1 | SUBROUTINE concvl (iflag_con,iflag_clos, |
---|
2 | . dtime,paprs,pplay, |
---|
3 | . t,q,t_wake,q_wake,s_wake,u,v,tra,ntra, |
---|
4 | . ALE,ALP,work1,work2, |
---|
5 | . d_t,d_q,d_u,d_v,d_tra, |
---|
6 | . rain, snow, kbas, ktop, sigd, |
---|
7 | . cbmf,plcl,plfc,wbeff,upwd,dnwd,dnwdbis, |
---|
8 | . Ma,mip,Vprecip, |
---|
9 | . cape,cin,tvp,Tconv,iflag, |
---|
10 | . pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr, |
---|
11 | . qcondc,wd,pmflxr,pmflxs, |
---|
12 | ! RomP >>> |
---|
13 | !! . da,phi,mp,dd_t,dd_q,lalim_conv,wght_th) |
---|
14 | . da,phi,mp,phi2,d1a,dam,sij,clw,elij, ! RomP |
---|
15 | . dd_t,dd_q,lalim_conv,wght_th, ! RomP |
---|
16 | . evap, ep, epmlmMm,eplaMm, ! RomP |
---|
17 | . wdtrainA,wdtrainM) ! RomP |
---|
18 | ! RomP <<< |
---|
19 | *************************************************************** |
---|
20 | * * |
---|
21 | * CONCVL * |
---|
22 | * * |
---|
23 | * * |
---|
24 | * written by : Sandrine Bony-Lena, 17/05/2003, 11.16.04 * |
---|
25 | * modified by : * |
---|
26 | *************************************************************** |
---|
27 | * |
---|
28 | c |
---|
29 | USE dimphy |
---|
30 | USE infotrac, ONLY : nbtr |
---|
31 | IMPLICIT none |
---|
32 | c====================================================================== |
---|
33 | c Auteur(s): S. Bony-Lena (LMD/CNRS) date: ??? |
---|
34 | c Objet: schema de convection de Emanuel (1991) interface |
---|
35 | c====================================================================== |
---|
36 | c Arguments: |
---|
37 | c dtime--input-R-pas d'integration (s) |
---|
38 | c s-------input-R-la valeur "s" pour chaque couche |
---|
39 | c sigs----input-R-la valeur "sigma" de chaque couche |
---|
40 | c sig-----input-R-la valeur de "sigma" pour chaque niveau |
---|
41 | c psolpa--input-R-la pression au sol (en Pa) |
---|
42 | C pskapa--input-R-exponentiel kappa de psolpa |
---|
43 | c h-------input-R-enthalpie potentielle (Cp*T/P**kappa) |
---|
44 | c q-------input-R-vapeur d'eau (en kg/kg) |
---|
45 | c |
---|
46 | c work*: input et output: deux variables de travail, |
---|
47 | c on peut les mettre a 0 au debut |
---|
48 | c ALE-----input-R-energie disponible pour soulevement |
---|
49 | c ALP-----input-R-puissance disponible pour soulevement |
---|
50 | c |
---|
51 | C d_h-----output-R-increment de l'enthalpie potentielle (h) |
---|
52 | c d_q-----output-R-increment de la vapeur d'eau |
---|
53 | c rain----output-R-la pluie (mm/s) |
---|
54 | c snow----output-R-la neige (mm/s) |
---|
55 | c upwd----output-R-saturated updraft mass flux (kg/m**2/s) |
---|
56 | c dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) |
---|
57 | c dnwd0---output-R-unsaturated downdraft mass flux (kg/m**2/s) |
---|
58 | c Ma------output-R-adiabatic ascent mass flux (kg/m2/s) |
---|
59 | c mip-----output-R-mass flux shed by adiabatic ascent (kg/m2/s) |
---|
60 | c Vprecip-output-R-vertical profile of precipitations (kg/m2/s) |
---|
61 | c Tconv---output-R-environment temperature seen by convective scheme (K) |
---|
62 | c Cape----output-R-CAPE (J/kg) |
---|
63 | c Cin ----output-R-CIN (J/kg) |
---|
64 | c Tvp-----output-R-Temperature virtuelle d'une parcelle soulevee |
---|
65 | c adiabatiquement a partir du niveau 1 (K) |
---|
66 | c deltapb-output-R-distance entre LCL et base de la colonne (<0 ; Pa) |
---|
67 | c Ice_flag-input-L-TRUE->prise en compte de la thermodynamique de la glace |
---|
68 | c dd_t-----output-R-increment de la temperature du aux descentes precipitantes |
---|
69 | c dd_q-----output-R-increment de la vapeur d'eau du aux desc precip |
---|
70 | c====================================================================== |
---|
71 | c |
---|
72 | #include "dimensions.h" |
---|
73 | c |
---|
74 | INTEGER iflag_con,iflag_clos |
---|
75 | c |
---|
76 | REAL dtime, paprs(klon,klev+1),pplay(klon,klev) |
---|
77 | REAL t(klon,klev),q(klon,klev),u(klon,klev),v(klon,klev) |
---|
78 | REAL t_wake(klon,klev),q_wake(klon,klev) |
---|
79 | Real s_wake(klon) |
---|
80 | REAL tra(klon,klev,nbtr) |
---|
81 | INTEGER ntra |
---|
82 | REAL work1(klon,klev),work2(klon,klev),ptop2(klon) |
---|
83 | REAL pmflxr(klon,klev+1),pmflxs(klon,klev+1) |
---|
84 | REAL ALE(klon),ALP(klon) |
---|
85 | c |
---|
86 | REAL d_t(klon,klev),d_q(klon,klev),d_u(klon,klev),d_v(klon,klev) |
---|
87 | REAL dd_t(klon,klev),dd_q(klon,klev) |
---|
88 | REAL d_tra(klon,klev,nbtr) |
---|
89 | REAL rain(klon),snow(klon) |
---|
90 | c |
---|
91 | INTEGER kbas(klon),ktop(klon) |
---|
92 | REAL em_ph(klon,klev+1),em_p(klon,klev) |
---|
93 | REAL upwd(klon,klev),dnwd(klon,klev),dnwdbis(klon,klev) |
---|
94 | |
---|
95 | !! REAL Ma(klon,klev), mip(klon,klev),Vprecip(klon,klev) !jyg |
---|
96 | REAL Ma(klon,klev), mip(klon,klev),Vprecip(klon,klev+1) !jyg |
---|
97 | |
---|
98 | real da(klon,klev),phi(klon,klev,klev),mp(klon,klev) |
---|
99 | ! RomP >>> |
---|
100 | real phi2(klon,klev,klev) |
---|
101 | real d1a(klon,klev),dam(klon,klev) |
---|
102 | real sij(klon,klev,klev),clw(klon,klev),elij(klon,klev,klev) |
---|
103 | REAL wdtrainA(klon,klev),wdtrainM(klon,klev) |
---|
104 | REAL evap(klon,klev),ep(klon,klev) |
---|
105 | REAL epmlmMm(klon,klev,klev),eplaMm(klon,klev) |
---|
106 | ! RomP <<< |
---|
107 | REAL cape(klon),cin(klon),tvp(klon,klev) |
---|
108 | REAL Tconv(klon,klev) |
---|
109 | c |
---|
110 | cCR:test: on passe lentr et alim_star des thermiques |
---|
111 | INTEGER lalim_conv(klon) |
---|
112 | REAL wght_th(klon,klev) |
---|
113 | REAL em_sig1feed ! sigma at lower bound of feeding layer |
---|
114 | REAL em_sig2feed ! sigma at upper bound of feeding layer |
---|
115 | REAL em_wght(klev) ! weight density determining the feeding mixture |
---|
116 | con enleve le save |
---|
117 | c SAVE em_sig1feed,em_sig2feed,em_wght |
---|
118 | c |
---|
119 | INTEGER iflag(klon) |
---|
120 | REAL rflag(klon) |
---|
121 | REAL pbase(klon),bbase(klon) |
---|
122 | REAL dtvpdt1(klon,klev),dtvpdq1(klon,klev) |
---|
123 | REAL dplcldt(klon),dplcldr(klon) |
---|
124 | REAL qcondc(klon,klev) |
---|
125 | REAL wd(klon) |
---|
126 | REAL Plim1(klon),Plim2(klon),asupmax(klon,klev) |
---|
127 | REAL supmax0(klon),asupmaxmin(klon) |
---|
128 | c |
---|
129 | REAL sigd(klon) |
---|
130 | REAL zx_t,zdelta,zx_qs,zcor |
---|
131 | c |
---|
132 | ! INTEGER iflag_mix |
---|
133 | ! SAVE iflag_mix |
---|
134 | INTEGER noff, minorig |
---|
135 | INTEGER i,k,itra |
---|
136 | REAL qs(klon,klev),qs_wake(klon,klev) |
---|
137 | REAL cbmf(klon),plcl(klon),plfc(klon),wbeff(klon) |
---|
138 | cLF SAVE cbmf |
---|
139 | cIM/JYG REAL, SAVE, ALLOCATABLE :: cbmf(:) |
---|
140 | ccc$OMP THREADPRIVATE(cbmf)! |
---|
141 | REAL cbmflast(klon) |
---|
142 | INTEGER ifrst |
---|
143 | SAVE ifrst |
---|
144 | DATA ifrst /0/ |
---|
145 | c$OMP THREADPRIVATE(ifrst) |
---|
146 | |
---|
147 | c |
---|
148 | C Variables supplementaires liees au bilan d'energie |
---|
149 | c Real paire(klon) |
---|
150 | cLF Real ql(klon,klev) |
---|
151 | c Save paire |
---|
152 | cLF Save ql |
---|
153 | cLF Real t1(klon,klev),q1(klon,klev) |
---|
154 | cLF Save t1,q1 |
---|
155 | c Data paire /1./ |
---|
156 | REAL, SAVE, ALLOCATABLE :: ql(:,:), q1(:,:), t1(:,:) |
---|
157 | c$OMP THREADPRIVATE(ql, q1, t1) |
---|
158 | c |
---|
159 | C Variables liees au bilan d'energie et d'enthalpi |
---|
160 | REAL ztsol(klon) |
---|
161 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
162 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
163 | SAVE h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
164 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
165 | c$OMP THREADPRIVATE(h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot) |
---|
166 | c$OMP THREADPRIVATE(h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot) |
---|
167 | REAL d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
168 | REAL d_h_vcol_phy |
---|
169 | REAL fs_bound, fq_bound |
---|
170 | SAVE d_h_vcol_phy |
---|
171 | c$OMP THREADPRIVATE(d_h_vcol_phy) |
---|
172 | REAL zero_v(klon) |
---|
173 | CHARACTER*15 ztit |
---|
174 | INTEGER ip_ebil ! PRINT level for energy conserv. diag. |
---|
175 | SAVE ip_ebil |
---|
176 | DATA ip_ebil/2/ |
---|
177 | c$OMP THREADPRIVATE(ip_ebil) |
---|
178 | INTEGER if_ebil ! level for energy conserv. dignostics |
---|
179 | SAVE if_ebil |
---|
180 | DATA if_ebil/2/ |
---|
181 | c$OMP THREADPRIVATE(if_ebil) |
---|
182 | c+jld ec_conser |
---|
183 | REAL d_t_ec(klon,klev) ! tendance du a la conersion Ec -> E thermique |
---|
184 | REAL ZRCPD |
---|
185 | c-jld ec_conser |
---|
186 | cLF |
---|
187 | INTEGER nloc |
---|
188 | logical, save :: first=.true. |
---|
189 | c$OMP THREADPRIVATE(first) |
---|
190 | INTEGER, SAVE :: itap, igout |
---|
191 | c$OMP THREADPRIVATE(itap, igout) |
---|
192 | c |
---|
193 | #include "YOMCST.h" |
---|
194 | #include "YOMCST2.h" |
---|
195 | #include "YOETHF.h" |
---|
196 | #include "FCTTRE.h" |
---|
197 | #include "iniprint.h" |
---|
198 | c |
---|
199 | if (first) then |
---|
200 | c Allocate some variables LF 04/2008 |
---|
201 | c |
---|
202 | cIM/JYG allocate(cbmf(klon)) |
---|
203 | allocate(ql(klon,klev)) |
---|
204 | allocate(t1(klon,klev)) |
---|
205 | allocate(q1(klon,klev)) |
---|
206 | itap=0 |
---|
207 | igout=klon/2+1/klon |
---|
208 | endif |
---|
209 | c Incrementer le compteur de la physique |
---|
210 | itap = itap + 1 |
---|
211 | |
---|
212 | c Copy T into Tconv |
---|
213 | DO k = 1,klev |
---|
214 | DO i = 1,klon |
---|
215 | Tconv(i,k) = T(i,k) |
---|
216 | ENDDO |
---|
217 | ENDDO |
---|
218 | c |
---|
219 | IF (if_ebil.ge.1) THEN |
---|
220 | DO i=1,klon |
---|
221 | ztsol(i) = t(i,1) |
---|
222 | zero_v(i)=0. |
---|
223 | Do k = 1,klev |
---|
224 | ql(i,k) = 0. |
---|
225 | ENDDO |
---|
226 | END DO |
---|
227 | END IF |
---|
228 | c |
---|
229 | cym |
---|
230 | snow(:)=0 |
---|
231 | |
---|
232 | c IF (ifrst .EQ. 0) THEN |
---|
233 | c ifrst = 1 |
---|
234 | if (first) then |
---|
235 | first=.false. |
---|
236 | c |
---|
237 | C=========================================================================== |
---|
238 | C READ IN PARAMETERS FOR THE CLOSURE AND THE MIXING DISTRIBUTION |
---|
239 | C=========================================================================== |
---|
240 | C |
---|
241 | if (iflag_con.eq.3) then |
---|
242 | c CALL cv3_inicp() |
---|
243 | CALL cv3_inip() |
---|
244 | endif |
---|
245 | c |
---|
246 | C=========================================================================== |
---|
247 | C READ IN PARAMETERS FOR CONVECTIVE INHIBITION BY TROPOS. DRYNESS |
---|
248 | C=========================================================================== |
---|
249 | C |
---|
250 | cc$$$ open (56,file='supcrit.data') |
---|
251 | cc$$$ read (56,*) Supcrit1, Supcrit2 |
---|
252 | cc$$$ close (56) |
---|
253 | c |
---|
254 | IF (prt_level .ge. 10) |
---|
255 | & WRITE(lunout,*) 'supcrit1, supcrit2' ,supcrit1, supcrit2 |
---|
256 | C |
---|
257 | C=========================================================================== |
---|
258 | C Initialisation pour les bilans d'eau et d'energie |
---|
259 | C=========================================================================== |
---|
260 | IF (if_ebil.ge.1) d_h_vcol_phy=0. |
---|
261 | c |
---|
262 | DO i = 1, klon |
---|
263 | cbmf(i) = 0. |
---|
264 | !! plcl(i) = 0. |
---|
265 | sigd(i) = 0. |
---|
266 | ENDDO |
---|
267 | ENDIF !(ifrst .EQ. 0) |
---|
268 | |
---|
269 | c Initialisation a chaque pas de temps |
---|
270 | plfc(:) = 0. |
---|
271 | wbeff(:) = 100. |
---|
272 | plcl(:) = 0. |
---|
273 | |
---|
274 | DO k = 1, klev+1 |
---|
275 | DO i=1,klon |
---|
276 | em_ph(i,k) = paprs(i,k) / 100.0 |
---|
277 | pmflxr(i,k)=0. |
---|
278 | pmflxs(i,k)=0. |
---|
279 | ENDDO |
---|
280 | ENDDO |
---|
281 | c |
---|
282 | DO k = 1, klev |
---|
283 | DO i=1,klon |
---|
284 | em_p(i,k) = pplay(i,k) / 100.0 |
---|
285 | ENDDO |
---|
286 | ENDDO |
---|
287 | c |
---|
288 | ! |
---|
289 | ! Feeding layer |
---|
290 | ! |
---|
291 | em_sig1feed = 1. |
---|
292 | em_sig2feed = 0.97 |
---|
293 | c em_sig2feed = 0.8 |
---|
294 | ! Relative Weight densities |
---|
295 | do k=1,klev |
---|
296 | em_wght(k)=1. |
---|
297 | end do |
---|
298 | cCRtest: couche alim des tehrmiques ponderee par a* |
---|
299 | c DO i = 1, klon |
---|
300 | c do k=1,lalim_conv(i) |
---|
301 | c em_wght(k)=wght_th(i,k) |
---|
302 | c print*,'em_wght=',em_wght(k),wght_th(i,k) |
---|
303 | c end do |
---|
304 | c END DO |
---|
305 | |
---|
306 | if (iflag_con .eq. 4) then |
---|
307 | DO k = 1, klev |
---|
308 | DO i = 1, klon |
---|
309 | zx_t = t(i,k) |
---|
310 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
311 | zx_qs= MIN(0.5 , r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0) |
---|
312 | zcor=1./(1.-retv*zx_qs) |
---|
313 | qs(i,k)=zx_qs*zcor |
---|
314 | ENDDO |
---|
315 | DO i = 1, klon |
---|
316 | zx_t = t_wake(i,k) |
---|
317 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
318 | zx_qs= MIN(0.5 , r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0) |
---|
319 | zcor=1./(1.-retv*zx_qs) |
---|
320 | qs_wake(i,k)=zx_qs*zcor |
---|
321 | ENDDO |
---|
322 | ENDDO |
---|
323 | else ! iflag_con=3 (modif de puristes qui fait la diffce pour la convergence numerique) |
---|
324 | DO k = 1, klev |
---|
325 | DO i = 1, klon |
---|
326 | zx_t = t(i,k) |
---|
327 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
328 | zx_qs= r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0 |
---|
329 | zx_qs= MIN(0.5,zx_qs) |
---|
330 | zcor=1./(1.-retv*zx_qs) |
---|
331 | zx_qs=zx_qs*zcor |
---|
332 | qs(i,k)=zx_qs |
---|
333 | ENDDO |
---|
334 | DO i = 1, klon |
---|
335 | zx_t = t_wake(i,k) |
---|
336 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
337 | zx_qs= r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0 |
---|
338 | zx_qs= MIN(0.5,zx_qs) |
---|
339 | zcor=1./(1.-retv*zx_qs) |
---|
340 | zx_qs=zx_qs*zcor |
---|
341 | qs_wake(i,k)=zx_qs |
---|
342 | ENDDO |
---|
343 | ENDDO |
---|
344 | endif ! iflag_con |
---|
345 | c |
---|
346 | C------------------------------------------------------------------ |
---|
347 | |
---|
348 | C Main driver for convection: |
---|
349 | C iflag_con=3 -> nvlle version de KE (JYG) |
---|
350 | C iflag_con = 30 -> equivalent to convect3 |
---|
351 | C iflag_con = 4 -> equivalent to convect1/2 |
---|
352 | c |
---|
353 | c |
---|
354 | if (iflag_con.eq.30) then |
---|
355 | |
---|
356 | print *, '-> cv_driver' !jyg |
---|
357 | CALL cv_driver(klon,klev,klevp1,ntra,iflag_con, |
---|
358 | : t,q,qs,u,v,tra, |
---|
359 | $ em_p,em_ph,iflag, |
---|
360 | $ d_t,d_q,d_u,d_v,d_tra,rain, |
---|
361 | $ Vprecip,cbmf,work1,work2, !jyg |
---|
362 | $ kbas,ktop, |
---|
363 | $ dtime,Ma,upwd,dnwd,dnwdbis,qcondc,wd,cape, |
---|
364 | $ da,phi,mp,phi2,d1a,dam,sij,clw,elij, !RomP |
---|
365 | $ evap,ep,epmlmMm,eplaMm, !RomP |
---|
366 | $ wdtrainA,wdtrainM) !RomP |
---|
367 | print *, 'cv_driver ->' !jyg |
---|
368 | c |
---|
369 | DO i = 1,klon |
---|
370 | cbmf(i) = Ma(i,kbas(i)) |
---|
371 | ENDDO |
---|
372 | c |
---|
373 | else |
---|
374 | |
---|
375 | cLF necessary for gathered fields |
---|
376 | nloc=klon |
---|
377 | CALL cva_driver(klon,klev,klev+1,ntra,nloc, |
---|
378 | $ iflag_con,iflag_mix,iflag_clos,dtime, |
---|
379 | : t,q,qs,t_wake,q_wake,qs_wake,s_wake,u,v,tra, |
---|
380 | $ em_p,em_ph, |
---|
381 | . ALE,ALP, |
---|
382 | . em_sig1feed,em_sig2feed,em_wght, |
---|
383 | . iflag,d_t,d_q,d_u,d_v,d_tra,rain,kbas,ktop, |
---|
384 | $ cbmf,plcl,plfc,wbeff,work1,work2,ptop2,sigd, |
---|
385 | $ Ma,mip,Vprecip,upwd,dnwd,dnwdbis,qcondc,wd, |
---|
386 | $ cape,cin,tvp, |
---|
387 | $ dd_t,dd_q,Plim1,Plim2,asupmax,supmax0, |
---|
388 | $ asupmaxmin,lalim_conv, |
---|
389 | !AC!+!RomP |
---|
390 | $ da,phi,mp,phi2,d1a,dam,sij,clw, ! RomP |
---|
391 | $ elij,evap,ep,wdtrainA,wdtrainM) ! RomP |
---|
392 | !AC!+!RomP |
---|
393 | endif |
---|
394 | C------------------------------------------------------------------ |
---|
395 | IF (prt_level .ge. 10) |
---|
396 | . WRITE(lunout,*) ' cva_driver -> cbmf,plcl,plfc,wbeff ', |
---|
397 | . cbmf(1),plcl(1),plfc(1),wbeff(1) |
---|
398 | |
---|
399 | DO i = 1,klon |
---|
400 | rain(i) = rain(i)/86400. |
---|
401 | rflag(i)=iflag(i) |
---|
402 | ENDDO |
---|
403 | |
---|
404 | DO k = 1, klev |
---|
405 | DO i = 1, klon |
---|
406 | d_t(i,k) = dtime*d_t(i,k) |
---|
407 | d_q(i,k) = dtime*d_q(i,k) |
---|
408 | d_u(i,k) = dtime*d_u(i,k) |
---|
409 | d_v(i,k) = dtime*d_v(i,k) |
---|
410 | ENDDO |
---|
411 | ENDDO |
---|
412 | c |
---|
413 | if (iflag_con.eq.30) then |
---|
414 | DO itra = 1,ntra |
---|
415 | DO k = 1, klev |
---|
416 | DO i = 1, klon |
---|
417 | d_tra(i,k,itra) =dtime*d_tra(i,k,itra) |
---|
418 | ENDDO |
---|
419 | ENDDO |
---|
420 | ENDDO |
---|
421 | endif |
---|
422 | |
---|
423 | c!AC! |
---|
424 | if (iflag_con.eq.3) then |
---|
425 | DO itra = 1,ntra |
---|
426 | DO k = 1, klev |
---|
427 | DO i = 1, klon |
---|
428 | d_tra(i,k,itra) =dtime*d_tra(i,k,itra) |
---|
429 | ENDDO |
---|
430 | ENDDO |
---|
431 | ENDDO |
---|
432 | endif |
---|
433 | c!AC! |
---|
434 | |
---|
435 | DO k = 1, klev |
---|
436 | DO i = 1, klon |
---|
437 | t1(i,k) = t(i,k)+ d_t(i,k) |
---|
438 | q1(i,k) = q(i,k)+ d_q(i,k) |
---|
439 | ENDDO |
---|
440 | ENDDO |
---|
441 | c !jyg |
---|
442 | c--Separation neige/pluie (pour diagnostics) !jyg |
---|
443 | DO k = 1, klev !jyg |
---|
444 | DO i = 1, klon !jyg |
---|
445 | IF (t1(i,k).LT.RTT) THEN !jyg |
---|
446 | pmflxs(i,k)=Vprecip(i,k) !jyg |
---|
447 | ELSE !jyg |
---|
448 | pmflxr(i,k)=Vprecip(i,k) !jyg |
---|
449 | ENDIF !jyg |
---|
450 | ENDDO !jyg |
---|
451 | ENDDO !jyg |
---|
452 | c |
---|
453 | cc IF (if_ebil.ge.2) THEN |
---|
454 | cc ztit='after convect' |
---|
455 | cc CALL diagetpq(paire,ztit,ip_ebil,2,2,dtime |
---|
456 | cc e , t1,q1,ql,qs,u,v,paprs,pplay |
---|
457 | cc s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
458 | cc call diagphy(paire,ztit,ip_ebil |
---|
459 | cc e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
460 | cc e , zero_v, rain, zero_v, ztsol |
---|
461 | cc e , d_h_vcol, d_qt, d_ec |
---|
462 | cc s , fs_bound, fq_bound ) |
---|
463 | cc END IF |
---|
464 | C |
---|
465 | c |
---|
466 | c les traceurs ne sont pas mis dans cette version de convect4: |
---|
467 | if (iflag_con.eq.4) then |
---|
468 | DO itra = 1,ntra |
---|
469 | DO k = 1, klev |
---|
470 | DO i = 1, klon |
---|
471 | d_tra(i,k,itra) = 0. |
---|
472 | ENDDO |
---|
473 | ENDDO |
---|
474 | ENDDO |
---|
475 | endif |
---|
476 | c print*, 'concvl->: dd_t,dd_q ',dd_t(1,1),dd_q(1,1) |
---|
477 | |
---|
478 | DO k = 1, klev |
---|
479 | DO i = 1, klon |
---|
480 | dtvpdt1(i,k) = 0. |
---|
481 | dtvpdq1(i,k) = 0. |
---|
482 | ENDDO |
---|
483 | ENDDO |
---|
484 | DO i = 1, klon |
---|
485 | dplcldt(i) = 0. |
---|
486 | dplcldr(i) = 0. |
---|
487 | ENDDO |
---|
488 | c |
---|
489 | if(prt_level.GE.20) THEN |
---|
490 | DO k=1,klev |
---|
491 | ! print*,'physiq apres_add_con i k it d_u d_v d_t d_q qdl0',igout |
---|
492 | ! .,k,itap,d_u_con(igout,k) ,d_v_con(igout,k), d_t_con(igout,k), |
---|
493 | ! .d_q_con(igout,k),dql0(igout,k) |
---|
494 | ! print*,'phys apres_add_con itap Ma cin ALE ALP wak t q undi t q' |
---|
495 | ! .,itap,Ma(igout,k),cin(igout),ALE(igout), ALP(igout), |
---|
496 | ! . t_wake(igout,k),q_wake(igout,k),t_undi(igout,k),q_undi(igout,k) |
---|
497 | ! print*,'phy apres_add_con itap CON rain snow EMA wk1 wk2 Vpp mip' |
---|
498 | ! .,itap,rain_con(igout),snow_con(igout),ema_work1(igout,k), |
---|
499 | ! .ema_work2(igout,k),Vprecip(igout,k), mip(igout,k) |
---|
500 | ! print*,'phy apres_add_con itap upwd dnwd dnwd0 cape tvp Tconv ' |
---|
501 | ! .,itap,upwd(igout,k),dnwd(igout,k),dnwd0(igout,k),cape(igout), |
---|
502 | ! .tvp(igout,k),Tconv(igout,k) |
---|
503 | ! print*,'phy apres_add_con itap dtvpdt dtvdq dplcl dplcldr qcondc' |
---|
504 | ! .,itap,dtvpdt1(igout,k),dtvpdq1(igout,k),dplcldt(igout), |
---|
505 | ! .dplcldr(igout),qcondc(igout,k) |
---|
506 | ! print*,'phy apres_add_con itap wd pmflxr Kpmflxr Kp1 Kpmflxs Kp1' |
---|
507 | ! .,itap,wd(igout),pmflxr(igout,k),pmflxr(igout,k+1),pmflxs(igout,k) |
---|
508 | ! .,pmflxs(igout,k+1) |
---|
509 | ! print*,'phy apres_add_con itap da phi mp ftd fqd lalim wgth', |
---|
510 | ! .itap,da(igout,k),phi(igout,k,k),mp(igout,k),ftd(igout,k), |
---|
511 | ! . fqd(igout,k),lalim_conv(igout),wght_th(igout,k) |
---|
512 | ENDDO |
---|
513 | endif !(prt_level.EQ.20) THEN |
---|
514 | c |
---|
515 | RETURN |
---|
516 | END |
---|
517 | |
---|