1 | |
---|
2 | ! $Id: convect2.F90 2346 2015-08-21 15:13:46Z jbmadeleine $ |
---|
3 | |
---|
4 | SUBROUTINE convect2(ncum, idcum, len, nd, ndp1, nl, minorig, nk1, icb1, t1, & |
---|
5 | q1, qs1, u1, v1, gz1, tv1, tp1, tvp1, clw1, h1, lv1, cpn1, p1, ph1, ft1, & |
---|
6 | fq1, fu1, fv1, tnk1, qnk1, gznk1, plcl1, precip1, cbmf1, iflag1, delt, & |
---|
7 | cpd, cpv, cl, rv, rd, lv0, g, sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, & |
---|
8 | damp, alpha, entp, coeffs, coeffr, omtrain, cu, ma) |
---|
9 | ! .............................START PROLOGUE............................ |
---|
10 | |
---|
11 | ! SCCS IDENTIFICATION: @(#)convect2.f 1.2 05/18/00 |
---|
12 | ! 22:06:22 /h/cm/library/nogaps4/src/sub/fcst/convect2.f_v |
---|
13 | |
---|
14 | ! CONFIGURATION IDENTIFICATION: None |
---|
15 | |
---|
16 | ! MODULE NAME: convect2 |
---|
17 | |
---|
18 | ! DESCRIPTION: |
---|
19 | |
---|
20 | ! convect1 The Emanuel Cumulus Convection Scheme - compute tendencies |
---|
21 | |
---|
22 | ! CONTRACT NUMBER AND TITLE: None |
---|
23 | |
---|
24 | ! REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng |
---|
25 | ! (NRL) |
---|
26 | |
---|
27 | ! CLASSIFICATION: Unclassified |
---|
28 | |
---|
29 | ! RESTRICTIONS: None |
---|
30 | |
---|
31 | ! COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 |
---|
32 | |
---|
33 | ! COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" |
---|
34 | ! Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 |
---|
35 | |
---|
36 | ! LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a |
---|
37 | |
---|
38 | ! USAGE: call convect2(ncum,idcum,len,nd,nl,minorig, |
---|
39 | ! & nk1,icb1, |
---|
40 | ! & t1,q1,qs1,u1,v1,gz1,tv1,tp1,tvp1,clw1,h1, |
---|
41 | ! & lv1,cpn1,p1,ph1,ft1,fq1,fu1,fv1, |
---|
42 | ! & tnk1,qnk1,gznk1,plcl1, |
---|
43 | ! & precip1,cbmf1,iflag1, |
---|
44 | ! & delt,cpd,cpv,cl,rv,rd,lv0,g, |
---|
45 | ! & sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp, |
---|
46 | ! & alpha,entp,coeffs,coeffr,omtrain,cu) |
---|
47 | |
---|
48 | ! PARAMETERS: |
---|
49 | ! Name Type Usage Description |
---|
50 | ! ---------- ---------- ------- ---------------------------- |
---|
51 | |
---|
52 | ! ncum Integer Input number of cumulus points |
---|
53 | ! idcum Integer Input index of cumulus point |
---|
54 | ! len Integer Input first dimension |
---|
55 | ! nd Integer Input total vertical dimension |
---|
56 | ! ndp1 Integer Input nd + 1 |
---|
57 | ! nl Integer Input vertical dimension for |
---|
58 | ! convection |
---|
59 | ! minorig Integer Input First level where convection is |
---|
60 | ! allow to begin |
---|
61 | ! nk1 Integer Input First level of convection |
---|
62 | ! ncb1 Integer Input Level of free convection |
---|
63 | ! t1 Real Input temperature |
---|
64 | ! q1 Real Input specific hum |
---|
65 | ! qs1 Real Input sat specific hum |
---|
66 | ! u1 Real Input u-wind |
---|
67 | ! v1 Real Input v-wind |
---|
68 | ! gz1 Real Inout geop |
---|
69 | ! tv1 Real Input virtual temp |
---|
70 | ! tp1 Real Input |
---|
71 | ! clw1 Real Inout cloud liquid water |
---|
72 | ! h1 Real Inout |
---|
73 | ! lv1 Real Inout |
---|
74 | ! cpn1 Real Inout |
---|
75 | ! p1 Real Input full level pressure |
---|
76 | ! ph1 Real Input half level pressure |
---|
77 | ! ft1 Real Output temp tend |
---|
78 | ! fq1 Real Output spec hum tend |
---|
79 | ! fu1 Real Output u-wind tend |
---|
80 | ! fv1 Real Output v-wind tend |
---|
81 | ! precip1 Real Output prec |
---|
82 | ! cbmf1 Real In/Out cumulus mass flux |
---|
83 | ! iflag1 Integer Output iflag on latitude strip |
---|
84 | ! delt Real Input time step |
---|
85 | ! cpd Integer Input See description below |
---|
86 | ! cpv Integer Input See description below |
---|
87 | ! cl Integer Input See description below |
---|
88 | ! rv Integer Input See description below |
---|
89 | ! rd Integer Input See description below |
---|
90 | ! lv0 Integer Input See description below |
---|
91 | ! g Integer Input See description below |
---|
92 | ! sigs Integer Input See description below |
---|
93 | ! sigd Integer Input See description below |
---|
94 | ! elcrit Integer Input See description below |
---|
95 | ! tlcrit Integer Input See description below |
---|
96 | ! omtsnow Integer Input See description below |
---|
97 | ! dtmax Integer Input See description below |
---|
98 | ! damp Integer Input See description below |
---|
99 | ! alpha Integer Input See description below |
---|
100 | ! ent Integer Input See description below |
---|
101 | ! coeffs Integer Input See description below |
---|
102 | ! coeffr Integer Input See description below |
---|
103 | ! omtrain Integer Input See description below |
---|
104 | ! cu Integer Input See description below |
---|
105 | |
---|
106 | ! COMMON BLOCKS: |
---|
107 | ! Block Name Type Usage Notes |
---|
108 | ! -------- -------- ---- ------ ------------------------ |
---|
109 | |
---|
110 | ! FILES: None |
---|
111 | |
---|
112 | ! DATA BASES: None |
---|
113 | |
---|
114 | ! NON-FILE INPUT/OUTPUT: None |
---|
115 | |
---|
116 | ! ERROR CONDITIONS: None |
---|
117 | |
---|
118 | ! ADDITIONAL COMMENTS: None |
---|
119 | |
---|
120 | ! .................MAINTENANCE SECTION................................ |
---|
121 | |
---|
122 | ! MODULES CALLED: |
---|
123 | ! Name Description |
---|
124 | ! zilch Zero out an array |
---|
125 | ! ------- ---------------------- |
---|
126 | ! LOCAL VARIABLES AND |
---|
127 | ! STRUCTURES: |
---|
128 | ! Name Type Description |
---|
129 | ! ------- ------ ----------- |
---|
130 | ! See Comments Below |
---|
131 | |
---|
132 | ! i Integer loop index |
---|
133 | ! k Integer loop index |
---|
134 | |
---|
135 | ! METHOD: |
---|
136 | |
---|
137 | ! See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation |
---|
138 | ! of a |
---|
139 | ! convective scheme for use in climate models. |
---|
140 | |
---|
141 | ! FILES: None |
---|
142 | |
---|
143 | ! INCLUDE FILES: None |
---|
144 | |
---|
145 | ! MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak |
---|
146 | |
---|
147 | ! ..............................END PROLOGUE............................. |
---|
148 | |
---|
149 | |
---|
150 | USE dimphy |
---|
151 | IMPLICIT NONE |
---|
152 | |
---|
153 | INTEGER kmax2, imax2, kmin2, imin2 |
---|
154 | REAL ftmax2, ftmin2 |
---|
155 | INTEGER kmax, imax, kmin, imin |
---|
156 | REAL ftmax, ftmin |
---|
157 | |
---|
158 | INTEGER ncum |
---|
159 | INTEGER len |
---|
160 | INTEGER idcum(len) |
---|
161 | INTEGER nd |
---|
162 | INTEGER ndp1 |
---|
163 | INTEGER nl |
---|
164 | INTEGER minorig |
---|
165 | INTEGER nk1(len) |
---|
166 | INTEGER icb1(len) |
---|
167 | REAL t1(len, nd) |
---|
168 | REAL q1(len, nd) |
---|
169 | REAL qs1(len, nd) |
---|
170 | REAL u1(len, nd) |
---|
171 | REAL v1(len, nd) |
---|
172 | REAL gz1(len, nd) |
---|
173 | REAL tv1(len, nd) |
---|
174 | REAL tp1(len, nd) |
---|
175 | REAL tvp1(len, nd) |
---|
176 | REAL clw1(len, nd) |
---|
177 | REAL h1(len, nd) |
---|
178 | REAL lv1(len, nd) |
---|
179 | REAL cpn1(len, nd) |
---|
180 | REAL p1(len, nd) |
---|
181 | REAL ph1(len, ndp1) |
---|
182 | REAL ft1(len, nd) |
---|
183 | REAL fq1(len, nd) |
---|
184 | REAL fu1(len, nd) |
---|
185 | REAL fv1(len, nd) |
---|
186 | REAL tnk1(len) |
---|
187 | REAL qnk1(len) |
---|
188 | REAL gznk1(len) |
---|
189 | REAL precip1(len) |
---|
190 | REAL cbmf1(len) |
---|
191 | REAL plcl1(len) |
---|
192 | INTEGER iflag1(len) |
---|
193 | REAL delt |
---|
194 | REAL cpd |
---|
195 | REAL cpv |
---|
196 | REAL cl |
---|
197 | REAL rv |
---|
198 | REAL rd |
---|
199 | REAL lv0 |
---|
200 | REAL g |
---|
201 | REAL sigs ! SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE |
---|
202 | REAL sigd ! SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT |
---|
203 | REAL elcrit ! ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) |
---|
204 | REAL tlcrit ! TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- |
---|
205 | ! CONVERSION THRESHOLD IS ASSUMED TO BE ZERO |
---|
206 | REAL omtsnow ! OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW |
---|
207 | REAL dtmax ! DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION |
---|
208 | ! A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC. |
---|
209 | REAL damp |
---|
210 | REAL alpha |
---|
211 | REAL entp ! ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT FORMULATION |
---|
212 | REAL coeffs ! COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF |
---|
213 | ! SNOW |
---|
214 | REAL coeffr ! COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF |
---|
215 | ! RAIN |
---|
216 | REAL omtrain ! OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN |
---|
217 | REAL cu ! CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM TRANSPORT |
---|
218 | |
---|
219 | REAL ma(len, nd) |
---|
220 | |
---|
221 | |
---|
222 | ! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
223 | ! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
224 | ! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
225 | ! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
226 | ! *** BETWEEN 0 C AND TLCRIT) *** |
---|
227 | ! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
228 | ! *** FORMULATION *** |
---|
229 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
230 | ! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
231 | ! *** OF CLOUD *** |
---|
232 | ! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
233 | ! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
234 | ! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
235 | ! *** OF RAIN *** |
---|
236 | ! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
237 | ! *** OF SNOW *** |
---|
238 | ! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
239 | ! *** TRANSPORT *** |
---|
240 | ! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
241 | ! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
242 | ! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
243 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
244 | ! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
245 | ! *** (DAMP MUST BE LESS THAN 1) *** |
---|
246 | |
---|
247 | ! Local arrays. |
---|
248 | |
---|
249 | REAL work(ncum) |
---|
250 | REAL t(ncum, klev) |
---|
251 | REAL q(ncum, klev) |
---|
252 | REAL qs(ncum, klev) |
---|
253 | REAL u(ncum, klev) |
---|
254 | REAL v(ncum, klev) |
---|
255 | REAL gz(ncum, klev) |
---|
256 | REAL h(ncum, klev) |
---|
257 | REAL lv(ncum, klev) |
---|
258 | REAL cpn(ncum, klev) |
---|
259 | REAL p(ncum, klev) |
---|
260 | REAL ph(ncum, klev) |
---|
261 | REAL ft(ncum, klev) |
---|
262 | REAL fq(ncum, klev) |
---|
263 | REAL fu(ncum, klev) |
---|
264 | REAL fv(ncum, klev) |
---|
265 | REAL precip(ncum) |
---|
266 | REAL cbmf(ncum) |
---|
267 | REAL plcl(ncum) |
---|
268 | REAL tnk(ncum) |
---|
269 | REAL qnk(ncum) |
---|
270 | REAL gznk(ncum) |
---|
271 | REAL tv(ncum, klev) |
---|
272 | REAL tp(ncum, klev) |
---|
273 | REAL tvp(ncum, klev) |
---|
274 | REAL clw(ncum, klev) |
---|
275 | ! real det(ncum,klev) |
---|
276 | REAL dph(ncum, klev) |
---|
277 | ! real wd(ncum) |
---|
278 | ! real tprime(ncum) |
---|
279 | ! real qprime(ncum) |
---|
280 | REAL ah0(ncum) |
---|
281 | REAL ep(ncum, klev) |
---|
282 | REAL sigp(ncum, klev) |
---|
283 | INTEGER nent(ncum, klev) |
---|
284 | REAL water(ncum, klev) |
---|
285 | REAL evap(ncum, klev) |
---|
286 | REAL mp(ncum, klev) |
---|
287 | REAL m(ncum, klev) |
---|
288 | REAL qti |
---|
289 | REAL wt(ncum, klev) |
---|
290 | REAL hp(ncum, klev) |
---|
291 | REAL lvcp(ncum, klev) |
---|
292 | REAL elij(ncum, klev, klev) |
---|
293 | REAL ment(ncum, klev, klev) |
---|
294 | REAL sij(ncum, klev, klev) |
---|
295 | REAL qent(ncum, klev, klev) |
---|
296 | REAL uent(ncum, klev, klev) |
---|
297 | REAL vent(ncum, klev, klev) |
---|
298 | REAL qp(ncum, klev) |
---|
299 | REAL up(ncum, klev) |
---|
300 | REAL vp(ncum, klev) |
---|
301 | REAL cape(ncum) |
---|
302 | REAL capem(ncum) |
---|
303 | REAL frac(ncum) |
---|
304 | REAL dtpbl(ncum) |
---|
305 | REAL tvpplcl(ncum) |
---|
306 | REAL tvaplcl(ncum) |
---|
307 | REAL dtmin(ncum) |
---|
308 | REAL w3d(ncum, klev) |
---|
309 | REAL am(ncum) |
---|
310 | REAL ents(ncum) |
---|
311 | REAL uav(ncum) |
---|
312 | REAL vav(ncum) |
---|
313 | |
---|
314 | INTEGER iflag(ncum) |
---|
315 | INTEGER nk(ncum) |
---|
316 | INTEGER icb(ncum) |
---|
317 | INTEGER inb(ncum) |
---|
318 | INTEGER inb1(ncum) |
---|
319 | INTEGER jtt(ncum) |
---|
320 | |
---|
321 | INTEGER nn, i, k, n, icbmax, nlp, j |
---|
322 | INTEGER ij |
---|
323 | INTEGER nn2, nn3 |
---|
324 | REAL clmcpv |
---|
325 | REAL clmcpd |
---|
326 | REAL cpdmcp |
---|
327 | REAL cpvmcpd |
---|
328 | REAL eps |
---|
329 | REAL epsi |
---|
330 | REAL epsim1 |
---|
331 | REAL tg, qg, s, alv, tc, ahg, denom, es, rg, ginv, rowl |
---|
332 | REAL delti |
---|
333 | REAL tca, elacrit |
---|
334 | REAL by, defrac |
---|
335 | ! real byp |
---|
336 | REAL byp(ncum) |
---|
337 | LOGICAL lcape(ncum) |
---|
338 | REAL dbo |
---|
339 | REAL bf2, anum, dei, altem, cwat, stemp |
---|
340 | REAL alt, qp1, smid, sjmax, sjmin |
---|
341 | REAL delp, delm |
---|
342 | REAL awat, coeff, afac, revap, dhdp, fac, qstm, rat |
---|
343 | REAL qsm, sigt, b6, c6 |
---|
344 | REAL dpinv, cpinv |
---|
345 | REAL fqold, ftold, fuold, fvold |
---|
346 | REAL wdtrain(ncum), xxx |
---|
347 | REAL bsum(ncum, klev) |
---|
348 | REAL asij(ncum) |
---|
349 | REAL smin(ncum) |
---|
350 | REAL scrit(ncum) |
---|
351 | ! real amp1,ad |
---|
352 | REAL amp1(ncum), ad(ncum) |
---|
353 | LOGICAL lwork(ncum) |
---|
354 | INTEGER num1, num2 |
---|
355 | |
---|
356 | ! print*,'cpd en entree de convect2 ',cpd |
---|
357 | nlp = nl + 1 |
---|
358 | |
---|
359 | rowl = 1000.0 |
---|
360 | ginv = 1.0/g |
---|
361 | delti = 1.0/delt |
---|
362 | |
---|
363 | ! Define some thermodynamic variables. |
---|
364 | |
---|
365 | clmcpv = cl - cpv |
---|
366 | clmcpd = cl - cpd |
---|
367 | cpdmcp = cpd - cpv |
---|
368 | cpvmcpd = cpv - cpd |
---|
369 | eps = rd/rv |
---|
370 | epsi = 1.0/eps |
---|
371 | epsim1 = epsi - 1.0 |
---|
372 | |
---|
373 | ! Compress the fields. |
---|
374 | |
---|
375 | DO k = 1, nl + 1 |
---|
376 | nn = 0 |
---|
377 | DO i = 1, len |
---|
378 | IF (iflag1(i)==0) THEN |
---|
379 | nn = nn + 1 |
---|
380 | t(nn, k) = t1(i, k) |
---|
381 | q(nn, k) = q1(i, k) |
---|
382 | qs(nn, k) = qs1(i, k) |
---|
383 | u(nn, k) = u1(i, k) |
---|
384 | v(nn, k) = v1(i, k) |
---|
385 | gz(nn, k) = gz1(i, k) |
---|
386 | h(nn, k) = h1(i, k) |
---|
387 | lv(nn, k) = lv1(i, k) |
---|
388 | cpn(nn, k) = cpn1(i, k) |
---|
389 | p(nn, k) = p1(i, k) |
---|
390 | ph(nn, k) = ph1(i, k) |
---|
391 | tv(nn, k) = tv1(i, k) |
---|
392 | tp(nn, k) = tp1(i, k) |
---|
393 | tvp(nn, k) = tvp1(i, k) |
---|
394 | clw(nn, k) = clw1(i, k) |
---|
395 | END IF |
---|
396 | END DO |
---|
397 | ! print*,'100 ncum,nn',ncum,nn |
---|
398 | END DO |
---|
399 | nn = 0 |
---|
400 | DO i = 1, len |
---|
401 | IF (iflag1(i)==0) THEN |
---|
402 | nn = nn + 1 |
---|
403 | cbmf(nn) = cbmf1(i) |
---|
404 | plcl(nn) = plcl1(i) |
---|
405 | tnk(nn) = tnk1(i) |
---|
406 | qnk(nn) = qnk1(i) |
---|
407 | gznk(nn) = gznk1(i) |
---|
408 | nk(nn) = nk1(i) |
---|
409 | icb(nn) = icb1(i) |
---|
410 | iflag(nn) = iflag1(i) |
---|
411 | END IF |
---|
412 | END DO |
---|
413 | ! print*,'150 ncum,nn',ncum,nn |
---|
414 | |
---|
415 | ! Initialize the tendencies, det, wd, tprime, qprime. |
---|
416 | |
---|
417 | DO k = 1, nl |
---|
418 | DO i = 1, ncum |
---|
419 | ! det(i,k)=0.0 |
---|
420 | ft(i, k) = 0.0 |
---|
421 | fu(i, k) = 0.0 |
---|
422 | fv(i, k) = 0.0 |
---|
423 | fq(i, k) = 0.0 |
---|
424 | dph(i, k) = ph(i, k) - ph(i, k+1) |
---|
425 | ep(i, k) = 0.0 |
---|
426 | sigp(i, k) = sigs |
---|
427 | END DO |
---|
428 | END DO |
---|
429 | DO i = 1, ncum |
---|
430 | ! wd(i)=0.0 |
---|
431 | ! tprime(i)=0.0 |
---|
432 | ! qprime(i)=0.0 |
---|
433 | precip(i) = 0.0 |
---|
434 | ft(i, nl+1) = 0.0 |
---|
435 | fu(i, nl+1) = 0.0 |
---|
436 | fv(i, nl+1) = 0.0 |
---|
437 | fq(i, nl+1) = 0.0 |
---|
438 | END DO |
---|
439 | |
---|
440 | ! Compute icbmax. |
---|
441 | |
---|
442 | icbmax = 2 |
---|
443 | DO i = 1, ncum |
---|
444 | icbmax = max(icbmax, icb(i)) |
---|
445 | END DO |
---|
446 | |
---|
447 | |
---|
448 | ! ===================================================================== |
---|
449 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
450 | ! ===================================================================== |
---|
451 | |
---|
452 | ! --- The procedure is to solve the equation. |
---|
453 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
454 | |
---|
455 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
456 | |
---|
457 | |
---|
458 | DO i = 1, ncum |
---|
459 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
---|
460 | 273.15)) + gznk(i) |
---|
461 | END DO |
---|
462 | |
---|
463 | |
---|
464 | ! *** Find lifted parcel quantities above cloud base *** |
---|
465 | |
---|
466 | |
---|
467 | DO k = minorig + 1, nl |
---|
468 | DO i = 1, ncum |
---|
469 | IF (k>=(icb(i)+1)) THEN |
---|
470 | tg = t(i, k) |
---|
471 | qg = qs(i, k) |
---|
472 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
473 | |
---|
474 | ! First iteration. |
---|
475 | |
---|
476 | s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) |
---|
477 | s = 1./s |
---|
478 | ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
---|
479 | tg = tg + s*(ah0(i)-ahg) |
---|
480 | tg = max(tg, 35.0) |
---|
481 | tc = tg - 273.15 |
---|
482 | denom = 243.5 + tc |
---|
483 | IF (tc>=0.0) THEN |
---|
484 | es = 6.112*exp(17.67*tc/denom) |
---|
485 | ELSE |
---|
486 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
487 | END IF |
---|
488 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
489 | |
---|
490 | ! Second iteration. |
---|
491 | |
---|
492 | s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) |
---|
493 | s = 1./s |
---|
494 | ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
---|
495 | tg = tg + s*(ah0(i)-ahg) |
---|
496 | tg = max(tg, 35.0) |
---|
497 | tc = tg - 273.15 |
---|
498 | denom = 243.5 + tc |
---|
499 | IF (tc>=0.0) THEN |
---|
500 | es = 6.112*exp(17.67*tc/denom) |
---|
501 | ELSE |
---|
502 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
503 | END IF |
---|
504 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
505 | |
---|
506 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
507 | ! print*,'cpd dans convect2 ',cpd |
---|
508 | ! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
509 | ! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
510 | tp(i, k) = (ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
511 | ! if (.not.cpd.gt.1000.) then |
---|
512 | ! print*,'CPD=',cpd |
---|
513 | ! stop |
---|
514 | ! endif |
---|
515 | clw(i, k) = qnk(i) - qg |
---|
516 | clw(i, k) = max(0.0, clw(i,k)) |
---|
517 | rg = qg/(1.-qnk(i)) |
---|
518 | tvp(i, k) = tp(i, k)*(1.+rg*epsi) |
---|
519 | END IF |
---|
520 | END DO |
---|
521 | END DO |
---|
522 | |
---|
523 | ! ===================================================================== |
---|
524 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
525 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
526 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
527 | ! ===================================================================== |
---|
528 | |
---|
529 | DO k = minorig + 1, nl |
---|
530 | DO i = 1, ncum |
---|
531 | IF (k>=(nk(i)+1)) THEN |
---|
532 | tca = tp(i, k) - 273.15 |
---|
533 | IF (tca>=0.0) THEN |
---|
534 | elacrit = elcrit |
---|
535 | ELSE |
---|
536 | elacrit = elcrit*(1.0-tca/tlcrit) |
---|
537 | END IF |
---|
538 | elacrit = max(elacrit, 0.0) |
---|
539 | ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) |
---|
540 | ep(i, k) = max(ep(i,k), 0.0) |
---|
541 | ep(i, k) = min(ep(i,k), 1.0) |
---|
542 | sigp(i, k) = sigs |
---|
543 | END IF |
---|
544 | END DO |
---|
545 | END DO |
---|
546 | |
---|
547 | ! ===================================================================== |
---|
548 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
549 | ! --- VIRTUAL TEMPERATURE |
---|
550 | ! ===================================================================== |
---|
551 | |
---|
552 | DO k = minorig + 1, nl |
---|
553 | DO i = 1, ncum |
---|
554 | IF (k>=(icb(i)+1)) THEN |
---|
555 | tvp(i, k) = tvp(i, k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
556 | ! print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
557 | ! print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
558 | END IF |
---|
559 | END DO |
---|
560 | END DO |
---|
561 | DO i = 1, ncum |
---|
562 | tvp(i, nlp) = tvp(i, nl) - (gz(i,nlp)-gz(i,nl))/cpd |
---|
563 | END DO |
---|
564 | |
---|
565 | |
---|
566 | ! ===================================================================== |
---|
567 | ! --- NOW INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
568 | ! ===================================================================== |
---|
569 | |
---|
570 | DO i = 1, ncum*nlp |
---|
571 | nent(i, 1) = 0 |
---|
572 | water(i, 1) = 0.0 |
---|
573 | evap(i, 1) = 0.0 |
---|
574 | mp(i, 1) = 0.0 |
---|
575 | m(i, 1) = 0.0 |
---|
576 | wt(i, 1) = omtsnow |
---|
577 | hp(i, 1) = h(i, 1) |
---|
578 | ! if(.not.cpn(i,1).gt.900.) then |
---|
579 | ! print*,'i,lv(i,1),cpn(i,1)' |
---|
580 | ! print*, i,lv(i,1),cpn(i,1) |
---|
581 | ! k=(i-1)/ncum+1 |
---|
582 | ! print*,'i,k',mod(i,ncum),k,' cpn',cpn(mod(i,ncum),k) |
---|
583 | ! stop |
---|
584 | ! endif |
---|
585 | lvcp(i, 1) = lv(i, 1)/cpn(i, 1) |
---|
586 | END DO |
---|
587 | |
---|
588 | DO i = 1, ncum*nlp*nlp |
---|
589 | elij(i, 1, 1) = 0.0 |
---|
590 | ment(i, 1, 1) = 0.0 |
---|
591 | sij(i, 1, 1) = 0.0 |
---|
592 | END DO |
---|
593 | |
---|
594 | DO k = 1, nlp |
---|
595 | DO j = 1, nlp |
---|
596 | DO i = 1, ncum |
---|
597 | qent(i, k, j) = q(i, j) |
---|
598 | uent(i, k, j) = u(i, j) |
---|
599 | vent(i, k, j) = v(i, j) |
---|
600 | END DO |
---|
601 | END DO |
---|
602 | END DO |
---|
603 | |
---|
604 | DO i = 1, ncum |
---|
605 | qp(i, 1) = q(i, 1) |
---|
606 | up(i, 1) = u(i, 1) |
---|
607 | vp(i, 1) = v(i, 1) |
---|
608 | END DO |
---|
609 | DO k = 2, nlp |
---|
610 | DO i = 1, ncum |
---|
611 | qp(i, k) = q(i, k-1) |
---|
612 | up(i, k) = u(i, k-1) |
---|
613 | vp(i, k) = v(i, k-1) |
---|
614 | END DO |
---|
615 | END DO |
---|
616 | |
---|
617 | ! ===================================================================== |
---|
618 | ! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
619 | ! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
620 | ! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
621 | ! ===================================================================== |
---|
622 | |
---|
623 | DO i = 1, ncum |
---|
624 | cape(i) = 0.0 |
---|
625 | capem(i) = 0.0 |
---|
626 | inb(i) = icb(i) + 1 |
---|
627 | inb1(i) = inb(i) |
---|
628 | END DO |
---|
629 | |
---|
630 | ! Originial Code |
---|
631 | |
---|
632 | ! do 530 k=minorig+1,nl-1 |
---|
633 | ! do 520 i=1,ncum |
---|
634 | ! if(k.ge.(icb(i)+1))then |
---|
635 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
636 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
637 | ! cape(i)=cape(i)+by |
---|
638 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
639 | ! if(cape(i).gt.0.0)then |
---|
640 | ! inb(i)=k+1 |
---|
641 | ! capem(i)=cape(i) |
---|
642 | ! endif |
---|
643 | ! endif |
---|
644 | ! 520 continue |
---|
645 | ! 530 continue |
---|
646 | ! do 540 i=1,ncum |
---|
647 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
648 | ! cape(i)=capem(i)+byp |
---|
649 | ! defrac=capem(i)-cape(i) |
---|
650 | ! defrac=max(defrac,0.001) |
---|
651 | ! frac(i)=-cape(i)/defrac |
---|
652 | ! frac(i)=min(frac(i),1.0) |
---|
653 | ! frac(i)=max(frac(i),0.0) |
---|
654 | ! 540 continue |
---|
655 | |
---|
656 | ! K Emanuel fix |
---|
657 | |
---|
658 | ! call zilch(byp,ncum) |
---|
659 | ! do 530 k=minorig+1,nl-1 |
---|
660 | ! do 520 i=1,ncum |
---|
661 | ! if(k.ge.(icb(i)+1))then |
---|
662 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
663 | ! cape(i)=cape(i)+by |
---|
664 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
665 | ! if(cape(i).gt.0.0)then |
---|
666 | ! inb(i)=k+1 |
---|
667 | ! capem(i)=cape(i) |
---|
668 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
669 | ! endif |
---|
670 | ! endif |
---|
671 | ! 520 continue |
---|
672 | ! 530 continue |
---|
673 | ! do 540 i=1,ncum |
---|
674 | ! inb(i)=max(inb(i),inb1(i)) |
---|
675 | ! cape(i)=capem(i)+byp(i) |
---|
676 | ! defrac=capem(i)-cape(i) |
---|
677 | ! defrac=max(defrac,0.001) |
---|
678 | ! frac(i)=-cape(i)/defrac |
---|
679 | ! frac(i)=min(frac(i),1.0) |
---|
680 | ! frac(i)=max(frac(i),0.0) |
---|
681 | ! 540 continue |
---|
682 | |
---|
683 | ! J Teixeira fix |
---|
684 | |
---|
685 | CALL zilch(byp, ncum) |
---|
686 | DO i = 1, ncum |
---|
687 | lcape(i) = .TRUE. |
---|
688 | END DO |
---|
689 | DO k = minorig + 1, nl - 1 |
---|
690 | DO i = 1, ncum |
---|
691 | IF (cape(i)<0.0) lcape(i) = .FALSE. |
---|
692 | IF ((k>=(icb(i)+1)) .AND. lcape(i)) THEN |
---|
693 | by = (tvp(i,k)-tv(i,k))*dph(i, k)/p(i, k) |
---|
694 | byp(i) = (tvp(i,k+1)-tv(i,k+1))*dph(i, k+1)/p(i, k+1) |
---|
695 | cape(i) = cape(i) + by |
---|
696 | IF (by>=0.0) inb1(i) = k + 1 |
---|
697 | IF (cape(i)>0.0) THEN |
---|
698 | inb(i) = k + 1 |
---|
699 | capem(i) = cape(i) |
---|
700 | END IF |
---|
701 | END IF |
---|
702 | END DO |
---|
703 | END DO |
---|
704 | DO i = 1, ncum |
---|
705 | cape(i) = capem(i) + byp(i) |
---|
706 | defrac = capem(i) - cape(i) |
---|
707 | defrac = max(defrac, 0.001) |
---|
708 | frac(i) = -cape(i)/defrac |
---|
709 | frac(i) = min(frac(i), 1.0) |
---|
710 | frac(i) = max(frac(i), 0.0) |
---|
711 | END DO |
---|
712 | |
---|
713 | ! ===================================================================== |
---|
714 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
715 | ! ===================================================================== |
---|
716 | |
---|
717 | DO k = minorig + 1, nl |
---|
718 | DO i = 1, ncum |
---|
719 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
720 | hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
---|
721 | ) |
---|
722 | END IF |
---|
723 | END DO |
---|
724 | END DO |
---|
725 | |
---|
726 | ! ===================================================================== |
---|
727 | ! --- CALCULATE CLOUD BASE MASS FLUX AND RATES OF MIXING, M(I), |
---|
728 | ! --- AT EACH MODEL LEVEL |
---|
729 | ! ===================================================================== |
---|
730 | |
---|
731 | ! tvpplcl = parcel temperature lifted adiabatically from level |
---|
732 | ! icb-1 to the LCL. |
---|
733 | ! tvaplcl = virtual temperature at the LCL. |
---|
734 | |
---|
735 | DO i = 1, ncum |
---|
736 | dtpbl(i) = 0.0 |
---|
737 | tvpplcl(i) = tvp(i, icb(i)-1) - rd*tvp(i, icb(i)-1)*(p(i,icb(i)-1)-plcl(i & |
---|
738 | ))/(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
---|
739 | tvaplcl(i) = tv(i, icb(i)) + (tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i & |
---|
740 | ,icb(i)))/(p(i,icb(i))-p(i,icb(i)+1)) |
---|
741 | END DO |
---|
742 | |
---|
743 | ! ------------------------------------------------------------------- |
---|
744 | ! --- Interpolate difference between lifted parcel and |
---|
745 | ! --- environmental temperatures to lifted condensation level |
---|
746 | ! ------------------------------------------------------------------- |
---|
747 | |
---|
748 | ! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
749 | |
---|
750 | DO k = minorig, icbmax |
---|
751 | DO i = 1, ncum |
---|
752 | IF ((k>=nk(i)) .AND. (k<=(icb(i)-1))) THEN |
---|
753 | dtpbl(i) = dtpbl(i) + (tvp(i,k)-tv(i,k))*dph(i, k) |
---|
754 | END IF |
---|
755 | END DO |
---|
756 | END DO |
---|
757 | DO i = 1, ncum |
---|
758 | dtpbl(i) = dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
---|
759 | dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) |
---|
760 | END DO |
---|
761 | |
---|
762 | ! ------------------------------------------------------------------- |
---|
763 | ! --- Adjust cloud base mass flux |
---|
764 | ! ------------------------------------------------------------------- |
---|
765 | |
---|
766 | DO i = 1, ncum |
---|
767 | work(i) = cbmf(i) |
---|
768 | cbmf(i) = max(0.0, (1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
---|
769 | IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN |
---|
770 | iflag(i) = 3 |
---|
771 | END IF |
---|
772 | END DO |
---|
773 | |
---|
774 | ! ------------------------------------------------------------------- |
---|
775 | ! --- Calculate rates of mixing, m(i) |
---|
776 | ! ------------------------------------------------------------------- |
---|
777 | |
---|
778 | CALL zilch(work, ncum) |
---|
779 | |
---|
780 | DO j = minorig + 1, nl |
---|
781 | DO i = 1, ncum |
---|
782 | IF ((j>=(icb(i)+1)) .AND. (j<=inb(i))) THEN |
---|
783 | k = min(j, inb1(i)) |
---|
784 | dbo = abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) + & |
---|
785 | entp*0.04*(ph(i,k)-ph(i,k+1)) |
---|
786 | work(i) = work(i) + dbo |
---|
787 | m(i, j) = cbmf(i)*dbo |
---|
788 | END IF |
---|
789 | END DO |
---|
790 | END DO |
---|
791 | DO k = minorig + 1, nl |
---|
792 | DO i = 1, ncum |
---|
793 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
---|
794 | m(i, k) = m(i, k)/work(i) |
---|
795 | END IF |
---|
796 | END DO |
---|
797 | END DO |
---|
798 | |
---|
799 | |
---|
800 | ! ===================================================================== |
---|
801 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
802 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
803 | ! --- FRACTION (sij) |
---|
804 | ! ===================================================================== |
---|
805 | |
---|
806 | |
---|
807 | DO i = minorig + 1, nl |
---|
808 | DO j = minorig + 1, nl |
---|
809 | DO ij = 1, ncum |
---|
810 | IF ((i>=(icb(ij)+1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & |
---|
811 | inb(ij))) THEN |
---|
812 | qti = qnk(ij) - ep(ij, i)*clw(ij, i) |
---|
813 | bf2 = 1. + lv(ij, j)*lv(ij, j)*qs(ij, j)/(rv*t(ij,j)*t(ij,j)*cpd) |
---|
814 | anum = h(ij, j) - hp(ij, i) + (cpv-cpd)*t(ij, j)*(qti-q(ij,j)) |
---|
815 | denom = h(ij, i) - hp(ij, i) + (cpd-cpv)*(q(ij,i)-qti)*t(ij, j) |
---|
816 | dei = denom |
---|
817 | IF (abs(dei)<0.01) dei = 0.01 |
---|
818 | sij(ij, i, j) = anum/dei |
---|
819 | sij(ij, i, i) = 1.0 |
---|
820 | altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
---|
821 | altem = altem/bf2 |
---|
822 | cwat = clw(ij, j)*(1.-ep(ij,j)) |
---|
823 | stemp = sij(ij, i, j) |
---|
824 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
825 | anum = anum - lv(ij, j)*(qti-qs(ij,j)-cwat*bf2) |
---|
826 | denom = denom + lv(ij, j)*(q(ij,i)-qti) |
---|
827 | IF (abs(denom)<0.01) denom = 0.01 |
---|
828 | sij(ij, i, j) = anum/denom |
---|
829 | altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
---|
830 | altem = altem - (bf2-1.)*cwat |
---|
831 | END IF |
---|
832 | IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
---|
833 | qent(ij, i, j) = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti |
---|
834 | uent(ij, i, j) = sij(ij, i, j)*u(ij, i) + & |
---|
835 | (1.-sij(ij,i,j))*u(ij, nk(ij)) |
---|
836 | vent(ij, i, j) = sij(ij, i, j)*v(ij, i) + & |
---|
837 | (1.-sij(ij,i,j))*v(ij, nk(ij)) |
---|
838 | elij(ij, i, j) = altem |
---|
839 | elij(ij, i, j) = max(0.0, elij(ij,i,j)) |
---|
840 | ment(ij, i, j) = m(ij, i)/(1.-sij(ij,i,j)) |
---|
841 | nent(ij, i) = nent(ij, i) + 1 |
---|
842 | END IF |
---|
843 | sij(ij, i, j) = max(0.0, sij(ij,i,j)) |
---|
844 | sij(ij, i, j) = min(1.0, sij(ij,i,j)) |
---|
845 | END IF |
---|
846 | END DO |
---|
847 | END DO |
---|
848 | |
---|
849 | ! *** If no air can entrain at level i assume that updraft detrains |
---|
850 | ! *** |
---|
851 | ! *** at that level and calculate detrained air flux and properties |
---|
852 | ! *** |
---|
853 | |
---|
854 | DO ij = 1, ncum |
---|
855 | IF ((i>=(icb(ij)+1)) .AND. (i<=inb(ij)) .AND. (nent(ij,i)==0)) THEN |
---|
856 | ment(ij, i, i) = m(ij, i) |
---|
857 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
858 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
859 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
860 | elij(ij, i, i) = clw(ij, i) |
---|
861 | sij(ij, i, i) = 1.0 |
---|
862 | END IF |
---|
863 | END DO |
---|
864 | END DO |
---|
865 | |
---|
866 | DO i = 1, ncum |
---|
867 | sij(i, inb(i), inb(i)) = 1.0 |
---|
868 | END DO |
---|
869 | |
---|
870 | ! ===================================================================== |
---|
871 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
872 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
873 | ! ===================================================================== |
---|
874 | |
---|
875 | |
---|
876 | CALL zilch(bsum, ncum*nlp) |
---|
877 | DO ij = 1, ncum |
---|
878 | lwork(ij) = .FALSE. |
---|
879 | END DO |
---|
880 | DO i = minorig + 1, nl |
---|
881 | |
---|
882 | num1 = 0 |
---|
883 | DO ij = 1, ncum |
---|
884 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) num1 = num1 + 1 |
---|
885 | END DO |
---|
886 | IF (num1<=0) GO TO 789 |
---|
887 | |
---|
888 | DO ij = 1, ncum |
---|
889 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) THEN |
---|
890 | lwork(ij) = (nent(ij,i)/=0) |
---|
891 | qp1 = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
892 | anum = h(ij, i) - hp(ij, i) - lv(ij, i)*(qp1-qs(ij,i)) |
---|
893 | denom = h(ij, i) - hp(ij, i) + lv(ij, i)*(q(ij,i)-qp1) |
---|
894 | IF (abs(denom)<0.01) denom = 0.01 |
---|
895 | scrit(ij) = anum/denom |
---|
896 | alt = qp1 - qs(ij, i) + scrit(ij)*(q(ij,i)-qp1) |
---|
897 | IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 |
---|
898 | asij(ij) = 0.0 |
---|
899 | smin(ij) = 1.0 |
---|
900 | END IF |
---|
901 | END DO |
---|
902 | DO j = minorig, nl |
---|
903 | |
---|
904 | num2 = 0 |
---|
905 | DO ij = 1, ncum |
---|
906 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
907 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 |
---|
908 | END DO |
---|
909 | IF (num2<=0) GO TO 783 |
---|
910 | |
---|
911 | DO ij = 1, ncum |
---|
912 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
913 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
914 | IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
---|
915 | IF (j>i) THEN |
---|
916 | smid = min(sij(ij,i,j), scrit(ij)) |
---|
917 | sjmax = smid |
---|
918 | sjmin = smid |
---|
919 | IF (smid<smin(ij) .AND. sij(ij,i,j+1)<smid) THEN |
---|
920 | smin(ij) = smid |
---|
921 | sjmax = min(sij(ij,i,j+1), sij(ij,i,j), scrit(ij)) |
---|
922 | sjmin = max(sij(ij,i,j-1), sij(ij,i,j)) |
---|
923 | sjmin = min(sjmin, scrit(ij)) |
---|
924 | END IF |
---|
925 | ELSE |
---|
926 | sjmax = max(sij(ij,i,j+1), scrit(ij)) |
---|
927 | smid = max(sij(ij,i,j), scrit(ij)) |
---|
928 | sjmin = 0.0 |
---|
929 | IF (j>1) sjmin = sij(ij, i, j-1) |
---|
930 | sjmin = max(sjmin, scrit(ij)) |
---|
931 | END IF |
---|
932 | delp = abs(sjmax-smid) |
---|
933 | delm = abs(sjmin-smid) |
---|
934 | asij(ij) = asij(ij) + (delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
---|
935 | ment(ij, i, j) = ment(ij, i, j)*(delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
---|
936 | END IF |
---|
937 | END IF |
---|
938 | END DO |
---|
939 | 783 END DO |
---|
940 | DO ij = 1, ncum |
---|
941 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN |
---|
942 | asij(ij) = max(1.0E-21, asij(ij)) |
---|
943 | asij(ij) = 1.0/asij(ij) |
---|
944 | bsum(ij, i) = 0.0 |
---|
945 | END IF |
---|
946 | END DO |
---|
947 | DO j = minorig, nl + 1 |
---|
948 | DO ij = 1, ncum |
---|
949 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
950 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
951 | ment(ij, i, j) = ment(ij, i, j)*asij(ij) |
---|
952 | bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) |
---|
953 | END IF |
---|
954 | END DO |
---|
955 | END DO |
---|
956 | DO ij = 1, ncum |
---|
957 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & |
---|
958 | i)<1.0E-18) .AND. lwork(ij)) THEN |
---|
959 | nent(ij, i) = 0 |
---|
960 | ment(ij, i, i) = m(ij, i) |
---|
961 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
962 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
963 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
964 | elij(ij, i, i) = clw(ij, i) |
---|
965 | sij(ij, i, i) = 1.0 |
---|
966 | END IF |
---|
967 | END DO |
---|
968 | 789 END DO |
---|
969 | |
---|
970 | ! ===================================================================== |
---|
971 | ! --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
972 | ! ===================================================================== |
---|
973 | |
---|
974 | ! *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
975 | ! *** downdraft calculation *** |
---|
976 | |
---|
977 | |
---|
978 | ! *** Integrate liquid water equation to find condensed water *** |
---|
979 | ! *** and condensed water flux *** |
---|
980 | |
---|
981 | |
---|
982 | DO i = 1, ncum |
---|
983 | jtt(i) = 2 |
---|
984 | IF (ep(i,inb(i))<=0.0001) iflag(i) = 2 |
---|
985 | IF (iflag(i)==0) THEN |
---|
986 | lwork(i) = .TRUE. |
---|
987 | ELSE |
---|
988 | lwork(i) = .FALSE. |
---|
989 | END IF |
---|
990 | END DO |
---|
991 | |
---|
992 | ! *** Begin downdraft loop *** |
---|
993 | |
---|
994 | |
---|
995 | CALL zilch(wdtrain, ncum) |
---|
996 | DO i = nl + 1, 1, -1 |
---|
997 | |
---|
998 | num1 = 0 |
---|
999 | DO ij = 1, ncum |
---|
1000 | IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 |
---|
1001 | END DO |
---|
1002 | IF (num1<=0) GO TO 899 |
---|
1003 | |
---|
1004 | |
---|
1005 | ! *** Calculate detrained precipitation *** |
---|
1006 | |
---|
1007 | DO ij = 1, ncum |
---|
1008 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1009 | wdtrain(ij) = g*ep(ij, i)*m(ij, i)*clw(ij, i) |
---|
1010 | END IF |
---|
1011 | END DO |
---|
1012 | |
---|
1013 | IF (i>1) THEN |
---|
1014 | DO j = 1, i - 1 |
---|
1015 | DO ij = 1, ncum |
---|
1016 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1017 | awat = elij(ij, j, i) - (1.-ep(ij,i))*clw(ij, i) |
---|
1018 | awat = max(0.0, awat) |
---|
1019 | wdtrain(ij) = wdtrain(ij) + g*awat*ment(ij, j, i) |
---|
1020 | END IF |
---|
1021 | END DO |
---|
1022 | END DO |
---|
1023 | END IF |
---|
1024 | |
---|
1025 | ! *** Find rain water and evaporation using provisional *** |
---|
1026 | ! *** estimates of qp(i)and qp(i-1) *** |
---|
1027 | |
---|
1028 | |
---|
1029 | ! *** Value of terminal velocity and coeffecient of evaporation for snow |
---|
1030 | ! *** |
---|
1031 | |
---|
1032 | DO ij = 1, ncum |
---|
1033 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
1034 | coeff = coeffs |
---|
1035 | wt(ij, i) = omtsnow |
---|
1036 | |
---|
1037 | ! *** Value of terminal velocity and coeffecient of evaporation for |
---|
1038 | ! rain *** |
---|
1039 | |
---|
1040 | IF (t(ij,i)>273.0) THEN |
---|
1041 | coeff = coeffr |
---|
1042 | wt(ij, i) = omtrain |
---|
1043 | END IF |
---|
1044 | qsm = 0.5*(q(ij,i)+qp(ij,i+1)) |
---|
1045 | afac = coeff*ph(ij, i)*(qs(ij,i)-qsm)/(1.0E4+2.0E3*ph(ij,i)*qs(ij,i)) |
---|
1046 | afac = max(afac, 0.0) |
---|
1047 | sigt = sigp(ij, i) |
---|
1048 | sigt = max(0.0, sigt) |
---|
1049 | sigt = min(1.0, sigt) |
---|
1050 | b6 = 100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij, i) |
---|
1051 | c6 = (water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij, i) |
---|
1052 | revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
1053 | evap(ij, i) = sigt*afac*revap |
---|
1054 | water(ij, i) = revap*revap |
---|
1055 | |
---|
1056 | ! *** Calculate precipitating downdraft mass flux under *** |
---|
1057 | ! *** hydrostatic approximation *** |
---|
1058 | |
---|
1059 | IF (i>1) THEN |
---|
1060 | dhdp = (h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
---|
1061 | dhdp = max(dhdp, 10.0) |
---|
1062 | mp(ij, i) = 100.*ginv*lv(ij, i)*sigd*evap(ij, i)/dhdp |
---|
1063 | mp(ij, i) = max(mp(ij,i), 0.0) |
---|
1064 | |
---|
1065 | ! *** Add small amount of inertia to downdraft *** |
---|
1066 | |
---|
1067 | fac = 20.0/(ph(ij,i-1)-ph(ij,i)) |
---|
1068 | mp(ij, i) = (fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
---|
1069 | |
---|
1070 | ! *** Force mp to decrease linearly to zero |
---|
1071 | ! *** |
---|
1072 | ! *** between about 950 mb and the surface |
---|
1073 | ! *** |
---|
1074 | |
---|
1075 | IF (p(ij,i)>(0.949*p(ij,1))) THEN |
---|
1076 | jtt(ij) = max(jtt(ij), i) |
---|
1077 | mp(ij, i) = mp(ij, jtt(ij))*(p(ij,1)-p(ij,i))/ & |
---|
1078 | (p(ij,1)-p(ij,jtt(ij))) |
---|
1079 | END IF |
---|
1080 | END IF |
---|
1081 | |
---|
1082 | ! *** Find mixing ratio of precipitating downdraft *** |
---|
1083 | |
---|
1084 | IF (i/=inb(ij)) THEN |
---|
1085 | IF (i==1) THEN |
---|
1086 | qstm = qs(ij, 1) |
---|
1087 | ELSE |
---|
1088 | qstm = qs(ij, i-1) |
---|
1089 | END IF |
---|
1090 | IF (mp(ij,i)>mp(ij,i+1)) THEN |
---|
1091 | rat = mp(ij, i+1)/mp(ij, i) |
---|
1092 | qp(ij, i) = qp(ij, i+1)*rat + q(ij, i)*(1.0-rat) + & |
---|
1093 | 100.*ginv*sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
---|
1094 | up(ij, i) = up(ij, i+1)*rat + u(ij, i)*(1.-rat) |
---|
1095 | vp(ij, i) = vp(ij, i+1)*rat + v(ij, i)*(1.-rat) |
---|
1096 | ELSE |
---|
1097 | IF (mp(ij,i+1)>0.0) THEN |
---|
1098 | qp(ij, i) = (gz(ij,i+1)-gz(ij,i)+qp(ij,i+1)*(lv(ij,i+1)+t(ij, & |
---|
1099 | i+1)*(cl-cpd))+cpd*(t(ij,i+1)-t(ij, & |
---|
1100 | i)))/(lv(ij,i)+t(ij,i)*(cl-cpd)) |
---|
1101 | up(ij, i) = up(ij, i+1) |
---|
1102 | vp(ij, i) = vp(ij, i+1) |
---|
1103 | END IF |
---|
1104 | END IF |
---|
1105 | qp(ij, i) = min(qp(ij,i), qstm) |
---|
1106 | qp(ij, i) = max(qp(ij,i), 0.0) |
---|
1107 | END IF |
---|
1108 | END IF |
---|
1109 | END DO |
---|
1110 | 899 END DO |
---|
1111 | |
---|
1112 | ! *** Calculate surface precipitation in mm/day *** |
---|
1113 | |
---|
1114 | DO i = 1, ncum |
---|
1115 | IF (iflag(i)<=1) THEN |
---|
1116 | ! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
1117 | ! c & /(rowl*g) |
---|
1118 | ! c precip(i)=precip(i)*delt/86400. |
---|
1119 | precip(i) = wt(i, 1)*sigd*water(i, 1)*86400/g |
---|
1120 | END IF |
---|
1121 | END DO |
---|
1122 | |
---|
1123 | |
---|
1124 | ! *** Calculate downdraft velocity scale and surface temperature and *** |
---|
1125 | ! *** water vapor fluctuations *** |
---|
1126 | |
---|
1127 | ! wd=beta*abs(mp(icb))*0.01*rd*t(icb)/(sigd*p(icb)) |
---|
1128 | ! qprime=0.5*(qp(1)-q(1)) |
---|
1129 | ! tprime=lv0*qprime/cpd |
---|
1130 | |
---|
1131 | ! *** Calculate tendencies of lowest level potential temperature *** |
---|
1132 | ! *** and mixing ratio *** |
---|
1133 | |
---|
1134 | DO i = 1, ncum |
---|
1135 | work(i) = 0.01/(ph(i,1)-ph(i,2)) |
---|
1136 | am(i) = 0.0 |
---|
1137 | END DO |
---|
1138 | DO k = 2, nl |
---|
1139 | DO i = 1, ncum |
---|
1140 | IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN |
---|
1141 | am(i) = am(i) + m(i, k) |
---|
1142 | END IF |
---|
1143 | END DO |
---|
1144 | END DO |
---|
1145 | DO i = 1, ncum |
---|
1146 | IF ((g*work(i)*am(i))>=delti) iflag(i) = 1 |
---|
1147 | ft(i, 1) = ft(i, 1) + g*work(i)*am(i)*(t(i,2)-t(i,1)+(gz(i,2)-gz(i, & |
---|
1148 | 1))/cpn(i,1)) |
---|
1149 | ft(i, 1) = ft(i, 1) - lvcp(i, 1)*sigd*evap(i, 1) |
---|
1150 | ft(i, 1) = ft(i, 1) + sigd*wt(i, 2)*(cl-cpd)*water(i, 2)*(t(i,2)-t(i,1))* & |
---|
1151 | work(i)/cpn(i, 1) |
---|
1152 | fq(i, 1) = fq(i, 1) + g*mp(i, 2)*(qp(i,2)-q(i,1))*work(i) + & |
---|
1153 | sigd*evap(i, 1) |
---|
1154 | fq(i, 1) = fq(i, 1) + g*am(i)*(q(i,2)-q(i,1))*work(i) |
---|
1155 | fu(i, 1) = fu(i, 1) + g*work(i)*(mp(i,2)*(up(i,2)-u(i,1))+am(i)*(u(i, & |
---|
1156 | 2)-u(i,1))) |
---|
1157 | fv(i, 1) = fv(i, 1) + g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1))+am(i)*(v(i, & |
---|
1158 | 2)-v(i,1))) |
---|
1159 | END DO |
---|
1160 | DO j = 2, nl |
---|
1161 | DO i = 1, ncum |
---|
1162 | IF (j<=inb(i)) THEN |
---|
1163 | fq(i, 1) = fq(i, 1) + g*work(i)*ment(i, j, 1)*(qent(i,j,1)-q(i,1)) |
---|
1164 | fu(i, 1) = fu(i, 1) + g*work(i)*ment(i, j, 1)*(uent(i,j,1)-u(i,1)) |
---|
1165 | fv(i, 1) = fv(i, 1) + g*work(i)*ment(i, j, 1)*(vent(i,j,1)-v(i,1)) |
---|
1166 | END IF |
---|
1167 | END DO |
---|
1168 | END DO |
---|
1169 | |
---|
1170 | ! *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
1171 | ! *** at levels above the lowest level *** |
---|
1172 | |
---|
1173 | ! *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
1174 | ! *** through each level *** |
---|
1175 | |
---|
1176 | DO i = 2, nl + 1 |
---|
1177 | |
---|
1178 | num1 = 0 |
---|
1179 | DO ij = 1, ncum |
---|
1180 | IF (i<=inb(ij)) num1 = num1 + 1 |
---|
1181 | END DO |
---|
1182 | IF (num1<=0) GO TO 1500 |
---|
1183 | |
---|
1184 | CALL zilch(amp1, ncum) |
---|
1185 | CALL zilch(ad, ncum) |
---|
1186 | |
---|
1187 | DO k = i + 1, nl + 1 |
---|
1188 | DO ij = 1, ncum |
---|
1189 | IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij)+1))) THEN |
---|
1190 | amp1(ij) = amp1(ij) + m(ij, k) |
---|
1191 | END IF |
---|
1192 | END DO |
---|
1193 | END DO |
---|
1194 | |
---|
1195 | DO k = 1, i |
---|
1196 | DO j = i + 1, nl + 1 |
---|
1197 | DO ij = 1, ncum |
---|
1198 | IF ((j<=(inb(ij)+1)) .AND. (i<=inb(ij))) THEN |
---|
1199 | amp1(ij) = amp1(ij) + ment(ij, k, j) |
---|
1200 | END IF |
---|
1201 | END DO |
---|
1202 | END DO |
---|
1203 | END DO |
---|
1204 | DO k = 1, i - 1 |
---|
1205 | DO j = i, nl + 1 |
---|
1206 | DO ij = 1, ncum |
---|
1207 | IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN |
---|
1208 | ad(ij) = ad(ij) + ment(ij, j, k) |
---|
1209 | END IF |
---|
1210 | END DO |
---|
1211 | END DO |
---|
1212 | END DO |
---|
1213 | |
---|
1214 | DO ij = 1, ncum |
---|
1215 | IF (i<=inb(ij)) THEN |
---|
1216 | dpinv = 0.01/(ph(ij,i)-ph(ij,i+1)) |
---|
1217 | cpinv = 1.0/cpn(ij, i) |
---|
1218 | |
---|
1219 | ft(ij, i) = ft(ij, i) + g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij, & |
---|
1220 | i)+(gz(ij,i+1)-gz(ij,i))*cpinv)-ad(ij)*(t(ij,i)-t(ij, & |
---|
1221 | i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) - sigd*lvcp(ij, i)*evap(ij, i) |
---|
1222 | ft(ij, i) = ft(ij, i) + g*dpinv*ment(ij, i, i)*(hp(ij,i)-h(ij,i)+t(ij & |
---|
1223 | ,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
---|
1224 | ft(ij, i) = ft(ij, i) + sigd*wt(ij, i+1)*(cl-cpd)*water(ij, i+1)*(t( & |
---|
1225 | ij,i+1)-t(ij,i))*dpinv*cpinv |
---|
1226 | fq(ij, i) = fq(ij, i) + g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij, & |
---|
1227 | i))-ad(ij)*(q(ij,i)-q(ij,i-1))) |
---|
1228 | fu(ij, i) = fu(ij, i) + g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij, & |
---|
1229 | i))-ad(ij)*(u(ij,i)-u(ij,i-1))) |
---|
1230 | fv(ij, i) = fv(ij, i) + g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij, & |
---|
1231 | i))-ad(ij)*(v(ij,i)-v(ij,i-1))) |
---|
1232 | END IF |
---|
1233 | END DO |
---|
1234 | DO k = 1, i - 1 |
---|
1235 | DO ij = 1, ncum |
---|
1236 | IF (i<=inb(ij)) THEN |
---|
1237 | awat = elij(ij, k, i) - (1.-ep(ij,i))*clw(ij, i) |
---|
1238 | awat = max(awat, 0.0) |
---|
1239 | fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-awat-q & |
---|
1240 | (ij,i)) |
---|
1241 | fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
---|
1242 | )) |
---|
1243 | fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
---|
1244 | )) |
---|
1245 | END IF |
---|
1246 | END DO |
---|
1247 | END DO |
---|
1248 | DO k = i, nl + 1 |
---|
1249 | DO ij = 1, ncum |
---|
1250 | IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN |
---|
1251 | fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-q(ij,i & |
---|
1252 | )) |
---|
1253 | fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
---|
1254 | )) |
---|
1255 | fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
---|
1256 | )) |
---|
1257 | END IF |
---|
1258 | END DO |
---|
1259 | END DO |
---|
1260 | DO ij = 1, ncum |
---|
1261 | IF (i<=inb(ij)) THEN |
---|
1262 | fq(ij, i) = fq(ij, i) + sigd*evap(ij, i) + g*(mp(ij,i+1)*(qp(ij, & |
---|
1263 | i+1)-q(ij,i))-mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
---|
1264 | fu(ij, i) = fu(ij, i) + g*(mp(ij,i+1)*(up(ij,i+1)-u(ij, & |
---|
1265 | i))-mp(ij,i)*(up(ij,i)-u(ij,i-1)))*dpinv |
---|
1266 | fv(ij, i) = fv(ij, i) + g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij, & |
---|
1267 | i))-mp(ij,i)*(vp(ij,i)-v(ij,i-1)))*dpinv |
---|
1268 | END IF |
---|
1269 | END DO |
---|
1270 | 1500 END DO |
---|
1271 | |
---|
1272 | ! *** Adjust tendencies at top of convection layer to reflect *** |
---|
1273 | ! *** actual position of the level zero cape *** |
---|
1274 | |
---|
1275 | DO ij = 1, ncum |
---|
1276 | fqold = fq(ij, inb(ij)) |
---|
1277 | fq(ij, inb(ij)) = fq(ij, inb(ij))*(1.-frac(ij)) |
---|
1278 | fq(ij, inb(ij)-1) = fq(ij, inb(ij)-1) + frac(ij)*fqold*((ph(ij, & |
---|
1279 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
---|
1280 | inb(ij))))*lv(ij, inb(ij))/lv(ij, inb(ij)-1) |
---|
1281 | ftold = ft(ij, inb(ij)) |
---|
1282 | ft(ij, inb(ij)) = ft(ij, inb(ij))*(1.-frac(ij)) |
---|
1283 | ft(ij, inb(ij)-1) = ft(ij, inb(ij)-1) + frac(ij)*ftold*((ph(ij, & |
---|
1284 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
---|
1285 | inb(ij))))*cpn(ij, inb(ij))/cpn(ij, inb(ij)-1) |
---|
1286 | fuold = fu(ij, inb(ij)) |
---|
1287 | fu(ij, inb(ij)) = fu(ij, inb(ij))*(1.-frac(ij)) |
---|
1288 | fu(ij, inb(ij)-1) = fu(ij, inb(ij)-1) + frac(ij)*fuold*((ph(ij, & |
---|
1289 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
1290 | fvold = fv(ij, inb(ij)) |
---|
1291 | fv(ij, inb(ij)) = fv(ij, inb(ij))*(1.-frac(ij)) |
---|
1292 | fv(ij, inb(ij)-1) = fv(ij, inb(ij)-1) + frac(ij)*fvold*((ph(ij, & |
---|
1293 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
1294 | END DO |
---|
1295 | |
---|
1296 | ! *** Very slightly adjust tendencies to force exact *** |
---|
1297 | ! *** enthalpy, momentum and tracer conservation *** |
---|
1298 | |
---|
1299 | DO ij = 1, ncum |
---|
1300 | ents(ij) = 0.0 |
---|
1301 | uav(ij) = 0.0 |
---|
1302 | vav(ij) = 0.0 |
---|
1303 | DO i = 1, inb(ij) |
---|
1304 | ents(ij) = ents(ij) + (cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)- & |
---|
1305 | ph(ij,i+1)) |
---|
1306 | uav(ij) = uav(ij) + fu(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
---|
1307 | vav(ij) = vav(ij) + fv(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
---|
1308 | END DO |
---|
1309 | END DO |
---|
1310 | DO ij = 1, ncum |
---|
1311 | ents(ij) = ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1312 | uav(ij) = uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1313 | vav(ij) = vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1314 | END DO |
---|
1315 | DO ij = 1, ncum |
---|
1316 | DO i = 1, inb(ij) |
---|
1317 | ft(ij, i) = ft(ij, i) - ents(ij)/cpn(ij, i) |
---|
1318 | fu(ij, i) = (1.-cu)*(fu(ij,i)-uav(ij)) |
---|
1319 | fv(ij, i) = (1.-cu)*(fv(ij,i)-vav(ij)) |
---|
1320 | END DO |
---|
1321 | END DO |
---|
1322 | |
---|
1323 | DO k = 1, nl + 1 |
---|
1324 | DO i = 1, ncum |
---|
1325 | IF ((q(i,k)+delt*fq(i,k))<0.0) iflag(i) = 10 |
---|
1326 | END DO |
---|
1327 | END DO |
---|
1328 | |
---|
1329 | |
---|
1330 | DO i = 1, ncum |
---|
1331 | IF (iflag(i)>2) THEN |
---|
1332 | precip(i) = 0.0 |
---|
1333 | cbmf(i) = 0.0 |
---|
1334 | END IF |
---|
1335 | END DO |
---|
1336 | DO k = 1, nl |
---|
1337 | DO i = 1, ncum |
---|
1338 | IF (iflag(i)>2) THEN |
---|
1339 | ft(i, k) = 0.0 |
---|
1340 | fq(i, k) = 0.0 |
---|
1341 | fu(i, k) = 0.0 |
---|
1342 | fv(i, k) = 0.0 |
---|
1343 | END IF |
---|
1344 | END DO |
---|
1345 | END DO |
---|
1346 | DO i = 1, ncum |
---|
1347 | precip1(idcum(i)) = precip(i) |
---|
1348 | cbmf1(idcum(i)) = cbmf(i) |
---|
1349 | iflag1(idcum(i)) = iflag(i) |
---|
1350 | END DO |
---|
1351 | DO k = 1, nl |
---|
1352 | DO i = 1, ncum |
---|
1353 | ft1(idcum(i), k) = ft(i, k) |
---|
1354 | fq1(idcum(i), k) = fq(i, k) |
---|
1355 | fu1(idcum(i), k) = fu(i, k) |
---|
1356 | fv1(idcum(i), k) = fv(i, k) |
---|
1357 | END DO |
---|
1358 | END DO |
---|
1359 | |
---|
1360 | DO k = 1, nd |
---|
1361 | DO i = 1, len |
---|
1362 | ma(i, k) = 0. |
---|
1363 | END DO |
---|
1364 | END DO |
---|
1365 | DO k = nl, 1, -1 |
---|
1366 | DO i = 1, ncum |
---|
1367 | ma(i, k) = ma(i, k+1) + m(i, k) |
---|
1368 | END DO |
---|
1369 | END DO |
---|
1370 | |
---|
1371 | RETURN |
---|
1372 | END SUBROUTINE convect2 |
---|
1373 | |
---|