i, icb(i)+1)*(1.+qg/eps-qnk(i)) !whole thing |
---|
[879] | 619 | |
---|
[1992] | 620 | END DO |
---|
[879] | 621 | |
---|
[1992] | 622 | RETURN |
---|
| 623 | END SUBROUTINE cv30_undilute1 |
---|
[879] | 624 | |
---|
[1992] | 625 | SUBROUTINE cv30_trigger(len, nd, icb, plcl, p, th, tv, tvp, pbase, buoybase, & |
---|
| 626 | iflag, sig, w0) |
---|
| 627 | IMPLICIT NONE |
---|
[879] | 628 | |
---|
[1992] | 629 | ! ------------------------------------------------------------------- |
---|
| 630 | ! --- TRIGGERING |
---|
[879] | 631 | |
---|
[1992] | 632 | ! - computes the cloud base |
---|
| 633 | ! - triggering (crude in this version) |
---|
| 634 | ! - relaxation of sig and w0 when no convection |
---|
[879] | 635 | |
---|
[1992] | 636 | ! Caution1: if no convection, we set iflag=4 |
---|
| 637 | ! (it used to be 0 in convect3) |
---|
[879] | 638 | |
---|
[1992] | 639 | ! Caution2: at this stage, tvp (and thus buoy) are know up |
---|
| 640 | ! through icb only! |
---|
| 641 | ! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
---|
| 642 | ! ------------------------------------------------------------------- |
---|
[879] | 643 | |
---|
[1992] | 644 | include "cv30param.h" |
---|
[879] | 645 | |
---|
[1992] | 646 | ! input: |
---|
| 647 | INTEGER len, nd |
---|
| 648 | INTEGER icb(len) |
---|
| 649 | REAL plcl(len), p(len, nd) |
---|
| 650 | REAL th(len, nd), tv(len, nd), tvp(len, nd) |
---|
[879] | 651 | |
---|
[1992] | 652 | ! output: |
---|
| 653 | REAL pbase(len), buoybase(len) |
---|
[879] | 654 | |
---|
[1992] | 655 | ! input AND output: |
---|
| 656 | INTEGER iflag(len) |
---|
| 657 | REAL sig(len, nd), w0(len, nd) |
---|
[879] | 658 | |
---|
[1992] | 659 | ! local variables: |
---|
| 660 | INTEGER i, k |
---|
| 661 | REAL tvpbase, tvbase, tdif, ath, ath1 |
---|
[879] | 662 | |
---|
| 663 | |
---|
[1992] | 664 | ! *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
---|
[879] | 665 | |
---|
[1992] | 666 | DO i = 1, len |
---|
| 667 | pbase(i) = plcl(i) + dpbase |
---|
| 668 | tvpbase = tvp(i, icb(i))*(pbase(i)-p(i,icb(i)+1))/ & |
---|
| 669 | (p(i,icb(i))-p(i,icb(i)+1)) + tvp(i, icb(i)+1)*(p(i,icb(i))-pbase(i))/( & |
---|
| 670 | p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 671 | tvbase = tv(i, icb(i))*(pbase(i)-p(i,icb(i)+1))/ & |
---|
| 672 | (p(i,icb(i))-p(i,icb(i)+1)) + tv(i, icb(i)+1)*(p(i,icb(i))-pbase(i))/(p & |
---|
| 673 | (i,icb(i))-p(i,icb(i)+1)) |
---|
| 674 | buoybase(i) = tvpbase - tvbase |
---|
| 675 | END DO |
---|
[879] | 676 | |
---|
| 677 | |
---|
[1992] | 678 | ! *** make sure that column is dry adiabatic between the surface *** |
---|
| 679 | ! *** and cloud base, and that lifted air is positively buoyant *** |
---|
| 680 | ! *** at cloud base *** |
---|
| 681 | ! *** if not, return to calling program after resetting *** |
---|
| 682 | ! *** sig(i) and w0(i) *** |
---|
[879] | 683 | |
---|
| 684 | |
---|
[1992] | 685 | ! oct3 do 200 i=1,len |
---|
| 686 | ! oct3 |
---|
| 687 | ! oct3 tdif = buoybase(i) |
---|
| 688 | ! oct3 ath1 = th(i,1) |
---|
| 689 | ! oct3 ath = th(i,icb(i)-1) - dttrig |
---|
| 690 | ! oct3 |
---|
| 691 | ! oct3 if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
---|
| 692 | ! oct3 do 60 k=1,nl |
---|
| 693 | ! oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
| 694 | ! oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
| 695 | ! oct3 w0(i,k) = beta*w0(i,k) |
---|
| 696 | ! oct3 60 continue |
---|
| 697 | ! oct3 iflag(i)=4 ! pour version vectorisee |
---|
| 698 | ! oct3c convect3 iflag(i)=0 |
---|
| 699 | ! oct3cccc return |
---|
| 700 | ! oct3 endif |
---|
| 701 | ! oct3 |
---|
| 702 | ! oct3200 continue |
---|
[879] | 703 | |
---|
[1992] | 704 | ! -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
---|
[879] | 705 | |
---|
[1992] | 706 | DO k = 1, nl |
---|
| 707 | DO i = 1, len |
---|
[879] | 708 | |
---|
[1992] | 709 | tdif = buoybase(i) |
---|
| 710 | ath1 = th(i, 1) |
---|
| 711 | ath = th(i, icb(i)-1) - dttrig |
---|
[879] | 712 | |
---|
[1992] | 713 | IF (tdif<dtcrit .OR. ath>ath1) THEN |
---|
| 714 | sig(i, k) = beta*sig(i, k) - 2.*alpha*tdif*tdif |
---|
| 715 | sig(i, k) = amax1(sig(i,k), 0.0) |
---|
| 716 | w0(i, k) = beta*w0(i, k) |
---|
| 717 | iflag(i) = 4 ! pour version vectorisee |
---|
| 718 | ! convect3 iflag(i)=0 |
---|
| 719 | END IF |
---|
[879] | 720 | |
---|
[1992] | 721 | END DO |
---|
| 722 | END DO |
---|
[879] | 723 | |
---|
[1992] | 724 | ! fin oct3 -- |
---|
[879] | 725 | |
---|
[1992] | 726 | RETURN |
---|
| 727 | END SUBROUTINE cv30_trigger |
---|
[879] | 728 | |
---|
[1992] | 729 | SUBROUTINE cv30_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, icbs1, & |
---|
| 730 | plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, v1, gz1, & |
---|
| 731 | th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, sig1, w01, & |
---|
| 732 | iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, buoybase, t, q, qs, u, & |
---|
| 733 | v, gz, th, tra, h, lv, cpn, p, ph, tv, tp, tvp, clw, sig, w0) |
---|
[2311] | 734 | USE print_control_mod, ONLY: lunout |
---|
[1992] | 735 | IMPLICIT NONE |
---|
[879] | 736 | |
---|
[1992] | 737 | include "cv30param.h" |
---|
[879] | 738 | |
---|
[1992] | 739 | ! inputs: |
---|
| 740 | INTEGER len, ncum, nd, ntra, nloc |
---|
| 741 | INTEGER iflag1(len), nk1(len), icb1(len), icbs1(len) |
---|
| 742 | REAL plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
---|
| 743 | REAL pbase1(len), buoybase1(len) |
---|
| 744 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
---|
| 745 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
---|
| 746 | REAL p1(len, nd), ph1(len, nd+1), tv1(len, nd), tp1(len, nd) |
---|
| 747 | REAL tvp1(len, nd), clw1(len, nd) |
---|
| 748 | REAL th1(len, nd) |
---|
| 749 | REAL sig1(len, nd), w01(len, nd) |
---|
| 750 | REAL tra1(len, nd, ntra) |
---|
[879] | 751 | |
---|
[1992] | 752 | ! outputs: |
---|
| 753 | ! en fait, on a nloc=len pour l'instant (cf cv_driver) |
---|
| 754 | INTEGER iflag(nloc), nk(nloc), icb(nloc), icbs(nloc) |
---|
| 755 | REAL plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 756 | REAL pbase(nloc), buoybase(nloc) |
---|
| 757 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 758 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
---|
| 759 | REAL p(nloc, nd), ph(nloc, nd+1), tv(nloc, nd), tp(nloc, nd) |
---|
| 760 | REAL tvp(nloc, nd), clw(nloc, nd) |
---|
| 761 | REAL th(nloc, nd) |
---|
| 762 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
| 763 | REAL tra(nloc, nd, ntra) |
---|
[879] | 764 | |
---|
[1992] | 765 | ! local variables: |
---|
| 766 | INTEGER i, k, nn, j |
---|
[879] | 767 | |
---|
[1992] | 768 | CHARACTER (LEN=20) :: modname = 'cv30_compress' |
---|
| 769 | CHARACTER (LEN=80) :: abort_message |
---|
[879] | 770 | |
---|
| 771 | |
---|
[1992] | 772 | DO k = 1, nl + 1 |
---|
| 773 | nn = 0 |
---|
| 774 | DO i = 1, len |
---|
| 775 | IF (iflag1(i)==0) THEN |
---|
| 776 | nn = nn + 1 |
---|
| 777 | sig(nn, k) = sig1(i, k) |
---|
| 778 | w0(nn, k) = w01(i, k) |
---|
| 779 | t(nn, k) = t1(i, k) |
---|
| 780 | q(nn, k) = q1(i, k) |
---|
| 781 | qs(nn, k) = qs1(i, k) |
---|
| 782 | u(nn, k) = u1(i, k) |
---|
| 783 | v(nn, k) = v1(i, k) |
---|
| 784 | gz(nn, k) = gz1(i, k) |
---|
| 785 | h(nn, k) = h1(i, k) |
---|
| 786 | lv(nn, k) = lv1(i, k) |
---|
| 787 | cpn(nn, k) = cpn1(i, k) |
---|
| 788 | p(nn, k) = p1(i, k) |
---|
| 789 | ph(nn, k) = ph1(i, k) |
---|
| 790 | tv(nn, k) = tv1(i, k) |
---|
| 791 | tp(nn, k) = tp1(i, k) |
---|
| 792 | tvp(nn, k) = tvp1(i, k) |
---|
| 793 | clw(nn, k) = clw1(i, k) |
---|
| 794 | th(nn, k) = th1(i, k) |
---|
| 795 | END IF |
---|
| 796 | END DO |
---|
| 797 | END DO |
---|
[879] | 798 | |
---|
[1992] | 799 | ! do 121 j=1,ntra |
---|
| 800 | ! do 111 k=1,nd |
---|
| 801 | ! nn=0 |
---|
| 802 | ! do 101 i=1,len |
---|
| 803 | ! if(iflag1(i).eq.0)then |
---|
| 804 | ! nn=nn+1 |
---|
| 805 | ! tra(nn,k,j)=tra1(i,k,j) |
---|
| 806 | ! endif |
---|
| 807 | ! 101 continue |
---|
| 808 | ! 111 continue |
---|
| 809 | ! 121 continue |
---|
[879] | 810 | |
---|
[1992] | 811 | IF (nn/=ncum) THEN |
---|
| 812 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
---|
| 813 | abort_message = '' |
---|
[2311] | 814 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 815 | END IF |
---|
[879] | 816 | |
---|
[1992] | 817 | nn = 0 |
---|
| 818 | DO i = 1, len |
---|
| 819 | IF (iflag1(i)==0) THEN |
---|
| 820 | nn = nn + 1 |
---|
| 821 | pbase(nn) = pbase1(i) |
---|
| 822 | buoybase(nn) = buoybase1(i) |
---|
| 823 | plcl(nn) = plcl1(i) |
---|
| 824 | tnk(nn) = tnk1(i) |
---|
| 825 | qnk(nn) = qnk1(i) |
---|
| 826 | gznk(nn) = gznk1(i) |
---|
| 827 | nk(nn) = nk1(i) |
---|
| 828 | icb(nn) = icb1(i) |
---|
| 829 | icbs(nn) = icbs1(i) |
---|
| 830 | iflag(nn) = iflag1(i) |
---|
| 831 | END IF |
---|
| 832 | END DO |
---|
[879] | 833 | |
---|
[1992] | 834 | RETURN |
---|
| 835 | END SUBROUTINE cv30_compress |
---|
[879] | 836 | |
---|
[1992] | 837 | SUBROUTINE cv30_undilute2(nloc, ncum, nd, icb, icbs, nk, tnk, qnk, gznk, t, & |
---|
| 838 | q, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, tvp, clw, hp, & |
---|
| 839 | ep, sigp, buoy) |
---|
[2481] | 840 | ! epmax_cape: ajout arguments |
---|
[1992] | 841 | IMPLICIT NONE |
---|
[879] | 842 | |
---|
[1992] | 843 | ! --------------------------------------------------------------------- |
---|
| 844 | ! Purpose: |
---|
| 845 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 846 | ! & |
---|
| 847 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
| 848 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 849 | ! & |
---|
| 850 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
[879] | 851 | |
---|
[1992] | 852 | ! Main differences convect3/convect4: |
---|
| 853 | ! - icbs (input) is the first level above LCL (may differ from icb) |
---|
| 854 | ! - many minor differences in the iterations |
---|
| 855 | ! - condensed water not removed from tvp in convect3 |
---|
| 856 | ! - vertical profile of buoyancy computed here (use of buoybase) |
---|
| 857 | ! - the determination of inb is different |
---|
| 858 | ! - no inb1, only inb in output |
---|
| 859 | ! --------------------------------------------------------------------- |
---|
[879] | 860 | |
---|
[1992] | 861 | include "cvthermo.h" |
---|
| 862 | include "cv30param.h" |
---|
| 863 | include "conema3.h" |
---|
[879] | 864 | |
---|
[1992] | 865 | ! inputs: |
---|
| 866 | INTEGER ncum, nd, nloc |
---|
| 867 | INTEGER icb(nloc), icbs(nloc), nk(nloc) |
---|
| 868 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
---|
| 869 | REAL p(nloc, nd) |
---|
| 870 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 871 | REAL lv(nloc, nd), tv(nloc, nd), h(nloc, nd) |
---|
| 872 | REAL pbase(nloc), buoybase(nloc), plcl(nloc) |
---|
[879] | 873 | |
---|
[1992] | 874 | ! outputs: |
---|
| 875 | INTEGER inb(nloc) |
---|
| 876 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
---|
| 877 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
---|
| 878 | REAL buoy(nloc, nd) |
---|
[879] | 879 | |
---|
[1992] | 880 | ! local variables: |
---|
| 881 | INTEGER i, k |
---|
| 882 | REAL tg, qg, ahg, alv, s, tc, es, denom, rg, tca, elacrit |
---|
| 883 | REAL by, defrac, pden |
---|
| 884 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
| 885 | LOGICAL lcape(nloc) |
---|
[879] | 886 | |
---|
[1992] | 887 | ! ===================================================================== |
---|
| 888 | ! --- SOME INITIALIZATIONS |
---|
| 889 | ! ===================================================================== |
---|
[879] | 890 | |
---|
[1992] | 891 | DO k = 1, nl |
---|
| 892 | DO i = 1, ncum |
---|
| 893 | ep(i, k) = 0.0 |
---|
| 894 | sigp(i, k) = spfac |
---|
| 895 | END DO |
---|
| 896 | END DO |
---|
[879] | 897 | |
---|
[1992] | 898 | ! ===================================================================== |
---|
| 899 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 900 | ! ===================================================================== |
---|
[879] | 901 | |
---|
[1992] | 902 | ! --- The procedure is to solve the equation. |
---|
| 903 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
[879] | 904 | |
---|
[1992] | 905 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
[879] | 906 | |
---|
| 907 | |
---|
[1992] | 908 | DO i = 1, ncum |
---|
| 909 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) & ! debug & |
---|
| 910 | ! +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
| 911 | +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15)) + gznk(i) |
---|
| 912 | END DO |
---|
[879] | 913 | |
---|
| 914 | |
---|
[1992] | 915 | ! *** Find lifted parcel quantities above cloud base *** |
---|
[879] | 916 | |
---|
| 917 | |
---|
[1992] | 918 | DO k = minorig + 1, nl |
---|
| 919 | DO i = 1, ncum |
---|
| 920 | ! ori if(k.ge.(icb(i)+1))then |
---|
| 921 | IF (k>=(icbs(i)+1)) THEN ! convect3 |
---|
| 922 | tg = t(i, k) |
---|
| 923 | qg = qs(i, k) |
---|
| 924 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
| 925 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
[879] | 926 | |
---|
[1992] | 927 | ! First iteration. |
---|
[879] | 928 | |
---|
[1992] | 929 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 930 | s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
---|
| 931 | +alv*alv*qg/(rrv*t(i,k)*t(i,k)) ! convect3 |
---|
| 932 | s = 1./s |
---|
| 933 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 934 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
---|
| 935 | tg = tg + s*(ah0(i)-ahg) |
---|
| 936 | ! ori tg=max(tg,35.0) |
---|
| 937 | ! debug tc=tg-t0 |
---|
| 938 | tc = tg - 273.15 |
---|
| 939 | denom = 243.5 + tc |
---|
| 940 | denom = max(denom, 1.0) ! convect3 |
---|
| 941 | ! ori if(tc.ge.0.0)then |
---|
| 942 | es = 6.112*exp(17.67*tc/denom) |
---|
| 943 | ! ori else |
---|
| 944 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 945 | ! ori endif |
---|
| 946 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
[879] | 947 | |
---|
[1992] | 948 | ! Second iteration. |
---|
[879] | 949 | |
---|
[1992] | 950 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 951 | ! ori s=1./s |
---|
| 952 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 953 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
---|
| 954 | tg = tg + s*(ah0(i)-ahg) |
---|
| 955 | ! ori tg=max(tg,35.0) |
---|
| 956 | ! debug tc=tg-t0 |
---|
| 957 | tc = tg - 273.15 |
---|
| 958 | denom = 243.5 + tc |
---|
| 959 | denom = max(denom, 1.0) ! convect3 |
---|
| 960 | ! ori if(tc.ge.0.0)then |
---|
| 961 | es = 6.112*exp(17.67*tc/denom) |
---|
| 962 | ! ori else |
---|
| 963 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 964 | ! ori endif |
---|
| 965 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
[879] | 966 | |
---|
[1992] | 967 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
| 968 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
| 969 | ! print*,'cpd dans convect2 ',cpd |
---|
| 970 | ! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 971 | ! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
[879] | 972 | |
---|
[1992] | 973 | ! ori c approximation here: |
---|
| 974 | ! ori |
---|
| 975 | ! tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
[879] | 976 | |
---|
[1992] | 977 | ! convect3: no approximation: |
---|
| 978 | tp(i, k) = (ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
[879] | 979 | |
---|
[1992] | 980 | clw(i, k) = qnk(i) - qg |
---|
| 981 | clw(i, k) = max(0.0, clw(i,k)) |
---|
| 982 | rg = qg/(1.-qnk(i)) |
---|
| 983 | ! ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
| 984 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg): |
---|
| 985 | tvp(i, k) = tp(i, k)*(1.+qg/eps-qnk(i)) ! whole thing |
---|
| 986 | END IF |
---|
| 987 | END DO |
---|
| 988 | END DO |
---|
[879] | 989 | |
---|
[1992] | 990 | ! ===================================================================== |
---|
| 991 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 992 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 993 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 994 | ! ===================================================================== |
---|
[879] | 995 | |
---|
[1992] | 996 | ! ori do 320 k=minorig+1,nl |
---|
| 997 | DO k = 1, nl ! convect3 |
---|
| 998 | DO i = 1, ncum |
---|
| 999 | pden = ptcrit - pbcrit |
---|
| 1000 | ep(i, k) = (plcl(i)-p(i,k)-pbcrit)/pden*epmax |
---|
| 1001 | ep(i, k) = amax1(ep(i,k), 0.0) |
---|
| 1002 | ep(i, k) = amin1(ep(i,k), epmax) |
---|
| 1003 | sigp(i, k) = spfac |
---|
| 1004 | ! ori if(k.ge.(nk(i)+1))then |
---|
| 1005 | ! ori tca=tp(i,k)-t0 |
---|
| 1006 | ! ori if(tca.ge.0.0)then |
---|
| 1007 | ! ori elacrit=elcrit |
---|
| 1008 | ! ori else |
---|
| 1009 | ! ori elacrit=elcrit*(1.0-tca/tlcrit) |
---|
| 1010 | ! ori endif |
---|
| 1011 | ! ori elacrit=max(elacrit,0.0) |
---|
| 1012 | ! ori ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
| 1013 | ! ori ep(i,k)=max(ep(i,k),0.0 ) |
---|
| 1014 | ! ori ep(i,k)=min(ep(i,k),1.0 ) |
---|
| 1015 | ! ori sigp(i,k)=sigs |
---|
| 1016 | ! ori endif |
---|
| 1017 | END DO |
---|
| 1018 | END DO |
---|
[879] | 1019 | |
---|
[1992] | 1020 | ! ===================================================================== |
---|
| 1021 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 1022 | ! --- VIRTUAL TEMPERATURE |
---|
| 1023 | ! ===================================================================== |
---|
[879] | 1024 | |
---|
[1992] | 1025 | ! dans convect3, tvp est calcule en une seule fois, et sans retirer |
---|
| 1026 | ! l'eau condensee (~> reversible CAPE) |
---|
[879] | 1027 | |
---|
[1992] | 1028 | ! ori do 340 k=minorig+1,nl |
---|
| 1029 | ! ori do 330 i=1,ncum |
---|
| 1030 | ! ori if(k.ge.(icb(i)+1))then |
---|
| 1031 | ! ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
| 1032 | ! oric print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 1033 | ! oric print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
| 1034 | ! ori endif |
---|
| 1035 | ! ori 330 continue |
---|
| 1036 | ! ori 340 continue |
---|
[879] | 1037 | |
---|
[1992] | 1038 | ! ori do 350 i=1,ncum |
---|
| 1039 | ! ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
| 1040 | ! ori 350 continue |
---|
[879] | 1041 | |
---|
[1992] | 1042 | DO i = 1, ncum ! convect3 |
---|
| 1043 | tp(i, nlp) = tp(i, nl) ! convect3 |
---|
| 1044 | END DO ! convect3 |
---|
[879] | 1045 | |
---|
[1992] | 1046 | ! ===================================================================== |
---|
| 1047 | ! --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
---|
| 1048 | ! ===================================================================== |
---|
[879] | 1049 | |
---|
[1992] | 1050 | ! -- this is for convect3 only: |
---|
[879] | 1051 | |
---|
[1992] | 1052 | ! first estimate of buoyancy: |
---|
[879] | 1053 | |
---|
[1992] | 1054 | DO i = 1, ncum |
---|
| 1055 | DO k = 1, nl |
---|
| 1056 | buoy(i, k) = tvp(i, k) - tv(i, k) |
---|
| 1057 | END DO |
---|
| 1058 | END DO |
---|
[879] | 1059 | |
---|
[1992] | 1060 | ! set buoyancy=buoybase for all levels below base |
---|
| 1061 | ! for safety, set buoy(icb)=buoybase |
---|
[879] | 1062 | |
---|
[1992] | 1063 | DO i = 1, ncum |
---|
| 1064 | DO k = 1, nl |
---|
| 1065 | IF ((k>=icb(i)) .AND. (k<=nl) .AND. (p(i,k)>=pbase(i))) THEN |
---|
| 1066 | buoy(i, k) = buoybase(i) |
---|
| 1067 | END IF |
---|
| 1068 | END DO |
---|
| 1069 | ! IM cf. CRio/JYG 270807 buoy(icb(i),k)=buoybase(i) |
---|
| 1070 | buoy(i, icb(i)) = buoybase(i) |
---|
| 1071 | END DO |
---|
[879] | 1072 | |
---|
[1992] | 1073 | ! -- end convect3 |
---|
[879] | 1074 | |
---|
[1992] | 1075 | ! ===================================================================== |
---|
| 1076 | ! --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
---|
| 1077 | ! --- LEVEL OF NEUTRAL BUOYANCY |
---|
| 1078 | ! ===================================================================== |
---|
[879] | 1079 | |
---|
[1992] | 1080 | ! -- this is for convect3 only: |
---|
[879] | 1081 | |
---|
[1992] | 1082 | DO i = 1, ncum |
---|
| 1083 | inb(i) = nl - 1 |
---|
| 1084 | END DO |
---|
[879] | 1085 | |
---|
[1992] | 1086 | DO i = 1, ncum |
---|
| 1087 | DO k = 1, nl - 1 |
---|
| 1088 | IF ((k>=icb(i)) .AND. (buoy(i,k)<dtovsh)) THEN |
---|
| 1089 | inb(i) = min(inb(i), k) |
---|
| 1090 | END IF |
---|
| 1091 | END DO |
---|
| 1092 | END DO |
---|
[879] | 1093 | |
---|
[1992] | 1094 | ! -- end convect3 |
---|
[879] | 1095 | |
---|
[1992] | 1096 | ! ori do 510 i=1,ncum |
---|
| 1097 | ! ori cape(i)=0.0 |
---|
| 1098 | ! ori capem(i)=0.0 |
---|
| 1099 | ! ori inb(i)=icb(i)+1 |
---|
| 1100 | ! ori inb1(i)=inb(i) |
---|
| 1101 | ! ori 510 continue |
---|
[879] | 1102 | |
---|
[1992] | 1103 | ! Originial Code |
---|
[879] | 1104 | |
---|
[1992] | 1105 | ! do 530 k=minorig+1,nl-1 |
---|
| 1106 | ! do 520 i=1,ncum |
---|
| 1107 | ! if(k.ge.(icb(i)+1))then |
---|
| 1108 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1109 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1110 | ! cape(i)=cape(i)+by |
---|
| 1111 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1112 | ! if(cape(i).gt.0.0)then |
---|
| 1113 | ! inb(i)=k+1 |
---|
| 1114 | ! capem(i)=cape(i) |
---|
| 1115 | ! endif |
---|
| 1116 | ! endif |
---|
| 1117 | ! 520 continue |
---|
| 1118 | ! 530 continue |
---|
| 1119 | ! do 540 i=1,ncum |
---|
| 1120 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 1121 | ! cape(i)=capem(i)+byp |
---|
| 1122 | ! defrac=capem(i)-cape(i) |
---|
| 1123 | ! defrac=max(defrac,0.001) |
---|
| 1124 | ! frac(i)=-cape(i)/defrac |
---|
| 1125 | ! frac(i)=min(frac(i),1.0) |
---|
| 1126 | ! frac(i)=max(frac(i),0.0) |
---|
| 1127 | ! 540 continue |
---|
[879] | 1128 | |
---|
[1992] | 1129 | ! K Emanuel fix |
---|
[879] | 1130 | |
---|
[1992] | 1131 | ! call zilch(byp,ncum) |
---|
| 1132 | ! do 530 k=minorig+1,nl-1 |
---|
| 1133 | ! do 520 i=1,ncum |
---|
| 1134 | ! if(k.ge.(icb(i)+1))then |
---|
| 1135 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1136 | ! cape(i)=cape(i)+by |
---|
| 1137 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1138 | ! if(cape(i).gt.0.0)then |
---|
| 1139 | ! inb(i)=k+1 |
---|
| 1140 | ! capem(i)=cape(i) |
---|
| 1141 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1142 | ! endif |
---|
| 1143 | ! endif |
---|
| 1144 | ! 520 continue |
---|
| 1145 | ! 530 continue |
---|
| 1146 | ! do 540 i=1,ncum |
---|
| 1147 | ! inb(i)=max(inb(i),inb1(i)) |
---|
| 1148 | ! cape(i)=capem(i)+byp(i) |
---|
| 1149 | ! defrac=capem(i)-cape(i) |
---|
| 1150 | ! defrac=max(defrac,0.001) |
---|
| 1151 | ! frac(i)=-cape(i)/defrac |
---|
| 1152 | ! frac(i)=min(frac(i),1.0) |
---|
| 1153 | ! frac(i)=max(frac(i),0.0) |
---|
| 1154 | ! 540 continue |
---|
[879] | 1155 | |
---|
[1992] | 1156 | ! J Teixeira fix |
---|
[879] | 1157 | |
---|
[1992] | 1158 | ! ori call zilch(byp,ncum) |
---|
| 1159 | ! ori do 515 i=1,ncum |
---|
| 1160 | ! ori lcape(i)=.true. |
---|
| 1161 | ! ori 515 continue |
---|
| 1162 | ! ori do 530 k=minorig+1,nl-1 |
---|
| 1163 | ! ori do 520 i=1,ncum |
---|
| 1164 | ! ori if(cape(i).lt.0.0)lcape(i)=.false. |
---|
| 1165 | ! ori if((k.ge.(icb(i)+1)).and.lcape(i))then |
---|
| 1166 | ! ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1167 | ! ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1168 | ! ori cape(i)=cape(i)+by |
---|
| 1169 | ! ori if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1170 | ! ori if(cape(i).gt.0.0)then |
---|
| 1171 | ! ori inb(i)=k+1 |
---|
| 1172 | ! ori capem(i)=cape(i) |
---|
| 1173 | ! ori endif |
---|
| 1174 | ! ori endif |
---|
| 1175 | ! ori 520 continue |
---|
| 1176 | ! ori 530 continue |
---|
| 1177 | ! ori do 540 i=1,ncum |
---|
| 1178 | ! ori cape(i)=capem(i)+byp(i) |
---|
| 1179 | ! ori defrac=capem(i)-cape(i) |
---|
| 1180 | ! ori defrac=max(defrac,0.001) |
---|
| 1181 | ! ori frac(i)=-cape(i)/defrac |
---|
| 1182 | ! ori frac(i)=min(frac(i),1.0) |
---|
| 1183 | ! ori frac(i)=max(frac(i),0.0) |
---|
| 1184 | ! ori 540 continue |
---|
[879] | 1185 | |
---|
[1992] | 1186 | ! ===================================================================== |
---|
| 1187 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 1188 | ! ===================================================================== |
---|
[879] | 1189 | |
---|
[1992] | 1190 | ! ym do i=1,ncum*nlp |
---|
| 1191 | ! ym hp(i,1)=h(i,1) |
---|
| 1192 | ! ym enddo |
---|
[879] | 1193 | |
---|
[1992] | 1194 | DO k = 1, nlp |
---|
| 1195 | DO i = 1, ncum |
---|
| 1196 | hp(i, k) = h(i, k) |
---|
| 1197 | END DO |
---|
| 1198 | END DO |
---|
[879] | 1199 | |
---|
[1992] | 1200 | DO k = minorig + 1, nl |
---|
| 1201 | DO i = 1, ncum |
---|
| 1202 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
| 1203 | hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
---|
| 1204 | ) |
---|
| 1205 | END IF |
---|
| 1206 | END DO |
---|
| 1207 | END DO |
---|
[879] | 1208 | |
---|
[1992] | 1209 | RETURN |
---|
| 1210 | END SUBROUTINE cv30_undilute2 |
---|
[879] | 1211 | |
---|
[1992] | 1212 | SUBROUTINE cv30_closure(nloc, ncum, nd, icb, inb, pbase, p, ph, tv, buoy, & |
---|
| 1213 | sig, w0, cape, m) |
---|
| 1214 | IMPLICIT NONE |
---|
[879] | 1215 | |
---|
[1992] | 1216 | ! =================================================================== |
---|
| 1217 | ! --- CLOSURE OF CONVECT3 |
---|
[879] | 1218 | |
---|
[1992] | 1219 | ! vectorization: S. Bony |
---|
| 1220 | ! =================================================================== |
---|
[879] | 1221 | |
---|
[1992] | 1222 | include "cvthermo.h" |
---|
| 1223 | include "cv30param.h" |
---|
[879] | 1224 | |
---|
[1992] | 1225 | ! input: |
---|
| 1226 | INTEGER ncum, nd, nloc |
---|
| 1227 | INTEGER icb(nloc), inb(nloc) |
---|
| 1228 | REAL pbase(nloc) |
---|
| 1229 | REAL p(nloc, nd), ph(nloc, nd+1) |
---|
| 1230 | REAL tv(nloc, nd), buoy(nloc, nd) |
---|
[879] | 1231 | |
---|
[1992] | 1232 | ! input/output: |
---|
| 1233 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
[879] | 1234 | |
---|
[1992] | 1235 | ! output: |
---|
| 1236 | REAL cape(nloc) |
---|
| 1237 | REAL m(nloc, nd) |
---|
[879] | 1238 | |
---|
[1992] | 1239 | ! local variables: |
---|
| 1240 | INTEGER i, j, k, icbmax |
---|
| 1241 | REAL deltap, fac, w, amu |
---|
| 1242 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
---|
[879] | 1243 | |
---|
[1992] | 1244 | ! ------------------------------------------------------- |
---|
| 1245 | ! -- Initialization |
---|
| 1246 | ! ------------------------------------------------------- |
---|
[879] | 1247 | |
---|
[1992] | 1248 | DO k = 1, nl |
---|
| 1249 | DO i = 1, ncum |
---|
| 1250 | m(i, k) = 0.0 |
---|
| 1251 | END DO |
---|
| 1252 | END DO |
---|
[879] | 1253 | |
---|
[1992] | 1254 | ! ------------------------------------------------------- |
---|
| 1255 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 1256 | ! ------------------------------------------------------- |
---|
[879] | 1257 | |
---|
[1992] | 1258 | ! update sig and w0 above LNB: |
---|
[879] | 1259 | |
---|
[1992] | 1260 | DO k = 1, nl - 1 |
---|
| 1261 | DO i = 1, ncum |
---|
| 1262 | IF ((inb(i)<(nl-1)) .AND. (k>=(inb(i)+1))) THEN |
---|
| 1263 | sig(i, k) = beta*sig(i, k) + 2.*alpha*buoy(i, inb(i))*abs(buoy(i,inb( & |
---|
| 1264 | i))) |
---|
| 1265 | sig(i, k) = amax1(sig(i,k), 0.0) |
---|
| 1266 | w0(i, k) = beta*w0(i, k) |
---|
| 1267 | END IF |
---|
| 1268 | END DO |
---|
| 1269 | END DO |
---|
[879] | 1270 | |
---|
[1992] | 1271 | ! compute icbmax: |
---|
[879] | 1272 | |
---|
[1992] | 1273 | icbmax = 2 |
---|
| 1274 | DO i = 1, ncum |
---|
| 1275 | icbmax = max(icbmax, icb(i)) |
---|
| 1276 | END DO |
---|
[879] | 1277 | |
---|
[1992] | 1278 | ! update sig and w0 below cloud base: |
---|
[879] | 1279 | |
---|
[1992] | 1280 | DO k = 1, icbmax |
---|
| 1281 | DO i = 1, ncum |
---|
| 1282 | IF (k<=icb(i)) THEN |
---|
| 1283 | sig(i, k) = beta*sig(i, k) - 2.*alpha*buoy(i, icb(i))*buoy(i, icb(i)) |
---|
| 1284 | sig(i, k) = amax1(sig(i,k), 0.0) |
---|
| 1285 | w0(i, k) = beta*w0(i, k) |
---|
| 1286 | END IF |
---|
| 1287 | END DO |
---|
| 1288 | END DO |
---|
[879] | 1289 | |
---|
[1992] | 1290 | ! ! if(inb.lt.(nl-1))then |
---|
| 1291 | ! ! do 85 i=inb+1,nl-1 |
---|
| 1292 | ! ! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
---|
| 1293 | ! ! 1 abs(buoy(inb)) |
---|
| 1294 | ! ! sig(i)=amax1(sig(i),0.0) |
---|
| 1295 | ! ! w0(i)=beta*w0(i) |
---|
| 1296 | ! ! 85 continue |
---|
| 1297 | ! ! end if |
---|
[879] | 1298 | |
---|
[1992] | 1299 | ! ! do 87 i=1,icb |
---|
| 1300 | ! ! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
---|
| 1301 | ! ! sig(i)=amax1(sig(i),0.0) |
---|
| 1302 | ! ! w0(i)=beta*w0(i) |
---|
| 1303 | ! ! 87 continue |
---|
[1742] | 1304 | |
---|
[1992] | 1305 | ! ------------------------------------------------------------- |
---|
| 1306 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 1307 | ! -- and after 10 time steps of no convection |
---|
| 1308 | ! ------------------------------------------------------------- |
---|
[1742] | 1309 | |
---|
[1992] | 1310 | DO k = 1, nl - 1 |
---|
| 1311 | DO i = 1, ncum |
---|
| 1312 | IF (sig(i,nd)<1.5 .OR. sig(i,nd)>12.0) THEN |
---|
| 1313 | sig(i, k) = 0.0 |
---|
| 1314 | w0(i, k) = 0.0 |
---|
| 1315 | END IF |
---|
| 1316 | END DO |
---|
| 1317 | END DO |
---|
[879] | 1318 | |
---|
[1992] | 1319 | ! ------------------------------------------------------------- |
---|
| 1320 | ! -- Calculate convective available potential energy (cape), |
---|
| 1321 | ! -- vertical velocity (w), fractional area covered by |
---|
| 1322 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 1323 | ! ------------------------------------------------------------- |
---|
[879] | 1324 | |
---|
[1992] | 1325 | DO i = 1, ncum |
---|
| 1326 | cape(i) = 0.0 |
---|
| 1327 | END DO |
---|
[879] | 1328 | |
---|
[1992] | 1329 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
[879] | 1330 | |
---|
[1992] | 1331 | DO i = 1, ncum |
---|
| 1332 | DO k = 1, nl |
---|
| 1333 | dtmin(i, k) = 100.0 |
---|
| 1334 | END DO |
---|
| 1335 | END DO |
---|
[879] | 1336 | |
---|
[1992] | 1337 | DO i = 1, ncum |
---|
| 1338 | DO k = 1, nl |
---|
| 1339 | DO j = minorig, nl |
---|
| 1340 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i)) .AND. (j>=icb(i)) .AND. (j<=(k- & |
---|
| 1341 | 1))) THEN |
---|
| 1342 | dtmin(i, k) = amin1(dtmin(i,k), buoy(i,j)) |
---|
| 1343 | END IF |
---|
| 1344 | END DO |
---|
| 1345 | END DO |
---|
| 1346 | END DO |
---|
[879] | 1347 | |
---|
[1992] | 1348 | ! the interval on which cape is computed starts at pbase : |
---|
| 1349 | DO k = 1, nl |
---|
| 1350 | DO i = 1, ncum |
---|
[879] | 1351 | |
---|
[1992] | 1352 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
---|
[879] | 1353 | |
---|
[1992] | 1354 | deltap = min(pbase(i), ph(i,k-1)) - min(pbase(i), ph(i,k)) |
---|
| 1355 | cape(i) = cape(i) + rrd*buoy(i, k-1)*deltap/p(i, k-1) |
---|
| 1356 | cape(i) = amax1(0.0, cape(i)) |
---|
| 1357 | sigold(i, k) = sig(i, k) |
---|
[879] | 1358 | |
---|
[1992] | 1359 | ! dtmin(i,k)=100.0 |
---|
| 1360 | ! do 97 j=icb(i),k-1 ! mauvaise vectorisation |
---|
| 1361 | ! dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
| 1362 | ! 97 continue |
---|
[879] | 1363 | |
---|
[1992] | 1364 | sig(i, k) = beta*sig(i, k) + alpha*dtmin(i, k)*abs(dtmin(i,k)) |
---|
| 1365 | sig(i, k) = amax1(sig(i,k), 0.0) |
---|
| 1366 | sig(i, k) = amin1(sig(i,k), 0.01) |
---|
| 1367 | fac = amin1(((dtcrit-dtmin(i,k))/dtcrit), 1.0) |
---|
| 1368 | w = (1.-beta)*fac*sqrt(cape(i)) + beta*w0(i, k) |
---|
| 1369 | amu = 0.5*(sig(i,k)+sigold(i,k))*w |
---|
| 1370 | m(i, k) = amu*0.007*p(i, k)*(ph(i,k)-ph(i,k+1))/tv(i, k) |
---|
| 1371 | w0(i, k) = w |
---|
| 1372 | END IF |
---|
[879] | 1373 | |
---|
[1992] | 1374 | END DO |
---|
| 1375 | END DO |
---|
[879] | 1376 | |
---|
[1992] | 1377 | DO i = 1, ncum |
---|
| 1378 | w0(i, icb(i)) = 0.5*w0(i, icb(i)+1) |
---|
| 1379 | m(i, icb(i)) = 0.5*m(i, icb(i)+1)*(ph(i,icb(i))-ph(i,icb(i)+1))/ & |
---|
| 1380 | (ph(i,icb(i)+1)-ph(i,icb(i)+2)) |
---|
| 1381 | sig(i, icb(i)) = sig(i, icb(i)+1) |
---|
| 1382 | sig(i, icb(i)-1) = sig(i, icb(i)) |
---|
| 1383 | END DO |
---|
[879] | 1384 | |
---|
| 1385 | |
---|
[1992] | 1386 | ! ! cape=0.0 |
---|
| 1387 | ! ! do 98 i=icb+1,inb |
---|
| 1388 | ! ! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
---|
| 1389 | ! ! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
---|
| 1390 | ! ! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
---|
| 1391 | ! ! dlnp=deltap/p(i-1) |
---|
| 1392 | ! ! cape=amax1(0.0,cape) |
---|
| 1393 | ! ! sigold=sig(i) |
---|
[879] | 1394 | |
---|
[1992] | 1395 | ! ! dtmin=100.0 |
---|
| 1396 | ! ! do 97 j=icb,i-1 |
---|
| 1397 | ! ! dtmin=amin1(dtmin,buoy(j)) |
---|
| 1398 | ! ! 97 continue |
---|
[879] | 1399 | |
---|
[1992] | 1400 | ! ! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
---|
| 1401 | ! ! sig(i)=amax1(sig(i),0.0) |
---|
| 1402 | ! ! sig(i)=amin1(sig(i),0.01) |
---|
| 1403 | ! ! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
---|
| 1404 | ! ! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
---|
| 1405 | ! ! amu=0.5*(sig(i)+sigold)*w |
---|
| 1406 | ! ! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
---|
| 1407 | ! ! w0(i)=w |
---|
| 1408 | ! ! 98 continue |
---|
| 1409 | ! ! w0(icb)=0.5*w0(icb+1) |
---|
| 1410 | ! ! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
---|
| 1411 | ! ! sig(icb)=sig(icb+1) |
---|
| 1412 | ! ! sig(icb-1)=sig(icb) |
---|
[879] | 1413 | |
---|
[1992] | 1414 | RETURN |
---|
| 1415 | END SUBROUTINE cv30_closure |
---|
[879] | 1416 | |
---|
[1992] | 1417 | SUBROUTINE cv30_mixing(nloc, ncum, nd, na, ntra, icb, nk, inb, ph, t, rr, rs, & |
---|
| 1418 | u, v, tra, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, qent, uent, & |
---|
| 1419 | vent, sij, elij, ments, qents, traent) |
---|
| 1420 | IMPLICIT NONE |
---|
[879] | 1421 | |
---|
[1992] | 1422 | ! --------------------------------------------------------------------- |
---|
| 1423 | ! a faire: |
---|
| 1424 | ! - changer rr(il,1) -> qnk(il) |
---|
| 1425 | ! - vectorisation de la partie normalisation des flux (do 789...) |
---|
| 1426 | ! --------------------------------------------------------------------- |
---|
[879] | 1427 | |
---|
[1992] | 1428 | include "cvthermo.h" |
---|
| 1429 | include "cv30param.h" |
---|
[879] | 1430 | |
---|
[1992] | 1431 | ! inputs: |
---|
| 1432 | INTEGER ncum, nd, na, ntra, nloc |
---|
| 1433 | INTEGER icb(nloc), inb(nloc), nk(nloc) |
---|
| 1434 | REAL sig(nloc, nd) |
---|
| 1435 | REAL qnk(nloc) |
---|
| 1436 | REAL ph(nloc, nd+1) |
---|
| 1437 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
---|
| 1438 | REAL u(nloc, nd), v(nloc, nd) |
---|
| 1439 | REAL tra(nloc, nd, ntra) ! input of convect3 |
---|
| 1440 | REAL lv(nloc, na), h(nloc, na), hp(nloc, na) |
---|
| 1441 | REAL tv(nloc, na), tvp(nloc, na), ep(nloc, na), clw(nloc, na) |
---|
| 1442 | REAL m(nloc, na) ! input of convect3 |
---|
[879] | 1443 | |
---|
[1992] | 1444 | ! outputs: |
---|
| 1445 | REAL ment(nloc, na, na), qent(nloc, na, na) |
---|
| 1446 | REAL uent(nloc, na, na), vent(nloc, na, na) |
---|
| 1447 | REAL sij(nloc, na, na), elij(nloc, na, na) |
---|
| 1448 | REAL traent(nloc, nd, nd, ntra) |
---|
| 1449 | REAL ments(nloc, nd, nd), qents(nloc, nd, nd) |
---|
| 1450 | REAL sigij(nloc, nd, nd) |
---|
[879] | 1451 | |
---|
[1992] | 1452 | ! local variables: |
---|
| 1453 | INTEGER i, j, k, il, im, jm |
---|
| 1454 | INTEGER num1, num2 |
---|
| 1455 | INTEGER nent(nloc, na) |
---|
| 1456 | REAL rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
| 1457 | REAL alt, smid, sjmin, sjmax, delp, delm |
---|
| 1458 | REAL asij(nloc), smax(nloc), scrit(nloc) |
---|
| 1459 | REAL asum(nloc, nd), bsum(nloc, nd), csum(nloc, nd) |
---|
| 1460 | REAL wgh |
---|
| 1461 | REAL zm(nloc, na) |
---|
| 1462 | LOGICAL lwork(nloc) |
---|
[879] | 1463 | |
---|
[1992] | 1464 | ! ===================================================================== |
---|
| 1465 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 1466 | ! ===================================================================== |
---|
[879] | 1467 | |
---|
[1992] | 1468 | ! ori do 360 i=1,ncum*nlp |
---|
| 1469 | DO j = 1, nl |
---|
| 1470 | DO i = 1, ncum |
---|
| 1471 | nent(i, j) = 0 |
---|
| 1472 | ! in convect3, m is computed in cv3_closure |
---|
| 1473 | ! ori m(i,1)=0.0 |
---|
| 1474 | END DO |
---|
| 1475 | END DO |
---|
[879] | 1476 | |
---|
[1992] | 1477 | ! ori do 400 k=1,nlp |
---|
| 1478 | ! ori do 390 j=1,nlp |
---|
| 1479 | DO j = 1, nl |
---|
| 1480 | DO k = 1, nl |
---|
| 1481 | DO i = 1, ncum |
---|
| 1482 | qent(i, k, j) = rr(i, j) |
---|
| 1483 | uent(i, k, j) = u(i, j) |
---|
| 1484 | vent(i, k, j) = v(i, j) |
---|
| 1485 | elij(i, k, j) = 0.0 |
---|
| 1486 | ! ym ment(i,k,j)=0.0 |
---|
| 1487 | ! ym sij(i,k,j)=0.0 |
---|
| 1488 | END DO |
---|
| 1489 | END DO |
---|
| 1490 | END DO |
---|
[879] | 1491 | |
---|
[1992] | 1492 | ! ym |
---|
| 1493 | ment(1:ncum, 1:nd, 1:nd) = 0.0 |
---|
| 1494 | sij(1:ncum, 1:nd, 1:nd) = 0.0 |
---|
[879] | 1495 | |
---|
[1992] | 1496 | ! do k=1,ntra |
---|
| 1497 | ! do j=1,nd ! instead nlp |
---|
| 1498 | ! do i=1,nd ! instead nlp |
---|
| 1499 | ! do il=1,ncum |
---|
| 1500 | ! traent(il,i,j,k)=tra(il,j,k) |
---|
| 1501 | ! enddo |
---|
| 1502 | ! enddo |
---|
| 1503 | ! enddo |
---|
| 1504 | ! enddo |
---|
| 1505 | zm(:, :) = 0. |
---|
[879] | 1506 | |
---|
[1992] | 1507 | ! ===================================================================== |
---|
| 1508 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 1509 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 1510 | ! --- FRACTION (sij) |
---|
| 1511 | ! ===================================================================== |
---|
[879] | 1512 | |
---|
[1992] | 1513 | DO i = minorig + 1, nl |
---|
[879] | 1514 | |
---|
[1992] | 1515 | DO j = minorig, nl |
---|
| 1516 | DO il = 1, ncum |
---|
| 1517 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (j>=(icb(il)- & |
---|
| 1518 | 1)) .AND. (j<=inb(il))) THEN |
---|
[879] | 1519 | |
---|
[1992] | 1520 | rti = rr(il, 1) - ep(il, i)*clw(il, i) |
---|
| 1521 | bf2 = 1. + lv(il, j)*lv(il, j)*rs(il, j)/(rrv*t(il,j)*t(il,j)*cpd) |
---|
| 1522 | anum = h(il, j) - hp(il, i) + (cpv-cpd)*t(il, j)*(rti-rr(il,j)) |
---|
| 1523 | denom = h(il, i) - hp(il, i) + (cpd-cpv)*(rr(il,i)-rti)*t(il, j) |
---|
| 1524 | dei = denom |
---|
| 1525 | IF (abs(dei)<0.01) dei = 0.01 |
---|
| 1526 | sij(il, i, j) = anum/dei |
---|
| 1527 | sij(il, i, i) = 1.0 |
---|
| 1528 | altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - rs(il, j) |
---|
| 1529 | altem = altem/bf2 |
---|
| 1530 | cwat = clw(il, j)*(1.-ep(il,j)) |
---|
| 1531 | stemp = sij(il, i, j) |
---|
| 1532 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
| 1533 | anum = anum - lv(il, j)*(rti-rs(il,j)-cwat*bf2) |
---|
| 1534 | denom = denom + lv(il, j)*(rr(il,i)-rti) |
---|
| 1535 | IF (abs(denom)<0.01) denom = 0.01 |
---|
| 1536 | sij(il, i, j) = anum/denom |
---|
| 1537 | altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - & |
---|
| 1538 | rs(il, j) |
---|
| 1539 | altem = altem - (bf2-1.)*cwat |
---|
| 1540 | END IF |
---|
| 1541 | IF (sij(il,i,j)>0.0 .AND. sij(il,i,j)<0.95) THEN |
---|
| 1542 | qent(il, i, j) = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti |
---|
| 1543 | uent(il, i, j) = sij(il, i, j)*u(il, i) + & |
---|
| 1544 | (1.-sij(il,i,j))*u(il, nk(il)) |
---|
| 1545 | vent(il, i, j) = sij(il, i, j)*v(il, i) + & |
---|
| 1546 | (1.-sij(il,i,j))*v(il, nk(il)) |
---|
| 1547 | ! !!! do k=1,ntra |
---|
| 1548 | ! !!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
| 1549 | ! !!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
| 1550 | ! !!! end do |
---|
| 1551 | elij(il, i, j) = altem |
---|
| 1552 | elij(il, i, j) = amax1(0.0, elij(il,i,j)) |
---|
| 1553 | ment(il, i, j) = m(il, i)/(1.-sij(il,i,j)) |
---|
| 1554 | nent(il, i) = nent(il, i) + 1 |
---|
| 1555 | END IF |
---|
| 1556 | sij(il, i, j) = amax1(0.0, sij(il,i,j)) |
---|
| 1557 | sij(il, i, j) = amin1(1.0, sij(il,i,j)) |
---|
| 1558 | END IF ! new |
---|
| 1559 | END DO |
---|
| 1560 | END DO |
---|
[879] | 1561 | |
---|
[1992] | 1562 | ! do k=1,ntra |
---|
| 1563 | ! do j=minorig,nl |
---|
| 1564 | ! do il=1,ncum |
---|
| 1565 | ! if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
| 1566 | ! : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
| 1567 | ! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
| 1568 | ! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
| 1569 | ! endif |
---|
| 1570 | ! enddo |
---|
| 1571 | ! enddo |
---|
| 1572 | ! enddo |
---|
[879] | 1573 | |
---|
| 1574 | |
---|
[1992] | 1575 | ! *** if no air can entrain at level i assume that updraft detrains |
---|
| 1576 | ! *** |
---|
| 1577 | ! *** at that level and calculate detrained air flux and properties |
---|
| 1578 | ! *** |
---|
[879] | 1579 | |
---|
| 1580 | |
---|
[1992] | 1581 | ! @ do 170 i=icb(il),inb(il) |
---|
[879] | 1582 | |
---|
[1992] | 1583 | DO il = 1, ncum |
---|
| 1584 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (nent(il,i)==0)) THEN |
---|
| 1585 | ! @ if(nent(il,i).eq.0)then |
---|
| 1586 | ment(il, i, i) = m(il, i) |
---|
| 1587 | qent(il, i, i) = rr(il, nk(il)) - ep(il, i)*clw(il, i) |
---|
| 1588 | uent(il, i, i) = u(il, nk(il)) |
---|
| 1589 | vent(il, i, i) = v(il, nk(il)) |
---|
| 1590 | elij(il, i, i) = clw(il, i) |
---|
| 1591 | ! MAF sij(il,i,i)=1.0 |
---|
| 1592 | sij(il, i, i) = 0.0 |
---|
| 1593 | END IF |
---|
| 1594 | END DO |
---|
| 1595 | END DO |
---|
[879] | 1596 | |
---|
[1992] | 1597 | ! do j=1,ntra |
---|
| 1598 | ! do i=minorig+1,nl |
---|
| 1599 | ! do il=1,ncum |
---|
| 1600 | ! if (i.ge.icb(il) .and. i.le.inb(il) .and. nent(il,i).eq.0) then |
---|
| 1601 | ! traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 1602 | ! endif |
---|
| 1603 | ! enddo |
---|
| 1604 | ! enddo |
---|
| 1605 | ! enddo |
---|
[879] | 1606 | |
---|
[1992] | 1607 | DO j = minorig, nl |
---|
| 1608 | DO i = minorig, nl |
---|
| 1609 | DO il = 1, ncum |
---|
| 1610 | IF ((j>=(icb(il)-1)) .AND. (j<=inb(il)) .AND. (i>=icb(il)) .AND. (i<= & |
---|
| 1611 | inb(il))) THEN |
---|
| 1612 | sigij(il, i, j) = sij(il, i, j) |
---|
| 1613 | END IF |
---|
| 1614 | END DO |
---|
| 1615 | END DO |
---|
| 1616 | END DO |
---|
| 1617 | ! @ enddo |
---|
[879] | 1618 | |
---|
[1992] | 1619 | ! @170 continue |
---|
[879] | 1620 | |
---|
[1992] | 1621 | ! ===================================================================== |
---|
| 1622 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 1623 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 1624 | ! ===================================================================== |
---|
[879] | 1625 | |
---|
[1992] | 1626 | ! ym call zilch(asum,ncum*nd) |
---|
| 1627 | ! ym call zilch(bsum,ncum*nd) |
---|
| 1628 | ! ym call zilch(csum,ncum*nd) |
---|
| 1629 | CALL zilch(asum, nloc*nd) |
---|
| 1630 | CALL zilch(csum, nloc*nd) |
---|
| 1631 | CALL zilch(csum, nloc*nd) |
---|
[879] | 1632 | |
---|
[1992] | 1633 | DO il = 1, ncum |
---|
| 1634 | lwork(il) = .FALSE. |
---|
| 1635 | END DO |
---|
[879] | 1636 | |
---|
[1992] | 1637 | DO i = minorig + 1, nl |
---|
[879] | 1638 | |
---|
[1992] | 1639 | num1 = 0 |
---|
| 1640 | DO il = 1, ncum |
---|
| 1641 | IF (i>=icb(il) .AND. i<=inb(il)) num1 = num1 + 1 |
---|
| 1642 | END DO |
---|
| 1643 | IF (num1<=0) GO TO 789 |
---|
[879] | 1644 | |
---|
| 1645 | |
---|
[1992] | 1646 | DO il = 1, ncum |
---|
| 1647 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
---|
| 1648 | lwork(il) = (nent(il,i)/=0) |
---|
| 1649 | qp = rr(il, 1) - ep(il, i)*clw(il, i) |
---|
| 1650 | anum = h(il, i) - hp(il, i) - lv(il, i)*(qp-rs(il,i)) + & |
---|
| 1651 | (cpv-cpd)*t(il, i)*(qp-rr(il,i)) |
---|
| 1652 | denom = h(il, i) - hp(il, i) + lv(il, i)*(rr(il,i)-qp) + & |
---|
| 1653 | (cpd-cpv)*t(il, i)*(rr(il,i)-qp) |
---|
| 1654 | IF (abs(denom)<0.01) denom = 0.01 |
---|
| 1655 | scrit(il) = anum/denom |
---|
| 1656 | alt = qp - rs(il, i) + scrit(il)*(rr(il,i)-qp) |
---|
| 1657 | IF (scrit(il)<=0.0 .OR. alt<=0.0) scrit(il) = 1.0 |
---|
| 1658 | smax(il) = 0.0 |
---|
| 1659 | asij(il) = 0.0 |
---|
| 1660 | END IF |
---|
| 1661 | END DO |
---|
[879] | 1662 | |
---|
[1992] | 1663 | DO j = nl, minorig, -1 |
---|
[879] | 1664 | |
---|
[1992] | 1665 | num2 = 0 |
---|
| 1666 | DO il = 1, ncum |
---|
| 1667 | IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb( & |
---|
| 1668 | il)-1) .AND. j<=inb(il) .AND. lwork(il)) num2 = num2 + 1 |
---|
| 1669 | END DO |
---|
| 1670 | IF (num2<=0) GO TO 175 |
---|
[879] | 1671 | |
---|
[1992] | 1672 | DO il = 1, ncum |
---|
| 1673 | IF (i>=icb(il) .AND. i<=inb(il) .AND. j>=(icb( & |
---|
| 1674 | il)-1) .AND. j<=inb(il) .AND. lwork(il)) THEN |
---|
[879] | 1675 | |
---|
[1992] | 1676 | IF (sij(il,i,j)>1.0E-16 .AND. sij(il,i,j)<0.95) THEN |
---|
| 1677 | wgh = 1.0 |
---|
| 1678 | IF (j>i) THEN |
---|
| 1679 | sjmax = amax1(sij(il,i,j+1), smax(il)) |
---|
| 1680 | sjmax = amin1(sjmax, scrit(il)) |
---|
| 1681 | smax(il) = amax1(sij(il,i,j), smax(il)) |
---|
| 1682 | sjmin = amax1(sij(il,i,j-1), smax(il)) |
---|
| 1683 | sjmin = amin1(sjmin, scrit(il)) |
---|
| 1684 | IF (sij(il,i,j)<(smax(il)-1.0E-16)) wgh = 0.0 |
---|
| 1685 | smid = amin1(sij(il,i,j), scrit(il)) |
---|
| 1686 | ELSE |
---|
| 1687 | sjmax = amax1(sij(il,i,j+1), scrit(il)) |
---|
| 1688 | smid = amax1(sij(il,i,j), scrit(il)) |
---|
| 1689 | sjmin = 0.0 |
---|
| 1690 | IF (j>1) sjmin = sij(il, i, j-1) |
---|
| 1691 | sjmin = amax1(sjmin, scrit(il)) |
---|
| 1692 | END IF |
---|
| 1693 | delp = abs(sjmax-smid) |
---|
| 1694 | delm = abs(sjmin-smid) |
---|
| 1695 | asij(il) = asij(il) + wgh*(delp+delm) |
---|
| 1696 | ment(il, i, j) = ment(il, i, j)*(delp+delm)*wgh |
---|
| 1697 | END IF |
---|
| 1698 | END IF |
---|
| 1699 | END DO |
---|
[879] | 1700 | |
---|
[1992] | 1701 | 175 END DO |
---|
[879] | 1702 | |
---|
[1992] | 1703 | DO il = 1, ncum |
---|
| 1704 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
---|
| 1705 | asij(il) = amax1(1.0E-16, asij(il)) |
---|
| 1706 | asij(il) = 1.0/asij(il) |
---|
| 1707 | asum(il, i) = 0.0 |
---|
| 1708 | bsum(il, i) = 0.0 |
---|
| 1709 | csum(il, i) = 0.0 |
---|
| 1710 | END IF |
---|
| 1711 | END DO |
---|
[879] | 1712 | |
---|
[1992] | 1713 | DO j = minorig, nl |
---|
| 1714 | DO il = 1, ncum |
---|
| 1715 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
---|
| 1716 | il)-1) .AND. j<=inb(il)) THEN |
---|
| 1717 | ment(il, i, j) = ment(il, i, j)*asij(il) |
---|
| 1718 | END IF |
---|
| 1719 | END DO |
---|
| 1720 | END DO |
---|
[879] | 1721 | |
---|
[1992] | 1722 | DO j = minorig, nl |
---|
| 1723 | DO il = 1, ncum |
---|
| 1724 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
---|
| 1725 | il)-1) .AND. j<=inb(il)) THEN |
---|
| 1726 | asum(il, i) = asum(il, i) + ment(il, i, j) |
---|
| 1727 | ment(il, i, j) = ment(il, i, j)*sig(il, j) |
---|
| 1728 | bsum(il, i) = bsum(il, i) + ment(il, i, j) |
---|
| 1729 | END IF |
---|
| 1730 | END DO |
---|
| 1731 | END DO |
---|
[879] | 1732 | |
---|
[1992] | 1733 | DO il = 1, ncum |
---|
| 1734 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
---|
| 1735 | bsum(il, i) = amax1(bsum(il,i), 1.0E-16) |
---|
| 1736 | bsum(il, i) = 1.0/bsum(il, i) |
---|
| 1737 | END IF |
---|
| 1738 | END DO |
---|
[879] | 1739 | |
---|
[1992] | 1740 | DO j = minorig, nl |
---|
| 1741 | DO il = 1, ncum |
---|
| 1742 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
---|
| 1743 | il)-1) .AND. j<=inb(il)) THEN |
---|
| 1744 | ment(il, i, j) = ment(il, i, j)*asum(il, i)*bsum(il, i) |
---|
| 1745 | END IF |
---|
| 1746 | END DO |
---|
| 1747 | END DO |
---|
[879] | 1748 | |
---|
[1992] | 1749 | DO j = minorig, nl |
---|
| 1750 | DO il = 1, ncum |
---|
| 1751 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. j>=(icb( & |
---|
| 1752 | il)-1) .AND. j<=inb(il)) THEN |
---|
| 1753 | csum(il, i) = csum(il, i) + ment(il, i, j) |
---|
| 1754 | END IF |
---|
| 1755 | END DO |
---|
| 1756 | END DO |
---|
[879] | 1757 | |
---|
[1992] | 1758 | DO il = 1, ncum |
---|
| 1759 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
---|
| 1760 | csum(il,i)<m(il,i)) THEN |
---|
| 1761 | nent(il, i) = 0 |
---|
| 1762 | ment(il, i, i) = m(il, i) |
---|
| 1763 | qent(il, i, i) = rr(il, 1) - ep(il, i)*clw(il, i) |
---|
| 1764 | uent(il, i, i) = u(il, nk(il)) |
---|
| 1765 | vent(il, i, i) = v(il, nk(il)) |
---|
| 1766 | elij(il, i, i) = clw(il, i) |
---|
| 1767 | ! MAF sij(il,i,i)=1.0 |
---|
| 1768 | sij(il, i, i) = 0.0 |
---|
| 1769 | END IF |
---|
| 1770 | END DO ! il |
---|
[879] | 1771 | |
---|
[1992] | 1772 | ! do j=1,ntra |
---|
| 1773 | ! do il=1,ncum |
---|
| 1774 | ! if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1775 | ! : .and. csum(il,i).lt.m(il,i) ) then |
---|
| 1776 | ! traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 1777 | ! endif |
---|
| 1778 | ! enddo |
---|
| 1779 | ! enddo |
---|
| 1780 | 789 END DO |
---|
[879] | 1781 | |
---|
[1992] | 1782 | ! MAF: renormalisation de MENT |
---|
| 1783 | DO jm = 1, nd |
---|
| 1784 | DO im = 1, nd |
---|
| 1785 | DO il = 1, ncum |
---|
| 1786 | zm(il, im) = zm(il, im) + (1.-sij(il,im,jm))*ment(il, im, jm) |
---|
| 1787 | END DO |
---|
| 1788 | END DO |
---|
| 1789 | END DO |
---|
[879] | 1790 | |
---|
[1992] | 1791 | DO jm = 1, nd |
---|
| 1792 | DO im = 1, nd |
---|
| 1793 | DO il = 1, ncum |
---|
| 1794 | IF (zm(il,im)/=0.) THEN |
---|
| 1795 | ment(il, im, jm) = ment(il, im, jm)*m(il, im)/zm(il, im) |
---|
| 1796 | END IF |
---|
| 1797 | END DO |
---|
| 1798 | END DO |
---|
| 1799 | END DO |
---|
[879] | 1800 | |
---|
[1992] | 1801 | DO jm = 1, nd |
---|
| 1802 | DO im = 1, nd |
---|
| 1803 | DO il = 1, ncum |
---|
| 1804 | qents(il, im, jm) = qent(il, im, jm) |
---|
| 1805 | ments(il, im, jm) = ment(il, im, jm) |
---|
| 1806 | END DO |
---|
| 1807 | END DO |
---|
| 1808 | END DO |
---|
[879] | 1809 | |
---|
[1992] | 1810 | RETURN |
---|
| 1811 | END SUBROUTINE cv30_mixing |
---|
[879] | 1812 | |
---|
| 1813 | |
---|
[1992] | 1814 | SUBROUTINE cv30_unsat(nloc, ncum, nd, na, ntra, icb, inb, t, rr, rs, gz, u, & |
---|
| 1815 | v, tra, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, & |
---|
| 1816 | mp, rp, up, vp, trap, wt, water, evap, b & ! RomP-jyg |
---|
| 1817 | , wdtraina, wdtrainm) ! 26/08/10 RomP-jyg |
---|
| 1818 | IMPLICIT NONE |
---|
[879] | 1819 | |
---|
| 1820 | |
---|
[1992] | 1821 | include "cvthermo.h" |
---|
| 1822 | include "cv30param.h" |
---|
| 1823 | include "cvflag.h" |
---|
[879] | 1824 | |
---|
[1992] | 1825 | ! inputs: |
---|
| 1826 | INTEGER ncum, nd, na, ntra, nloc |
---|
| 1827 | INTEGER icb(nloc), inb(nloc) |
---|
| 1828 | REAL delt, plcl(nloc) |
---|
| 1829 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
---|
| 1830 | REAL u(nloc, nd), v(nloc, nd) |
---|
| 1831 | REAL tra(nloc, nd, ntra) |
---|
| 1832 | REAL p(nloc, nd), ph(nloc, nd+1) |
---|
| 1833 | REAL th(nloc, na), gz(nloc, na) |
---|
| 1834 | REAL lv(nloc, na), ep(nloc, na), sigp(nloc, na), clw(nloc, na) |
---|
| 1835 | REAL cpn(nloc, na), tv(nloc, na) |
---|
| 1836 | REAL m(nloc, na), ment(nloc, na, na), elij(nloc, na, na) |
---|
[879] | 1837 | |
---|
[1992] | 1838 | ! outputs: |
---|
| 1839 | REAL mp(nloc, na), rp(nloc, na), up(nloc, na), vp(nloc, na) |
---|
| 1840 | REAL water(nloc, na), evap(nloc, na), wt(nloc, na) |
---|
| 1841 | REAL trap(nloc, na, ntra) |
---|
| 1842 | REAL b(nloc, na) |
---|
| 1843 | ! 25/08/10 - RomP---- ajout des masses precipitantes ejectees |
---|
| 1844 | ! lascendance adiabatique et des flux melanges Pa et Pm. |
---|
| 1845 | ! Distinction des wdtrain |
---|
| 1846 | ! Pa = wdtrainA Pm = wdtrainM |
---|
| 1847 | REAL wdtraina(nloc, na), wdtrainm(nloc, na) |
---|
[879] | 1848 | |
---|
[1992] | 1849 | ! local variables |
---|
| 1850 | INTEGER i, j, k, il, num1 |
---|
| 1851 | REAL tinv, delti |
---|
| 1852 | REAL awat, afac, afac1, afac2, bfac |
---|
| 1853 | REAL pr1, pr2, sigt, b6, c6, revap, tevap, delth |
---|
| 1854 | REAL amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
---|
| 1855 | REAL ampmax |
---|
| 1856 | REAL lvcp(nloc, na) |
---|
| 1857 | REAL wdtrain(nloc) |
---|
| 1858 | LOGICAL lwork(nloc) |
---|
[879] | 1859 | |
---|
| 1860 | |
---|
[1992] | 1861 | ! ------------------------------------------------------ |
---|
[879] | 1862 | |
---|
[1992] | 1863 | delti = 1./delt |
---|
| 1864 | tinv = 1./3. |
---|
[879] | 1865 | |
---|
[1992] | 1866 | mp(:, :) = 0. |
---|
[879] | 1867 | |
---|
[1992] | 1868 | DO i = 1, nl |
---|
| 1869 | DO il = 1, ncum |
---|
| 1870 | mp(il, i) = 0.0 |
---|
| 1871 | rp(il, i) = rr(il, i) |
---|
| 1872 | up(il, i) = u(il, i) |
---|
| 1873 | vp(il, i) = v(il, i) |
---|
| 1874 | wt(il, i) = 0.001 |
---|
| 1875 | water(il, i) = 0.0 |
---|
| 1876 | evap(il, i) = 0.0 |
---|
| 1877 | b(il, i) = 0.0 |
---|
| 1878 | lvcp(il, i) = lv(il, i)/cpn(il, i) |
---|
| 1879 | END DO |
---|
| 1880 | END DO |
---|
[879] | 1881 | |
---|
[1992] | 1882 | ! do k=1,ntra |
---|
| 1883 | ! do i=1,nd |
---|
| 1884 | ! do il=1,ncum |
---|
| 1885 | ! trap(il,i,k)=tra(il,i,k) |
---|
| 1886 | ! enddo |
---|
| 1887 | ! enddo |
---|
| 1888 | ! enddo |
---|
| 1889 | ! ! RomP >>> |
---|
| 1890 | DO i = 1, nd |
---|
| 1891 | DO il = 1, ncum |
---|
| 1892 | wdtraina(il, i) = 0.0 |
---|
| 1893 | wdtrainm(il, i) = 0.0 |
---|
| 1894 | END DO |
---|
| 1895 | END DO |
---|
| 1896 | ! ! RomP <<< |
---|
[879] | 1897 | |
---|
[1992] | 1898 | ! *** check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 1899 | ! *** downdraft calculation *** |
---|
[879] | 1900 | |
---|
| 1901 | |
---|
[1992] | 1902 | DO il = 1, ncum |
---|
| 1903 | lwork(il) = .TRUE. |
---|
| 1904 | IF (ep(il,inb(il))<0.0001) lwork(il) = .FALSE. |
---|
| 1905 | END DO |
---|
[879] | 1906 | |
---|
[1992] | 1907 | CALL zilch(wdtrain, ncum) |
---|
[879] | 1908 | |
---|
[1992] | 1909 | DO i = nl + 1, 1, -1 |
---|
[879] | 1910 | |
---|
[1992] | 1911 | num1 = 0 |
---|
| 1912 | DO il = 1, ncum |
---|
| 1913 | IF (i<=inb(il) .AND. lwork(il)) num1 = num1 + 1 |
---|
| 1914 | END DO |
---|
| 1915 | IF (num1<=0) GO TO 400 |
---|
[879] | 1916 | |
---|
| 1917 | |
---|
[1992] | 1918 | ! *** integrate liquid water equation to find condensed water *** |
---|
| 1919 | ! *** and condensed water flux *** |
---|
[879] | 1920 | |
---|
| 1921 | |
---|
| 1922 | |
---|
[1992] | 1923 | ! *** begin downdraft loop *** |
---|
[879] | 1924 | |
---|
| 1925 | |
---|
| 1926 | |
---|
[1992] | 1927 | ! *** calculate detrained precipitation *** |
---|
[879] | 1928 | |
---|
[1992] | 1929 | DO il = 1, ncum |
---|
| 1930 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
| 1931 | IF (cvflag_grav) THEN |
---|
| 1932 | wdtrain(il) = grav*ep(il, i)*m(il, i)*clw(il, i) |
---|
| 1933 | wdtraina(il, i) = wdtrain(il)/grav ! Pa 26/08/10 RomP |
---|
| 1934 | ELSE |
---|
| 1935 | wdtrain(il) = 10.0*ep(il, i)*m(il, i)*clw(il, i) |
---|
| 1936 | wdtraina(il, i) = wdtrain(il)/10. ! Pa 26/08/10 RomP |
---|
| 1937 | END IF |
---|
| 1938 | END IF |
---|
| 1939 | END DO |
---|
[879] | 1940 | |
---|
[1992] | 1941 | IF (i>1) THEN |
---|
[879] | 1942 | |
---|
[1992] | 1943 | DO j = 1, i - 1 |
---|
| 1944 | DO il = 1, ncum |
---|
| 1945 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
| 1946 | awat = elij(il, j, i) - (1.-ep(il,i))*clw(il, i) |
---|
| 1947 | awat = amax1(awat, 0.0) |
---|
| 1948 | IF (cvflag_grav) THEN |
---|
| 1949 | wdtrain(il) = wdtrain(il) + grav*awat*ment(il, j, i) |
---|
| 1950 | ELSE |
---|
| 1951 | wdtrain(il) = wdtrain(il) + 10.0*awat*ment(il, j, i) |
---|
| 1952 | END IF |
---|
| 1953 | END IF |
---|
| 1954 | END DO |
---|
| 1955 | END DO |
---|
| 1956 | DO il = 1, ncum |
---|
| 1957 | IF (cvflag_grav) THEN |
---|
| 1958 | wdtrainm(il, i) = wdtrain(il)/grav - wdtraina(il, i) ! Pm 26/08/10 RomP |
---|
| 1959 | ELSE |
---|
| 1960 | wdtrainm(il, i) = wdtrain(il)/10. - wdtraina(il, i) ! Pm 26/08/10 RomP |
---|
| 1961 | END IF |
---|
| 1962 | END DO |
---|
[879] | 1963 | |
---|
[1992] | 1964 | END IF |
---|
[879] | 1965 | |
---|
| 1966 | |
---|
[1992] | 1967 | ! *** find rain water and evaporation using provisional *** |
---|
| 1968 | ! *** estimates of rp(i)and rp(i-1) *** |
---|
[879] | 1969 | |
---|
| 1970 | |
---|
[1992] | 1971 | DO il = 1, ncum |
---|
[879] | 1972 | |
---|
[1992] | 1973 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
[879] | 1974 | |
---|
[1992] | 1975 | wt(il, i) = 45.0 |
---|
[879] | 1976 | |
---|
[1992] | 1977 | IF (i<inb(il)) THEN |
---|
| 1978 | rp(il, i) = rp(il, i+1) + (cpd*(t(il,i+1)-t(il, & |
---|
| 1979 | i))+gz(il,i+1)-gz(il,i))/lv(il, i) |
---|
| 1980 | rp(il, i) = 0.5*(rp(il,i)+rr(il,i)) |
---|
| 1981 | END IF |
---|
| 1982 | rp(il, i) = amax1(rp(il,i), 0.0) |
---|
| 1983 | rp(il, i) = amin1(rp(il,i), rs(il,i)) |
---|
| 1984 | rp(il, inb(il)) = rr(il, inb(il)) |
---|
[879] | 1985 | |
---|
[1992] | 1986 | IF (i==1) THEN |
---|
| 1987 | afac = p(il, 1)*(rs(il,1)-rp(il,1))/(1.0E4+2000.0*p(il,1)*rs(il,1)) |
---|
| 1988 | ELSE |
---|
| 1989 | rp(il, i-1) = rp(il, i) + (cpd*(t(il,i)-t(il, & |
---|
| 1990 | i-1))+gz(il,i)-gz(il,i-1))/lv(il, i) |
---|
| 1991 | rp(il, i-1) = 0.5*(rp(il,i-1)+rr(il,i-1)) |
---|
| 1992 | rp(il, i-1) = amin1(rp(il,i-1), rs(il,i-1)) |
---|
| 1993 | rp(il, i-1) = amax1(rp(il,i-1), 0.0) |
---|
| 1994 | afac1 = p(il, i)*(rs(il,i)-rp(il,i))/(1.0E4+2000.0*p(il,i)*rs(il,i) & |
---|
| 1995 | ) |
---|
| 1996 | afac2 = p(il, i-1)*(rs(il,i-1)-rp(il,i-1))/ & |
---|
| 1997 | (1.0E4+2000.0*p(il,i-1)*rs(il,i-1)) |
---|
| 1998 | afac = 0.5*(afac1+afac2) |
---|
| 1999 | END IF |
---|
| 2000 | IF (i==inb(il)) afac = 0.0 |
---|
| 2001 | afac = amax1(afac, 0.0) |
---|
| 2002 | bfac = 1./(sigd*wt(il,i)) |
---|
[879] | 2003 | |
---|
[1992] | 2004 | ! jyg1 |
---|
| 2005 | ! cc sigt=1.0 |
---|
| 2006 | ! cc if(i.ge.icb)sigt=sigp(i) |
---|
| 2007 | ! prise en compte de la variation progressive de sigt dans |
---|
| 2008 | ! les couches icb et icb-1: |
---|
| 2009 | ! pour plcl<ph(i+1), pr1=0 & pr2=1 |
---|
| 2010 | ! pour plcl>ph(i), pr1=1 & pr2=0 |
---|
| 2011 | ! pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
---|
| 2012 | ! sur le nuage, et pr2 est la proportion sous la base du |
---|
| 2013 | ! nuage. |
---|
| 2014 | pr1 = (plcl(il)-ph(il,i+1))/(ph(il,i)-ph(il,i+1)) |
---|
| 2015 | pr1 = max(0., min(1.,pr1)) |
---|
| 2016 | pr2 = (ph(il,i)-plcl(il))/(ph(il,i)-ph(il,i+1)) |
---|
| 2017 | pr2 = max(0., min(1.,pr2)) |
---|
| 2018 | sigt = sigp(il, i)*pr1 + pr2 |
---|
| 2019 | ! jyg2 |
---|
[879] | 2020 | |
---|
[1992] | 2021 | b6 = bfac*50.*sigd*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
| 2022 | c6 = water(il, i+1) + bfac*wdtrain(il) - 50.*sigd*bfac*(ph(il,i)-ph( & |
---|
| 2023 | il,i+1))*evap(il, i+1) |
---|
| 2024 | IF (c6>0.0) THEN |
---|
| 2025 | revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
| 2026 | evap(il, i) = sigt*afac*revap |
---|
| 2027 | water(il, i) = revap*revap |
---|
| 2028 | ELSE |
---|
| 2029 | evap(il, i) = -evap(il, i+1) + 0.02*(wdtrain(il)+sigd*wt(il,i)* & |
---|
| 2030 | water(il,i+1))/(sigd*(ph(il,i)-ph(il,i+1))) |
---|
| 2031 | END IF |
---|
[879] | 2032 | |
---|
[1992] | 2033 | ! *** calculate precipitating downdraft mass flux under *** |
---|
| 2034 | ! *** hydrostatic approximation *** |
---|
[879] | 2035 | |
---|
[1992] | 2036 | IF (i/=1) THEN |
---|
[879] | 2037 | |
---|
[1992] | 2038 | tevap = amax1(0.0, evap(il,i)) |
---|
| 2039 | delth = amax1(0.001, (th(il,i)-th(il,i-1))) |
---|
| 2040 | IF (cvflag_grav) THEN |
---|
| 2041 | mp(il, i) = 100.*ginv*lvcp(il, i)*sigd*tevap*(p(il,i-1)-p(il,i))/ & |
---|
| 2042 | delth |
---|
| 2043 | ELSE |
---|
| 2044 | mp(il, i) = 10.*lvcp(il, i)*sigd*tevap*(p(il,i-1)-p(il,i))/delth |
---|
| 2045 | END IF |
---|
[879] | 2046 | |
---|
[1992] | 2047 | ! *** if hydrostatic assumption fails, *** |
---|
| 2048 | ! *** solve cubic difference equation for downdraft theta *** |
---|
| 2049 | ! *** and mass flux from two simultaneous differential eqns *** |
---|
[879] | 2050 | |
---|
[1992] | 2051 | amfac = sigd*sigd*70.0*ph(il, i)*(p(il,i-1)-p(il,i))* & |
---|
| 2052 | (th(il,i)-th(il,i-1))/(tv(il,i)*th(il,i)) |
---|
| 2053 | amp2 = abs(mp(il,i+1)*mp(il,i+1)-mp(il,i)*mp(il,i)) |
---|
| 2054 | IF (amp2>(0.1*amfac)) THEN |
---|
| 2055 | xf = 100.0*sigd*sigd*sigd*(ph(il,i)-ph(il,i+1)) |
---|
| 2056 | tf = b(il, i) - 5.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i)* & |
---|
| 2057 | sigd*th(il,i)) |
---|
| 2058 | af = xf*tf + mp(il, i+1)*mp(il, i+1)*tinv |
---|
| 2059 | bf = 2.*(tinv*mp(il,i+1))**3 + tinv*mp(il, i+1)*xf*tf + & |
---|
| 2060 | 50.*(p(il,i-1)-p(il,i))*xf*tevap |
---|
| 2061 | fac2 = 1.0 |
---|
| 2062 | IF (bf<0.0) fac2 = -1.0 |
---|
| 2063 | bf = abs(bf) |
---|
| 2064 | ur = 0.25*bf*bf - af*af*af*tinv*tinv*tinv |
---|
| 2065 | IF (ur>=0.0) THEN |
---|
| 2066 | sru = sqrt(ur) |
---|
| 2067 | fac = 1.0 |
---|
| 2068 | IF ((0.5*bf-sru)<0.0) fac = -1.0 |
---|
| 2069 | mp(il, i) = mp(il, i+1)*tinv + (0.5*bf+sru)**tinv + & |
---|
| 2070 | fac*(abs(0.5*bf-sru))**tinv |
---|
| 2071 | ELSE |
---|
| 2072 | d = atan(2.*sqrt(-ur)/(bf+1.0E-28)) |
---|
| 2073 | IF (fac2<0.0) d = 3.14159 - d |
---|
| 2074 | mp(il, i) = mp(il, i+1)*tinv + 2.*sqrt(af*tinv)*cos(d*tinv) |
---|
| 2075 | END IF |
---|
| 2076 | mp(il, i) = amax1(0.0, mp(il,i)) |
---|
[879] | 2077 | |
---|
[1992] | 2078 | IF (cvflag_grav) THEN |
---|
| 2079 | ! jyg : il y a vraisemblablement une erreur dans la ligne 2 |
---|
| 2080 | ! suivante: |
---|
| 2081 | ! il faut diviser par (mp(il,i)*sigd*grav) et non par |
---|
| 2082 | ! (mp(il,i)+sigd*0.1). |
---|
| 2083 | ! Et il faut bien revoir les facteurs 100. |
---|
| 2084 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap/(mp(il, & |
---|
| 2085 | i)+sigd*0.1) - 10.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i & |
---|
| 2086 | )*sigd*th(il,i)) |
---|
| 2087 | ELSE |
---|
| 2088 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap/(mp(il, & |
---|
| 2089 | i)+sigd*0.1) - 10.0*(th(il,i)-th(il,i-1))*t(il, i)/(lvcp(il,i & |
---|
| 2090 | )*sigd*th(il,i)) |
---|
| 2091 | END IF |
---|
| 2092 | b(il, i-1) = amax1(b(il,i-1), 0.0) |
---|
| 2093 | END IF |
---|
[879] | 2094 | |
---|
[1992] | 2095 | ! *** limit magnitude of mp(i) to meet cfl condition |
---|
| 2096 | ! *** |
---|
[879] | 2097 | |
---|
[1992] | 2098 | ampmax = 2.0*(ph(il,i)-ph(il,i+1))*delti |
---|
| 2099 | amp2 = 2.0*(ph(il,i-1)-ph(il,i))*delti |
---|
| 2100 | ampmax = amin1(ampmax, amp2) |
---|
| 2101 | mp(il, i) = amin1(mp(il,i), ampmax) |
---|
[879] | 2102 | |
---|
[1992] | 2103 | ! *** force mp to decrease linearly to zero |
---|
| 2104 | ! *** |
---|
| 2105 | ! *** between cloud base and the surface |
---|
| 2106 | ! *** |
---|
[879] | 2107 | |
---|
[1992] | 2108 | IF (p(il,i)>p(il,icb(il))) THEN |
---|
| 2109 | mp(il, i) = mp(il, icb(il))*(p(il,1)-p(il,i))/ & |
---|
| 2110 | (p(il,1)-p(il,icb(il))) |
---|
| 2111 | END IF |
---|
[879] | 2112 | |
---|
[1992] | 2113 | END IF ! i.eq.1 |
---|
[879] | 2114 | |
---|
[1992] | 2115 | ! *** find mixing ratio of precipitating downdraft *** |
---|
[879] | 2116 | |
---|
| 2117 | |
---|
[1992] | 2118 | IF (i/=inb(il)) THEN |
---|
[879] | 2119 | |
---|
[1992] | 2120 | rp(il, i) = rr(il, i) |
---|
[879] | 2121 | |
---|
[1992] | 2122 | IF (mp(il,i)>mp(il,i+1)) THEN |
---|
[879] | 2123 | |
---|
[1992] | 2124 | IF (cvflag_grav) THEN |
---|
| 2125 | rp(il, i) = rp(il, i+1)*mp(il, i+1) + & |
---|
| 2126 | rr(il, i)*(mp(il,i)-mp(il,i+1)) + 100.*ginv*0.5*sigd*(ph(il,i & |
---|
| 2127 | )-ph(il,i+1))*(evap(il,i+1)+evap(il,i)) |
---|
| 2128 | ELSE |
---|
| 2129 | rp(il, i) = rp(il, i+1)*mp(il, i+1) + & |
---|
| 2130 | rr(il, i)*(mp(il,i)-mp(il,i+1)) + 5.*sigd*(ph(il,i)-ph(il,i+1 & |
---|
| 2131 | ))*(evap(il,i+1)+evap(il,i)) |
---|
| 2132 | END IF |
---|
| 2133 | rp(il, i) = rp(il, i)/mp(il, i) |
---|
| 2134 | up(il, i) = up(il, i+1)*mp(il, i+1) + u(il, i)*(mp(il,i)-mp(il,i+ & |
---|
| 2135 | 1)) |
---|
| 2136 | up(il, i) = up(il, i)/mp(il, i) |
---|
| 2137 | vp(il, i) = vp(il, i+1)*mp(il, i+1) + v(il, i)*(mp(il,i)-mp(il,i+ & |
---|
| 2138 | 1)) |
---|
| 2139 | vp(il, i) = vp(il, i)/mp(il, i) |
---|
[879] | 2140 | |
---|
[1992] | 2141 | ! do j=1,ntra |
---|
| 2142 | ! trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
---|
| 2143 | ! testmaf : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
| 2144 | ! : +tra(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
| 2145 | ! trap(il,i,j)=trap(il,i,j)/mp(il,i) |
---|
| 2146 | ! end do |
---|
[879] | 2147 | |
---|
[1992] | 2148 | ELSE |
---|
[1742] | 2149 | |
---|
[1992] | 2150 | IF (mp(il,i+1)>1.0E-16) THEN |
---|
| 2151 | IF (cvflag_grav) THEN |
---|
| 2152 | rp(il, i) = rp(il, i+1) + 100.*ginv*0.5*sigd*(ph(il,i)-ph(il, & |
---|
| 2153 | i+1))*(evap(il,i+1)+evap(il,i))/mp(il, i+1) |
---|
| 2154 | ELSE |
---|
| 2155 | rp(il, i) = rp(il, i+1) + 5.*sigd*(ph(il,i)-ph(il,i+1))*(evap & |
---|
| 2156 | (il,i+1)+evap(il,i))/mp(il, i+1) |
---|
| 2157 | END IF |
---|
| 2158 | up(il, i) = up(il, i+1) |
---|
| 2159 | vp(il, i) = vp(il, i+1) |
---|
[1742] | 2160 | |
---|
[1992] | 2161 | ! do j=1,ntra |
---|
| 2162 | ! trap(il,i,j)=trap(il,i+1,j) |
---|
| 2163 | ! end do |
---|
[1742] | 2164 | |
---|
[1992] | 2165 | END IF |
---|
| 2166 | END IF |
---|
| 2167 | rp(il, i) = amin1(rp(il,i), rs(il,i)) |
---|
| 2168 | rp(il, i) = amax1(rp(il,i), 0.0) |
---|
[1742] | 2169 | |
---|
[1992] | 2170 | END IF |
---|
| 2171 | END IF |
---|
| 2172 | END DO |
---|
[1742] | 2173 | |
---|
[1992] | 2174 | 400 END DO |
---|
[879] | 2175 | |
---|
[1992] | 2176 | RETURN |
---|
| 2177 | END SUBROUTINE cv30_unsat |
---|
[879] | 2178 | |
---|
[1992] | 2179 | SUBROUTINE cv30_yield(nloc, ncum, nd, na, ntra, icb, inb, delt, t, rr, u, v, & |
---|
| 2180 | tra, gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, rp, up, vp, trap, & |
---|
| 2181 | wt, water, evap, b, ment, qent, uent, vent, nent, elij, traent, sig, tv, & |
---|
| 2182 | tvp, iflag, precip, vprecip, ft, fr, fu, fv, ftra, upwd, dnwd, dnwd0, ma, & |
---|
| 2183 | mike, tls, tps, qcondc, wd) |
---|
| 2184 | IMPLICIT NONE |
---|
[879] | 2185 | |
---|
[1992] | 2186 | include "cvthermo.h" |
---|
| 2187 | include "cv30param.h" |
---|
| 2188 | include "cvflag.h" |
---|
| 2189 | include "conema3.h" |
---|
[879] | 2190 | |
---|
[1992] | 2191 | ! inputs: |
---|
| 2192 | INTEGER ncum, nd, na, ntra, nloc |
---|
| 2193 | INTEGER icb(nloc), inb(nloc) |
---|
| 2194 | REAL delt |
---|
| 2195 | REAL t(nloc, nd), rr(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
| 2196 | REAL tra(nloc, nd, ntra), sig(nloc, nd) |
---|
| 2197 | REAL gz(nloc, na), ph(nloc, nd+1), h(nloc, na), hp(nloc, na) |
---|
| 2198 | REAL th(nloc, na), p(nloc, nd), tp(nloc, na) |
---|
| 2199 | REAL lv(nloc, na), cpn(nloc, na), ep(nloc, na), clw(nloc, na) |
---|
| 2200 | REAL m(nloc, na), mp(nloc, na), rp(nloc, na), up(nloc, na) |
---|
| 2201 | REAL vp(nloc, na), wt(nloc, nd), trap(nloc, nd, ntra) |
---|
| 2202 | REAL water(nloc, na), evap(nloc, na), b(nloc, na) |
---|
| 2203 | REAL ment(nloc, na, na), qent(nloc, na, na), uent(nloc, na, na) |
---|
| 2204 | ! ym real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
---|
| 2205 | REAL vent(nloc, na, na), elij(nloc, na, na) |
---|
| 2206 | INTEGER nent(nloc, na) |
---|
| 2207 | REAL traent(nloc, na, na, ntra) |
---|
| 2208 | REAL tv(nloc, nd), tvp(nloc, nd) |
---|
[879] | 2209 | |
---|
[1992] | 2210 | ! input/output: |
---|
| 2211 | INTEGER iflag(nloc) |
---|
[879] | 2212 | |
---|
[1992] | 2213 | ! outputs: |
---|
| 2214 | REAL precip(nloc) |
---|
| 2215 | REAL vprecip(nloc, nd+1) |
---|
| 2216 | REAL ft(nloc, nd), fr(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
| 2217 | REAL ftra(nloc, nd, ntra) |
---|
| 2218 | REAL upwd(nloc, nd), dnwd(nloc, nd), ma(nloc, nd) |
---|
| 2219 | REAL dnwd0(nloc, nd), mike(nloc, nd) |
---|
| 2220 | REAL tls(nloc, nd), tps(nloc, nd) |
---|
| 2221 | REAL qcondc(nloc, nd) ! cld |
---|
| 2222 | REAL wd(nloc) ! gust |
---|
[879] | 2223 | |
---|
[1992] | 2224 | ! local variables: |
---|
| 2225 | INTEGER i, k, il, n, j, num1 |
---|
| 2226 | REAL rat, awat, delti |
---|
| 2227 | REAL ax, bx, cx, dx, ex |
---|
| 2228 | REAL cpinv, rdcp, dpinv |
---|
| 2229 | REAL lvcp(nloc, na), mke(nloc, na) |
---|
| 2230 | REAL am(nloc), work(nloc), ad(nloc), amp1(nloc) |
---|
| 2231 | ! !! real up1(nloc), dn1(nloc) |
---|
| 2232 | REAL up1(nloc, nd, nd), dn1(nloc, nd, nd) |
---|
| 2233 | REAL asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
---|
| 2234 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
---|
| 2235 | REAL siga(nloc, nd), sax(nloc, nd), mac(nloc, nd) ! cld |
---|
[879] | 2236 | |
---|
| 2237 | |
---|
[1992] | 2238 | ! ------------------------------------------------------------- |
---|
[879] | 2239 | |
---|
[1992] | 2240 | ! initialization: |
---|
[879] | 2241 | |
---|
[1992] | 2242 | delti = 1.0/delt |
---|
[879] | 2243 | |
---|
[1992] | 2244 | DO il = 1, ncum |
---|
| 2245 | precip(il) = 0.0 |
---|
| 2246 | wd(il) = 0.0 ! gust |
---|
| 2247 | vprecip(il, nd+1) = 0. |
---|
| 2248 | END DO |
---|
| 2249 | |
---|
| 2250 | DO i = 1, nd |
---|
| 2251 | DO il = 1, ncum |
---|
| 2252 | vprecip(il, i) = 0.0 |
---|
| 2253 | ft(il, i) = 0.0 |
---|
| 2254 | fr(il, i) = 0.0 |
---|
| 2255 | fu(il, i) = 0.0 |
---|
| 2256 | fv(il, i) = 0.0 |
---|
| 2257 | qcondc(il, i) = 0.0 ! cld |
---|
| 2258 | qcond(il, i) = 0.0 ! cld |
---|
| 2259 | nqcond(il, i) = 0.0 ! cld |
---|
| 2260 | END DO |
---|
| 2261 | END DO |
---|
| 2262 | |
---|
| 2263 | ! do j=1,ntra |
---|
| 2264 | ! do i=1,nd |
---|
| 2265 | ! do il=1,ncum |
---|
| 2266 | ! ftra(il,i,j)=0.0 |
---|
| 2267 | ! enddo |
---|
| 2268 | ! enddo |
---|
| 2269 | ! enddo |
---|
| 2270 | |
---|
| 2271 | DO i = 1, nl |
---|
| 2272 | DO il = 1, ncum |
---|
| 2273 | lvcp(il, i) = lv(il, i)/cpn(il, i) |
---|
| 2274 | END DO |
---|
| 2275 | END DO |
---|
| 2276 | |
---|
| 2277 | |
---|
| 2278 | |
---|
| 2279 | ! *** calculate surface precipitation in mm/day *** |
---|
| 2280 | |
---|
| 2281 | DO il = 1, ncum |
---|
| 2282 | IF (ep(il,inb(il))>=0.0001) THEN |
---|
| 2283 | IF (cvflag_grav) THEN |
---|
| 2284 | precip(il) = wt(il, 1)*sigd*water(il, 1)*86400.*1000./(rowl*grav) |
---|
| 2285 | ELSE |
---|
| 2286 | precip(il) = wt(il, 1)*sigd*water(il, 1)*8640. |
---|
| 2287 | END IF |
---|
| 2288 | END IF |
---|
| 2289 | END DO |
---|
| 2290 | |
---|
| 2291 | ! *** CALCULATE VERTICAL PROFILE OF PRECIPITATIONs IN kg/m2/s === |
---|
| 2292 | |
---|
| 2293 | ! MAF rajout pour lessivage |
---|
| 2294 | DO k = 1, nl |
---|
| 2295 | DO il = 1, ncum |
---|
| 2296 | IF (k<=inb(il)) THEN |
---|
| 2297 | IF (cvflag_grav) THEN |
---|
| 2298 | vprecip(il, k) = wt(il, k)*sigd*water(il, k)/grav |
---|
| 2299 | ELSE |
---|
| 2300 | vprecip(il, k) = wt(il, k)*sigd*water(il, k)/10. |
---|
| 2301 | END IF |
---|
| 2302 | END IF |
---|
| 2303 | END DO |
---|
| 2304 | END DO |
---|
| 2305 | |
---|
| 2306 | |
---|
| 2307 | ! *** Calculate downdraft velocity scale *** |
---|
| 2308 | ! *** NE PAS UTILISER POUR L'INSTANT *** |
---|
| 2309 | |
---|
| 2310 | ! ! do il=1,ncum |
---|
| 2311 | ! ! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) |
---|
| 2312 | ! ! : /(sigd*p(il,icb(il))) |
---|
| 2313 | ! ! enddo |
---|
| 2314 | |
---|
| 2315 | |
---|
| 2316 | ! *** calculate tendencies of lowest level potential temperature *** |
---|
| 2317 | ! *** and mixing ratio *** |
---|
| 2318 | |
---|
| 2319 | DO il = 1, ncum |
---|
| 2320 | work(il) = 1.0/(ph(il,1)-ph(il,2)) |
---|
| 2321 | am(il) = 0.0 |
---|
| 2322 | END DO |
---|
| 2323 | |
---|
| 2324 | DO k = 2, nl |
---|
| 2325 | DO il = 1, ncum |
---|
| 2326 | IF (k<=inb(il)) THEN |
---|
| 2327 | am(il) = am(il) + m(il, k) |
---|
| 2328 | END IF |
---|
| 2329 | END DO |
---|
| 2330 | END DO |
---|
| 2331 | |
---|
| 2332 | DO il = 1, ncum |
---|
| 2333 | |
---|
| 2334 | ! convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
---|
| 2335 | IF (cvflag_grav) THEN |
---|
| 2336 | IF ((0.01*grav*work(il)*am(il))>=delti) iflag(il) = 1 !consist vect |
---|
| 2337 | ft(il, 1) = 0.01*grav*work(il)*am(il)*(t(il,2)-t(il,1)+(gz(il,2)-gz(il, & |
---|
| 2338 | 1))/cpn(il,1)) |
---|
| 2339 | ELSE |
---|
| 2340 | IF ((0.1*work(il)*am(il))>=delti) iflag(il) = 1 !consistency vect |
---|
| 2341 | ft(il, 1) = 0.1*work(il)*am(il)*(t(il,2)-t(il,1)+(gz(il,2)-gz(il, & |
---|
| 2342 | 1))/cpn(il,1)) |
---|
| 2343 | END IF |
---|
| 2344 | |
---|
| 2345 | ft(il, 1) = ft(il, 1) - 0.5*lvcp(il, 1)*sigd*(evap(il,1)+evap(il,2)) |
---|
| 2346 | |
---|
| 2347 | IF (cvflag_grav) THEN |
---|
| 2348 | ft(il, 1) = ft(il, 1) - 0.009*grav*sigd*mp(il, 2)*t(il, 1)*b(il, 1)* & |
---|
| 2349 | work(il) |
---|
| 2350 | ELSE |
---|
| 2351 | ft(il, 1) = ft(il, 1) - 0.09*sigd*mp(il, 2)*t(il, 1)*b(il, 1)*work(il) |
---|
| 2352 | END IF |
---|
| 2353 | |
---|
| 2354 | ft(il, 1) = ft(il, 1) + 0.01*sigd*wt(il, 1)*(cl-cpd)*water(il, 2)*(t(il,2 & |
---|
| 2355 | )-t(il,1))*work(il)/cpn(il, 1) |
---|
| 2356 | |
---|
| 2357 | IF (cvflag_grav) THEN |
---|
| 2358 | ! jyg1 Correction pour mieux conserver l'eau (conformite avec |
---|
| 2359 | ! CONVECT4.3) |
---|
| 2360 | ! (sb: pour l'instant, on ne fait que le chgt concernant grav, pas |
---|
| 2361 | ! evap) |
---|
| 2362 | fr(il, 1) = 0.01*grav*mp(il, 2)*(rp(il,2)-rr(il,1))*work(il) + & |
---|
| 2363 | sigd*0.5*(evap(il,1)+evap(il,2)) |
---|
| 2364 | ! +tard : +sigd*evap(il,1) |
---|
| 2365 | |
---|
| 2366 | fr(il, 1) = fr(il, 1) + 0.01*grav*am(il)*(rr(il,2)-rr(il,1))*work(il) |
---|
| 2367 | |
---|
| 2368 | fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(up(il,2)-u(il, & |
---|
| 2369 | 1))+am(il)*(u(il,2)-u(il,1))) |
---|
| 2370 | fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(vp(il,2)-v(il, & |
---|
| 2371 | 1))+am(il)*(v(il,2)-v(il,1))) |
---|
| 2372 | ELSE ! cvflag_grav |
---|
| 2373 | fr(il, 1) = 0.1*mp(il, 2)*(rp(il,2)-rr(il,1))*work(il) + & |
---|
| 2374 | sigd*0.5*(evap(il,1)+evap(il,2)) |
---|
| 2375 | fr(il, 1) = fr(il, 1) + 0.1*am(il)*(rr(il,2)-rr(il,1))*work(il) |
---|
| 2376 | fu(il, 1) = fu(il, 1) + 0.1*work(il)*(mp(il,2)*(up(il,2)-u(il, & |
---|
| 2377 | 1))+am(il)*(u(il,2)-u(il,1))) |
---|
| 2378 | fv(il, 1) = fv(il, 1) + 0.1*work(il)*(mp(il,2)*(vp(il,2)-v(il, & |
---|
| 2379 | 1))+am(il)*(v(il,2)-v(il,1))) |
---|
| 2380 | END IF ! cvflag_grav |
---|
| 2381 | |
---|
| 2382 | END DO ! il |
---|
| 2383 | |
---|
| 2384 | ! do j=1,ntra |
---|
| 2385 | ! do il=1,ncum |
---|
| 2386 | ! if (cvflag_grav) then |
---|
| 2387 | ! ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
---|
| 2388 | ! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
| 2389 | ! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
| 2390 | ! else |
---|
| 2391 | ! ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
---|
| 2392 | ! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
| 2393 | ! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
| 2394 | ! endif |
---|
| 2395 | ! enddo |
---|
| 2396 | ! enddo |
---|
| 2397 | |
---|
| 2398 | DO j = 2, nl |
---|
| 2399 | DO il = 1, ncum |
---|
| 2400 | IF (j<=inb(il)) THEN |
---|
| 2401 | IF (cvflag_grav) THEN |
---|
| 2402 | fr(il, 1) = fr(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(qent(il, & |
---|
| 2403 | j,1)-rr(il,1)) |
---|
| 2404 | fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(uent(il, & |
---|
| 2405 | j,1)-u(il,1)) |
---|
| 2406 | fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(vent(il, & |
---|
| 2407 | j,1)-v(il,1)) |
---|
| 2408 | ELSE ! cvflag_grav |
---|
| 2409 | fr(il, 1) = fr(il, 1) + 0.1*work(il)*ment(il, j, 1)*(qent(il,j,1)- & |
---|
| 2410 | rr(il,1)) |
---|
| 2411 | fu(il, 1) = fu(il, 1) + 0.1*work(il)*ment(il, j, 1)*(uent(il,j,1)-u & |
---|
| 2412 | (il,1)) |
---|
| 2413 | fv(il, 1) = fv(il, 1) + 0.1*work(il)*ment(il, j, 1)*(vent(il,j,1)-v & |
---|
| 2414 | (il,1)) |
---|
| 2415 | END IF ! cvflag_grav |
---|
| 2416 | END IF ! j |
---|
| 2417 | END DO |
---|
| 2418 | END DO |
---|
| 2419 | |
---|
| 2420 | ! do k=1,ntra |
---|
| 2421 | ! do j=2,nl |
---|
| 2422 | ! do il=1,ncum |
---|
| 2423 | ! if (j.le.inb(il)) then |
---|
| 2424 | |
---|
| 2425 | ! if (cvflag_grav) then |
---|
| 2426 | ! ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
---|
| 2427 | ! : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
| 2428 | ! else |
---|
| 2429 | ! ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
---|
| 2430 | ! : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
| 2431 | ! endif |
---|
| 2432 | |
---|
| 2433 | ! endif |
---|
| 2434 | ! enddo |
---|
| 2435 | ! enddo |
---|
| 2436 | ! enddo |
---|
| 2437 | |
---|
| 2438 | |
---|
| 2439 | ! *** calculate tendencies of potential temperature and mixing ratio *** |
---|
| 2440 | ! *** at levels above the lowest level *** |
---|
| 2441 | |
---|
| 2442 | ! *** first find the net saturated updraft and downdraft mass fluxes *** |
---|
| 2443 | ! *** through each level *** |
---|
| 2444 | |
---|
| 2445 | |
---|
| 2446 | DO i = 2, nl + 1 ! newvecto: mettre nl au lieu nl+1? |
---|
| 2447 | |
---|
| 2448 | num1 = 0 |
---|
| 2449 | DO il = 1, ncum |
---|
| 2450 | IF (i<=inb(il)) num1 = num1 + 1 |
---|
| 2451 | END DO |
---|
| 2452 | IF (num1<=0) GO TO 500 |
---|
| 2453 | |
---|
| 2454 | CALL zilch(amp1, ncum) |
---|
| 2455 | CALL zilch(ad, ncum) |
---|
| 2456 | |
---|
| 2457 | DO k = i + 1, nl + 1 |
---|
| 2458 | DO il = 1, ncum |
---|
| 2459 | IF (i<=inb(il) .AND. k<=(inb(il)+1)) THEN |
---|
| 2460 | amp1(il) = amp1(il) + m(il, k) |
---|
| 2461 | END IF |
---|
| 2462 | END DO |
---|
| 2463 | END DO |
---|
| 2464 | |
---|
| 2465 | DO k = 1, i |
---|
| 2466 | DO j = i + 1, nl + 1 |
---|
| 2467 | DO il = 1, ncum |
---|
| 2468 | IF (i<=inb(il) .AND. j<=(inb(il)+1)) THEN |
---|
| 2469 | amp1(il) = amp1(il) + ment(il, k, j) |
---|
| 2470 | END IF |
---|
| 2471 | END DO |
---|
| 2472 | END DO |
---|
| 2473 | END DO |
---|
| 2474 | |
---|
| 2475 | DO k = 1, i - 1 |
---|
| 2476 | DO j = i, nl + 1 ! newvecto: nl au lieu nl+1? |
---|
| 2477 | DO il = 1, ncum |
---|
| 2478 | IF (i<=inb(il) .AND. j<=inb(il)) THEN |
---|
| 2479 | ad(il) = ad(il) + ment(il, j, k) |
---|
| 2480 | END IF |
---|
| 2481 | END DO |
---|
| 2482 | END DO |
---|
| 2483 | END DO |
---|
| 2484 | |
---|
| 2485 | DO il = 1, ncum |
---|
| 2486 | IF (i<=inb(il)) THEN |
---|
| 2487 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2488 | cpinv = 1.0/cpn(il, i) |
---|
| 2489 | |
---|
| 2490 | ! convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
---|
| 2491 | IF (cvflag_grav) THEN |
---|
| 2492 | IF ((0.01*grav*dpinv*amp1(il))>=delti) iflag(il) = 1 ! vecto |
---|
| 2493 | ELSE |
---|
| 2494 | IF ((0.1*dpinv*amp1(il))>=delti) iflag(il) = 1 ! vecto |
---|
| 2495 | END IF |
---|
| 2496 | |
---|
| 2497 | IF (cvflag_grav) THEN |
---|
| 2498 | ft(il, i) = 0.01*grav*dpinv*(amp1(il)*(t(il,i+1)-t(il, & |
---|
| 2499 | i)+(gz(il,i+1)-gz(il,i))*cpinv)-ad(il)*(t(il,i)-t(il, & |
---|
| 2500 | i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) - 0.5*sigd*lvcp(il, i)*(evap( & |
---|
| 2501 | il,i)+evap(il,i+1)) |
---|
| 2502 | rat = cpn(il, i-1)*cpinv |
---|
| 2503 | ft(il, i) = ft(il, i) - 0.009*grav*sigd*(mp(il,i+1)*t(il,i)*b(il,i) & |
---|
| 2504 | -mp(il,i)*t(il,i-1)*rat*b(il,i-1))*dpinv |
---|
| 2505 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, i, i)*(hp(il,i)-h( & |
---|
| 2506 | il,i)+t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
| 2507 | ELSE ! cvflag_grav |
---|
| 2508 | ft(il, i) = 0.1*dpinv*(amp1(il)*(t(il,i+1)-t(il, & |
---|
| 2509 | i)+(gz(il,i+1)-gz(il,i))*cpinv)-ad(il)*(t(il,i)-t(il, & |
---|
| 2510 | i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) - 0.5*sigd*lvcp(il, i)*(evap( & |
---|
| 2511 | il,i)+evap(il,i+1)) |
---|
| 2512 | rat = cpn(il, i-1)*cpinv |
---|
| 2513 | ft(il, i) = ft(il, i) - 0.09*sigd*(mp(il,i+1)*t(il,i)*b(il,i)-mp(il & |
---|
| 2514 | ,i)*t(il,i-1)*rat*b(il,i-1))*dpinv |
---|
| 2515 | ft(il, i) = ft(il, i) + 0.1*dpinv*ment(il, i, i)*(hp(il,i)-h(il,i)+ & |
---|
| 2516 | t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
| 2517 | END IF ! cvflag_grav |
---|
| 2518 | |
---|
| 2519 | |
---|
| 2520 | ft(il, i) = ft(il, i) + 0.01*sigd*wt(il, i)*(cl-cpd)*water(il, i+1)*( & |
---|
| 2521 | t(il,i+1)-t(il,i))*dpinv*cpinv |
---|
| 2522 | |
---|
| 2523 | IF (cvflag_grav) THEN |
---|
| 2524 | fr(il, i) = 0.01*grav*dpinv*(amp1(il)*(rr(il,i+1)-rr(il, & |
---|
| 2525 | i))-ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
| 2526 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*(amp1(il)*(u(il,i+1)-u(il, & |
---|
| 2527 | i))-ad(il)*(u(il,i)-u(il,i-1))) |
---|
| 2528 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*(amp1(il)*(v(il,i+1)-v(il, & |
---|
| 2529 | i))-ad(il)*(v(il,i)-v(il,i-1))) |
---|
| 2530 | ELSE ! cvflag_grav |
---|
| 2531 | fr(il, i) = 0.1*dpinv*(amp1(il)*(rr(il,i+1)-rr(il, & |
---|
| 2532 | i))-ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
| 2533 | fu(il, i) = fu(il, i) + 0.1*dpinv*(amp1(il)*(u(il,i+1)-u(il, & |
---|
| 2534 | i))-ad(il)*(u(il,i)-u(il,i-1))) |
---|
| 2535 | fv(il, i) = fv(il, i) + 0.1*dpinv*(amp1(il)*(v(il,i+1)-v(il, & |
---|
| 2536 | i))-ad(il)*(v(il,i)-v(il,i-1))) |
---|
| 2537 | END IF ! cvflag_grav |
---|
| 2538 | |
---|
| 2539 | END IF ! i |
---|
| 2540 | END DO |
---|
| 2541 | |
---|
| 2542 | ! do k=1,ntra |
---|
| 2543 | ! do il=1,ncum |
---|
| 2544 | ! if (i.le.inb(il)) then |
---|
| 2545 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2546 | ! cpinv=1.0/cpn(il,i) |
---|
| 2547 | ! if (cvflag_grav) then |
---|
| 2548 | ! ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
---|
| 2549 | ! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
| 2550 | ! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
| 2551 | ! else |
---|
| 2552 | ! ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
---|
| 2553 | ! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
| 2554 | ! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
| 2555 | ! endif |
---|
| 2556 | ! endif |
---|
| 2557 | ! enddo |
---|
| 2558 | ! enddo |
---|
| 2559 | |
---|
| 2560 | DO k = 1, i - 1 |
---|
| 2561 | DO il = 1, ncum |
---|
| 2562 | IF (i<=inb(il)) THEN |
---|
| 2563 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2564 | cpinv = 1.0/cpn(il, i) |
---|
| 2565 | |
---|
| 2566 | awat = elij(il, k, i) - (1.-ep(il,i))*clw(il, i) |
---|
| 2567 | awat = amax1(awat, 0.0) |
---|
| 2568 | |
---|
| 2569 | IF (cvflag_grav) THEN |
---|
| 2570 | fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(qent(il,k & |
---|
| 2571 | ,i)-awat-rr(il,i)) |
---|
| 2572 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
---|
| 2573 | ,i)-u(il,i)) |
---|
| 2574 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k & |
---|
| 2575 | ,i)-v(il,i)) |
---|
| 2576 | ELSE ! cvflag_grav |
---|
| 2577 | fr(il, i) = fr(il, i) + 0.1*dpinv*ment(il, k, i)*(qent(il,k,i)- & |
---|
| 2578 | awat-rr(il,i)) |
---|
| 2579 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
---|
| 2580 | ,i)-u(il,i)) |
---|
| 2581 | fv(il, i) = fv(il, i) + 0.1*dpinv*ment(il, k, i)*(vent(il,k,i)-v( & |
---|
| 2582 | il,i)) |
---|
| 2583 | END IF ! cvflag_grav |
---|
| 2584 | |
---|
| 2585 | ! (saturated updrafts resulting from mixing) ! cld |
---|
| 2586 | qcond(il, i) = qcond(il, i) + (elij(il,k,i)-awat) ! cld |
---|
| 2587 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
| 2588 | END IF ! i |
---|
| 2589 | END DO |
---|
| 2590 | END DO |
---|
| 2591 | |
---|
| 2592 | ! do j=1,ntra |
---|
| 2593 | ! do k=1,i-1 |
---|
| 2594 | ! do il=1,ncum |
---|
| 2595 | ! if (i.le.inb(il)) then |
---|
| 2596 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2597 | ! cpinv=1.0/cpn(il,i) |
---|
| 2598 | ! if (cvflag_grav) then |
---|
| 2599 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
| 2600 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2601 | ! else |
---|
| 2602 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
| 2603 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2604 | ! endif |
---|
| 2605 | ! endif |
---|
| 2606 | ! enddo |
---|
| 2607 | ! enddo |
---|
| 2608 | ! enddo |
---|
| 2609 | |
---|
| 2610 | DO k = i, nl + 1 |
---|
| 2611 | DO il = 1, ncum |
---|
| 2612 | IF (i<=inb(il) .AND. k<=inb(il)) THEN |
---|
| 2613 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2614 | cpinv = 1.0/cpn(il, i) |
---|
| 2615 | |
---|
| 2616 | IF (cvflag_grav) THEN |
---|
| 2617 | fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(qent(il,k & |
---|
| 2618 | ,i)-rr(il,i)) |
---|
| 2619 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k & |
---|
| 2620 | ,i)-u(il,i)) |
---|
| 2621 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k & |
---|
| 2622 | ,i)-v(il,i)) |
---|
| 2623 | ELSE ! cvflag_grav |
---|
| 2624 | fr(il, i) = fr(il, i) + 0.1*dpinv*ment(il, k, i)*(qent(il,k,i)-rr & |
---|
| 2625 | (il,i)) |
---|
| 2626 | fu(il, i) = fu(il, i) + 0.1*dpinv*ment(il, k, i)*(uent(il,k,i)-u( & |
---|
| 2627 | il,i)) |
---|
| 2628 | fv(il, i) = fv(il, i) + 0.1*dpinv*ment(il, k, i)*(vent(il,k,i)-v( & |
---|
| 2629 | il,i)) |
---|
| 2630 | END IF ! cvflag_grav |
---|
| 2631 | END IF ! i and k |
---|
| 2632 | END DO |
---|
| 2633 | END DO |
---|
| 2634 | |
---|
| 2635 | ! do j=1,ntra |
---|
| 2636 | ! do k=i,nl+1 |
---|
| 2637 | ! do il=1,ncum |
---|
| 2638 | ! if (i.le.inb(il) .and. k.le.inb(il)) then |
---|
| 2639 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2640 | ! cpinv=1.0/cpn(il,i) |
---|
| 2641 | ! if (cvflag_grav) then |
---|
| 2642 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
| 2643 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2644 | ! else |
---|
| 2645 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
| 2646 | ! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2647 | ! endif |
---|
| 2648 | ! endif ! i and k |
---|
| 2649 | ! enddo |
---|
| 2650 | ! enddo |
---|
| 2651 | ! enddo |
---|
| 2652 | |
---|
| 2653 | DO il = 1, ncum |
---|
| 2654 | IF (i<=inb(il)) THEN |
---|
| 2655 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2656 | cpinv = 1.0/cpn(il, i) |
---|
| 2657 | |
---|
| 2658 | IF (cvflag_grav) THEN |
---|
| 2659 | ! sb: on ne fait pas encore la correction permettant de mieux |
---|
| 2660 | ! conserver l'eau: |
---|
| 2661 | fr(il, i) = fr(il, i) + 0.5*sigd*(evap(il,i)+evap(il,i+1)) + & |
---|
| 2662 | 0.01*grav*(mp(il,i+1)*(rp(il,i+1)-rr(il,i))-mp(il,i)*(rp(il, & |
---|
| 2663 | i)-rr(il,i-1)))*dpinv |
---|
| 2664 | |
---|
| 2665 | fu(il, i) = fu(il, i) + 0.01*grav*(mp(il,i+1)*(up(il,i+1)-u(il, & |
---|
| 2666 | i))-mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
| 2667 | fv(il, i) = fv(il, i) + 0.01*grav*(mp(il,i+1)*(vp(il,i+1)-v(il, & |
---|
| 2668 | i))-mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
| 2669 | ELSE ! cvflag_grav |
---|
| 2670 | fr(il, i) = fr(il, i) + 0.5*sigd*(evap(il,i)+evap(il,i+1)) + & |
---|
| 2671 | 0.1*(mp(il,i+1)*(rp(il,i+1)-rr(il,i))-mp(il,i)*(rp(il,i)-rr(il, & |
---|
| 2672 | i-1)))*dpinv |
---|
| 2673 | fu(il, i) = fu(il, i) + 0.1*(mp(il,i+1)*(up(il,i+1)-u(il, & |
---|
| 2674 | i))-mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
| 2675 | fv(il, i) = fv(il, i) + 0.1*(mp(il,i+1)*(vp(il,i+1)-v(il, & |
---|
| 2676 | i))-mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
| 2677 | END IF ! cvflag_grav |
---|
| 2678 | |
---|
| 2679 | END IF ! i |
---|
| 2680 | END DO |
---|
| 2681 | |
---|
| 2682 | ! sb: interface with the cloud parameterization: ! cld |
---|
| 2683 | |
---|
| 2684 | DO k = i + 1, nl |
---|
| 2685 | DO il = 1, ncum |
---|
| 2686 | IF (k<=inb(il) .AND. i<=inb(il)) THEN ! cld |
---|
| 2687 | ! (saturated downdrafts resulting from mixing) ! cld |
---|
| 2688 | qcond(il, i) = qcond(il, i) + elij(il, k, i) ! cld |
---|
| 2689 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
| 2690 | END IF ! cld |
---|
| 2691 | END DO ! cld |
---|
| 2692 | END DO ! cld |
---|
| 2693 | |
---|
| 2694 | ! (particular case: no detraining level is found) ! cld |
---|
| 2695 | DO il = 1, ncum ! cld |
---|
| 2696 | IF (i<=inb(il) .AND. nent(il,i)==0) THEN ! cld |
---|
| 2697 | qcond(il, i) = qcond(il, i) + (1.-ep(il,i))*clw(il, i) ! cld |
---|
| 2698 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
| 2699 | END IF ! cld |
---|
| 2700 | END DO ! cld |
---|
| 2701 | |
---|
| 2702 | DO il = 1, ncum ! cld |
---|
| 2703 | IF (i<=inb(il) .AND. nqcond(il,i)/=0.) THEN ! cld |
---|
| 2704 | qcond(il, i) = qcond(il, i)/nqcond(il, i) ! cld |
---|
| 2705 | END IF ! cld |
---|
| 2706 | END DO |
---|
| 2707 | |
---|
| 2708 | ! do j=1,ntra |
---|
| 2709 | ! do il=1,ncum |
---|
| 2710 | ! if (i.le.inb(il)) then |
---|
| 2711 | ! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2712 | ! cpinv=1.0/cpn(il,i) |
---|
| 2713 | |
---|
| 2714 | ! if (cvflag_grav) then |
---|
| 2715 | ! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
---|
| 2716 | ! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
| 2717 | ! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
---|
| 2718 | ! else |
---|
| 2719 | ! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
---|
| 2720 | ! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
| 2721 | ! : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
---|
| 2722 | ! endif |
---|
| 2723 | ! endif ! i |
---|
| 2724 | ! enddo |
---|
| 2725 | ! enddo |
---|
| 2726 | |
---|
| 2727 | 500 END DO |
---|
| 2728 | |
---|
| 2729 | |
---|
| 2730 | ! *** move the detrainment at level inb down to level inb-1 *** |
---|
| 2731 | ! *** in such a way as to preserve the vertically *** |
---|
| 2732 | ! *** integrated enthalpy and water tendencies *** |
---|
| 2733 | |
---|
| 2734 | DO il = 1, ncum |
---|
| 2735 | |
---|
| 2736 | ax = 0.1*ment(il, inb(il), inb(il))*(hp(il,inb(il))-h(il,inb(il))+t(il, & |
---|
| 2737 | inb(il))*(cpv-cpd)*(rr(il,inb(il))-qent(il,inb(il), & |
---|
| 2738 | inb(il))))/(cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
---|
| 2739 | ft(il, inb(il)) = ft(il, inb(il)) - ax |
---|
| 2740 | ft(il, inb(il)-1) = ft(il, inb(il)-1) + ax*cpn(il, inb(il))*(ph(il,inb(il & |
---|
| 2741 | ))-ph(il,inb(il)+1))/(cpn(il,inb(il)-1)*(ph(il,inb(il)-1)-ph(il, & |
---|
| 2742 | inb(il)))) |
---|
| 2743 | |
---|
| 2744 | bx = 0.1*ment(il, inb(il), inb(il))*(qent(il,inb(il),inb(il))-rr(il,inb( & |
---|
| 2745 | il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2746 | fr(il, inb(il)) = fr(il, inb(il)) - bx |
---|
| 2747 | fr(il, inb(il)-1) = fr(il, inb(il)-1) + bx*(ph(il,inb(il))-ph(il,inb(il)+ & |
---|
| 2748 | 1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2749 | |
---|
| 2750 | cx = 0.1*ment(il, inb(il), inb(il))*(uent(il,inb(il),inb(il))-u(il,inb(il & |
---|
| 2751 | )))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2752 | fu(il, inb(il)) = fu(il, inb(il)) - cx |
---|
| 2753 | fu(il, inb(il)-1) = fu(il, inb(il)-1) + cx*(ph(il,inb(il))-ph(il,inb(il)+ & |
---|
| 2754 | 1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2755 | |
---|
| 2756 | dx = 0.1*ment(il, inb(il), inb(il))*(vent(il,inb(il),inb(il))-v(il,inb(il & |
---|
| 2757 | )))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2758 | fv(il, inb(il)) = fv(il, inb(il)) - dx |
---|
| 2759 | fv(il, inb(il)-1) = fv(il, inb(il)-1) + dx*(ph(il,inb(il))-ph(il,inb(il)+ & |
---|
| 2760 | 1))/(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2761 | |
---|
| 2762 | END DO |
---|
| 2763 | |
---|
| 2764 | ! do j=1,ntra |
---|
| 2765 | ! do il=1,ncum |
---|
| 2766 | ! ex=0.1*ment(il,inb(il),inb(il)) |
---|
| 2767 | ! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
| 2768 | ! : /(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2769 | ! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
| 2770 | ! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
| 2771 | ! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2772 | ! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2773 | ! enddo |
---|
| 2774 | ! enddo |
---|
| 2775 | |
---|
| 2776 | |
---|
| 2777 | ! *** homoginize tendencies below cloud base *** |
---|
| 2778 | |
---|
| 2779 | |
---|
| 2780 | DO il = 1, ncum |
---|
| 2781 | asum(il) = 0.0 |
---|
| 2782 | bsum(il) = 0.0 |
---|
| 2783 | csum(il) = 0.0 |
---|
| 2784 | dsum(il) = 0.0 |
---|
| 2785 | END DO |
---|
| 2786 | |
---|
| 2787 | DO i = 1, nl |
---|
| 2788 | DO il = 1, ncum |
---|
| 2789 | IF (i<=(icb(il)-1)) THEN |
---|
| 2790 | asum(il) = asum(il) + ft(il, i)*(ph(il,i)-ph(il,i+1)) |
---|
| 2791 | bsum(il) = bsum(il) + fr(il, i)*(lv(il,i)+(cl-cpd)*(t(il,i)-t(il, & |
---|
| 2792 | 1)))*(ph(il,i)-ph(il,i+1)) |
---|
| 2793 | csum(il) = csum(il) + (lv(il,i)+(cl-cpd)*(t(il,i)-t(il, & |
---|
| 2794 | 1)))*(ph(il,i)-ph(il,i+1)) |
---|
| 2795 | dsum(il) = dsum(il) + t(il, i)*(ph(il,i)-ph(il,i+1))/th(il, i) |
---|
| 2796 | END IF |
---|
| 2797 | END DO |
---|
| 2798 | END DO |
---|
| 2799 | |
---|
| 2800 | ! !!! do 700 i=1,icb(il)-1 |
---|
| 2801 | DO i = 1, nl |
---|
| 2802 | DO il = 1, ncum |
---|
| 2803 | IF (i<=(icb(il)-1)) THEN |
---|
| 2804 | ft(il, i) = asum(il)*t(il, i)/(th(il,i)*dsum(il)) |
---|
| 2805 | fr(il, i) = bsum(il)/csum(il) |
---|
| 2806 | END IF |
---|
| 2807 | END DO |
---|
| 2808 | END DO |
---|
| 2809 | |
---|
| 2810 | |
---|
| 2811 | ! *** reset counter and return *** |
---|
| 2812 | |
---|
| 2813 | DO il = 1, ncum |
---|
| 2814 | sig(il, nd) = 2.0 |
---|
| 2815 | END DO |
---|
| 2816 | |
---|
| 2817 | |
---|
| 2818 | DO i = 1, nd |
---|
| 2819 | DO il = 1, ncum |
---|
| 2820 | upwd(il, i) = 0.0 |
---|
| 2821 | dnwd(il, i) = 0.0 |
---|
| 2822 | END DO |
---|
| 2823 | END DO |
---|
| 2824 | |
---|
| 2825 | DO i = 1, nl |
---|
| 2826 | DO il = 1, ncum |
---|
| 2827 | dnwd0(il, i) = -mp(il, i) |
---|
| 2828 | END DO |
---|
| 2829 | END DO |
---|
| 2830 | DO i = nl + 1, nd |
---|
| 2831 | DO il = 1, ncum |
---|
| 2832 | dnwd0(il, i) = 0. |
---|
| 2833 | END DO |
---|
| 2834 | END DO |
---|
| 2835 | |
---|
| 2836 | |
---|
| 2837 | DO i = 1, nl |
---|
| 2838 | DO il = 1, ncum |
---|
| 2839 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
---|
| 2840 | upwd(il, i) = 0.0 |
---|
| 2841 | dnwd(il, i) = 0.0 |
---|
| 2842 | END IF |
---|
| 2843 | END DO |
---|
| 2844 | END DO |
---|
| 2845 | |
---|
| 2846 | DO i = 1, nl |
---|
| 2847 | DO k = 1, nl |
---|
| 2848 | DO il = 1, ncum |
---|
| 2849 | up1(il, k, i) = 0.0 |
---|
| 2850 | dn1(il, k, i) = 0.0 |
---|
| 2851 | END DO |
---|
| 2852 | END DO |
---|
| 2853 | END DO |
---|
| 2854 | |
---|
| 2855 | DO i = 1, nl |
---|
| 2856 | DO k = i, nl |
---|
| 2857 | DO n = 1, i - 1 |
---|
| 2858 | DO il = 1, ncum |
---|
| 2859 | IF (i>=icb(il) .AND. i<=inb(il) .AND. k<=inb(il)) THEN |
---|
| 2860 | up1(il, k, i) = up1(il, k, i) + ment(il, n, k) |
---|
| 2861 | dn1(il, k, i) = dn1(il, k, i) - ment(il, k, n) |
---|
| 2862 | END IF |
---|
| 2863 | END DO |
---|
| 2864 | END DO |
---|
| 2865 | END DO |
---|
| 2866 | END DO |
---|
| 2867 | |
---|
| 2868 | DO i = 2, nl |
---|
| 2869 | DO k = i, nl |
---|
| 2870 | DO il = 1, ncum |
---|
| 2871 | ! test if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) |
---|
| 2872 | ! then |
---|
| 2873 | IF (i<=inb(il) .AND. k<=inb(il)) THEN |
---|
| 2874 | upwd(il, i) = upwd(il, i) + m(il, k) + up1(il, k, i) |
---|
| 2875 | dnwd(il, i) = dnwd(il, i) + dn1(il, k, i) |
---|
| 2876 | END IF |
---|
| 2877 | END DO |
---|
| 2878 | END DO |
---|
| 2879 | END DO |
---|
| 2880 | |
---|
| 2881 | |
---|
| 2882 | ! !!! DO il=1,ncum |
---|
| 2883 | ! !!! do i=icb(il),inb(il) |
---|
| 2884 | ! !!! |
---|
| 2885 | ! !!! upwd(il,i)=0.0 |
---|
| 2886 | ! !!! dnwd(il,i)=0.0 |
---|
| 2887 | ! !!! do k=i,inb(il) |
---|
| 2888 | ! !!! up1=0.0 |
---|
| 2889 | ! !!! dn1=0.0 |
---|
| 2890 | ! !!! do n=1,i-1 |
---|
| 2891 | ! !!! up1=up1+ment(il,n,k) |
---|
| 2892 | ! !!! dn1=dn1-ment(il,k,n) |
---|
| 2893 | ! !!! enddo |
---|
| 2894 | ! !!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
---|
| 2895 | ! !!! dnwd(il,i)=dnwd(il,i)+dn1 |
---|
| 2896 | ! !!! enddo |
---|
| 2897 | ! !!! enddo |
---|
| 2898 | ! !!! |
---|
| 2899 | ! !!! ENDDO |
---|
| 2900 | |
---|
| 2901 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2902 | ! determination de la variation de flux ascendant entre |
---|
| 2903 | ! deux niveau non dilue mike |
---|
| 2904 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2905 | |
---|
| 2906 | DO i = 1, nl |
---|
| 2907 | DO il = 1, ncum |
---|
| 2908 | mike(il, i) = m(il, i) |
---|
| 2909 | END DO |
---|
| 2910 | END DO |
---|
| 2911 | |
---|
| 2912 | DO i = nl + 1, nd |
---|
| 2913 | DO il = 1, ncum |
---|
| 2914 | mike(il, i) = 0. |
---|
| 2915 | END DO |
---|
| 2916 | END DO |
---|
| 2917 | |
---|
| 2918 | DO i = 1, nd |
---|
| 2919 | DO il = 1, ncum |
---|
| 2920 | ma(il, i) = 0 |
---|
| 2921 | END DO |
---|
| 2922 | END DO |
---|
| 2923 | |
---|
| 2924 | DO i = 1, nl |
---|
| 2925 | DO j = i, nl |
---|
| 2926 | DO il = 1, ncum |
---|
| 2927 | ma(il, i) = ma(il, i) + m(il, j) |
---|
| 2928 | END DO |
---|
| 2929 | END DO |
---|
| 2930 | END DO |
---|
| 2931 | |
---|
| 2932 | DO i = nl + 1, nd |
---|
| 2933 | DO il = 1, ncum |
---|
| 2934 | ma(il, i) = 0. |
---|
| 2935 | END DO |
---|
| 2936 | END DO |
---|
| 2937 | |
---|
| 2938 | DO i = 1, nl |
---|
| 2939 | DO il = 1, ncum |
---|
| 2940 | IF (i<=(icb(il)-1)) THEN |
---|
| 2941 | ma(il, i) = 0 |
---|
| 2942 | END IF |
---|
| 2943 | END DO |
---|
| 2944 | END DO |
---|
| 2945 | |
---|
| 2946 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2947 | ! icb represente de niveau ou se trouve la |
---|
| 2948 | ! base du nuage , et inb le top du nuage |
---|
| 2949 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2950 | |
---|
| 2951 | DO i = 1, nd |
---|
| 2952 | DO il = 1, ncum |
---|
| 2953 | mke(il, i) = upwd(il, i) + dnwd(il, i) |
---|
| 2954 | END DO |
---|
| 2955 | END DO |
---|
| 2956 | |
---|
| 2957 | DO i = 1, nd |
---|
| 2958 | DO il = 1, ncum |
---|
| 2959 | rdcp = (rrd*(1.-rr(il,i))-rr(il,i)*rrv)/(cpd*(1.-rr(il, & |
---|
| 2960 | i))+rr(il,i)*cpv) |
---|
| 2961 | tls(il, i) = t(il, i)*(1000.0/p(il,i))**rdcp |
---|
| 2962 | tps(il, i) = tp(il, i) |
---|
| 2963 | END DO |
---|
| 2964 | END DO |
---|
| 2965 | |
---|
| 2966 | |
---|
| 2967 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
---|
| 2968 | ! *** of condensed water *** ! cld |
---|
| 2969 | ! ! cld |
---|
| 2970 | |
---|
| 2971 | DO i = 1, nd ! cld |
---|
| 2972 | DO il = 1, ncum ! cld |
---|
| 2973 | mac(il, i) = 0.0 ! cld |
---|
| 2974 | wa(il, i) = 0.0 ! cld |
---|
| 2975 | siga(il, i) = 0.0 ! cld |
---|
| 2976 | sax(il, i) = 0.0 ! cld |
---|
| 2977 | END DO ! cld |
---|
| 2978 | END DO ! cld |
---|
| 2979 | |
---|
| 2980 | DO i = minorig, nl ! cld |
---|
| 2981 | DO k = i + 1, nl + 1 ! cld |
---|
| 2982 | DO il = 1, ncum ! cld |
---|
| 2983 | IF (i<=inb(il) .AND. k<=(inb(il)+1)) THEN ! cld |
---|
| 2984 | mac(il, i) = mac(il, i) + m(il, k) ! cld |
---|
| 2985 | END IF ! cld |
---|
| 2986 | END DO ! cld |
---|
| 2987 | END DO ! cld |
---|
| 2988 | END DO ! cld |
---|
| 2989 | |
---|
| 2990 | DO i = 1, nl ! cld |
---|
| 2991 | DO j = 1, i ! cld |
---|
| 2992 | DO il = 1, ncum ! cld |
---|
| 2993 | IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
---|
| 2994 | .AND. j>=icb(il)) THEN ! cld |
---|
| 2995 | sax(il, i) = sax(il, i) + rrd*(tvp(il,j)-tv(il,j)) & ! cld |
---|
| 2996 | *(ph(il,j)-ph(il,j+1))/p(il, j) ! cld |
---|
| 2997 | END IF ! cld |
---|
| 2998 | END DO ! cld |
---|
| 2999 | END DO ! cld |
---|
| 3000 | END DO ! cld |
---|
| 3001 | |
---|
| 3002 | DO i = 1, nl ! cld |
---|
| 3003 | DO il = 1, ncum ! cld |
---|
| 3004 | IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
---|
| 3005 | .AND. sax(il,i)>0.0) THEN ! cld |
---|
| 3006 | wa(il, i) = sqrt(2.*sax(il,i)) ! cld |
---|
| 3007 | END IF ! cld |
---|
| 3008 | END DO ! cld |
---|
| 3009 | END DO ! cld |
---|
| 3010 | |
---|
| 3011 | DO i = 1, nl ! cld |
---|
| 3012 | DO il = 1, ncum ! cld |
---|
| 3013 | IF (wa(il,i)>0.0) & ! cld |
---|
| 3014 | siga(il, i) = mac(il, i)/wa(il, i) & ! cld |
---|
| 3015 | *rrd*tvp(il, i)/p(il, i)/100./delta ! cld |
---|
| 3016 | siga(il, i) = min(siga(il,i), 1.0) ! cld |
---|
| 3017 | ! IM cf. FH |
---|
| 3018 | IF (iflag_clw==0) THEN |
---|
| 3019 | qcondc(il, i) = siga(il, i)*clw(il, i)*(1.-ep(il,i)) & ! cld |
---|
| 3020 | +(1.-siga(il,i))*qcond(il, i) ! cld |
---|
| 3021 | ELSE IF (iflag_clw==1) THEN |
---|
| 3022 | qcondc(il, i) = qcond(il, i) ! cld |
---|
| 3023 | END IF |
---|
| 3024 | |
---|
| 3025 | END DO ! cld |
---|
| 3026 | END DO ! cld |
---|
| 3027 | |
---|
| 3028 | RETURN |
---|
| 3029 | END SUBROUTINE cv30_yield |
---|
| 3030 | |
---|
| 3031 | ! !RomP >>> |
---|
| 3032 | SUBROUTINE cv30_tracer(nloc, len, ncum, nd, na, ment, sij, da, phi, phi2, & |
---|
| 3033 | d1a, dam, ep, vprecip, elij, clw, epmlmmm, eplamm, icb, inb) |
---|
| 3034 | IMPLICIT NONE |
---|
| 3035 | |
---|
| 3036 | include "cv30param.h" |
---|
| 3037 | |
---|
| 3038 | ! inputs: |
---|
| 3039 | INTEGER ncum, nd, na, nloc, len |
---|
| 3040 | REAL ment(nloc, na, na), sij(nloc, na, na) |
---|
| 3041 | REAL clw(nloc, nd), elij(nloc, na, na) |
---|
| 3042 | REAL ep(nloc, na) |
---|
| 3043 | INTEGER icb(nloc), inb(nloc) |
---|
| 3044 | REAL vprecip(nloc, nd+1) |
---|
| 3045 | ! ouputs: |
---|
| 3046 | REAL da(nloc, na), phi(nloc, na, na) |
---|
| 3047 | REAL phi2(nloc, na, na) |
---|
| 3048 | REAL d1a(nloc, na), dam(nloc, na) |
---|
| 3049 | REAL epmlmmm(nloc, na, na), eplamm(nloc, na) |
---|
| 3050 | ! variables pour tracer dans precip de l'AA et des mel |
---|
| 3051 | ! local variables: |
---|
| 3052 | INTEGER i, j, k |
---|
| 3053 | REAL epm(nloc, na, na) |
---|
| 3054 | |
---|
| 3055 | ! variables d'Emanuel : du second indice au troisieme |
---|
| 3056 | ! ---> tab(i,k,j) -> de l origine k a l arrivee j |
---|
| 3057 | ! ment, sij, elij |
---|
| 3058 | ! variables personnelles : du troisieme au second indice |
---|
| 3059 | ! ---> tab(i,j,k) -> de k a j |
---|
| 3060 | ! phi, phi2 |
---|
| 3061 | |
---|
| 3062 | ! initialisations |
---|
| 3063 | DO j = 1, na |
---|
| 3064 | DO i = 1, ncum |
---|
| 3065 | da(i, j) = 0. |
---|
| 3066 | d1a(i, j) = 0. |
---|
| 3067 | dam(i, j) = 0. |
---|
| 3068 | eplamm(i, j) = 0. |
---|
| 3069 | END DO |
---|
| 3070 | END DO |
---|
| 3071 | DO k = 1, na |
---|
| 3072 | DO j = 1, na |
---|
| 3073 | DO i = 1, ncum |
---|
| 3074 | epm(i, j, k) = 0. |
---|
| 3075 | epmlmmm(i, j, k) = 0. |
---|
| 3076 | phi(i, j, k) = 0. |
---|
| 3077 | phi2(i, j, k) = 0. |
---|
| 3078 | END DO |
---|
| 3079 | END DO |
---|
| 3080 | END DO |
---|
| 3081 | |
---|
| 3082 | ! fraction deau condensee dans les melanges convertie en precip : epm |
---|
| 3083 | ! et eau condensée précipitée dans masse d'air saturé : l_m*dM_m/dzdz.dzdz |
---|
| 3084 | DO j = 1, na |
---|
| 3085 | DO k = 1, j - 1 |
---|
| 3086 | DO i = 1, ncum |
---|
| 3087 | IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
---|
| 3088 | ! !jyg epm(i,j,k)=1.-(1.-ep(i,j))*clw(i,j)/elij(i,k,j) |
---|
| 3089 | epm(i, j, k) = 1. - (1.-ep(i,j))*clw(i, j)/max(elij(i,k,j), 1.E-16) |
---|
| 3090 | ! ! |
---|
| 3091 | epm(i, j, k) = max(epm(i,j,k), 0.0) |
---|
| 3092 | END IF |
---|
| 3093 | END DO |
---|
| 3094 | END DO |
---|
| 3095 | END DO |
---|
| 3096 | |
---|
| 3097 | DO j = 1, na |
---|
| 3098 | DO k = 1, na |
---|
| 3099 | DO i = 1, ncum |
---|
| 3100 | IF (k>=icb(i) .AND. k<=inb(i)) THEN |
---|
| 3101 | eplamm(i, j) = eplamm(i, j) + ep(i, j)*clw(i, j)*ment(i, j, k)*(1.- & |
---|
| 3102 | sij(i,j,k)) |
---|
| 3103 | END IF |
---|
| 3104 | END DO |
---|
| 3105 | END DO |
---|
| 3106 | END DO |
---|
| 3107 | |
---|
| 3108 | DO j = 1, na |
---|
| 3109 | DO k = 1, j - 1 |
---|
| 3110 | DO i = 1, ncum |
---|
| 3111 | IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
---|
| 3112 | epmlmmm(i, j, k) = epm(i, j, k)*elij(i, k, j)*ment(i, k, j) |
---|
| 3113 | END IF |
---|
| 3114 | END DO |
---|
| 3115 | END DO |
---|
| 3116 | END DO |
---|
| 3117 | |
---|
| 3118 | ! matrices pour calculer la tendance des concentrations dans cvltr.F90 |
---|
| 3119 | DO j = 1, na |
---|
| 3120 | DO k = 1, na |
---|
| 3121 | DO i = 1, ncum |
---|
| 3122 | da(i, j) = da(i, j) + (1.-sij(i,k,j))*ment(i, k, j) |
---|
| 3123 | phi(i, j, k) = sij(i, k, j)*ment(i, k, j) |
---|
| 3124 | d1a(i, j) = d1a(i, j) + ment(i, k, j)*ep(i, k)*(1.-sij(i,k,j)) |
---|
| 3125 | END DO |
---|
| 3126 | END DO |
---|
| 3127 | END DO |
---|
| 3128 | |
---|
| 3129 | DO j = 1, na |
---|
| 3130 | DO k = 1, j - 1 |
---|
| 3131 | DO i = 1, ncum |
---|
| 3132 | dam(i, j) = dam(i, j) + ment(i, k, j)*epm(i, j, k)*(1.-ep(i,k))*(1.- & |
---|
| 3133 | sij(i,k,j)) |
---|
| 3134 | phi2(i, j, k) = phi(i, j, k)*epm(i, j, k) |
---|
| 3135 | END DO |
---|
| 3136 | END DO |
---|
| 3137 | END DO |
---|
| 3138 | |
---|
| 3139 | RETURN |
---|
| 3140 | END SUBROUTINE cv30_tracer |
---|
| 3141 | ! RomP <<< |
---|
| 3142 | |
---|
| 3143 | SUBROUTINE cv30_uncompress(nloc, len, ncum, nd, ntra, idcum, iflag, precip, & |
---|
| 3144 | vprecip, evap, ep, sig, w0, ft, fq, fu, fv, ftra, inb, ma, upwd, dnwd, & |
---|
| 3145 | dnwd0, qcondc, wd, cape, da, phi, mp, phi2, d1a, dam, sij, elij, clw, & |
---|
[2481] | 3146 | epmlmmm, eplamm, wdtraina, wdtrainm,epmax_diag, iflag1, precip1, vprecip1, evap1, & |
---|
[1992] | 3147 | ep1, sig1, w01, ft1, fq1, fu1, fv1, ftra1, inb1, ma1, upwd1, dnwd1, & |
---|
| 3148 | dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1, phi21, d1a1, dam1, sij1, & |
---|
[2481] | 3149 | elij1, clw1, epmlmmm1, eplamm1, wdtraina1, wdtrainm1,epmax_diag1) ! epmax_cape |
---|
[1992] | 3150 | IMPLICIT NONE |
---|
| 3151 | |
---|
| 3152 | include "cv30param.h" |
---|
| 3153 | |
---|
| 3154 | ! inputs: |
---|
| 3155 | INTEGER len, ncum, nd, ntra, nloc |
---|
| 3156 | INTEGER idcum(nloc) |
---|
| 3157 | INTEGER iflag(nloc) |
---|
| 3158 | INTEGER inb(nloc) |
---|
| 3159 | REAL precip(nloc) |
---|
| 3160 | REAL vprecip(nloc, nd+1), evap(nloc, nd) |
---|
| 3161 | REAL ep(nloc, nd) |
---|
| 3162 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
| 3163 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
| 3164 | REAL ftra(nloc, nd, ntra) |
---|
| 3165 | REAL ma(nloc, nd) |
---|
| 3166 | REAL upwd(nloc, nd), dnwd(nloc, nd), dnwd0(nloc, nd) |
---|
| 3167 | REAL qcondc(nloc, nd) |
---|
| 3168 | REAL wd(nloc), cape(nloc) |
---|
| 3169 | REAL da(nloc, nd), phi(nloc, nd, nd), mp(nloc, nd) |
---|
[2481] | 3170 | REAL epmax_diag(nloc) ! epmax_cape |
---|
[1992] | 3171 | ! RomP >>> |
---|
| 3172 | REAL phi2(nloc, nd, nd) |
---|
| 3173 | REAL d1a(nloc, nd), dam(nloc, nd) |
---|
| 3174 | REAL wdtraina(nloc, nd), wdtrainm(nloc, nd) |
---|
| 3175 | REAL sij(nloc, nd, nd) |
---|
| 3176 | REAL elij(nloc, nd, nd), clw(nloc, nd) |
---|
| 3177 | REAL epmlmmm(nloc, nd, nd), eplamm(nloc, nd) |
---|
| 3178 | ! RomP <<< |
---|
| 3179 | |
---|
| 3180 | ! outputs: |
---|
| 3181 | INTEGER iflag1(len) |
---|
| 3182 | INTEGER inb1(len) |
---|
| 3183 | REAL precip1(len) |
---|
| 3184 | REAL vprecip1(len, nd+1), evap1(len, nd) !<<< RomP |
---|
| 3185 | REAL ep1(len, nd) !<<< RomP |
---|
| 3186 | REAL sig1(len, nd), w01(len, nd) |
---|
| 3187 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
---|
| 3188 | REAL ftra1(len, nd, ntra) |
---|
| 3189 | REAL ma1(len, nd) |
---|
| 3190 | REAL upwd1(len, nd), dnwd1(len, nd), dnwd01(len, nd) |
---|
| 3191 | REAL qcondc1(nloc, nd) |
---|
| 3192 | REAL wd1(nloc), cape1(nloc) |
---|
| 3193 | REAL da1(nloc, nd), phi1(nloc, nd, nd), mp1(nloc, nd) |
---|
[2481] | 3194 | REAL epmax_diag1(len) ! epmax_cape |
---|
[1992] | 3195 | ! RomP >>> |
---|
| 3196 | REAL phi21(len, nd, nd) |
---|
| 3197 | REAL d1a1(len, nd), dam1(len, nd) |
---|
| 3198 | REAL wdtraina1(len, nd), wdtrainm1(len, nd) |
---|
| 3199 | REAL sij1(len, nd, nd) |
---|
| 3200 | REAL elij1(len, nd, nd), clw1(len, nd) |
---|
| 3201 | REAL epmlmmm1(len, nd, nd), eplamm1(len, nd) |
---|
| 3202 | ! RomP <<< |
---|
| 3203 | |
---|
| 3204 | ! local variables: |
---|
| 3205 | INTEGER i, k, j |
---|
| 3206 | |
---|
| 3207 | DO i = 1, ncum |
---|
| 3208 | precip1(idcum(i)) = precip(i) |
---|
| 3209 | iflag1(idcum(i)) = iflag(i) |
---|
| 3210 | wd1(idcum(i)) = wd(i) |
---|
| 3211 | inb1(idcum(i)) = inb(i) |
---|
| 3212 | cape1(idcum(i)) = cape(i) |
---|
[2481] | 3213 | epmax_diag1(idcum(i))=epmax_diag(i) ! epmax_cape |
---|
[1992] | 3214 | END DO |
---|
| 3215 | |
---|
| 3216 | DO k = 1, nl |
---|
| 3217 | DO i = 1, ncum |
---|
| 3218 | vprecip1(idcum(i), k) = vprecip(i, k) |
---|
| 3219 | evap1(idcum(i), k) = evap(i, k) !<<< RomP |
---|
| 3220 | sig1(idcum(i), k) = sig(i, k) |
---|
| 3221 | w01(idcum(i), k) = w0(i, k) |
---|
| 3222 | ft1(idcum(i), k) = ft(i, k) |
---|
| 3223 | fq1(idcum(i), k) = fq(i, k) |
---|
| 3224 | fu1(idcum(i), k) = fu(i, k) |
---|
| 3225 | fv1(idcum(i), k) = fv(i, k) |
---|
| 3226 | ma1(idcum(i), k) = ma(i, k) |
---|
| 3227 | upwd1(idcum(i), k) = upwd(i, k) |
---|
| 3228 | dnwd1(idcum(i), k) = dnwd(i, k) |
---|
| 3229 | dnwd01(idcum(i), k) = dnwd0(i, k) |
---|
| 3230 | qcondc1(idcum(i), k) = qcondc(i, k) |
---|
| 3231 | da1(idcum(i), k) = da(i, k) |
---|
| 3232 | mp1(idcum(i), k) = mp(i, k) |
---|
| 3233 | ! RomP >>> |
---|
| 3234 | ep1(idcum(i), k) = ep(i, k) |
---|
| 3235 | d1a1(idcum(i), k) = d1a(i, k) |
---|
| 3236 | dam1(idcum(i), k) = dam(i, k) |
---|
| 3237 | clw1(idcum(i), k) = clw(i, k) |
---|
| 3238 | eplamm1(idcum(i), k) = eplamm(i, k) |
---|
| 3239 | wdtraina1(idcum(i), k) = wdtraina(i, k) |
---|
| 3240 | wdtrainm1(idcum(i), k) = wdtrainm(i, k) |
---|
| 3241 | ! RomP <<< |
---|
| 3242 | END DO |
---|
| 3243 | END DO |
---|
| 3244 | |
---|
| 3245 | DO i = 1, ncum |
---|
| 3246 | sig1(idcum(i), nd) = sig(i, nd) |
---|
| 3247 | END DO |
---|
| 3248 | |
---|
| 3249 | |
---|
| 3250 | ! do 2100 j=1,ntra |
---|
| 3251 | ! do 2110 k=1,nd ! oct3 |
---|
| 3252 | ! do 2120 i=1,ncum |
---|
| 3253 | ! ftra1(idcum(i),k,j)=ftra(i,k,j) |
---|
| 3254 | ! 2120 continue |
---|
| 3255 | ! 2110 continue |
---|
| 3256 | ! 2100 continue |
---|
| 3257 | DO j = 1, nd |
---|
| 3258 | DO k = 1, nd |
---|
| 3259 | DO i = 1, ncum |
---|
| 3260 | sij1(idcum(i), k, j) = sij(i, k, j) |
---|
| 3261 | phi1(idcum(i), k, j) = phi(i, k, j) |
---|
| 3262 | phi21(idcum(i), k, j) = phi2(i, k, j) |
---|
| 3263 | elij1(idcum(i), k, j) = elij(i, k, j) |
---|
| 3264 | epmlmmm1(idcum(i), k, j) = epmlmmm(i, k, j) |
---|
| 3265 | END DO |
---|
| 3266 | END DO |
---|
| 3267 | END DO |
---|
| 3268 | |
---|
| 3269 | RETURN |
---|
| 3270 | END SUBROUTINE cv30_uncompress |
---|
| 3271 | |
---|
[2481] | 3272 | subroutine cv30_epmax_fn_cape(nloc,ncum,nd & |
---|
| 3273 | ,cape,ep,hp,icb,inb,clw,nk,t,h,lv & |
---|
| 3274 | ,epmax_diag) |
---|
| 3275 | implicit none |
---|
| 3276 | |
---|
| 3277 | ! On fait varier epmax en fn de la cape |
---|
| 3278 | ! Il faut donc recalculer ep, et hp qui a déjà été calculé et |
---|
| 3279 | ! qui en dépend |
---|
| 3280 | ! Toutes les autres variables fn de ep sont calculées plus bas. |
---|
| 3281 | |
---|
| 3282 | #include "cvthermo.h" |
---|
| 3283 | #include "cv30param.h" |
---|
| 3284 | #include "conema3.h" |
---|
| 3285 | |
---|
| 3286 | ! inputs: |
---|
| 3287 | integer ncum, nd, nloc |
---|
| 3288 | integer icb(nloc), inb(nloc) |
---|
| 3289 | real cape(nloc) |
---|
| 3290 | real clw(nloc,nd),lv(nloc,nd),t(nloc,nd),h(nloc,nd) |
---|
| 3291 | integer nk(nloc) |
---|
| 3292 | ! inouts: |
---|
| 3293 | real ep(nloc,nd) |
---|
| 3294 | real hp(nloc,nd) |
---|
| 3295 | ! outputs ou local |
---|
| 3296 | real epmax_diag(nloc) |
---|
| 3297 | ! locals |
---|
| 3298 | integer i,k |
---|
| 3299 | real hp_bak(nloc,nd) |
---|
| 3300 | |
---|
| 3301 | ! on recalcule ep et hp |
---|
| 3302 | |
---|
| 3303 | if (coef_epmax_cape.gt.1e-12) then |
---|
| 3304 | do i=1,ncum |
---|
| 3305 | epmax_diag(i)=epmax-coef_epmax_cape*sqrt(cape(i)) |
---|
| 3306 | do k=1,nl |
---|
| 3307 | ep(i,k)=ep(i,k)/epmax*epmax_diag(i) |
---|
| 3308 | ep(i,k)=amax1(ep(i,k),0.0) |
---|
| 3309 | ep(i,k)=amin1(ep(i,k),epmax_diag(i)) |
---|
| 3310 | enddo |
---|
| 3311 | enddo |
---|
| 3312 | |
---|
| 3313 | ! On recalcule hp: |
---|
| 3314 | do k=1,nl |
---|
| 3315 | do i=1,ncum |
---|
| 3316 | hp_bak(i,k)=hp(i,k) |
---|
| 3317 | enddo |
---|
| 3318 | enddo |
---|
| 3319 | do k=1,nlp |
---|
| 3320 | do i=1,ncum |
---|
| 3321 | hp(i,k)=h(i,k) |
---|
| 3322 | enddo |
---|
| 3323 | enddo |
---|
| 3324 | do k=minorig+1,nl |
---|
| 3325 | do i=1,ncum |
---|
| 3326 | if((k.ge.icb(i)).and.(k.le.inb(i)))then |
---|
| 3327 | hp(i,k)=h(i,nk(i))+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
---|
| 3328 | endif |
---|
| 3329 | enddo |
---|
| 3330 | enddo !do k=minorig+1,n |
---|
| 3331 | ! write(*,*) 'cv30_routines 6218: hp(1,20)=',hp(1,20) |
---|
| 3332 | do i=1,ncum |
---|
| 3333 | do k=1,nl |
---|
| 3334 | if (abs(hp_bak(i,k)-hp(i,k)).gt.0.01) then |
---|
| 3335 | write(*,*) 'i,k=',i,k |
---|
| 3336 | write(*,*) 'coef_epmax_cape=',coef_epmax_cape |
---|
| 3337 | write(*,*) 'epmax_diag(i)=',epmax_diag(i) |
---|
| 3338 | write(*,*) 'ep(i,k)=',ep(i,k) |
---|
| 3339 | write(*,*) 'hp(i,k)=',hp(i,k) |
---|
| 3340 | write(*,*) 'hp_bak(i,k)=',hp_bak(i,k) |
---|
| 3341 | write(*,*) 'h(i,k)=',h(i,k) |
---|
| 3342 | write(*,*) 'nk(i)=',nk(i) |
---|
| 3343 | write(*,*) 'h(i,nk(i))=',h(i,nk(i)) |
---|
| 3344 | write(*,*) 'lv(i,k)=',lv(i,k) |
---|
| 3345 | write(*,*) 't(i,k)=',t(i,k) |
---|
| 3346 | write(*,*) 'clw(i,k)=',clw(i,k) |
---|
| 3347 | write(*,*) 'cpd,cpv=',cpd,cpv |
---|
| 3348 | stop |
---|
| 3349 | endif |
---|
| 3350 | enddo !do k=1,nl |
---|
| 3351 | enddo !do i=1,ncum |
---|
| 3352 | endif !if (coef_epmax_cape.gt.1e-12) then |
---|
| 3353 | |
---|
| 3354 | return |
---|
| 3355 | end subroutine cv30_epmax_fn_cape |
---|
| 3356 | |
---|
| 3357 | |
---|