[1992] | 1 | |
---|
[1403] | 2 | ! $Id: convect2.F90 2110 2014-08-27 15:54:44Z fairhead $ |
---|
[524] | 3 | |
---|
[1992] | 4 | SUBROUTINE convect2(ncum, idcum, len, nd, ndp1, nl, minorig, nk1, icb1, t1, & |
---|
| 5 | q1, qs1, u1, v1, gz1, tv1, tp1, tvp1, clw1, h1, lv1, cpn1, p1, ph1, ft1, & |
---|
| 6 | fq1, fu1, fv1, tnk1, qnk1, gznk1, plcl1, precip1, cbmf1, iflag1, delt, & |
---|
| 7 | cpd, cpv, cl, rv, rd, lv0, g, sigs, sigd, elcrit, tlcrit, omtsnow, dtmax, & |
---|
| 8 | damp, alpha, entp, coeffs, coeffr, omtrain, cu, ma) |
---|
| 9 | ! .............................START PROLOGUE............................ |
---|
| 10 | |
---|
| 11 | ! SCCS IDENTIFICATION: @(#)convect2.f 1.2 05/18/00 |
---|
| 12 | ! 22:06:22 /h/cm/library/nogaps4/src/sub/fcst/convect2.f_v |
---|
| 13 | |
---|
| 14 | ! CONFIGURATION IDENTIFICATION: None |
---|
| 15 | |
---|
| 16 | ! MODULE NAME: convect2 |
---|
| 17 | |
---|
| 18 | ! DESCRIPTION: |
---|
| 19 | |
---|
| 20 | ! convect1 The Emanuel Cumulus Convection Scheme - compute tendencies |
---|
| 21 | |
---|
| 22 | ! CONTRACT NUMBER AND TITLE: None |
---|
| 23 | |
---|
| 24 | ! REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng |
---|
| 25 | ! (NRL) |
---|
| 26 | |
---|
| 27 | ! CLASSIFICATION: Unclassified |
---|
| 28 | |
---|
| 29 | ! RESTRICTIONS: None |
---|
| 30 | |
---|
| 31 | ! COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 |
---|
| 32 | |
---|
| 33 | ! COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" |
---|
| 34 | ! Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 |
---|
| 35 | |
---|
| 36 | ! LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a |
---|
| 37 | |
---|
| 38 | ! USAGE: call convect2(ncum,idcum,len,nd,nl,minorig, |
---|
| 39 | ! & nk1,icb1, |
---|
| 40 | ! & t1,q1,qs1,u1,v1,gz1,tv1,tp1,tvp1,clw1,h1, |
---|
| 41 | ! & lv1,cpn1,p1,ph1,ft1,fq1,fu1,fv1, |
---|
| 42 | ! & tnk1,qnk1,gznk1,plcl1, |
---|
| 43 | ! & precip1,cbmf1,iflag1, |
---|
| 44 | ! & delt,cpd,cpv,cl,rv,rd,lv0,g, |
---|
| 45 | ! & sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp, |
---|
| 46 | ! & alpha,entp,coeffs,coeffr,omtrain,cu) |
---|
| 47 | |
---|
| 48 | ! PARAMETERS: |
---|
| 49 | ! Name Type Usage Description |
---|
| 50 | ! ---------- ---------- ------- ---------------------------- |
---|
| 51 | |
---|
| 52 | ! ncum Integer Input number of cumulus points |
---|
| 53 | ! idcum Integer Input index of cumulus point |
---|
| 54 | ! len Integer Input first dimension |
---|
| 55 | ! nd Integer Input total vertical dimension |
---|
| 56 | ! ndp1 Integer Input nd + 1 |
---|
| 57 | ! nl Integer Input vertical dimension for |
---|
| 58 | ! convection |
---|
| 59 | ! minorig Integer Input First level where convection is |
---|
| 60 | ! allow to begin |
---|
| 61 | ! nk1 Integer Input First level of convection |
---|
| 62 | ! ncb1 Integer Input Level of free convection |
---|
| 63 | ! t1 Real Input temperature |
---|
| 64 | ! q1 Real Input specific hum |
---|
| 65 | ! qs1 Real Input sat specific hum |
---|
| 66 | ! u1 Real Input u-wind |
---|
| 67 | ! v1 Real Input v-wind |
---|
| 68 | ! gz1 Real Inout geop |
---|
| 69 | ! tv1 Real Input virtual temp |
---|
| 70 | ! tp1 Real Input |
---|
| 71 | ! clw1 Real Inout cloud liquid water |
---|
| 72 | ! h1 Real Inout |
---|
| 73 | ! lv1 Real Inout |
---|
| 74 | ! cpn1 Real Inout |
---|
| 75 | ! p1 Real Input full level pressure |
---|
| 76 | ! ph1 Real Input half level pressure |
---|
| 77 | ! ft1 Real Output temp tend |
---|
| 78 | ! fq1 Real Output spec hum tend |
---|
| 79 | ! fu1 Real Output u-wind tend |
---|
| 80 | ! fv1 Real Output v-wind tend |
---|
| 81 | ! precip1 Real Output prec |
---|
| 82 | ! cbmf1 Real In/Out cumulus mass flux |
---|
| 83 | ! iflag1 Integer Output iflag on latitude strip |
---|
| 84 | ! delt Real Input time step |
---|
| 85 | ! cpd Integer Input See description below |
---|
| 86 | ! cpv Integer Input See description below |
---|
| 87 | ! cl Integer Input See description below |
---|
| 88 | ! rv Integer Input See description below |
---|
| 89 | ! rd Integer Input See description below |
---|
| 90 | ! lv0 Integer Input See description below |
---|
| 91 | ! g Integer Input See description below |
---|
| 92 | ! sigs Integer Input See description below |
---|
| 93 | ! sigd Integer Input See description below |
---|
| 94 | ! elcrit Integer Input See description below |
---|
| 95 | ! tlcrit Integer Input See description below |
---|
| 96 | ! omtsnow Integer Input See description below |
---|
| 97 | ! dtmax Integer Input See description below |
---|
| 98 | ! damp Integer Input See description below |
---|
| 99 | ! alpha Integer Input See description below |
---|
| 100 | ! ent Integer Input See description below |
---|
| 101 | ! coeffs Integer Input See description below |
---|
| 102 | ! coeffr Integer Input See description below |
---|
| 103 | ! omtrain Integer Input See description below |
---|
| 104 | ! cu Integer Input See description below |
---|
| 105 | |
---|
| 106 | ! COMMON BLOCKS: |
---|
| 107 | ! Block Name Type Usage Notes |
---|
| 108 | ! -------- -------- ---- ------ ------------------------ |
---|
| 109 | |
---|
| 110 | ! FILES: None |
---|
| 111 | |
---|
| 112 | ! DATA BASES: None |
---|
| 113 | |
---|
| 114 | ! NON-FILE INPUT/OUTPUT: None |
---|
| 115 | |
---|
| 116 | ! ERROR CONDITIONS: None |
---|
| 117 | |
---|
| 118 | ! ADDITIONAL COMMENTS: None |
---|
| 119 | |
---|
| 120 | ! .................MAINTENANCE SECTION................................ |
---|
| 121 | |
---|
| 122 | ! MODULES CALLED: |
---|
| 123 | ! Name Description |
---|
| 124 | ! zilch Zero out an array |
---|
| 125 | ! ------- ---------------------- |
---|
| 126 | ! LOCAL VARIABLES AND |
---|
| 127 | ! STRUCTURES: |
---|
| 128 | ! Name Type Description |
---|
| 129 | ! ------- ------ ----------- |
---|
| 130 | ! See Comments Below |
---|
| 131 | |
---|
| 132 | ! i Integer loop index |
---|
| 133 | ! k Integer loop index |
---|
| 134 | |
---|
| 135 | ! METHOD: |
---|
| 136 | |
---|
| 137 | ! See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation |
---|
| 138 | ! of a |
---|
| 139 | ! convective scheme for use in climate models. |
---|
| 140 | |
---|
| 141 | ! FILES: None |
---|
| 142 | |
---|
| 143 | ! INCLUDE FILES: None |
---|
| 144 | |
---|
| 145 | ! MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak |
---|
| 146 | |
---|
| 147 | ! ..............................END PROLOGUE............................. |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | USE dimphy |
---|
| 151 | IMPLICIT NONE |
---|
| 152 | |
---|
| 153 | ! ym#include "dimensions.h" |
---|
| 154 | ! ym#include "dimphy.h" |
---|
| 155 | |
---|
| 156 | INTEGER kmax2, imax2, kmin2, imin2 |
---|
| 157 | REAL ftmax2, ftmin2 |
---|
| 158 | INTEGER kmax, imax, kmin, imin |
---|
| 159 | REAL ftmax, ftmin |
---|
| 160 | |
---|
| 161 | INTEGER ncum |
---|
[2110] | 162 | INTEGER len |
---|
[1992] | 163 | INTEGER idcum(len) |
---|
| 164 | INTEGER nd |
---|
| 165 | INTEGER ndp1 |
---|
| 166 | INTEGER nl |
---|
| 167 | INTEGER minorig |
---|
| 168 | INTEGER nk1(len) |
---|
| 169 | INTEGER icb1(len) |
---|
| 170 | REAL t1(len, nd) |
---|
| 171 | REAL q1(len, nd) |
---|
| 172 | REAL qs1(len, nd) |
---|
| 173 | REAL u1(len, nd) |
---|
| 174 | REAL v1(len, nd) |
---|
| 175 | REAL gz1(len, nd) |
---|
| 176 | REAL tv1(len, nd) |
---|
| 177 | REAL tp1(len, nd) |
---|
| 178 | REAL tvp1(len, nd) |
---|
| 179 | REAL clw1(len, nd) |
---|
| 180 | REAL h1(len, nd) |
---|
| 181 | REAL lv1(len, nd) |
---|
| 182 | REAL cpn1(len, nd) |
---|
| 183 | REAL p1(len, nd) |
---|
| 184 | REAL ph1(len, ndp1) |
---|
| 185 | REAL ft1(len, nd) |
---|
| 186 | REAL fq1(len, nd) |
---|
| 187 | REAL fu1(len, nd) |
---|
| 188 | REAL fv1(len, nd) |
---|
| 189 | REAL tnk1(len) |
---|
| 190 | REAL qnk1(len) |
---|
| 191 | REAL gznk1(len) |
---|
| 192 | REAL precip1(len) |
---|
| 193 | REAL cbmf1(len) |
---|
| 194 | REAL plcl1(len) |
---|
| 195 | INTEGER iflag1(len) |
---|
| 196 | REAL delt |
---|
| 197 | REAL cpd |
---|
| 198 | REAL cpv |
---|
| 199 | REAL cl |
---|
| 200 | REAL rv |
---|
| 201 | REAL rd |
---|
| 202 | REAL lv0 |
---|
| 203 | REAL g |
---|
| 204 | REAL sigs ! SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE |
---|
| 205 | REAL sigd ! SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT |
---|
| 206 | REAL elcrit ! ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) |
---|
| 207 | REAL tlcrit ! TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- |
---|
| 208 | ! CONVERSION THRESHOLD IS ASSUMED TO BE ZERO |
---|
| 209 | REAL omtsnow ! OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW |
---|
| 210 | REAL dtmax ! DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION |
---|
| 211 | ! A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC. |
---|
| 212 | REAL damp |
---|
| 213 | REAL alpha |
---|
| 214 | REAL entp ! ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT FORMULATION |
---|
| 215 | REAL coeffs ! COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF |
---|
| 216 | ! SNOW |
---|
| 217 | REAL coeffr ! COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF |
---|
| 218 | ! RAIN |
---|
| 219 | REAL omtrain ! OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN |
---|
| 220 | REAL cu ! CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM TRANSPORT |
---|
| 221 | |
---|
| 222 | REAL ma(len, nd) |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | ! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
| 226 | ! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
| 227 | ! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
| 228 | ! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
| 229 | ! *** BETWEEN 0 C AND TLCRIT) *** |
---|
| 230 | ! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
| 231 | ! *** FORMULATION *** |
---|
| 232 | ! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 233 | ! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 234 | ! *** OF CLOUD *** |
---|
| 235 | ! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
| 236 | ! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
| 237 | ! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 238 | ! *** OF RAIN *** |
---|
| 239 | ! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 240 | ! *** OF SNOW *** |
---|
| 241 | ! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
| 242 | ! *** TRANSPORT *** |
---|
| 243 | ! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
| 244 | ! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
| 245 | ! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 246 | ! *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 247 | ! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
| 248 | ! *** (DAMP MUST BE LESS THAN 1) *** |
---|
| 249 | |
---|
| 250 | ! Local arrays. |
---|
| 251 | |
---|
| 252 | REAL work(ncum) |
---|
| 253 | REAL t(ncum, klev) |
---|
| 254 | REAL q(ncum, klev) |
---|
| 255 | REAL qs(ncum, klev) |
---|
| 256 | REAL u(ncum, klev) |
---|
| 257 | REAL v(ncum, klev) |
---|
| 258 | REAL gz(ncum, klev) |
---|
| 259 | REAL h(ncum, klev) |
---|
| 260 | REAL lv(ncum, klev) |
---|
| 261 | REAL cpn(ncum, klev) |
---|
| 262 | REAL p(ncum, klev) |
---|
| 263 | REAL ph(ncum, klev) |
---|
| 264 | REAL ft(ncum, klev) |
---|
| 265 | REAL fq(ncum, klev) |
---|
| 266 | REAL fu(ncum, klev) |
---|
| 267 | REAL fv(ncum, klev) |
---|
| 268 | REAL precip(ncum) |
---|
| 269 | REAL cbmf(ncum) |
---|
| 270 | REAL plcl(ncum) |
---|
| 271 | REAL tnk(ncum) |
---|
| 272 | REAL qnk(ncum) |
---|
| 273 | REAL gznk(ncum) |
---|
| 274 | REAL tv(ncum, klev) |
---|
| 275 | REAL tp(ncum, klev) |
---|
| 276 | REAL tvp(ncum, klev) |
---|
| 277 | REAL clw(ncum, klev) |
---|
| 278 | ! real det(ncum,klev) |
---|
| 279 | REAL dph(ncum, klev) |
---|
| 280 | ! real wd(ncum) |
---|
| 281 | ! real tprime(ncum) |
---|
| 282 | ! real qprime(ncum) |
---|
| 283 | REAL ah0(ncum) |
---|
| 284 | REAL ep(ncum, klev) |
---|
| 285 | REAL sigp(ncum, klev) |
---|
| 286 | INTEGER nent(ncum, klev) |
---|
| 287 | REAL water(ncum, klev) |
---|
| 288 | REAL evap(ncum, klev) |
---|
| 289 | REAL mp(ncum, klev) |
---|
| 290 | REAL m(ncum, klev) |
---|
| 291 | REAL qti |
---|
| 292 | REAL wt(ncum, klev) |
---|
| 293 | REAL hp(ncum, klev) |
---|
| 294 | REAL lvcp(ncum, klev) |
---|
| 295 | REAL elij(ncum, klev, klev) |
---|
| 296 | REAL ment(ncum, klev, klev) |
---|
| 297 | REAL sij(ncum, klev, klev) |
---|
| 298 | REAL qent(ncum, klev, klev) |
---|
| 299 | REAL uent(ncum, klev, klev) |
---|
| 300 | REAL vent(ncum, klev, klev) |
---|
| 301 | REAL qp(ncum, klev) |
---|
| 302 | REAL up(ncum, klev) |
---|
| 303 | REAL vp(ncum, klev) |
---|
| 304 | REAL cape(ncum) |
---|
| 305 | REAL capem(ncum) |
---|
| 306 | REAL frac(ncum) |
---|
| 307 | REAL dtpbl(ncum) |
---|
| 308 | REAL tvpplcl(ncum) |
---|
| 309 | REAL tvaplcl(ncum) |
---|
| 310 | REAL dtmin(ncum) |
---|
| 311 | REAL w3d(ncum, klev) |
---|
| 312 | REAL am(ncum) |
---|
| 313 | REAL ents(ncum) |
---|
| 314 | REAL uav(ncum) |
---|
| 315 | REAL vav(ncum) |
---|
| 316 | |
---|
| 317 | INTEGER iflag(ncum) |
---|
| 318 | INTEGER nk(ncum) |
---|
| 319 | INTEGER icb(ncum) |
---|
| 320 | INTEGER inb(ncum) |
---|
| 321 | INTEGER inb1(ncum) |
---|
| 322 | INTEGER jtt(ncum) |
---|
| 323 | |
---|
| 324 | INTEGER nn, i, k, n, icbmax, nlp, j |
---|
| 325 | INTEGER ij |
---|
| 326 | INTEGER nn2, nn3 |
---|
| 327 | REAL clmcpv |
---|
| 328 | REAL clmcpd |
---|
| 329 | REAL cpdmcp |
---|
| 330 | REAL cpvmcpd |
---|
| 331 | REAL eps |
---|
| 332 | REAL epsi |
---|
| 333 | REAL epsim1 |
---|
| 334 | REAL tg, qg, s, alv, tc, ahg, denom, es, rg, ginv, rowl |
---|
| 335 | REAL delti |
---|
| 336 | REAL tca, elacrit |
---|
| 337 | REAL by, defrac |
---|
| 338 | ! real byp |
---|
| 339 | REAL byp(ncum) |
---|
| 340 | LOGICAL lcape(ncum) |
---|
| 341 | REAL dbo |
---|
| 342 | REAL bf2, anum, dei, altem, cwat, stemp |
---|
| 343 | REAL alt, qp1, smid, sjmax, sjmin |
---|
| 344 | REAL delp, delm |
---|
| 345 | REAL awat, coeff, afac, revap, dhdp, fac, qstm, rat |
---|
| 346 | REAL qsm, sigt, b6, c6 |
---|
| 347 | REAL dpinv, cpinv |
---|
| 348 | REAL fqold, ftold, fuold, fvold |
---|
| 349 | REAL wdtrain(ncum), xxx |
---|
| 350 | REAL bsum(ncum, klev) |
---|
| 351 | REAL asij(ncum) |
---|
| 352 | REAL smin(ncum) |
---|
| 353 | REAL scrit(ncum) |
---|
| 354 | ! real amp1,ad |
---|
| 355 | REAL amp1(ncum), ad(ncum) |
---|
| 356 | LOGICAL lwork(ncum) |
---|
| 357 | INTEGER num1, num2 |
---|
| 358 | |
---|
| 359 | ! print*,'cpd en entree de convect2 ',cpd |
---|
| 360 | nlp = nl + 1 |
---|
| 361 | |
---|
| 362 | rowl = 1000.0 |
---|
| 363 | ginv = 1.0/g |
---|
| 364 | delti = 1.0/delt |
---|
| 365 | |
---|
| 366 | ! Define some thermodynamic variables. |
---|
| 367 | |
---|
| 368 | clmcpv = cl - cpv |
---|
| 369 | clmcpd = cl - cpd |
---|
| 370 | cpdmcp = cpd - cpv |
---|
| 371 | cpvmcpd = cpv - cpd |
---|
| 372 | eps = rd/rv |
---|
| 373 | epsi = 1.0/eps |
---|
| 374 | epsim1 = epsi - 1.0 |
---|
| 375 | |
---|
| 376 | ! Compress the fields. |
---|
| 377 | |
---|
| 378 | DO k = 1, nl + 1 |
---|
| 379 | nn = 0 |
---|
| 380 | DO i = 1, len |
---|
| 381 | IF (iflag1(i)==0) THEN |
---|
| 382 | nn = nn + 1 |
---|
| 383 | t(nn, k) = t1(i, k) |
---|
| 384 | q(nn, k) = q1(i, k) |
---|
| 385 | qs(nn, k) = qs1(i, k) |
---|
| 386 | u(nn, k) = u1(i, k) |
---|
| 387 | v(nn, k) = v1(i, k) |
---|
| 388 | gz(nn, k) = gz1(i, k) |
---|
| 389 | h(nn, k) = h1(i, k) |
---|
| 390 | lv(nn, k) = lv1(i, k) |
---|
| 391 | cpn(nn, k) = cpn1(i, k) |
---|
| 392 | p(nn, k) = p1(i, k) |
---|
| 393 | ph(nn, k) = ph1(i, k) |
---|
| 394 | tv(nn, k) = tv1(i, k) |
---|
| 395 | tp(nn, k) = tp1(i, k) |
---|
| 396 | tvp(nn, k) = tvp1(i, k) |
---|
| 397 | clw(nn, k) = clw1(i, k) |
---|
| 398 | END IF |
---|
| 399 | END DO |
---|
| 400 | ! print*,'100 ncum,nn',ncum,nn |
---|
| 401 | END DO |
---|
| 402 | nn = 0 |
---|
| 403 | DO i = 1, len |
---|
| 404 | IF (iflag1(i)==0) THEN |
---|
| 405 | nn = nn + 1 |
---|
| 406 | cbmf(nn) = cbmf1(i) |
---|
| 407 | plcl(nn) = plcl1(i) |
---|
| 408 | tnk(nn) = tnk1(i) |
---|
| 409 | qnk(nn) = qnk1(i) |
---|
| 410 | gznk(nn) = gznk1(i) |
---|
| 411 | nk(nn) = nk1(i) |
---|
| 412 | icb(nn) = icb1(i) |
---|
| 413 | iflag(nn) = iflag1(i) |
---|
| 414 | END IF |
---|
| 415 | END DO |
---|
| 416 | ! print*,'150 ncum,nn',ncum,nn |
---|
| 417 | |
---|
| 418 | ! Initialize the tendencies, det, wd, tprime, qprime. |
---|
| 419 | |
---|
| 420 | DO k = 1, nl |
---|
| 421 | DO i = 1, ncum |
---|
| 422 | ! det(i,k)=0.0 |
---|
| 423 | ft(i, k) = 0.0 |
---|
| 424 | fu(i, k) = 0.0 |
---|
| 425 | fv(i, k) = 0.0 |
---|
| 426 | fq(i, k) = 0.0 |
---|
| 427 | dph(i, k) = ph(i, k) - ph(i, k+1) |
---|
| 428 | ep(i, k) = 0.0 |
---|
| 429 | sigp(i, k) = sigs |
---|
| 430 | END DO |
---|
| 431 | END DO |
---|
| 432 | DO i = 1, ncum |
---|
| 433 | ! wd(i)=0.0 |
---|
| 434 | ! tprime(i)=0.0 |
---|
| 435 | ! qprime(i)=0.0 |
---|
| 436 | precip(i) = 0.0 |
---|
| 437 | ft(i, nl+1) = 0.0 |
---|
| 438 | fu(i, nl+1) = 0.0 |
---|
| 439 | fv(i, nl+1) = 0.0 |
---|
| 440 | fq(i, nl+1) = 0.0 |
---|
| 441 | END DO |
---|
| 442 | |
---|
| 443 | ! Compute icbmax. |
---|
| 444 | |
---|
| 445 | icbmax = 2 |
---|
| 446 | DO i = 1, ncum |
---|
| 447 | icbmax = max(icbmax, icb(i)) |
---|
| 448 | END DO |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | ! ===================================================================== |
---|
| 452 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 453 | ! ===================================================================== |
---|
| 454 | |
---|
| 455 | ! --- The procedure is to solve the equation. |
---|
| 456 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 457 | |
---|
| 458 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
| 459 | |
---|
| 460 | |
---|
| 461 | DO i = 1, ncum |
---|
| 462 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)- & |
---|
| 463 | 273.15)) + gznk(i) |
---|
| 464 | END DO |
---|
| 465 | |
---|
| 466 | |
---|
| 467 | ! *** Find lifted parcel quantities above cloud base *** |
---|
| 468 | |
---|
| 469 | |
---|
| 470 | DO k = minorig + 1, nl |
---|
| 471 | DO i = 1, ncum |
---|
| 472 | IF (k>=(icb(i)+1)) THEN |
---|
| 473 | tg = t(i, k) |
---|
| 474 | qg = qs(i, k) |
---|
| 475 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
| 476 | |
---|
| 477 | ! First iteration. |
---|
| 478 | |
---|
| 479 | s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) |
---|
| 480 | s = 1./s |
---|
| 481 | ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
---|
| 482 | tg = tg + s*(ah0(i)-ahg) |
---|
| 483 | tg = max(tg, 35.0) |
---|
| 484 | tc = tg - 273.15 |
---|
| 485 | denom = 243.5 + tc |
---|
| 486 | IF (tc>=0.0) THEN |
---|
| 487 | es = 6.112*exp(17.67*tc/denom) |
---|
| 488 | ELSE |
---|
| 489 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 490 | END IF |
---|
| 491 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 492 | |
---|
| 493 | ! Second iteration. |
---|
| 494 | |
---|
| 495 | s = cpd + alv*alv*qg/(rv*t(i,k)*t(i,k)) |
---|
| 496 | s = 1./s |
---|
| 497 | ahg = cpd*tg + (cl-cpd)*qnk(i)*t(i, k) + alv*qg + gz(i, k) |
---|
| 498 | tg = tg + s*(ah0(i)-ahg) |
---|
| 499 | tg = max(tg, 35.0) |
---|
| 500 | tc = tg - 273.15 |
---|
| 501 | denom = 243.5 + tc |
---|
| 502 | IF (tc>=0.0) THEN |
---|
| 503 | es = 6.112*exp(17.67*tc/denom) |
---|
| 504 | ELSE |
---|
| 505 | es = exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 506 | END IF |
---|
| 507 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 508 | |
---|
| 509 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
| 510 | ! print*,'cpd dans convect2 ',cpd |
---|
| 511 | ! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 512 | ! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
| 513 | tp(i, k) = (ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
| 514 | ! if (.not.cpd.gt.1000.) then |
---|
| 515 | ! print*,'CPD=',cpd |
---|
| 516 | ! stop |
---|
| 517 | ! endif |
---|
| 518 | clw(i, k) = qnk(i) - qg |
---|
| 519 | clw(i, k) = max(0.0, clw(i,k)) |
---|
| 520 | rg = qg/(1.-qnk(i)) |
---|
| 521 | tvp(i, k) = tp(i, k)*(1.+rg*epsi) |
---|
| 522 | END IF |
---|
| 523 | END DO |
---|
| 524 | END DO |
---|
| 525 | |
---|
| 526 | ! ===================================================================== |
---|
| 527 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 528 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 529 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 530 | ! ===================================================================== |
---|
| 531 | |
---|
| 532 | DO k = minorig + 1, nl |
---|
| 533 | DO i = 1, ncum |
---|
| 534 | IF (k>=(nk(i)+1)) THEN |
---|
| 535 | tca = tp(i, k) - 273.15 |
---|
| 536 | IF (tca>=0.0) THEN |
---|
| 537 | elacrit = elcrit |
---|
| 538 | ELSE |
---|
| 539 | elacrit = elcrit*(1.0-tca/tlcrit) |
---|
| 540 | END IF |
---|
| 541 | elacrit = max(elacrit, 0.0) |
---|
| 542 | ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) |
---|
| 543 | ep(i, k) = max(ep(i,k), 0.0) |
---|
| 544 | ep(i, k) = min(ep(i,k), 1.0) |
---|
| 545 | sigp(i, k) = sigs |
---|
| 546 | END IF |
---|
| 547 | END DO |
---|
| 548 | END DO |
---|
| 549 | |
---|
| 550 | ! ===================================================================== |
---|
| 551 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 552 | ! --- VIRTUAL TEMPERATURE |
---|
| 553 | ! ===================================================================== |
---|
| 554 | |
---|
| 555 | DO k = minorig + 1, nl |
---|
| 556 | DO i = 1, ncum |
---|
| 557 | IF (k>=(icb(i)+1)) THEN |
---|
| 558 | tvp(i, k) = tvp(i, k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
| 559 | ! print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 560 | ! print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
| 561 | END IF |
---|
| 562 | END DO |
---|
| 563 | END DO |
---|
| 564 | DO i = 1, ncum |
---|
| 565 | tvp(i, nlp) = tvp(i, nl) - (gz(i,nlp)-gz(i,nl))/cpd |
---|
| 566 | END DO |
---|
| 567 | |
---|
| 568 | |
---|
| 569 | ! ===================================================================== |
---|
| 570 | ! --- NOW INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 571 | ! ===================================================================== |
---|
| 572 | |
---|
| 573 | DO i = 1, ncum*nlp |
---|
| 574 | nent(i, 1) = 0 |
---|
| 575 | water(i, 1) = 0.0 |
---|
| 576 | evap(i, 1) = 0.0 |
---|
| 577 | mp(i, 1) = 0.0 |
---|
| 578 | m(i, 1) = 0.0 |
---|
| 579 | wt(i, 1) = omtsnow |
---|
| 580 | hp(i, 1) = h(i, 1) |
---|
| 581 | ! if(.not.cpn(i,1).gt.900.) then |
---|
| 582 | ! print*,'i,lv(i,1),cpn(i,1)' |
---|
| 583 | ! print*, i,lv(i,1),cpn(i,1) |
---|
| 584 | ! k=(i-1)/ncum+1 |
---|
| 585 | ! print*,'i,k',mod(i,ncum),k,' cpn',cpn(mod(i,ncum),k) |
---|
| 586 | ! stop |
---|
| 587 | ! endif |
---|
| 588 | lvcp(i, 1) = lv(i, 1)/cpn(i, 1) |
---|
| 589 | END DO |
---|
| 590 | |
---|
| 591 | DO i = 1, ncum*nlp*nlp |
---|
| 592 | elij(i, 1, 1) = 0.0 |
---|
| 593 | ment(i, 1, 1) = 0.0 |
---|
| 594 | sij(i, 1, 1) = 0.0 |
---|
| 595 | END DO |
---|
| 596 | |
---|
| 597 | DO k = 1, nlp |
---|
| 598 | DO j = 1, nlp |
---|
| 599 | DO i = 1, ncum |
---|
| 600 | qent(i, k, j) = q(i, j) |
---|
| 601 | uent(i, k, j) = u(i, j) |
---|
| 602 | vent(i, k, j) = v(i, j) |
---|
| 603 | END DO |
---|
| 604 | END DO |
---|
| 605 | END DO |
---|
| 606 | |
---|
| 607 | DO i = 1, ncum |
---|
| 608 | qp(i, 1) = q(i, 1) |
---|
| 609 | up(i, 1) = u(i, 1) |
---|
| 610 | vp(i, 1) = v(i, 1) |
---|
| 611 | END DO |
---|
| 612 | DO k = 2, nlp |
---|
| 613 | DO i = 1, ncum |
---|
| 614 | qp(i, k) = q(i, k-1) |
---|
| 615 | up(i, k) = u(i, k-1) |
---|
| 616 | vp(i, k) = v(i, k-1) |
---|
| 617 | END DO |
---|
| 618 | END DO |
---|
| 619 | |
---|
| 620 | ! ===================================================================== |
---|
| 621 | ! --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
| 622 | ! --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
| 623 | ! --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
| 624 | ! ===================================================================== |
---|
| 625 | |
---|
| 626 | DO i = 1, ncum |
---|
| 627 | cape(i) = 0.0 |
---|
| 628 | capem(i) = 0.0 |
---|
| 629 | inb(i) = icb(i) + 1 |
---|
| 630 | inb1(i) = inb(i) |
---|
| 631 | END DO |
---|
| 632 | |
---|
| 633 | ! Originial Code |
---|
| 634 | |
---|
| 635 | ! do 530 k=minorig+1,nl-1 |
---|
| 636 | ! do 520 i=1,ncum |
---|
| 637 | ! if(k.ge.(icb(i)+1))then |
---|
| 638 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 639 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 640 | ! cape(i)=cape(i)+by |
---|
| 641 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
| 642 | ! if(cape(i).gt.0.0)then |
---|
| 643 | ! inb(i)=k+1 |
---|
| 644 | ! capem(i)=cape(i) |
---|
| 645 | ! endif |
---|
| 646 | ! endif |
---|
| 647 | ! 520 continue |
---|
| 648 | ! 530 continue |
---|
| 649 | ! do 540 i=1,ncum |
---|
| 650 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 651 | ! cape(i)=capem(i)+byp |
---|
| 652 | ! defrac=capem(i)-cape(i) |
---|
| 653 | ! defrac=max(defrac,0.001) |
---|
| 654 | ! frac(i)=-cape(i)/defrac |
---|
| 655 | ! frac(i)=min(frac(i),1.0) |
---|
| 656 | ! frac(i)=max(frac(i),0.0) |
---|
| 657 | ! 540 continue |
---|
| 658 | |
---|
| 659 | ! K Emanuel fix |
---|
| 660 | |
---|
| 661 | ! call zilch(byp,ncum) |
---|
| 662 | ! do 530 k=minorig+1,nl-1 |
---|
| 663 | ! do 520 i=1,ncum |
---|
| 664 | ! if(k.ge.(icb(i)+1))then |
---|
| 665 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 666 | ! cape(i)=cape(i)+by |
---|
| 667 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
| 668 | ! if(cape(i).gt.0.0)then |
---|
| 669 | ! inb(i)=k+1 |
---|
| 670 | ! capem(i)=cape(i) |
---|
| 671 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 672 | ! endif |
---|
| 673 | ! endif |
---|
| 674 | ! 520 continue |
---|
| 675 | ! 530 continue |
---|
| 676 | ! do 540 i=1,ncum |
---|
| 677 | ! inb(i)=max(inb(i),inb1(i)) |
---|
| 678 | ! cape(i)=capem(i)+byp(i) |
---|
| 679 | ! defrac=capem(i)-cape(i) |
---|
| 680 | ! defrac=max(defrac,0.001) |
---|
| 681 | ! frac(i)=-cape(i)/defrac |
---|
| 682 | ! frac(i)=min(frac(i),1.0) |
---|
| 683 | ! frac(i)=max(frac(i),0.0) |
---|
| 684 | ! 540 continue |
---|
| 685 | |
---|
| 686 | ! J Teixeira fix |
---|
| 687 | |
---|
| 688 | CALL zilch(byp, ncum) |
---|
| 689 | DO i = 1, ncum |
---|
| 690 | lcape(i) = .TRUE. |
---|
| 691 | END DO |
---|
| 692 | DO k = minorig + 1, nl - 1 |
---|
| 693 | DO i = 1, ncum |
---|
| 694 | IF (cape(i)<0.0) lcape(i) = .FALSE. |
---|
| 695 | IF ((k>=(icb(i)+1)) .AND. lcape(i)) THEN |
---|
| 696 | by = (tvp(i,k)-tv(i,k))*dph(i, k)/p(i, k) |
---|
| 697 | byp(i) = (tvp(i,k+1)-tv(i,k+1))*dph(i, k+1)/p(i, k+1) |
---|
| 698 | cape(i) = cape(i) + by |
---|
| 699 | IF (by>=0.0) inb1(i) = k + 1 |
---|
| 700 | IF (cape(i)>0.0) THEN |
---|
| 701 | inb(i) = k + 1 |
---|
| 702 | capem(i) = cape(i) |
---|
| 703 | END IF |
---|
| 704 | END IF |
---|
| 705 | END DO |
---|
| 706 | END DO |
---|
| 707 | DO i = 1, ncum |
---|
| 708 | cape(i) = capem(i) + byp(i) |
---|
| 709 | defrac = capem(i) - cape(i) |
---|
| 710 | defrac = max(defrac, 0.001) |
---|
| 711 | frac(i) = -cape(i)/defrac |
---|
| 712 | frac(i) = min(frac(i), 1.0) |
---|
| 713 | frac(i) = max(frac(i), 0.0) |
---|
| 714 | END DO |
---|
| 715 | |
---|
| 716 | ! ===================================================================== |
---|
| 717 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 718 | ! ===================================================================== |
---|
| 719 | |
---|
| 720 | DO k = minorig + 1, nl |
---|
| 721 | DO i = 1, ncum |
---|
| 722 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
| 723 | hp(i, k) = h(i, nk(i)) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k & |
---|
| 724 | ) |
---|
| 725 | END IF |
---|
| 726 | END DO |
---|
| 727 | END DO |
---|
| 728 | |
---|
| 729 | ! ===================================================================== |
---|
| 730 | ! --- CALCULATE CLOUD BASE MASS FLUX AND RATES OF MIXING, M(I), |
---|
| 731 | ! --- AT EACH MODEL LEVEL |
---|
| 732 | ! ===================================================================== |
---|
| 733 | |
---|
| 734 | ! tvpplcl = parcel temperature lifted adiabatically from level |
---|
| 735 | ! icb-1 to the LCL. |
---|
| 736 | ! tvaplcl = virtual temperature at the LCL. |
---|
| 737 | |
---|
| 738 | DO i = 1, ncum |
---|
| 739 | dtpbl(i) = 0.0 |
---|
| 740 | tvpplcl(i) = tvp(i, icb(i)-1) - rd*tvp(i, icb(i)-1)*(p(i,icb(i)-1)-plcl(i & |
---|
| 741 | ))/(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
---|
| 742 | tvaplcl(i) = tv(i, icb(i)) + (tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i & |
---|
| 743 | ,icb(i)))/(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 744 | END DO |
---|
| 745 | |
---|
| 746 | ! ------------------------------------------------------------------- |
---|
| 747 | ! --- Interpolate difference between lifted parcel and |
---|
| 748 | ! --- environmental temperatures to lifted condensation level |
---|
| 749 | ! ------------------------------------------------------------------- |
---|
| 750 | |
---|
| 751 | ! dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
| 752 | |
---|
| 753 | DO k = minorig, icbmax |
---|
| 754 | DO i = 1, ncum |
---|
| 755 | IF ((k>=nk(i)) .AND. (k<=(icb(i)-1))) THEN |
---|
| 756 | dtpbl(i) = dtpbl(i) + (tvp(i,k)-tv(i,k))*dph(i, k) |
---|
| 757 | END IF |
---|
| 758 | END DO |
---|
| 759 | END DO |
---|
| 760 | DO i = 1, ncum |
---|
| 761 | dtpbl(i) = dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
---|
| 762 | dtmin(i) = tvpplcl(i) - tvaplcl(i) + dtmax + dtpbl(i) |
---|
| 763 | END DO |
---|
| 764 | |
---|
| 765 | ! ------------------------------------------------------------------- |
---|
| 766 | ! --- Adjust cloud base mass flux |
---|
| 767 | ! ------------------------------------------------------------------- |
---|
| 768 | |
---|
| 769 | DO i = 1, ncum |
---|
| 770 | work(i) = cbmf(i) |
---|
| 771 | cbmf(i) = max(0.0, (1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
---|
| 772 | IF ((work(i)==0.0) .AND. (cbmf(i)==0.0)) THEN |
---|
| 773 | iflag(i) = 3 |
---|
| 774 | END IF |
---|
| 775 | END DO |
---|
| 776 | |
---|
| 777 | ! ------------------------------------------------------------------- |
---|
| 778 | ! --- Calculate rates of mixing, m(i) |
---|
| 779 | ! ------------------------------------------------------------------- |
---|
| 780 | |
---|
| 781 | CALL zilch(work, ncum) |
---|
| 782 | |
---|
| 783 | DO j = minorig + 1, nl |
---|
| 784 | DO i = 1, ncum |
---|
| 785 | IF ((j>=(icb(i)+1)) .AND. (j<=inb(i))) THEN |
---|
| 786 | k = min(j, inb1(i)) |
---|
| 787 | dbo = abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) + & |
---|
| 788 | entp*0.04*(ph(i,k)-ph(i,k+1)) |
---|
| 789 | work(i) = work(i) + dbo |
---|
| 790 | m(i, j) = cbmf(i)*dbo |
---|
| 791 | END IF |
---|
| 792 | END DO |
---|
| 793 | END DO |
---|
| 794 | DO k = minorig + 1, nl |
---|
| 795 | DO i = 1, ncum |
---|
| 796 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
---|
| 797 | m(i, k) = m(i, k)/work(i) |
---|
| 798 | END IF |
---|
| 799 | END DO |
---|
| 800 | END DO |
---|
| 801 | |
---|
| 802 | |
---|
| 803 | ! ===================================================================== |
---|
| 804 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 805 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 806 | ! --- FRACTION (sij) |
---|
| 807 | ! ===================================================================== |
---|
| 808 | |
---|
| 809 | |
---|
| 810 | DO i = minorig + 1, nl |
---|
| 811 | DO j = minorig + 1, nl |
---|
| 812 | DO ij = 1, ncum |
---|
| 813 | IF ((i>=(icb(ij)+1)) .AND. (j>=icb(ij)) .AND. (i<=inb(ij)) .AND. (j<= & |
---|
| 814 | inb(ij))) THEN |
---|
| 815 | qti = qnk(ij) - ep(ij, i)*clw(ij, i) |
---|
| 816 | bf2 = 1. + lv(ij, j)*lv(ij, j)*qs(ij, j)/(rv*t(ij,j)*t(ij,j)*cpd) |
---|
| 817 | anum = h(ij, j) - hp(ij, i) + (cpv-cpd)*t(ij, j)*(qti-q(ij,j)) |
---|
| 818 | denom = h(ij, i) - hp(ij, i) + (cpd-cpv)*(q(ij,i)-qti)*t(ij, j) |
---|
| 819 | dei = denom |
---|
| 820 | IF (abs(dei)<0.01) dei = 0.01 |
---|
| 821 | sij(ij, i, j) = anum/dei |
---|
| 822 | sij(ij, i, i) = 1.0 |
---|
| 823 | altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
---|
| 824 | altem = altem/bf2 |
---|
| 825 | cwat = clw(ij, j)*(1.-ep(ij,j)) |
---|
| 826 | stemp = sij(ij, i, j) |
---|
| 827 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
| 828 | anum = anum - lv(ij, j)*(qti-qs(ij,j)-cwat*bf2) |
---|
| 829 | denom = denom + lv(ij, j)*(q(ij,i)-qti) |
---|
| 830 | IF (abs(denom)<0.01) denom = 0.01 |
---|
| 831 | sij(ij, i, j) = anum/denom |
---|
| 832 | altem = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti - qs(ij, j) |
---|
| 833 | altem = altem - (bf2-1.)*cwat |
---|
| 834 | END IF |
---|
| 835 | IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
---|
| 836 | qent(ij, i, j) = sij(ij, i, j)*q(ij, i) + (1.-sij(ij,i,j))*qti |
---|
| 837 | uent(ij, i, j) = sij(ij, i, j)*u(ij, i) + & |
---|
| 838 | (1.-sij(ij,i,j))*u(ij, nk(ij)) |
---|
| 839 | vent(ij, i, j) = sij(ij, i, j)*v(ij, i) + & |
---|
| 840 | (1.-sij(ij,i,j))*v(ij, nk(ij)) |
---|
| 841 | elij(ij, i, j) = altem |
---|
| 842 | elij(ij, i, j) = max(0.0, elij(ij,i,j)) |
---|
| 843 | ment(ij, i, j) = m(ij, i)/(1.-sij(ij,i,j)) |
---|
| 844 | nent(ij, i) = nent(ij, i) + 1 |
---|
| 845 | END IF |
---|
| 846 | sij(ij, i, j) = max(0.0, sij(ij,i,j)) |
---|
| 847 | sij(ij, i, j) = min(1.0, sij(ij,i,j)) |
---|
| 848 | END IF |
---|
| 849 | END DO |
---|
| 850 | END DO |
---|
| 851 | |
---|
| 852 | ! *** If no air can entrain at level i assume that updraft detrains |
---|
| 853 | ! *** |
---|
| 854 | ! *** at that level and calculate detrained air flux and properties |
---|
| 855 | ! *** |
---|
| 856 | |
---|
| 857 | DO ij = 1, ncum |
---|
| 858 | IF ((i>=(icb(ij)+1)) .AND. (i<=inb(ij)) .AND. (nent(ij,i)==0)) THEN |
---|
| 859 | ment(ij, i, i) = m(ij, i) |
---|
| 860 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
| 861 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
| 862 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
| 863 | elij(ij, i, i) = clw(ij, i) |
---|
| 864 | sij(ij, i, i) = 1.0 |
---|
| 865 | END IF |
---|
| 866 | END DO |
---|
| 867 | END DO |
---|
| 868 | |
---|
| 869 | DO i = 1, ncum |
---|
| 870 | sij(i, inb(i), inb(i)) = 1.0 |
---|
| 871 | END DO |
---|
| 872 | |
---|
| 873 | ! ===================================================================== |
---|
| 874 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 875 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 876 | ! ===================================================================== |
---|
| 877 | |
---|
| 878 | |
---|
| 879 | CALL zilch(bsum, ncum*nlp) |
---|
| 880 | DO ij = 1, ncum |
---|
| 881 | lwork(ij) = .FALSE. |
---|
| 882 | END DO |
---|
| 883 | DO i = minorig + 1, nl |
---|
| 884 | |
---|
| 885 | num1 = 0 |
---|
| 886 | DO ij = 1, ncum |
---|
| 887 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) num1 = num1 + 1 |
---|
| 888 | END DO |
---|
| 889 | IF (num1<=0) GO TO 789 |
---|
| 890 | |
---|
| 891 | DO ij = 1, ncum |
---|
| 892 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij))) THEN |
---|
| 893 | lwork(ij) = (nent(ij,i)/=0) |
---|
| 894 | qp1 = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
| 895 | anum = h(ij, i) - hp(ij, i) - lv(ij, i)*(qp1-qs(ij,i)) |
---|
| 896 | denom = h(ij, i) - hp(ij, i) + lv(ij, i)*(q(ij,i)-qp1) |
---|
| 897 | IF (abs(denom)<0.01) denom = 0.01 |
---|
| 898 | scrit(ij) = anum/denom |
---|
| 899 | alt = qp1 - qs(ij, i) + scrit(ij)*(q(ij,i)-qp1) |
---|
| 900 | IF (scrit(ij)<0.0 .OR. alt<0.0) scrit(ij) = 1.0 |
---|
| 901 | asij(ij) = 0.0 |
---|
| 902 | smin(ij) = 1.0 |
---|
| 903 | END IF |
---|
| 904 | END DO |
---|
| 905 | DO j = minorig, nl |
---|
| 906 | |
---|
| 907 | num2 = 0 |
---|
| 908 | DO ij = 1, ncum |
---|
| 909 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
| 910 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) num2 = num2 + 1 |
---|
| 911 | END DO |
---|
| 912 | IF (num2<=0) GO TO 783 |
---|
| 913 | |
---|
| 914 | DO ij = 1, ncum |
---|
| 915 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
| 916 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
| 917 | IF (sij(ij,i,j)>0.0 .AND. sij(ij,i,j)<0.9) THEN |
---|
| 918 | IF (j>i) THEN |
---|
| 919 | smid = min(sij(ij,i,j), scrit(ij)) |
---|
| 920 | sjmax = smid |
---|
| 921 | sjmin = smid |
---|
| 922 | IF (smid<smin(ij) .AND. sij(ij,i,j+1)<smid) THEN |
---|
| 923 | smin(ij) = smid |
---|
| 924 | sjmax = min(sij(ij,i,j+1), sij(ij,i,j), scrit(ij)) |
---|
| 925 | sjmin = max(sij(ij,i,j-1), sij(ij,i,j)) |
---|
| 926 | sjmin = min(sjmin, scrit(ij)) |
---|
| 927 | END IF |
---|
| 928 | ELSE |
---|
| 929 | sjmax = max(sij(ij,i,j+1), scrit(ij)) |
---|
| 930 | smid = max(sij(ij,i,j), scrit(ij)) |
---|
| 931 | sjmin = 0.0 |
---|
| 932 | IF (j>1) sjmin = sij(ij, i, j-1) |
---|
| 933 | sjmin = max(sjmin, scrit(ij)) |
---|
| 934 | END IF |
---|
| 935 | delp = abs(sjmax-smid) |
---|
| 936 | delm = abs(sjmin-smid) |
---|
| 937 | asij(ij) = asij(ij) + (delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
---|
| 938 | ment(ij, i, j) = ment(ij, i, j)*(delp+delm)*(ph(ij,j)-ph(ij,j+1)) |
---|
| 939 | END IF |
---|
| 940 | END IF |
---|
| 941 | END DO |
---|
| 942 | 783 END DO |
---|
| 943 | DO ij = 1, ncum |
---|
| 944 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. lwork(ij)) THEN |
---|
| 945 | asij(ij) = max(1.0E-21, asij(ij)) |
---|
| 946 | asij(ij) = 1.0/asij(ij) |
---|
| 947 | bsum(ij, i) = 0.0 |
---|
| 948 | END IF |
---|
| 949 | END DO |
---|
| 950 | DO j = minorig, nl + 1 |
---|
| 951 | DO ij = 1, ncum |
---|
| 952 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (j>=icb( & |
---|
| 953 | ij)) .AND. (j<=inb(ij)) .AND. lwork(ij)) THEN |
---|
| 954 | ment(ij, i, j) = ment(ij, i, j)*asij(ij) |
---|
| 955 | bsum(ij, i) = bsum(ij, i) + ment(ij, i, j) |
---|
| 956 | END IF |
---|
| 957 | END DO |
---|
| 958 | END DO |
---|
| 959 | DO ij = 1, ncum |
---|
| 960 | IF ((i>=icb(ij)+1) .AND. (i<=inb(ij)) .AND. (bsum(ij, & |
---|
| 961 | i)<1.0E-18) .AND. lwork(ij)) THEN |
---|
| 962 | nent(ij, i) = 0 |
---|
| 963 | ment(ij, i, i) = m(ij, i) |
---|
| 964 | qent(ij, i, i) = q(ij, nk(ij)) - ep(ij, i)*clw(ij, i) |
---|
| 965 | uent(ij, i, i) = u(ij, nk(ij)) |
---|
| 966 | vent(ij, i, i) = v(ij, nk(ij)) |
---|
| 967 | elij(ij, i, i) = clw(ij, i) |
---|
| 968 | sij(ij, i, i) = 1.0 |
---|
| 969 | END IF |
---|
| 970 | END DO |
---|
| 971 | 789 END DO |
---|
| 972 | |
---|
| 973 | ! ===================================================================== |
---|
| 974 | ! --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
| 975 | ! ===================================================================== |
---|
| 976 | |
---|
| 977 | ! *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 978 | ! *** downdraft calculation *** |
---|
| 979 | |
---|
| 980 | |
---|
| 981 | ! *** Integrate liquid water equation to find condensed water *** |
---|
| 982 | ! *** and condensed water flux *** |
---|
| 983 | |
---|
| 984 | |
---|
| 985 | DO i = 1, ncum |
---|
| 986 | jtt(i) = 2 |
---|
| 987 | IF (ep(i,inb(i))<=0.0001) iflag(i) = 2 |
---|
| 988 | IF (iflag(i)==0) THEN |
---|
| 989 | lwork(i) = .TRUE. |
---|
| 990 | ELSE |
---|
| 991 | lwork(i) = .FALSE. |
---|
| 992 | END IF |
---|
| 993 | END DO |
---|
| 994 | |
---|
| 995 | ! *** Begin downdraft loop *** |
---|
| 996 | |
---|
| 997 | |
---|
| 998 | CALL zilch(wdtrain, ncum) |
---|
| 999 | DO i = nl + 1, 1, -1 |
---|
| 1000 | |
---|
| 1001 | num1 = 0 |
---|
| 1002 | DO ij = 1, ncum |
---|
| 1003 | IF ((i<=inb(ij)) .AND. lwork(ij)) num1 = num1 + 1 |
---|
| 1004 | END DO |
---|
| 1005 | IF (num1<=0) GO TO 899 |
---|
| 1006 | |
---|
| 1007 | |
---|
| 1008 | ! *** Calculate detrained precipitation *** |
---|
| 1009 | |
---|
| 1010 | DO ij = 1, ncum |
---|
| 1011 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
| 1012 | wdtrain(ij) = g*ep(ij, i)*m(ij, i)*clw(ij, i) |
---|
| 1013 | END IF |
---|
| 1014 | END DO |
---|
| 1015 | |
---|
| 1016 | IF (i>1) THEN |
---|
| 1017 | DO j = 1, i - 1 |
---|
| 1018 | DO ij = 1, ncum |
---|
| 1019 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
| 1020 | awat = elij(ij, j, i) - (1.-ep(ij,i))*clw(ij, i) |
---|
| 1021 | awat = max(0.0, awat) |
---|
| 1022 | wdtrain(ij) = wdtrain(ij) + g*awat*ment(ij, j, i) |
---|
| 1023 | END IF |
---|
| 1024 | END DO |
---|
| 1025 | END DO |
---|
| 1026 | END IF |
---|
| 1027 | |
---|
| 1028 | ! *** Find rain water and evaporation using provisional *** |
---|
| 1029 | ! *** estimates of qp(i)and qp(i-1) *** |
---|
| 1030 | |
---|
| 1031 | |
---|
| 1032 | ! *** Value of terminal velocity and coeffecient of evaporation for snow |
---|
| 1033 | ! *** |
---|
| 1034 | |
---|
| 1035 | DO ij = 1, ncum |
---|
| 1036 | IF ((i<=inb(ij)) .AND. (lwork(ij))) THEN |
---|
| 1037 | coeff = coeffs |
---|
| 1038 | wt(ij, i) = omtsnow |
---|
| 1039 | |
---|
| 1040 | ! *** Value of terminal velocity and coeffecient of evaporation for |
---|
| 1041 | ! rain *** |
---|
| 1042 | |
---|
| 1043 | IF (t(ij,i)>273.0) THEN |
---|
| 1044 | coeff = coeffr |
---|
| 1045 | wt(ij, i) = omtrain |
---|
| 1046 | END IF |
---|
| 1047 | qsm = 0.5*(q(ij,i)+qp(ij,i+1)) |
---|
| 1048 | afac = coeff*ph(ij, i)*(qs(ij,i)-qsm)/(1.0E4+2.0E3*ph(ij,i)*qs(ij,i)) |
---|
| 1049 | afac = max(afac, 0.0) |
---|
| 1050 | sigt = sigp(ij, i) |
---|
| 1051 | sigt = max(0.0, sigt) |
---|
| 1052 | sigt = min(1.0, sigt) |
---|
| 1053 | b6 = 100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij, i) |
---|
| 1054 | c6 = (water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij, i) |
---|
| 1055 | revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
| 1056 | evap(ij, i) = sigt*afac*revap |
---|
| 1057 | water(ij, i) = revap*revap |
---|
| 1058 | |
---|
| 1059 | ! *** Calculate precipitating downdraft mass flux under *** |
---|
| 1060 | ! *** hydrostatic approximation *** |
---|
| 1061 | |
---|
| 1062 | IF (i>1) THEN |
---|
| 1063 | dhdp = (h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
---|
| 1064 | dhdp = max(dhdp, 10.0) |
---|
| 1065 | mp(ij, i) = 100.*ginv*lv(ij, i)*sigd*evap(ij, i)/dhdp |
---|
| 1066 | mp(ij, i) = max(mp(ij,i), 0.0) |
---|
| 1067 | |
---|
| 1068 | ! *** Add small amount of inertia to downdraft *** |
---|
| 1069 | |
---|
| 1070 | fac = 20.0/(ph(ij,i-1)-ph(ij,i)) |
---|
| 1071 | mp(ij, i) = (fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
---|
| 1072 | |
---|
| 1073 | ! *** Force mp to decrease linearly to zero |
---|
| 1074 | ! *** |
---|
| 1075 | ! *** between about 950 mb and the surface |
---|
| 1076 | ! *** |
---|
| 1077 | |
---|
| 1078 | IF (p(ij,i)>(0.949*p(ij,1))) THEN |
---|
| 1079 | jtt(ij) = max(jtt(ij), i) |
---|
| 1080 | mp(ij, i) = mp(ij, jtt(ij))*(p(ij,1)-p(ij,i))/ & |
---|
| 1081 | (p(ij,1)-p(ij,jtt(ij))) |
---|
| 1082 | END IF |
---|
| 1083 | END IF |
---|
| 1084 | |
---|
| 1085 | ! *** Find mixing ratio of precipitating downdraft *** |
---|
| 1086 | |
---|
| 1087 | IF (i/=inb(ij)) THEN |
---|
| 1088 | IF (i==1) THEN |
---|
| 1089 | qstm = qs(ij, 1) |
---|
| 1090 | ELSE |
---|
| 1091 | qstm = qs(ij, i-1) |
---|
| 1092 | END IF |
---|
| 1093 | IF (mp(ij,i)>mp(ij,i+1)) THEN |
---|
| 1094 | rat = mp(ij, i+1)/mp(ij, i) |
---|
| 1095 | qp(ij, i) = qp(ij, i+1)*rat + q(ij, i)*(1.0-rat) + & |
---|
| 1096 | 100.*ginv*sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
---|
| 1097 | up(ij, i) = up(ij, i+1)*rat + u(ij, i)*(1.-rat) |
---|
| 1098 | vp(ij, i) = vp(ij, i+1)*rat + v(ij, i)*(1.-rat) |
---|
| 1099 | ELSE |
---|
| 1100 | IF (mp(ij,i+1)>0.0) THEN |
---|
| 1101 | qp(ij, i) = (gz(ij,i+1)-gz(ij,i)+qp(ij,i+1)*(lv(ij,i+1)+t(ij, & |
---|
| 1102 | i+1)*(cl-cpd))+cpd*(t(ij,i+1)-t(ij, & |
---|
| 1103 | i)))/(lv(ij,i)+t(ij,i)*(cl-cpd)) |
---|
| 1104 | up(ij, i) = up(ij, i+1) |
---|
| 1105 | vp(ij, i) = vp(ij, i+1) |
---|
| 1106 | END IF |
---|
| 1107 | END IF |
---|
| 1108 | qp(ij, i) = min(qp(ij,i), qstm) |
---|
| 1109 | qp(ij, i) = max(qp(ij,i), 0.0) |
---|
| 1110 | END IF |
---|
| 1111 | END IF |
---|
| 1112 | END DO |
---|
| 1113 | 899 END DO |
---|
| 1114 | |
---|
| 1115 | ! *** Calculate surface precipitation in mm/day *** |
---|
| 1116 | |
---|
| 1117 | DO i = 1, ncum |
---|
| 1118 | IF (iflag(i)<=1) THEN |
---|
| 1119 | ! c precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
| 1120 | ! c & /(rowl*g) |
---|
| 1121 | ! c precip(i)=precip(i)*delt/86400. |
---|
| 1122 | precip(i) = wt(i, 1)*sigd*water(i, 1)*86400/g |
---|
| 1123 | END IF |
---|
| 1124 | END DO |
---|
| 1125 | |
---|
| 1126 | |
---|
| 1127 | ! *** Calculate downdraft velocity scale and surface temperature and *** |
---|
| 1128 | ! *** water vapor fluctuations *** |
---|
| 1129 | |
---|
| 1130 | ! wd=beta*abs(mp(icb))*0.01*rd*t(icb)/(sigd*p(icb)) |
---|
| 1131 | ! qprime=0.5*(qp(1)-q(1)) |
---|
| 1132 | ! tprime=lv0*qprime/cpd |
---|
| 1133 | |
---|
| 1134 | ! *** Calculate tendencies of lowest level potential temperature *** |
---|
| 1135 | ! *** and mixing ratio *** |
---|
| 1136 | |
---|
| 1137 | DO i = 1, ncum |
---|
| 1138 | work(i) = 0.01/(ph(i,1)-ph(i,2)) |
---|
| 1139 | am(i) = 0.0 |
---|
| 1140 | END DO |
---|
| 1141 | DO k = 2, nl |
---|
| 1142 | DO i = 1, ncum |
---|
| 1143 | IF ((nk(i)==1) .AND. (k<=inb(i)) .AND. (nk(i)==1)) THEN |
---|
| 1144 | am(i) = am(i) + m(i, k) |
---|
| 1145 | END IF |
---|
| 1146 | END DO |
---|
| 1147 | END DO |
---|
| 1148 | DO i = 1, ncum |
---|
| 1149 | IF ((g*work(i)*am(i))>=delti) iflag(i) = 1 |
---|
| 1150 | ft(i, 1) = ft(i, 1) + g*work(i)*am(i)*(t(i,2)-t(i,1)+(gz(i,2)-gz(i, & |
---|
| 1151 | 1))/cpn(i,1)) |
---|
| 1152 | ft(i, 1) = ft(i, 1) - lvcp(i, 1)*sigd*evap(i, 1) |
---|
| 1153 | ft(i, 1) = ft(i, 1) + sigd*wt(i, 2)*(cl-cpd)*water(i, 2)*(t(i,2)-t(i,1))* & |
---|
| 1154 | work(i)/cpn(i, 1) |
---|
| 1155 | fq(i, 1) = fq(i, 1) + g*mp(i, 2)*(qp(i,2)-q(i,1))*work(i) + & |
---|
| 1156 | sigd*evap(i, 1) |
---|
| 1157 | fq(i, 1) = fq(i, 1) + g*am(i)*(q(i,2)-q(i,1))*work(i) |
---|
| 1158 | fu(i, 1) = fu(i, 1) + g*work(i)*(mp(i,2)*(up(i,2)-u(i,1))+am(i)*(u(i, & |
---|
| 1159 | 2)-u(i,1))) |
---|
| 1160 | fv(i, 1) = fv(i, 1) + g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1))+am(i)*(v(i, & |
---|
| 1161 | 2)-v(i,1))) |
---|
| 1162 | END DO |
---|
| 1163 | DO j = 2, nl |
---|
| 1164 | DO i = 1, ncum |
---|
| 1165 | IF (j<=inb(i)) THEN |
---|
| 1166 | fq(i, 1) = fq(i, 1) + g*work(i)*ment(i, j, 1)*(qent(i,j,1)-q(i,1)) |
---|
| 1167 | fu(i, 1) = fu(i, 1) + g*work(i)*ment(i, j, 1)*(uent(i,j,1)-u(i,1)) |
---|
| 1168 | fv(i, 1) = fv(i, 1) + g*work(i)*ment(i, j, 1)*(vent(i,j,1)-v(i,1)) |
---|
| 1169 | END IF |
---|
| 1170 | END DO |
---|
| 1171 | END DO |
---|
| 1172 | |
---|
| 1173 | ! *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
| 1174 | ! *** at levels above the lowest level *** |
---|
| 1175 | |
---|
| 1176 | ! *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
| 1177 | ! *** through each level *** |
---|
| 1178 | |
---|
| 1179 | DO i = 2, nl + 1 |
---|
| 1180 | |
---|
| 1181 | num1 = 0 |
---|
| 1182 | DO ij = 1, ncum |
---|
| 1183 | IF (i<=inb(ij)) num1 = num1 + 1 |
---|
| 1184 | END DO |
---|
| 1185 | IF (num1<=0) GO TO 1500 |
---|
| 1186 | |
---|
| 1187 | CALL zilch(amp1, ncum) |
---|
| 1188 | CALL zilch(ad, ncum) |
---|
| 1189 | |
---|
| 1190 | DO k = i + 1, nl + 1 |
---|
| 1191 | DO ij = 1, ncum |
---|
| 1192 | IF ((i>=nk(ij)) .AND. (i<=inb(ij)) .AND. (k<=(inb(ij)+1))) THEN |
---|
| 1193 | amp1(ij) = amp1(ij) + m(ij, k) |
---|
| 1194 | END IF |
---|
| 1195 | END DO |
---|
| 1196 | END DO |
---|
| 1197 | |
---|
| 1198 | DO k = 1, i |
---|
| 1199 | DO j = i + 1, nl + 1 |
---|
| 1200 | DO ij = 1, ncum |
---|
| 1201 | IF ((j<=(inb(ij)+1)) .AND. (i<=inb(ij))) THEN |
---|
| 1202 | amp1(ij) = amp1(ij) + ment(ij, k, j) |
---|
| 1203 | END IF |
---|
| 1204 | END DO |
---|
| 1205 | END DO |
---|
| 1206 | END DO |
---|
| 1207 | DO k = 1, i - 1 |
---|
| 1208 | DO j = i, nl + 1 |
---|
| 1209 | DO ij = 1, ncum |
---|
| 1210 | IF ((i<=inb(ij)) .AND. (j<=inb(ij))) THEN |
---|
| 1211 | ad(ij) = ad(ij) + ment(ij, j, k) |
---|
| 1212 | END IF |
---|
| 1213 | END DO |
---|
| 1214 | END DO |
---|
| 1215 | END DO |
---|
| 1216 | |
---|
| 1217 | DO ij = 1, ncum |
---|
| 1218 | IF (i<=inb(ij)) THEN |
---|
| 1219 | dpinv = 0.01/(ph(ij,i)-ph(ij,i+1)) |
---|
| 1220 | cpinv = 1.0/cpn(ij, i) |
---|
| 1221 | |
---|
| 1222 | ft(ij, i) = ft(ij, i) + g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij, & |
---|
| 1223 | i)+(gz(ij,i+1)-gz(ij,i))*cpinv)-ad(ij)*(t(ij,i)-t(ij, & |
---|
| 1224 | i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) - sigd*lvcp(ij, i)*evap(ij, i) |
---|
| 1225 | ft(ij, i) = ft(ij, i) + g*dpinv*ment(ij, i, i)*(hp(ij,i)-h(ij,i)+t(ij & |
---|
| 1226 | ,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
---|
| 1227 | ft(ij, i) = ft(ij, i) + sigd*wt(ij, i+1)*(cl-cpd)*water(ij, i+1)*(t( & |
---|
| 1228 | ij,i+1)-t(ij,i))*dpinv*cpinv |
---|
| 1229 | fq(ij, i) = fq(ij, i) + g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij, & |
---|
| 1230 | i))-ad(ij)*(q(ij,i)-q(ij,i-1))) |
---|
| 1231 | fu(ij, i) = fu(ij, i) + g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij, & |
---|
| 1232 | i))-ad(ij)*(u(ij,i)-u(ij,i-1))) |
---|
| 1233 | fv(ij, i) = fv(ij, i) + g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij, & |
---|
| 1234 | i))-ad(ij)*(v(ij,i)-v(ij,i-1))) |
---|
| 1235 | END IF |
---|
| 1236 | END DO |
---|
| 1237 | DO k = 1, i - 1 |
---|
| 1238 | DO ij = 1, ncum |
---|
| 1239 | IF (i<=inb(ij)) THEN |
---|
| 1240 | awat = elij(ij, k, i) - (1.-ep(ij,i))*clw(ij, i) |
---|
| 1241 | awat = max(awat, 0.0) |
---|
| 1242 | fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-awat-q & |
---|
| 1243 | (ij,i)) |
---|
| 1244 | fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
---|
| 1245 | )) |
---|
| 1246 | fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
---|
| 1247 | )) |
---|
| 1248 | END IF |
---|
| 1249 | END DO |
---|
| 1250 | END DO |
---|
| 1251 | DO k = i, nl + 1 |
---|
| 1252 | DO ij = 1, ncum |
---|
| 1253 | IF ((i<=inb(ij)) .AND. (k<=inb(ij))) THEN |
---|
| 1254 | fq(ij, i) = fq(ij, i) + g*dpinv*ment(ij, k, i)*(qent(ij,k,i)-q(ij,i & |
---|
| 1255 | )) |
---|
| 1256 | fu(ij, i) = fu(ij, i) + g*dpinv*ment(ij, k, i)*(uent(ij,k,i)-u(ij,i & |
---|
| 1257 | )) |
---|
| 1258 | fv(ij, i) = fv(ij, i) + g*dpinv*ment(ij, k, i)*(vent(ij,k,i)-v(ij,i & |
---|
| 1259 | )) |
---|
| 1260 | END IF |
---|
| 1261 | END DO |
---|
| 1262 | END DO |
---|
| 1263 | DO ij = 1, ncum |
---|
| 1264 | IF (i<=inb(ij)) THEN |
---|
| 1265 | fq(ij, i) = fq(ij, i) + sigd*evap(ij, i) + g*(mp(ij,i+1)*(qp(ij, & |
---|
| 1266 | i+1)-q(ij,i))-mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
---|
| 1267 | fu(ij, i) = fu(ij, i) + g*(mp(ij,i+1)*(up(ij,i+1)-u(ij, & |
---|
| 1268 | i))-mp(ij,i)*(up(ij,i)-u(ij,i-1)))*dpinv |
---|
| 1269 | fv(ij, i) = fv(ij, i) + g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij, & |
---|
| 1270 | i))-mp(ij,i)*(vp(ij,i)-v(ij,i-1)))*dpinv |
---|
| 1271 | END IF |
---|
| 1272 | END DO |
---|
| 1273 | 1500 END DO |
---|
| 1274 | |
---|
| 1275 | ! *** Adjust tendencies at top of convection layer to reflect *** |
---|
| 1276 | ! *** actual position of the level zero cape *** |
---|
| 1277 | |
---|
| 1278 | DO ij = 1, ncum |
---|
| 1279 | fqold = fq(ij, inb(ij)) |
---|
| 1280 | fq(ij, inb(ij)) = fq(ij, inb(ij))*(1.-frac(ij)) |
---|
| 1281 | fq(ij, inb(ij)-1) = fq(ij, inb(ij)-1) + frac(ij)*fqold*((ph(ij, & |
---|
| 1282 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
---|
| 1283 | inb(ij))))*lv(ij, inb(ij))/lv(ij, inb(ij)-1) |
---|
| 1284 | ftold = ft(ij, inb(ij)) |
---|
| 1285 | ft(ij, inb(ij)) = ft(ij, inb(ij))*(1.-frac(ij)) |
---|
| 1286 | ft(ij, inb(ij)-1) = ft(ij, inb(ij)-1) + frac(ij)*ftold*((ph(ij, & |
---|
| 1287 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij, & |
---|
| 1288 | inb(ij))))*cpn(ij, inb(ij))/cpn(ij, inb(ij)-1) |
---|
| 1289 | fuold = fu(ij, inb(ij)) |
---|
| 1290 | fu(ij, inb(ij)) = fu(ij, inb(ij))*(1.-frac(ij)) |
---|
| 1291 | fu(ij, inb(ij)-1) = fu(ij, inb(ij)-1) + frac(ij)*fuold*((ph(ij, & |
---|
| 1292 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
| 1293 | fvold = fv(ij, inb(ij)) |
---|
| 1294 | fv(ij, inb(ij)) = fv(ij, inb(ij))*(1.-frac(ij)) |
---|
| 1295 | fv(ij, inb(ij)-1) = fv(ij, inb(ij)-1) + frac(ij)*fvold*((ph(ij, & |
---|
| 1296 | inb(ij))-ph(ij,inb(ij)+1))/(ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
| 1297 | END DO |
---|
| 1298 | |
---|
| 1299 | ! *** Very slightly adjust tendencies to force exact *** |
---|
| 1300 | ! *** enthalpy, momentum and tracer conservation *** |
---|
| 1301 | |
---|
| 1302 | DO ij = 1, ncum |
---|
| 1303 | ents(ij) = 0.0 |
---|
| 1304 | uav(ij) = 0.0 |
---|
| 1305 | vav(ij) = 0.0 |
---|
| 1306 | DO i = 1, inb(ij) |
---|
| 1307 | ents(ij) = ents(ij) + (cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)- & |
---|
| 1308 | ph(ij,i+1)) |
---|
| 1309 | uav(ij) = uav(ij) + fu(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1310 | vav(ij) = vav(ij) + fv(ij, i)*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1311 | END DO |
---|
| 1312 | END DO |
---|
| 1313 | DO ij = 1, ncum |
---|
| 1314 | ents(ij) = ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1315 | uav(ij) = uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1316 | vav(ij) = vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1317 | END DO |
---|
| 1318 | DO ij = 1, ncum |
---|
| 1319 | DO i = 1, inb(ij) |
---|
| 1320 | ft(ij, i) = ft(ij, i) - ents(ij)/cpn(ij, i) |
---|
| 1321 | fu(ij, i) = (1.-cu)*(fu(ij,i)-uav(ij)) |
---|
| 1322 | fv(ij, i) = (1.-cu)*(fv(ij,i)-vav(ij)) |
---|
| 1323 | END DO |
---|
| 1324 | END DO |
---|
| 1325 | |
---|
| 1326 | DO k = 1, nl + 1 |
---|
| 1327 | DO i = 1, ncum |
---|
| 1328 | IF ((q(i,k)+delt*fq(i,k))<0.0) iflag(i) = 10 |
---|
| 1329 | END DO |
---|
| 1330 | END DO |
---|
| 1331 | |
---|
| 1332 | |
---|
| 1333 | DO i = 1, ncum |
---|
| 1334 | IF (iflag(i)>2) THEN |
---|
| 1335 | precip(i) = 0.0 |
---|
| 1336 | cbmf(i) = 0.0 |
---|
| 1337 | END IF |
---|
| 1338 | END DO |
---|
| 1339 | DO k = 1, nl |
---|
| 1340 | DO i = 1, ncum |
---|
| 1341 | IF (iflag(i)>2) THEN |
---|
| 1342 | ft(i, k) = 0.0 |
---|
| 1343 | fq(i, k) = 0.0 |
---|
| 1344 | fu(i, k) = 0.0 |
---|
| 1345 | fv(i, k) = 0.0 |
---|
| 1346 | END IF |
---|
| 1347 | END DO |
---|
| 1348 | END DO |
---|
| 1349 | DO i = 1, ncum |
---|
| 1350 | precip1(idcum(i)) = precip(i) |
---|
| 1351 | cbmf1(idcum(i)) = cbmf(i) |
---|
| 1352 | iflag1(idcum(i)) = iflag(i) |
---|
| 1353 | END DO |
---|
| 1354 | DO k = 1, nl |
---|
| 1355 | DO i = 1, ncum |
---|
| 1356 | ft1(idcum(i), k) = ft(i, k) |
---|
| 1357 | fq1(idcum(i), k) = fq(i, k) |
---|
| 1358 | fu1(idcum(i), k) = fu(i, k) |
---|
| 1359 | fv1(idcum(i), k) = fv(i, k) |
---|
| 1360 | END DO |
---|
| 1361 | END DO |
---|
| 1362 | |
---|
| 1363 | DO k = 1, nd |
---|
| 1364 | DO i = 1, len |
---|
| 1365 | ma(i, k) = 0. |
---|
| 1366 | END DO |
---|
| 1367 | END DO |
---|
| 1368 | DO k = nl, 1, -1 |
---|
| 1369 | DO i = 1, ncum |
---|
| 1370 | ma(i, k) = ma(i, k+1) + m(i, k) |
---|
| 1371 | END DO |
---|
| 1372 | END DO |
---|
| 1373 | |
---|
| 1374 | RETURN |
---|
| 1375 | END SUBROUTINE convect2 |
---|
| 1376 | |
---|