[1992] | 1 | |
---|
[524] | 2 | ! $Header$ |
---|
[1992] | 3 | |
---|
| 4 | SUBROUTINE conccm(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, rain, snow, & |
---|
| 5 | kbascm, ktopcm) |
---|
| 6 | |
---|
| 7 | USE dimphy |
---|
| 8 | IMPLICIT NONE |
---|
| 9 | ! ====================================================================== |
---|
| 10 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: le 14 mars 1996 |
---|
| 11 | ! Objet: Schema simple (avec flux de masse) pour la convection |
---|
| 12 | ! (schema standard du modele NCAR CCM2) |
---|
| 13 | ! ====================================================================== |
---|
| 14 | include "YOMCST.h" |
---|
| 15 | include "YOETHF.h" |
---|
| 16 | |
---|
| 17 | ! Entree: |
---|
| 18 | REAL dtime ! pas d'integration |
---|
| 19 | REAL paprs(klon, klev+1) ! pression inter-couche (Pa) |
---|
| 20 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 21 | REAL t(klon, klev) ! temperature (K) |
---|
| 22 | REAL q(klon, klev) ! humidite specifique (g/g) |
---|
| 23 | REAL conv_q(klon, klev) ! taux de convergence humidite (g/g/s) |
---|
| 24 | ! Sortie: |
---|
| 25 | REAL d_t(klon, klev) ! incrementation temperature |
---|
| 26 | REAL d_q(klon, klev) ! incrementation vapeur |
---|
| 27 | REAL rain(klon) ! pluie (mm/s) |
---|
| 28 | REAL snow(klon) ! neige (mm/s) |
---|
| 29 | INTEGER kbascm(klon) ! niveau du bas de convection |
---|
| 30 | INTEGER ktopcm(klon) ! niveau du haut de convection |
---|
| 31 | |
---|
| 32 | REAL pt(klon, klev) |
---|
| 33 | REAL pq(klon, klev) |
---|
| 34 | REAL pres(klon, klev) |
---|
| 35 | REAL dp(klon, klev) |
---|
| 36 | REAL zgeom(klon, klev) |
---|
| 37 | REAL cmfprs(klon) |
---|
| 38 | REAL cmfprt(klon) |
---|
| 39 | INTEGER ntop(klon) |
---|
| 40 | INTEGER nbas(klon) |
---|
| 41 | INTEGER i, k |
---|
| 42 | REAL zlvdcp, zlsdcp, zdelta, zz, za, zb |
---|
| 43 | |
---|
| 44 | LOGICAL usekuo ! utiliser convection profonde (schema Kuo) |
---|
| 45 | PARAMETER (usekuo=.TRUE.) |
---|
| 46 | |
---|
| 47 | REAL d_t_bis(klon, klev) |
---|
| 48 | REAL d_q_bis(klon, klev) |
---|
| 49 | REAL rain_bis(klon) |
---|
| 50 | REAL snow_bis(klon) |
---|
| 51 | INTEGER ibas_bis(klon) |
---|
| 52 | INTEGER itop_bis(klon) |
---|
| 53 | REAL d_ql_bis(klon, klev) |
---|
| 54 | REAL rneb_bis(klon, klev) |
---|
| 55 | |
---|
| 56 | ! initialiser les variables de sortie (pour securite) |
---|
| 57 | DO i = 1, klon |
---|
| 58 | rain(i) = 0.0 |
---|
| 59 | snow(i) = 0.0 |
---|
| 60 | kbascm(i) = 0 |
---|
| 61 | ktopcm(i) = 0 |
---|
| 62 | END DO |
---|
| 63 | DO k = 1, klev |
---|
| 64 | DO i = 1, klon |
---|
| 65 | d_t(i, k) = 0.0 |
---|
| 66 | d_q(i, k) = 0.0 |
---|
| 67 | END DO |
---|
| 68 | END DO |
---|
| 69 | |
---|
| 70 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 71 | ! verticaux augmente du haut vers le bas) |
---|
| 72 | DO k = 1, klev |
---|
| 73 | DO i = 1, klon |
---|
| 74 | pt(i, k) = t(i, klev-k+1) |
---|
| 75 | pq(i, k) = q(i, klev-k+1) |
---|
| 76 | pres(i, k) = pplay(i, klev-k+1) |
---|
| 77 | dp(i, k) = paprs(i, klev+1-k) - paprs(i, klev+1-k+1) |
---|
| 78 | END DO |
---|
| 79 | END DO |
---|
| 80 | DO i = 1, klon |
---|
| 81 | zgeom(i, klev) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i, & |
---|
| 82 | 1)))*(paprs(i,1)-pplay(i,1)) |
---|
| 83 | END DO |
---|
| 84 | DO k = 2, klev |
---|
| 85 | DO i = 1, klon |
---|
| 86 | zgeom(i, klev+1-k) = zgeom(i, klev+1-k+1) + rd*0.5*(t(i,k-1)+t(i,k))/ & |
---|
| 87 | paprs(i, k)*(pplay(i,k-1)-pplay(i,k)) |
---|
| 88 | END DO |
---|
| 89 | END DO |
---|
| 90 | |
---|
| 91 | CALL cmfmca(dtime, pres, dp, zgeom, pt, pq, cmfprt, cmfprs, ntop, nbas) |
---|
| 92 | |
---|
| 93 | DO k = 1, klev |
---|
| 94 | DO i = 1, klon |
---|
| 95 | d_q(i, klev+1-k) = pq(i, k) - q(i, klev+1-k) |
---|
| 96 | d_t(i, klev+1-k) = pt(i, k) - t(i, klev+1-k) |
---|
| 97 | END DO |
---|
| 98 | END DO |
---|
| 99 | |
---|
| 100 | DO i = 1, klon |
---|
| 101 | rain(i) = cmfprt(i)*rhoh2o |
---|
| 102 | snow(i) = cmfprs(i)*rhoh2o |
---|
| 103 | kbascm(i) = klev + 1 - nbas(i) |
---|
| 104 | ktopcm(i) = klev + 1 - ntop(i) |
---|
| 105 | END DO |
---|
| 106 | |
---|
| 107 | IF (usekuo) THEN |
---|
| 108 | CALL conkuo(dtime, paprs, pplay, t, q, conv_q, d_t_bis, d_q_bis, & |
---|
| 109 | d_ql_bis, rneb_bis, rain_bis, snow_bis, ibas_bis, itop_bis) |
---|
| 110 | DO k = 1, klev |
---|
[524] | 111 | DO i = 1, klon |
---|
[1992] | 112 | d_t(i, k) = d_t(i, k) + d_t_bis(i, k) |
---|
| 113 | d_q(i, k) = d_q(i, k) + d_q_bis(i, k) |
---|
| 114 | END DO |
---|
| 115 | END DO |
---|
| 116 | DO i = 1, klon |
---|
| 117 | rain(i) = rain(i) + rain_bis(i) |
---|
| 118 | snow(i) = snow(i) + snow_bis(i) |
---|
| 119 | kbascm(i) = min(kbascm(i), ibas_bis(i)) |
---|
| 120 | ktopcm(i) = max(ktopcm(i), itop_bis(i)) |
---|
| 121 | END DO |
---|
| 122 | DO k = 1, klev ! eau liquide convective est |
---|
[524] | 123 | DO i = 1, klon ! dispersee dans l'air |
---|
[1992] | 124 | zlvdcp = rlvtt/rcpd/(1.0+rvtmp2*q(i,k)) |
---|
| 125 | zlsdcp = rlstt/rcpd/(1.0+rvtmp2*q(i,k)) |
---|
| 126 | zdelta = max(0., sign(1.,rtt-t(i,k))) |
---|
| 127 | zz = d_ql_bis(i, k) ! re-evap. de l'eau liquide |
---|
| 128 | zb = max(0.0, zz) |
---|
| 129 | za = -max(0.0, zz)*(zlvdcp*(1.-zdelta)+zlsdcp*zdelta) |
---|
| 130 | d_t(i, k) = d_t(i, k) + za |
---|
| 131 | d_q(i, k) = d_q(i, k) + zb |
---|
| 132 | END DO |
---|
| 133 | END DO |
---|
| 134 | END IF |
---|
| 135 | |
---|
| 136 | RETURN |
---|
| 137 | END SUBROUTINE conccm |
---|
| 138 | SUBROUTINE cmfmca(deltat, p, dp, gz, tb, shb, cmfprt, cmfprs, cnt, cnb) |
---|
| 139 | USE dimphy |
---|
| 140 | IMPLICIT NONE |
---|
| 141 | ! ----------------------------------------------------------------------- |
---|
| 142 | ! Moist convective mass flux procedure: |
---|
| 143 | ! If stratification is unstable to nonentraining parcel ascent, |
---|
| 144 | ! complete an adjustment making use of a simple cloud model |
---|
| 145 | |
---|
| 146 | ! Code generalized to allow specification of parcel ("updraft") |
---|
| 147 | ! properties, as well as convective transport of an arbitrary |
---|
| 148 | ! number of passive constituents (see cmrb array). |
---|
| 149 | ! ----------------------------Code History------------------------------- |
---|
| 150 | ! Original version: J. J. Hack, March 22, 1990 |
---|
| 151 | ! Standardized: J. Rosinski, June 1992 |
---|
| 152 | ! Reviewed: J. Hack, G. Taylor, August 1992 |
---|
| 153 | ! Adaptation au LMD: Z.X. Li, mars 1996 (reference: Hack 1994, |
---|
| 154 | ! J. Geophys. Res. vol 99, D3, 5551-5568). J'ai |
---|
| 155 | ! introduit les constantes et les fonctions thermo- |
---|
| 156 | ! dynamiques du Centre Europeen. J'ai elimine le |
---|
| 157 | ! re-indicage du code en esperant que cela pourra |
---|
| 158 | ! simplifier la lecture et la comprehension. |
---|
| 159 | ! ----------------------------------------------------------------------- |
---|
| 160 | INTEGER pcnst ! nombre de traceurs passifs |
---|
| 161 | PARAMETER (pcnst=1) |
---|
| 162 | ! ------------------------------Arguments-------------------------------- |
---|
| 163 | ! Input arguments |
---|
| 164 | |
---|
| 165 | REAL deltat ! time step (seconds) |
---|
| 166 | REAL p(klon, klev) ! pressure |
---|
| 167 | REAL dp(klon, klev) ! delta-p |
---|
| 168 | REAL gz(klon, klev) ! geopotential (a partir du sol) |
---|
| 169 | |
---|
| 170 | REAL thtap(klon) ! PBL perturbation theta |
---|
| 171 | REAL shp(klon) ! PBL perturbation specific humidity |
---|
| 172 | REAL pblh(klon) ! PBL height (provided by PBL routine) |
---|
| 173 | REAL cmrp(klon, pcnst) ! constituent perturbations in PBL |
---|
| 174 | |
---|
| 175 | ! Updated arguments: |
---|
| 176 | |
---|
| 177 | REAL tb(klon, klev) ! temperature (t bar) |
---|
| 178 | REAL shb(klon, klev) ! specific humidity (sh bar) |
---|
| 179 | REAL cmrb(klon, klev, pcnst) ! constituent mixing ratios (cmr bar) |
---|
| 180 | |
---|
| 181 | ! Output arguments |
---|
| 182 | |
---|
| 183 | REAL cmfdt(klon, klev) ! dT/dt due to moist convection |
---|
| 184 | REAL cmfdq(klon, klev) ! dq/dt due to moist convection |
---|
| 185 | REAL cmfmc(klon, klev) ! moist convection cloud mass flux |
---|
| 186 | REAL cmfdqr(klon, klev) ! dq/dt due to convective rainout |
---|
| 187 | REAL cmfsl(klon, klev) ! convective lw static energy flux |
---|
| 188 | REAL cmflq(klon, klev) ! convective total water flux |
---|
| 189 | REAL cmfprt(klon) ! convective precipitation rate |
---|
| 190 | REAL cmfprs(klon) ! convective snowfall rate |
---|
| 191 | REAL qc(klon, klev) ! dq/dt due to rainout terms |
---|
| 192 | INTEGER cnt(klon) ! top level of convective activity |
---|
| 193 | INTEGER cnb(klon) ! bottom level of convective activity |
---|
| 194 | ! ------------------------------Parameters------------------------------- |
---|
| 195 | REAL c0 ! rain water autoconversion coefficient |
---|
| 196 | PARAMETER (c0=1.0E-4) |
---|
| 197 | REAL dzmin ! minimum convective depth for precipitation |
---|
| 198 | PARAMETER (dzmin=0.0) |
---|
| 199 | REAL betamn ! minimum overshoot parameter |
---|
| 200 | PARAMETER (betamn=0.10) |
---|
| 201 | REAL cmftau ! characteristic adjustment time scale |
---|
| 202 | PARAMETER (cmftau=3600.) |
---|
| 203 | INTEGER limcnv ! top interface level limit for convection |
---|
| 204 | PARAMETER (limcnv=1) |
---|
| 205 | REAL tpmax ! maximum acceptable t perturbation (degrees C) |
---|
| 206 | PARAMETER (tpmax=1.50) |
---|
| 207 | REAL shpmax ! maximum acceptable q perturbation (g/g) |
---|
| 208 | PARAMETER (shpmax=1.50E-3) |
---|
| 209 | REAL tiny ! arbitrary small num used in transport estimates |
---|
| 210 | PARAMETER (tiny=1.0E-36) |
---|
| 211 | REAL eps ! convergence criteria (machine dependent) |
---|
| 212 | PARAMETER (eps=1.0E-13) |
---|
| 213 | REAL tmelt ! freezing point of water(req'd for rain vs snow) |
---|
| 214 | PARAMETER (tmelt=273.15) |
---|
| 215 | REAL ssfac ! supersaturation bound (detrained air) |
---|
| 216 | PARAMETER (ssfac=1.001) |
---|
| 217 | |
---|
| 218 | ! ---------------------------Local workspace----------------------------- |
---|
| 219 | REAL gam(klon, klev) ! L/cp (d(qsat)/dT) |
---|
| 220 | REAL sb(klon, klev) ! dry static energy (s bar) |
---|
| 221 | REAL hb(klon, klev) ! moist static energy (h bar) |
---|
| 222 | REAL shbs(klon, klev) ! sat. specific humidity (sh bar star) |
---|
| 223 | REAL hbs(klon, klev) ! sat. moist static energy (h bar star) |
---|
| 224 | REAL shbh(klon, klev+1) ! specific humidity on interfaces |
---|
| 225 | REAL sbh(klon, klev+1) ! s bar on interfaces |
---|
| 226 | REAL hbh(klon, klev+1) ! h bar on interfaces |
---|
| 227 | REAL cmrh(klon, klev+1) ! interface constituent mixing ratio |
---|
| 228 | REAL prec(klon) ! instantaneous total precipitation |
---|
| 229 | REAL dzcld(klon) ! depth of convective layer (m) |
---|
| 230 | REAL beta(klon) ! overshoot parameter (fraction) |
---|
| 231 | REAL betamx ! local maximum on overshoot |
---|
| 232 | REAL eta(klon) ! convective mass flux (kg/m^2 s) |
---|
| 233 | REAL etagdt ! eta*grav*deltat |
---|
| 234 | REAL cldwtr(klon) ! cloud water (mass) |
---|
| 235 | REAL rnwtr(klon) ! rain water (mass) |
---|
| 236 | REAL sc(klon) ! dry static energy ("in-cloud") |
---|
| 237 | REAL shc(klon) ! specific humidity ("in-cloud") |
---|
| 238 | REAL hc(klon) ! moist static energy ("in-cloud") |
---|
| 239 | REAL cmrc(klon) ! constituent mix rat ("in-cloud") |
---|
| 240 | REAL dq1(klon) ! shb convective change (lower lvl) |
---|
| 241 | REAL dq2(klon) ! shb convective change (mid level) |
---|
| 242 | REAL dq3(klon) ! shb convective change (upper lvl) |
---|
| 243 | REAL ds1(klon) ! sb convective change (lower lvl) |
---|
| 244 | REAL ds2(klon) ! sb convective change (mid level) |
---|
| 245 | REAL ds3(klon) ! sb convective change (upper lvl) |
---|
| 246 | REAL dcmr1(klon) ! cmrb convective change (lower lvl) |
---|
| 247 | REAL dcmr2(klon) ! cmrb convective change (mid level) |
---|
| 248 | REAL dcmr3(klon) ! cmrb convective change (upper lvl) |
---|
| 249 | REAL flotab(klon) ! hc - hbs (mesure d'instabilite) |
---|
| 250 | LOGICAL ldcum(klon) ! .true. si la convection existe |
---|
| 251 | LOGICAL etagt0 ! true if eta > 0.0 |
---|
| 252 | REAL dt ! current 2 delta-t (model time step) |
---|
| 253 | REAL cats ! modified characteristic adj. time |
---|
| 254 | REAL rdt ! 1./dt |
---|
| 255 | REAL qprime ! modified specific humidity pert. |
---|
| 256 | REAL tprime ! modified thermal perturbation |
---|
| 257 | REAL pblhgt ! bounded pbl height (max[pblh,1m]) |
---|
| 258 | REAL fac1 ! intermediate scratch variable |
---|
| 259 | REAL shprme ! intermediate specific humidity pert. |
---|
| 260 | REAL qsattp ! saturation mixing ratio for |
---|
| 261 | ! ! thermally perturbed PBL parcels |
---|
| 262 | REAL dz ! local layer depth |
---|
| 263 | REAL b1 ! bouyancy measure in detrainment lvl |
---|
| 264 | REAL b2 ! bouyancy measure in condensation lvl |
---|
| 265 | REAL g ! bounded vertical gradient of hb |
---|
| 266 | REAL tmass ! total mass available for convective exchange |
---|
| 267 | REAL denom ! intermediate scratch variable |
---|
| 268 | REAL qtest1 ! used in negative q test (middle lvl) |
---|
| 269 | REAL qtest2 ! used in negative q test (lower lvl) |
---|
| 270 | REAL fslkp ! flux lw static energy (bot interface) |
---|
| 271 | REAL fslkm ! flux lw static energy (top interface) |
---|
| 272 | REAL fqlkp ! flux total water (bottom interface) |
---|
| 273 | REAL fqlkm ! flux total water (top interface) |
---|
| 274 | REAL botflx ! bottom constituent mixing ratio flux |
---|
| 275 | REAL topflx ! top constituent mixing ratio flux |
---|
| 276 | REAL efac1 ! ratio cmrb to convectively induced change (bot lvl) |
---|
| 277 | REAL efac2 ! ratio cmrb to convectively induced change (mid lvl) |
---|
| 278 | REAL efac3 ! ratio cmrb to convectively induced change (top lvl) |
---|
| 279 | |
---|
| 280 | INTEGER i, k ! indices horizontal et vertical |
---|
| 281 | INTEGER km1 ! k-1 (index offset) |
---|
| 282 | INTEGER kp1 ! k+1 (index offset) |
---|
| 283 | INTEGER m ! constituent index |
---|
| 284 | INTEGER ktp ! temporary index used to track top |
---|
| 285 | INTEGER is ! nombre de points a ajuster |
---|
| 286 | |
---|
| 287 | REAL tmp1, tmp2, tmp3, tmp4 |
---|
| 288 | REAL zx_t, zx_p, zx_q, zx_qs, zx_gam |
---|
| 289 | REAL zcor, zdelta, zcvm5 |
---|
| 290 | |
---|
| 291 | REAL qhalf, sh1, sh2, shbs1, shbs2 |
---|
| 292 | include "YOMCST.h" |
---|
| 293 | include "YOETHF.h" |
---|
| 294 | include "FCTTRE.h" |
---|
| 295 | qhalf(sh1, sh2, shbs1, shbs2) = min(max(sh1,sh2), & |
---|
| 296 | (shbs2*sh1+shbs1*sh2)/(shbs1+shbs2)) |
---|
| 297 | |
---|
| 298 | ! ----------------------------------------------------------------------- |
---|
| 299 | ! pas de traceur pour l'instant |
---|
| 300 | DO m = 1, pcnst |
---|
| 301 | DO k = 1, klev |
---|
[524] | 302 | DO i = 1, klon |
---|
[1992] | 303 | cmrb(i, k, m) = 0.0 |
---|
| 304 | END DO |
---|
| 305 | END DO |
---|
| 306 | END DO |
---|
| 307 | |
---|
| 308 | ! Les perturbations de la couche limite sont zero pour l'instant |
---|
| 309 | |
---|
| 310 | DO m = 1, pcnst |
---|
| 311 | DO i = 1, klon |
---|
| 312 | cmrp(i, m) = 0.0 |
---|
| 313 | END DO |
---|
| 314 | END DO |
---|
| 315 | DO i = 1, klon |
---|
| 316 | thtap(i) = 0.0 |
---|
| 317 | shp(i) = 0.0 |
---|
| 318 | pblh(i) = 1.0 |
---|
| 319 | END DO |
---|
| 320 | |
---|
| 321 | ! Ensure that characteristic adjustment time scale (cmftau) assumed |
---|
| 322 | ! in estimate of eta isn't smaller than model time scale (deltat) |
---|
| 323 | |
---|
| 324 | dt = deltat |
---|
| 325 | cats = max(dt, cmftau) |
---|
| 326 | rdt = 1.0/dt |
---|
| 327 | |
---|
| 328 | ! Compute sb,hb,shbs,hbs |
---|
| 329 | |
---|
| 330 | DO k = 1, klev |
---|
| 331 | DO i = 1, klon |
---|
| 332 | zx_t = tb(i, k) |
---|
| 333 | zx_p = p(i, k) |
---|
| 334 | zx_q = shb(i, k) |
---|
| 335 | zdelta = max(0., sign(1.,rtt-zx_t)) |
---|
| 336 | zcvm5 = r5les*rlvtt*(1.-zdelta) + r5ies*rlstt*zdelta |
---|
| 337 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*zx_q) |
---|
| 338 | zx_qs = r2es*foeew(zx_t, zdelta)/zx_p |
---|
| 339 | zx_qs = min(0.5, zx_qs) |
---|
| 340 | zcor = 1./(1.-retv*zx_qs) |
---|
| 341 | zx_qs = zx_qs*zcor |
---|
| 342 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
| 343 | shbs(i, k) = zx_qs |
---|
| 344 | gam(i, k) = zx_gam |
---|
| 345 | END DO |
---|
| 346 | END DO |
---|
| 347 | |
---|
| 348 | DO k = limcnv, klev |
---|
| 349 | DO i = 1, klon |
---|
| 350 | sb(i, k) = rcpd*tb(i, k) + gz(i, k) |
---|
| 351 | hb(i, k) = sb(i, k) + rlvtt*shb(i, k) |
---|
| 352 | hbs(i, k) = sb(i, k) + rlvtt*shbs(i, k) |
---|
| 353 | END DO |
---|
| 354 | END DO |
---|
| 355 | |
---|
| 356 | ! Compute sbh, shbh |
---|
| 357 | |
---|
| 358 | DO k = limcnv + 1, klev |
---|
| 359 | km1 = k - 1 |
---|
| 360 | DO i = 1, klon |
---|
| 361 | sbh(i, k) = 0.5*(sb(i,km1)+sb(i,k)) |
---|
| 362 | shbh(i, k) = qhalf(shb(i,km1), shb(i,k), shbs(i,km1), shbs(i,k)) |
---|
| 363 | hbh(i, k) = sbh(i, k) + rlvtt*shbh(i, k) |
---|
| 364 | END DO |
---|
| 365 | END DO |
---|
| 366 | |
---|
| 367 | ! Specify properties at top of model (not used, but filling anyway) |
---|
| 368 | |
---|
| 369 | DO i = 1, klon |
---|
| 370 | sbh(i, limcnv) = sb(i, limcnv) |
---|
| 371 | shbh(i, limcnv) = shb(i, limcnv) |
---|
| 372 | hbh(i, limcnv) = hb(i, limcnv) |
---|
| 373 | END DO |
---|
| 374 | |
---|
| 375 | ! Zero vertically independent control, tendency & diagnostic arrays |
---|
| 376 | |
---|
| 377 | DO i = 1, klon |
---|
| 378 | prec(i) = 0.0 |
---|
| 379 | dzcld(i) = 0.0 |
---|
| 380 | cnb(i) = 0 |
---|
| 381 | cnt(i) = klev + 1 |
---|
| 382 | END DO |
---|
| 383 | |
---|
| 384 | DO k = 1, klev |
---|
| 385 | DO i = 1, klon |
---|
| 386 | cmfdt(i, k) = 0. |
---|
| 387 | cmfdq(i, k) = 0. |
---|
| 388 | cmfdqr(i, k) = 0. |
---|
| 389 | cmfmc(i, k) = 0. |
---|
| 390 | cmfsl(i, k) = 0. |
---|
| 391 | cmflq(i, k) = 0. |
---|
| 392 | END DO |
---|
| 393 | END DO |
---|
| 394 | |
---|
| 395 | ! Begin moist convective mass flux adjustment procedure. |
---|
| 396 | ! Formalism ensures that negative cloud liquid water can never occur |
---|
| 397 | |
---|
| 398 | DO k = klev - 1, limcnv + 1, -1 |
---|
| 399 | km1 = k - 1 |
---|
| 400 | kp1 = k + 1 |
---|
| 401 | DO i = 1, klon |
---|
| 402 | eta(i) = 0.0 |
---|
| 403 | beta(i) = 0.0 |
---|
| 404 | ds1(i) = 0.0 |
---|
| 405 | ds2(i) = 0.0 |
---|
| 406 | ds3(i) = 0.0 |
---|
| 407 | dq1(i) = 0.0 |
---|
| 408 | dq2(i) = 0.0 |
---|
| 409 | dq3(i) = 0.0 |
---|
| 410 | |
---|
| 411 | ! Specification of "cloud base" conditions |
---|
| 412 | |
---|
| 413 | qprime = 0.0 |
---|
| 414 | tprime = 0.0 |
---|
| 415 | |
---|
| 416 | ! Assign tprime within the PBL to be proportional to the quantity |
---|
| 417 | ! thtap (which will be bounded by tpmax), passed to this routine by |
---|
| 418 | ! the PBL routine. Don't allow perturbation to produce a dry |
---|
| 419 | ! adiabatically unstable parcel. Assign qprime within the PBL to be |
---|
| 420 | ! an appropriately modified value of the quantity shp (which will be |
---|
| 421 | ! bounded by shpmax) passed to this routine by the PBL routine. The |
---|
| 422 | ! quantity qprime should be less than the local saturation value |
---|
| 423 | ! (qsattp=qsat[t+tprime,p]). In both cases, thtap and shp are |
---|
| 424 | ! linearly reduced toward zero as the PBL top is approached. |
---|
| 425 | |
---|
| 426 | pblhgt = max(pblh(i), 1.0) |
---|
| 427 | IF (gz(i,kp1)/rg<=pblhgt .AND. dzcld(i)==0.0) THEN |
---|
| 428 | fac1 = max(0.0, 1.0-gz(i,kp1)/rg/pblhgt) |
---|
| 429 | tprime = min(thtap(i), tpmax)*fac1 |
---|
| 430 | qsattp = shbs(i, kp1) + rcpd/rlvtt*gam(i, kp1)*tprime |
---|
| 431 | shprme = min(min(shp(i),shpmax)*fac1, max(qsattp-shb(i,kp1),0.0)) |
---|
| 432 | qprime = max(qprime, shprme) |
---|
| 433 | ELSE |
---|
| 434 | tprime = 0.0 |
---|
| 435 | qprime = 0.0 |
---|
| 436 | END IF |
---|
| 437 | |
---|
| 438 | ! Specify "updraft" (in-cloud) thermodynamic properties |
---|
| 439 | |
---|
| 440 | sc(i) = sb(i, kp1) + rcpd*tprime |
---|
| 441 | shc(i) = shb(i, kp1) + qprime |
---|
| 442 | hc(i) = sc(i) + rlvtt*shc(i) |
---|
| 443 | flotab(i) = hc(i) - hbs(i, k) |
---|
| 444 | dz = dp(i, k)*rd*tb(i, k)/rg/p(i, k) |
---|
| 445 | IF (flotab(i)>0.0) THEN |
---|
| 446 | dzcld(i) = dzcld(i) + dz |
---|
| 447 | ELSE |
---|
| 448 | dzcld(i) = 0.0 |
---|
| 449 | END IF |
---|
| 450 | END DO |
---|
| 451 | |
---|
| 452 | ! Check on moist convective instability |
---|
| 453 | |
---|
| 454 | is = 0 |
---|
| 455 | DO i = 1, klon |
---|
| 456 | IF (flotab(i)>0.0) THEN |
---|
| 457 | ldcum(i) = .TRUE. |
---|
| 458 | is = is + 1 |
---|
| 459 | ELSE |
---|
| 460 | ldcum(i) = .FALSE. |
---|
| 461 | END IF |
---|
| 462 | END DO |
---|
| 463 | |
---|
| 464 | IF (is==0) THEN |
---|
[524] | 465 | DO i = 1, klon |
---|
[1992] | 466 | dzcld(i) = 0.0 |
---|
| 467 | END DO |
---|
| 468 | GO TO 70 |
---|
| 469 | END IF |
---|
| 470 | |
---|
| 471 | ! Current level just below top level => no overshoot |
---|
| 472 | |
---|
| 473 | IF (k<=limcnv+1) THEN |
---|
[524] | 474 | DO i = 1, klon |
---|
[1992] | 475 | IF (ldcum(i)) THEN |
---|
| 476 | cldwtr(i) = sb(i, k) - sc(i) + flotab(i)/(1.0+gam(i,k)) |
---|
| 477 | cldwtr(i) = max(0.0, cldwtr(i)) |
---|
| 478 | beta(i) = 0.0 |
---|
| 479 | END IF |
---|
| 480 | END DO |
---|
| 481 | GO TO 20 |
---|
| 482 | END IF |
---|
| 483 | |
---|
| 484 | ! First guess at overshoot parameter using crude buoyancy closure |
---|
| 485 | ! 10% overshoot assumed as a minimum and 1-c0*dz maximum to start |
---|
| 486 | ! If pre-existing supersaturation in detrainment layer, beta=0 |
---|
| 487 | ! cldwtr is temporarily equal to RLVTT*l (l=> liquid water) |
---|
| 488 | |
---|
| 489 | DO i = 1, klon |
---|
| 490 | IF (ldcum(i)) THEN |
---|
| 491 | cldwtr(i) = sb(i, k) - sc(i) + flotab(i)/(1.0+gam(i,k)) |
---|
| 492 | cldwtr(i) = max(0.0, cldwtr(i)) |
---|
| 493 | betamx = 1.0 - c0*max(0.0, (dzcld(i)-dzmin)) |
---|
| 494 | b1 = (hc(i)-hbs(i,km1))*dp(i, km1) |
---|
| 495 | b2 = (hc(i)-hbs(i,k))*dp(i, k) |
---|
| 496 | beta(i) = max(betamn, min(betamx,1.0+b1/b2)) |
---|
| 497 | IF (hbs(i,km1)<=hb(i,km1)) beta(i) = 0.0 |
---|
| 498 | END IF |
---|
| 499 | END DO |
---|
| 500 | |
---|
| 501 | ! Bound maximum beta to ensure physically realistic solutions |
---|
| 502 | |
---|
| 503 | ! First check constrains beta so that eta remains positive |
---|
| 504 | ! (assuming that eta is already positive for beta equal zero) |
---|
| 505 | ! La premiere contrainte de beta est que le flux eta doit etre positif. |
---|
| 506 | |
---|
| 507 | DO i = 1, klon |
---|
| 508 | IF (ldcum(i)) THEN |
---|
| 509 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1)+cldwtr(i)) - & |
---|
| 510 | (hbh(i,kp1)-hc(i))*dp(i, k)/dp(i, kp1) |
---|
| 511 | tmp2 = (1.0+gam(i,k))*(sc(i)-sbh(i,k)) |
---|
| 512 | IF ((beta(i)*tmp2-tmp1)>0.0) THEN |
---|
| 513 | betamx = 0.99*(tmp1/tmp2) |
---|
| 514 | beta(i) = max(0.0, min(betamx,beta(i))) |
---|
| 515 | END IF |
---|
| 516 | |
---|
| 517 | ! Second check involves supersaturation of "detrainment layer" |
---|
| 518 | ! small amount of supersaturation acceptable (by ssfac factor) |
---|
| 519 | ! La 2e contrainte est que la convection ne doit pas sursaturer |
---|
| 520 | ! la "detrainment layer", Neanmoins, une petite sursaturation |
---|
| 521 | ! est acceptee (facteur ssfac). |
---|
| 522 | |
---|
| 523 | IF (hb(i,km1)<hbs(i,km1)) THEN |
---|
| 524 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1)+cldwtr(i)) - & |
---|
| 525 | (hbh(i,kp1)-hc(i))*dp(i, k)/dp(i, kp1) |
---|
| 526 | tmp1 = tmp1/dp(i, k) |
---|
| 527 | tmp2 = gam(i, km1)*(sbh(i,k)-sc(i)+cldwtr(i)) - hbh(i, k) + hc(i) - & |
---|
| 528 | sc(i) + sbh(i, k) |
---|
| 529 | tmp3 = (1.0+gam(i,k))*(sc(i)-sbh(i,k))/dp(i, k) |
---|
| 530 | tmp4 = (dt/cats)*(hc(i)-hbs(i,k))*tmp2/(dp(i,km1)*(hbs(i,km1)-hb(i, & |
---|
| 531 | km1))) + tmp3 |
---|
| 532 | IF ((beta(i)*tmp4-tmp1)>0.0) THEN |
---|
| 533 | betamx = ssfac*(tmp1/tmp4) |
---|
| 534 | beta(i) = max(0.0, min(betamx,beta(i))) |
---|
| 535 | END IF |
---|
| 536 | ELSE |
---|
| 537 | beta(i) = 0.0 |
---|
| 538 | END IF |
---|
| 539 | |
---|
| 540 | ! Third check to avoid introducing 2 delta x thermodynamic |
---|
| 541 | ! noise in the vertical ... constrain adjusted h (or theta e) |
---|
| 542 | ! so that the adjustment doesn't contribute to "kinks" in h |
---|
| 543 | |
---|
| 544 | g = min(0.0, hb(i,k)-hb(i,km1)) |
---|
| 545 | tmp3 = (hb(i,k)-hb(i,km1)-g)*(cats/dt)/(hc(i)-hbs(i,k)) |
---|
| 546 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1)+cldwtr(i)) - & |
---|
| 547 | (hbh(i,kp1)-hc(i))*dp(i, k)/dp(i, kp1) |
---|
| 548 | tmp1 = tmp1/dp(i, k) |
---|
| 549 | tmp1 = tmp3*tmp1 + (hc(i)-hbh(i,kp1))/dp(i, k) |
---|
| 550 | tmp2 = tmp3*(1.0+gam(i,k))*(sc(i)-sbh(i,k))/dp(i, k) + & |
---|
| 551 | (hc(i)-hbh(i,k)-cldwtr(i))*(1.0/dp(i,k)+1.0/dp(i,kp1)) |
---|
| 552 | IF ((beta(i)*tmp2-tmp1)>0.0) THEN |
---|
| 553 | betamx = 0.0 |
---|
| 554 | IF (tmp2/=0.0) betamx = tmp1/tmp2 |
---|
| 555 | beta(i) = max(0.0, min(betamx,beta(i))) |
---|
| 556 | END IF |
---|
| 557 | END IF |
---|
| 558 | END DO |
---|
| 559 | |
---|
| 560 | ! Calculate mass flux required for stabilization. |
---|
| 561 | |
---|
| 562 | ! Ensure that the convective mass flux, eta, is positive by |
---|
| 563 | ! setting negative values of eta to zero.. |
---|
| 564 | ! Ensure that estimated mass flux cannot move more than the |
---|
| 565 | ! minimum of total mass contained in either layer k or layer k+1. |
---|
| 566 | ! Also test for other pathological cases that result in non- |
---|
| 567 | ! physical states and adjust eta accordingly. |
---|
| 568 | |
---|
| 569 | 20 CONTINUE |
---|
| 570 | DO i = 1, klon |
---|
| 571 | IF (ldcum(i)) THEN |
---|
| 572 | beta(i) = max(0.0, beta(i)) |
---|
| 573 | tmp1 = hc(i) - hbs(i, k) |
---|
| 574 | tmp2 = ((1.0+gam(i,k))*(sc(i)-sbh(i,kp1)+cldwtr(i))-beta(i)*(1.0+gam( & |
---|
| 575 | i,k))*(sc(i)-sbh(i,k)))/dp(i, k) - (hbh(i,kp1)-hc(i))/dp(i, kp1) |
---|
| 576 | eta(i) = tmp1/(tmp2*rg*cats) |
---|
| 577 | tmass = min(dp(i,k), dp(i,kp1))/rg |
---|
| 578 | IF (eta(i)>tmass*rdt .OR. eta(i)<=0.0) eta(i) = 0.0 |
---|
| 579 | |
---|
| 580 | ! Check on negative q in top layer (bound beta) |
---|
| 581 | |
---|
| 582 | IF (shc(i)-shbh(i,k)<0.0 .AND. beta(i)*eta(i)/=0.0) THEN |
---|
| 583 | denom = eta(i)*rg*dt*(shc(i)-shbh(i,k))/dp(i, km1) |
---|
| 584 | beta(i) = max(0.0, min(-0.999*shb(i,km1)/denom,beta(i))) |
---|
| 585 | END IF |
---|
| 586 | |
---|
| 587 | ! Check on negative q in middle layer (zero eta) |
---|
| 588 | |
---|
| 589 | qtest1 = shb(i, k) + eta(i)*rg*dt*((shc(i)-shbh(i, & |
---|
| 590 | kp1))-(1.0-beta(i))*cldwtr(i)/rlvtt-beta(i)*(shc(i)-shbh(i, & |
---|
| 591 | k)))/dp(i, k) |
---|
| 592 | IF (qtest1<=0.0) eta(i) = 0.0 |
---|
| 593 | |
---|
| 594 | ! Check on negative q in lower layer (bound eta) |
---|
| 595 | |
---|
| 596 | fac1 = -(shbh(i,kp1)-shc(i))/dp(i, kp1) |
---|
| 597 | qtest2 = shb(i, kp1) - eta(i)*rg*dt*fac1 |
---|
| 598 | IF (qtest2<0.0) THEN |
---|
| 599 | eta(i) = 0.99*shb(i, kp1)/(rg*dt*fac1) |
---|
| 600 | END IF |
---|
| 601 | END IF |
---|
| 602 | END DO |
---|
| 603 | |
---|
| 604 | |
---|
| 605 | ! Calculate cloud water, rain water, and thermodynamic changes |
---|
| 606 | |
---|
| 607 | DO i = 1, klon |
---|
| 608 | IF (ldcum(i)) THEN |
---|
| 609 | etagdt = eta(i)*rg*dt |
---|
| 610 | cldwtr(i) = etagdt*cldwtr(i)/rlvtt/rg |
---|
| 611 | rnwtr(i) = (1.0-beta(i))*cldwtr(i) |
---|
| 612 | ds1(i) = etagdt*(sbh(i,kp1)-sc(i))/dp(i, kp1) |
---|
| 613 | dq1(i) = etagdt*(shbh(i,kp1)-shc(i))/dp(i, kp1) |
---|
| 614 | ds2(i) = (etagdt*(sc(i)-sbh(i,kp1))+rlvtt*rg*cldwtr(i)-beta(i)*etagdt & |
---|
| 615 | *(sc(i)-sbh(i,k)))/dp(i, k) |
---|
| 616 | dq2(i) = (etagdt*(shc(i)-shbh(i,kp1))-rg*rnwtr(i)-beta(i)*etagdt*(shc & |
---|
| 617 | (i)-shbh(i,k)))/dp(i, k) |
---|
| 618 | ds3(i) = beta(i)*(etagdt*(sc(i)-sbh(i,k))-rlvtt*rg*cldwtr(i))/dp(i, & |
---|
| 619 | km1) |
---|
| 620 | dq3(i) = beta(i)*etagdt*(shc(i)-shbh(i,k))/dp(i, km1) |
---|
| 621 | |
---|
| 622 | ! Isolate convective fluxes for later diagnostics |
---|
| 623 | |
---|
| 624 | fslkp = eta(i)*(sc(i)-sbh(i,kp1)) |
---|
| 625 | fslkm = beta(i)*(eta(i)*(sc(i)-sbh(i,k))-rlvtt*cldwtr(i)*rdt) |
---|
| 626 | fqlkp = eta(i)*(shc(i)-shbh(i,kp1)) |
---|
| 627 | fqlkm = beta(i)*eta(i)*(shc(i)-shbh(i,k)) |
---|
| 628 | |
---|
| 629 | |
---|
| 630 | ! Update thermodynamic profile (update sb, hb, & hbs later) |
---|
| 631 | |
---|
| 632 | tb(i, kp1) = tb(i, kp1) + ds1(i)/rcpd |
---|
| 633 | tb(i, k) = tb(i, k) + ds2(i)/rcpd |
---|
| 634 | tb(i, km1) = tb(i, km1) + ds3(i)/rcpd |
---|
| 635 | shb(i, kp1) = shb(i, kp1) + dq1(i) |
---|
| 636 | shb(i, k) = shb(i, k) + dq2(i) |
---|
| 637 | shb(i, km1) = shb(i, km1) + dq3(i) |
---|
| 638 | prec(i) = prec(i) + rnwtr(i)/rhoh2o |
---|
| 639 | |
---|
| 640 | ! Update diagnostic information for final budget |
---|
| 641 | ! Tracking temperature & specific humidity tendencies, |
---|
| 642 | ! rainout term, convective mass flux, convective liquid |
---|
| 643 | ! water static energy flux, and convective total water flux |
---|
| 644 | |
---|
| 645 | cmfdt(i, kp1) = cmfdt(i, kp1) + ds1(i)/rcpd*rdt |
---|
| 646 | cmfdt(i, k) = cmfdt(i, k) + ds2(i)/rcpd*rdt |
---|
| 647 | cmfdt(i, km1) = cmfdt(i, km1) + ds3(i)/rcpd*rdt |
---|
| 648 | cmfdq(i, kp1) = cmfdq(i, kp1) + dq1(i)*rdt |
---|
| 649 | cmfdq(i, k) = cmfdq(i, k) + dq2(i)*rdt |
---|
| 650 | cmfdq(i, km1) = cmfdq(i, km1) + dq3(i)*rdt |
---|
| 651 | cmfdqr(i, k) = cmfdqr(i, k) + (rg*rnwtr(i)/dp(i,k))*rdt |
---|
| 652 | cmfmc(i, kp1) = cmfmc(i, kp1) + eta(i) |
---|
| 653 | cmfmc(i, k) = cmfmc(i, k) + beta(i)*eta(i) |
---|
| 654 | cmfsl(i, kp1) = cmfsl(i, kp1) + fslkp |
---|
| 655 | cmfsl(i, k) = cmfsl(i, k) + fslkm |
---|
| 656 | cmflq(i, kp1) = cmflq(i, kp1) + rlvtt*fqlkp |
---|
| 657 | cmflq(i, k) = cmflq(i, k) + rlvtt*fqlkm |
---|
| 658 | qc(i, k) = (rg*rnwtr(i)/dp(i,k))*rdt |
---|
| 659 | END IF |
---|
| 660 | END DO |
---|
| 661 | |
---|
| 662 | ! Next, convectively modify passive constituents |
---|
| 663 | |
---|
| 664 | DO m = 1, pcnst |
---|
[524] | 665 | DO i = 1, klon |
---|
[1992] | 666 | IF (ldcum(i)) THEN |
---|
[524] | 667 | |
---|
[1992] | 668 | ! If any of the reported values of the constituent is negative in |
---|
| 669 | ! the three adjacent levels, nothing will be done to the profile |
---|
| 670 | |
---|
| 671 | IF ((cmrb(i,kp1,m)<0.0) .OR. (cmrb(i,k,m)<0.0) .OR. (cmrb(i,km1, & |
---|
| 672 | m)<0.0)) GO TO 40 |
---|
| 673 | |
---|
| 674 | ! Specify constituent interface values (linear interpolation) |
---|
| 675 | |
---|
| 676 | cmrh(i, k) = 0.5*(cmrb(i,km1,m)+cmrb(i,k,m)) |
---|
| 677 | cmrh(i, kp1) = 0.5*(cmrb(i,k,m)+cmrb(i,kp1,m)) |
---|
| 678 | |
---|
| 679 | ! Specify perturbation properties of constituents in PBL |
---|
| 680 | |
---|
| 681 | pblhgt = max(pblh(i), 1.0) |
---|
| 682 | IF (gz(i,kp1)/rg<=pblhgt .AND. dzcld(i)==0.) THEN |
---|
| 683 | fac1 = max(0.0, 1.0-gz(i,kp1)/rg/pblhgt) |
---|
| 684 | cmrc(i) = cmrb(i, kp1, m) + cmrp(i, m)*fac1 |
---|
| 685 | ELSE |
---|
| 686 | cmrc(i) = cmrb(i, kp1, m) |
---|
| 687 | END IF |
---|
| 688 | |
---|
| 689 | ! Determine fluxes, flux divergence => changes due to convection |
---|
| 690 | ! Logic must be included to avoid producing negative values. A bit |
---|
| 691 | ! messy since there are no a priori assumptions about profiles. |
---|
| 692 | ! Tendency is modified (reduced) when pending disaster detected. |
---|
| 693 | |
---|
| 694 | etagdt = eta(i)*rg*dt |
---|
| 695 | botflx = etagdt*(cmrc(i)-cmrh(i,kp1)) |
---|
| 696 | topflx = beta(i)*etagdt*(cmrc(i)-cmrh(i,k)) |
---|
| 697 | dcmr1(i) = -botflx/dp(i, kp1) |
---|
| 698 | efac1 = 1.0 |
---|
| 699 | efac2 = 1.0 |
---|
| 700 | efac3 = 1.0 |
---|
| 701 | |
---|
| 702 | IF (cmrb(i,kp1,m)+dcmr1(i)<0.0) THEN |
---|
| 703 | efac1 = max(tiny, abs(cmrb(i,kp1,m)/dcmr1(i))-eps) |
---|
| 704 | END IF |
---|
| 705 | |
---|
| 706 | IF (efac1==tiny .OR. efac1>1.0) efac1 = 0.0 |
---|
| 707 | dcmr1(i) = -efac1*botflx/dp(i, kp1) |
---|
| 708 | dcmr2(i) = (efac1*botflx-topflx)/dp(i, k) |
---|
| 709 | |
---|
| 710 | IF (cmrb(i,k,m)+dcmr2(i)<0.0) THEN |
---|
| 711 | efac2 = max(tiny, abs(cmrb(i,k,m)/dcmr2(i))-eps) |
---|
| 712 | END IF |
---|
| 713 | |
---|
| 714 | IF (efac2==tiny .OR. efac2>1.0) efac2 = 0.0 |
---|
| 715 | dcmr2(i) = (efac1*botflx-efac2*topflx)/dp(i, k) |
---|
| 716 | dcmr3(i) = efac2*topflx/dp(i, km1) |
---|
| 717 | |
---|
| 718 | IF (cmrb(i,km1,m)+dcmr3(i)<0.0) THEN |
---|
| 719 | efac3 = max(tiny, abs(cmrb(i,km1,m)/dcmr3(i))-eps) |
---|
| 720 | END IF |
---|
| 721 | |
---|
| 722 | IF (efac3==tiny .OR. efac3>1.0) efac3 = 0.0 |
---|
| 723 | efac3 = min(efac2, efac3) |
---|
| 724 | dcmr2(i) = (efac1*botflx-efac3*topflx)/dp(i, k) |
---|
| 725 | dcmr3(i) = efac3*topflx/dp(i, km1) |
---|
| 726 | |
---|
| 727 | cmrb(i, kp1, m) = cmrb(i, kp1, m) + dcmr1(i) |
---|
| 728 | cmrb(i, k, m) = cmrb(i, k, m) + dcmr2(i) |
---|
| 729 | cmrb(i, km1, m) = cmrb(i, km1, m) + dcmr3(i) |
---|
| 730 | END IF |
---|
| 731 | 40 END DO |
---|
| 732 | END DO ! end of m=1,pcnst loop |
---|
| 733 | |
---|
| 734 | IF (k==limcnv+1) GO TO 60 ! on ne pourra plus glisser |
---|
| 735 | |
---|
| 736 | ! Dans la procedure de glissage ascendant, les variables thermo- |
---|
| 737 | ! dynamiques des couches k et km1 servent au calcul des couches |
---|
| 738 | ! superieures. Elles ont donc besoin d'une mise-a-jour. |
---|
| 739 | |
---|
| 740 | DO i = 1, klon |
---|
| 741 | IF (ldcum(i)) THEN |
---|
| 742 | zx_t = tb(i, k) |
---|
| 743 | zx_p = p(i, k) |
---|
| 744 | zx_q = shb(i, k) |
---|
| 745 | zdelta = max(0., sign(1.,rtt-zx_t)) |
---|
| 746 | zcvm5 = r5les*rlvtt*(1.-zdelta) + r5ies*rlstt*zdelta |
---|
| 747 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*zx_q) |
---|
| 748 | zx_qs = r2es*foeew(zx_t, zdelta)/zx_p |
---|
| 749 | zx_qs = min(0.5, zx_qs) |
---|
| 750 | zcor = 1./(1.-retv*zx_qs) |
---|
| 751 | zx_qs = zx_qs*zcor |
---|
| 752 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
| 753 | shbs(i, k) = zx_qs |
---|
| 754 | gam(i, k) = zx_gam |
---|
| 755 | |
---|
| 756 | zx_t = tb(i, km1) |
---|
| 757 | zx_p = p(i, km1) |
---|
| 758 | zx_q = shb(i, km1) |
---|
| 759 | zdelta = max(0., sign(1.,rtt-zx_t)) |
---|
| 760 | zcvm5 = r5les*rlvtt*(1.-zdelta) + r5ies*rlstt*zdelta |
---|
| 761 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*zx_q) |
---|
| 762 | zx_qs = r2es*foeew(zx_t, zdelta)/zx_p |
---|
| 763 | zx_qs = min(0.5, zx_qs) |
---|
| 764 | zcor = 1./(1.-retv*zx_qs) |
---|
| 765 | zx_qs = zx_qs*zcor |
---|
| 766 | zx_gam = foede(zx_t, zdelta, zcvm5, zx_qs, zcor) |
---|
| 767 | shbs(i, km1) = zx_qs |
---|
| 768 | gam(i, km1) = zx_gam |
---|
| 769 | |
---|
| 770 | sb(i, k) = sb(i, k) + ds2(i) |
---|
| 771 | sb(i, km1) = sb(i, km1) + ds3(i) |
---|
| 772 | hb(i, k) = sb(i, k) + rlvtt*shb(i, k) |
---|
| 773 | hb(i, km1) = sb(i, km1) + rlvtt*shb(i, km1) |
---|
| 774 | hbs(i, k) = sb(i, k) + rlvtt*shbs(i, k) |
---|
| 775 | hbs(i, km1) = sb(i, km1) + rlvtt*shbs(i, km1) |
---|
| 776 | |
---|
| 777 | sbh(i, k) = 0.5*(sb(i,k)+sb(i,km1)) |
---|
| 778 | shbh(i, k) = qhalf(shb(i,km1), shb(i,k), shbs(i,km1), shbs(i,k)) |
---|
| 779 | hbh(i, k) = sbh(i, k) + rlvtt*shbh(i, k) |
---|
| 780 | sbh(i, km1) = 0.5*(sb(i,km1)+sb(i,k-2)) |
---|
| 781 | shbh(i, km1) = qhalf(shb(i,k-2), shb(i,km1), shbs(i,k-2), & |
---|
| 782 | shbs(i,km1)) |
---|
| 783 | hbh(i, km1) = sbh(i, km1) + rlvtt*shbh(i, km1) |
---|
| 784 | END IF |
---|
| 785 | END DO |
---|
| 786 | |
---|
| 787 | ! Ensure that dzcld is reset if convective mass flux zero |
---|
| 788 | ! specify the current vertical extent of the convective activity |
---|
| 789 | ! top of convective layer determined by size of overshoot param. |
---|
| 790 | |
---|
| 791 | 60 CONTINUE |
---|
| 792 | DO i = 1, klon |
---|
| 793 | etagt0 = eta(i) > 0.0 |
---|
| 794 | IF (.NOT. etagt0) dzcld(i) = 0.0 |
---|
| 795 | IF (etagt0 .AND. beta(i)>betamn) THEN |
---|
| 796 | ktp = km1 |
---|
| 797 | ELSE |
---|
| 798 | ktp = k |
---|
| 799 | END IF |
---|
| 800 | IF (etagt0) THEN |
---|
| 801 | cnt(i) = min(cnt(i), ktp) |
---|
| 802 | cnb(i) = max(cnb(i), k) |
---|
| 803 | END IF |
---|
| 804 | END DO |
---|
| 805 | 70 END DO ! end of k loop |
---|
| 806 | |
---|
| 807 | ! determine whether precipitation, prec, is frozen (snow) or not |
---|
| 808 | |
---|
| 809 | DO i = 1, klon |
---|
| 810 | IF (tb(i,klev)<tmelt .AND. tb(i,klev-1)<tmelt) THEN |
---|
| 811 | cmfprs(i) = prec(i)*rdt |
---|
| 812 | ELSE |
---|
| 813 | cmfprt(i) = prec(i)*rdt |
---|
| 814 | END IF |
---|
| 815 | END DO |
---|
| 816 | |
---|
| 817 | RETURN ! we're all done ... return to calling procedure |
---|
| 818 | END SUBROUTINE cmfmca |
---|