1 | MODULE cloudth_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
---|
8 | & ztv,po,zqta,fraca, & |
---|
9 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
10 | & ratqs,zqs,t) |
---|
11 | |
---|
12 | |
---|
13 | IMPLICIT NONE |
---|
14 | |
---|
15 | |
---|
16 | !=========================================================================== |
---|
17 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
18 | ! Date : 25 Mai 2010 |
---|
19 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
20 | !=========================================================================== |
---|
21 | |
---|
22 | |
---|
23 | #include "YOMCST.h" |
---|
24 | #include "YOETHF.h" |
---|
25 | #include "FCTTRE.h" |
---|
26 | #include "thermcell.h" |
---|
27 | #include "nuage.h" |
---|
28 | |
---|
29 | INTEGER itap,ind1,ind2 |
---|
30 | INTEGER ngrid,klev,klon,l,ig |
---|
31 | |
---|
32 | REAL ztv(ngrid,klev) |
---|
33 | REAL po(ngrid) |
---|
34 | REAL zqenv(ngrid) |
---|
35 | REAL zqta(ngrid,klev) |
---|
36 | |
---|
37 | REAL fraca(ngrid,klev+1) |
---|
38 | REAL zpspsk(ngrid,klev) |
---|
39 | REAL paprs(ngrid,klev+1) |
---|
40 | REAL ztla(ngrid,klev) |
---|
41 | REAL zthl(ngrid,klev) |
---|
42 | |
---|
43 | REAL zqsatth(ngrid,klev) |
---|
44 | REAL zqsatenv(ngrid,klev) |
---|
45 | |
---|
46 | |
---|
47 | REAL sigma1(ngrid,klev) |
---|
48 | REAL sigma2(ngrid,klev) |
---|
49 | REAL qlth(ngrid,klev) |
---|
50 | REAL qlenv(ngrid,klev) |
---|
51 | REAL qltot(ngrid,klev) |
---|
52 | REAL cth(ngrid,klev) |
---|
53 | REAL cenv(ngrid,klev) |
---|
54 | REAL ctot(ngrid,klev) |
---|
55 | REAL rneb(ngrid,klev) |
---|
56 | REAL t(ngrid,klev) |
---|
57 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
58 | REAL rdd,cppd,Lv |
---|
59 | REAL alth,alenv,ath,aenv |
---|
60 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
61 | REAL Tbef,zdelta,qsatbef,zcor |
---|
62 | REAL qlbef |
---|
63 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
64 | |
---|
65 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
66 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
67 | REAL zqs(ngrid), qcloud(ngrid) |
---|
68 | REAL erf |
---|
69 | |
---|
70 | |
---|
71 | |
---|
72 | |
---|
73 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
74 | ! Gestion de deux versions de cloudth |
---|
75 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
76 | |
---|
77 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
78 | CALL cloudth_vert(ngrid,klev,ind2, & |
---|
79 | & ztv,po,zqta,fraca, & |
---|
80 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
81 | & ratqs,zqs,t) |
---|
82 | RETURN |
---|
83 | ENDIF |
---|
84 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
85 | |
---|
86 | |
---|
87 | !------------------------------------------------------------------------------- |
---|
88 | ! Initialisation des variables r?elles |
---|
89 | !------------------------------------------------------------------------------- |
---|
90 | sigma1(:,:)=0. |
---|
91 | sigma2(:,:)=0. |
---|
92 | qlth(:,:)=0. |
---|
93 | qlenv(:,:)=0. |
---|
94 | qltot(:,:)=0. |
---|
95 | rneb(:,:)=0. |
---|
96 | qcloud(:)=0. |
---|
97 | cth(:,:)=0. |
---|
98 | cenv(:,:)=0. |
---|
99 | ctot(:,:)=0. |
---|
100 | qsatmmussig1=0. |
---|
101 | qsatmmussig2=0. |
---|
102 | rdd=287.04 |
---|
103 | cppd=1005.7 |
---|
104 | pi=3.14159 |
---|
105 | Lv=2.5e6 |
---|
106 | sqrt2pi=sqrt(2.*pi) |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | !------------------------------------------------------------------------------- |
---|
111 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
112 | !------------------------------------------------------------------------------- |
---|
113 | do ind1=1,ngrid |
---|
114 | |
---|
115 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
116 | |
---|
117 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
118 | |
---|
119 | |
---|
120 | ! zqenv(ind1)=po(ind1) |
---|
121 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
122 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
123 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
124 | qsatbef=MIN(0.5,qsatbef) |
---|
125 | zcor=1./(1.-retv*qsatbef) |
---|
126 | qsatbef=qsatbef*zcor |
---|
127 | zqsatenv(ind1,ind2)=qsatbef |
---|
128 | |
---|
129 | |
---|
130 | |
---|
131 | |
---|
132 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
133 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
134 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | |
---|
139 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
140 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
141 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
142 | qsatbef=MIN(0.5,qsatbef) |
---|
143 | zcor=1./(1.-retv*qsatbef) |
---|
144 | qsatbef=qsatbef*zcor |
---|
145 | zqsatth(ind1,ind2)=qsatbef |
---|
146 | |
---|
147 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
148 | ath=1./(1.+(alth*Lv/cppd)) |
---|
149 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
150 | |
---|
151 | |
---|
152 | |
---|
153 | !------------------------------------------------------------------------------ |
---|
154 | ! Calcul des ?cart-types pour s |
---|
155 | !------------------------------------------------------------------------------ |
---|
156 | |
---|
157 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
158 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
159 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
160 | ! ratqs(ind1,ind2)=0.002 |
---|
161 | ! else |
---|
162 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
163 | ! endif |
---|
164 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
165 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
166 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
167 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
168 | |
---|
169 | !------------------------------------------------------------------------------ |
---|
170 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
171 | !------------------------------------------------------------------------------ |
---|
172 | sqrt2pi=sqrt(2.*pi) |
---|
173 | xth=sth/(sqrt(2.)*sigma2s) |
---|
174 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
175 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
176 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
177 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
178 | |
---|
179 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
180 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
181 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
182 | |
---|
183 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
184 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
185 | ctot(ind1,ind2)=0. |
---|
186 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
187 | |
---|
188 | else |
---|
189 | |
---|
190 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
191 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
192 | |
---|
193 | endif |
---|
194 | |
---|
195 | |
---|
196 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
197 | |
---|
198 | |
---|
199 | else ! gaussienne environnement seule |
---|
200 | |
---|
201 | zqenv(ind1)=po(ind1) |
---|
202 | Tbef=t(ind1,ind2) |
---|
203 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
204 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
205 | qsatbef=MIN(0.5,qsatbef) |
---|
206 | zcor=1./(1.-retv*qsatbef) |
---|
207 | qsatbef=qsatbef*zcor |
---|
208 | zqsatenv(ind1,ind2)=qsatbef |
---|
209 | |
---|
210 | |
---|
211 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
212 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
213 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
214 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
215 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
216 | |
---|
217 | |
---|
218 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
219 | |
---|
220 | sqrt2pi=sqrt(2.*pi) |
---|
221 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
222 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
223 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
224 | |
---|
225 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
226 | ctot(ind1,ind2)=0. |
---|
227 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
228 | |
---|
229 | else |
---|
230 | |
---|
231 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
232 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
233 | |
---|
234 | endif |
---|
235 | |
---|
236 | |
---|
237 | |
---|
238 | |
---|
239 | |
---|
240 | |
---|
241 | endif |
---|
242 | enddo |
---|
243 | |
---|
244 | return |
---|
245 | ! end |
---|
246 | END SUBROUTINE cloudth |
---|
247 | |
---|
248 | |
---|
249 | |
---|
250 | !=========================================================================== |
---|
251 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
---|
252 | & ztv,po,zqta,fraca, & |
---|
253 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
254 | & ratqs,zqs,t) |
---|
255 | |
---|
256 | !=========================================================================== |
---|
257 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
258 | ! Date : 25 Mai 2010 |
---|
259 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
260 | !=========================================================================== |
---|
261 | |
---|
262 | |
---|
263 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
264 | |
---|
265 | IMPLICIT NONE |
---|
266 | |
---|
267 | #include "YOMCST.h" |
---|
268 | #include "YOETHF.h" |
---|
269 | #include "FCTTRE.h" |
---|
270 | #include "thermcell.h" |
---|
271 | #include "nuage.h" |
---|
272 | |
---|
273 | INTEGER itap,ind1,ind2 |
---|
274 | INTEGER ngrid,klev,klon,l,ig |
---|
275 | |
---|
276 | REAL ztv(ngrid,klev) |
---|
277 | REAL po(ngrid) |
---|
278 | REAL zqenv(ngrid) |
---|
279 | REAL zqta(ngrid,klev) |
---|
280 | |
---|
281 | REAL fraca(ngrid,klev+1) |
---|
282 | REAL zpspsk(ngrid,klev) |
---|
283 | REAL paprs(ngrid,klev+1) |
---|
284 | REAL ztla(ngrid,klev) |
---|
285 | REAL zthl(ngrid,klev) |
---|
286 | |
---|
287 | REAL zqsatth(ngrid,klev) |
---|
288 | REAL zqsatenv(ngrid,klev) |
---|
289 | |
---|
290 | |
---|
291 | REAL sigma1(ngrid,klev) |
---|
292 | REAL sigma2(ngrid,klev) |
---|
293 | REAL qlth(ngrid,klev) |
---|
294 | REAL qlenv(ngrid,klev) |
---|
295 | REAL qltot(ngrid,klev) |
---|
296 | REAL cth(ngrid,klev) |
---|
297 | REAL cenv(ngrid,klev) |
---|
298 | REAL ctot(ngrid,klev) |
---|
299 | REAL rneb(ngrid,klev) |
---|
300 | REAL t(ngrid,klev) |
---|
301 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
302 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
---|
303 | REAL alth,alenv,ath,aenv |
---|
304 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
305 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
306 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
307 | REAL Tbef,zdelta,qsatbef,zcor |
---|
308 | REAL qlbef |
---|
309 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
310 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
311 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
312 | REAL,SAVE :: vert_alpha |
---|
313 | !$OMP THREADPRIVATE(vert_alpha) |
---|
314 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
315 | !$OMP THREADPRIVATE(firstcall) |
---|
316 | |
---|
317 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
318 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
319 | REAL zqs(ngrid), qcloud(ngrid) |
---|
320 | REAL erf |
---|
321 | |
---|
322 | !------------------------------------------------------------------------------ |
---|
323 | ! Initialisation des variables r?elles |
---|
324 | !------------------------------------------------------------------------------ |
---|
325 | sigma1(:,:)=0. |
---|
326 | sigma2(:,:)=0. |
---|
327 | qlth(:,:)=0. |
---|
328 | qlenv(:,:)=0. |
---|
329 | qltot(:,:)=0. |
---|
330 | rneb(:,:)=0. |
---|
331 | qcloud(:)=0. |
---|
332 | cth(:,:)=0. |
---|
333 | cenv(:,:)=0. |
---|
334 | ctot(:,:)=0. |
---|
335 | qsatmmussig1=0. |
---|
336 | qsatmmussig2=0. |
---|
337 | rdd=287.04 |
---|
338 | cppd=1005.7 |
---|
339 | pi=3.14159 |
---|
340 | Lv=2.5e6 |
---|
341 | sqrt2pi=sqrt(2.*pi) |
---|
342 | sqrt2=sqrt(2.) |
---|
343 | sqrtpi=sqrt(pi) |
---|
344 | |
---|
345 | IF (firstcall) THEN |
---|
346 | vert_alpha=0.5 |
---|
347 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
---|
348 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
---|
349 | firstcall=.FALSE. |
---|
350 | ENDIF |
---|
351 | |
---|
352 | !------------------------------------------------------------------------------- |
---|
353 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
354 | !------------------------------------------------------------------------------- |
---|
355 | do ind1=1,ngrid |
---|
356 | |
---|
357 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
358 | |
---|
359 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
360 | |
---|
361 | |
---|
362 | ! zqenv(ind1)=po(ind1) |
---|
363 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
364 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
365 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
366 | qsatbef=MIN(0.5,qsatbef) |
---|
367 | zcor=1./(1.-retv*qsatbef) |
---|
368 | qsatbef=qsatbef*zcor |
---|
369 | zqsatenv(ind1,ind2)=qsatbef |
---|
370 | |
---|
371 | |
---|
372 | |
---|
373 | |
---|
374 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
375 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
376 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
377 | |
---|
378 | |
---|
379 | |
---|
380 | |
---|
381 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
382 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
383 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
384 | qsatbef=MIN(0.5,qsatbef) |
---|
385 | zcor=1./(1.-retv*qsatbef) |
---|
386 | qsatbef=qsatbef*zcor |
---|
387 | zqsatth(ind1,ind2)=qsatbef |
---|
388 | |
---|
389 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
390 | ath=1./(1.+(alth*Lv/cppd)) |
---|
391 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
392 | |
---|
393 | |
---|
394 | |
---|
395 | !------------------------------------------------------------------------------ |
---|
396 | ! Calcul des ?cart-types pour s |
---|
397 | !------------------------------------------------------------------------------ |
---|
398 | |
---|
399 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
400 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
401 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
402 | ! ratqs(ind1,ind2)=0.002 |
---|
403 | ! else |
---|
404 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
405 | ! endif |
---|
406 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
407 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
408 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
409 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
410 | |
---|
411 | !------------------------------------------------------------------------------ |
---|
412 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
413 | !------------------------------------------------------------------------------ |
---|
414 | sqrt2pi=sqrt(2.*pi) |
---|
415 | xth=sth/(sqrt(2.)*sigma2s) |
---|
416 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
417 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
418 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
419 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
420 | |
---|
421 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
422 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
423 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
424 | |
---|
425 | IF (iflag_cloudth_vert == 1) THEN |
---|
426 | !------------------------------------------------------------------------------- |
---|
427 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
428 | !------------------------------------------------------------------------------- |
---|
429 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
430 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
431 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
432 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
433 | ! deltasenv=aenv*0.01*po(ind1) |
---|
434 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
435 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
436 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
437 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
438 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
439 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
440 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
441 | |
---|
442 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
443 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
444 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
445 | |
---|
446 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
447 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
448 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
449 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
450 | |
---|
451 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
452 | ! qlenv(ind1,ind2)=IntJ |
---|
453 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
454 | |
---|
455 | |
---|
456 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
457 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
458 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
459 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
460 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
461 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
462 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
463 | ! qlth(ind1,ind2)=IntJ |
---|
464 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
465 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
466 | |
---|
467 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
468 | |
---|
469 | !------------------------------------------------------------------------------- |
---|
470 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
471 | !------------------------------------------------------------------------------- |
---|
472 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
473 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
474 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
475 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
476 | deltasenv=aenv*vert_alpha*sigma1s |
---|
477 | deltasth=ath*vert_alpha*sigma2s |
---|
478 | |
---|
479 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
480 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
481 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
482 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
483 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
484 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
485 | |
---|
486 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
487 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
488 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
489 | |
---|
490 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
---|
491 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
492 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
493 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
---|
494 | |
---|
495 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
496 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
497 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
498 | |
---|
499 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
500 | ! qlenv(ind1,ind2)=IntJ |
---|
501 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
502 | |
---|
503 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
---|
504 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
505 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
506 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
---|
507 | |
---|
508 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
509 | ! qlth(ind1,ind2)=IntJ |
---|
510 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
511 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
512 | |
---|
513 | |
---|
514 | |
---|
515 | |
---|
516 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
517 | |
---|
518 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
519 | |
---|
520 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
521 | ctot(ind1,ind2)=0. |
---|
522 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
523 | |
---|
524 | else |
---|
525 | |
---|
526 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
527 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
528 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
529 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
530 | |
---|
531 | endif |
---|
532 | |
---|
533 | |
---|
534 | |
---|
535 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
536 | |
---|
537 | |
---|
538 | else ! gaussienne environnement seule |
---|
539 | |
---|
540 | zqenv(ind1)=po(ind1) |
---|
541 | Tbef=t(ind1,ind2) |
---|
542 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
543 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
544 | qsatbef=MIN(0.5,qsatbef) |
---|
545 | zcor=1./(1.-retv*qsatbef) |
---|
546 | qsatbef=qsatbef*zcor |
---|
547 | zqsatenv(ind1,ind2)=qsatbef |
---|
548 | |
---|
549 | |
---|
550 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
551 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
552 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
553 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
554 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
555 | |
---|
556 | |
---|
557 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
558 | |
---|
559 | sqrt2pi=sqrt(2.*pi) |
---|
560 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
561 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
562 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
563 | |
---|
564 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
565 | ctot(ind1,ind2)=0. |
---|
566 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
567 | |
---|
568 | else |
---|
569 | |
---|
570 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
571 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
572 | |
---|
573 | endif |
---|
574 | |
---|
575 | |
---|
576 | |
---|
577 | |
---|
578 | |
---|
579 | |
---|
580 | endif |
---|
581 | enddo |
---|
582 | |
---|
583 | return |
---|
584 | ! end |
---|
585 | END SUBROUTINE cloudth_vert |
---|
586 | |
---|
587 | SUBROUTINE cloudth_v3(ngrid,klev,ind2, & |
---|
588 | & ztv,po,zqta,fraca, & |
---|
589 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
590 | & ratqs,zqs,t) |
---|
591 | |
---|
592 | |
---|
593 | IMPLICIT NONE |
---|
594 | |
---|
595 | |
---|
596 | !=========================================================================== |
---|
597 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
598 | ! Date : 25 Mai 2010 |
---|
599 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
600 | !=========================================================================== |
---|
601 | |
---|
602 | |
---|
603 | #include "YOMCST.h" |
---|
604 | #include "YOETHF.h" |
---|
605 | #include "FCTTRE.h" |
---|
606 | #include "thermcell.h" |
---|
607 | #include "nuage.h" |
---|
608 | |
---|
609 | INTEGER itap,ind1,ind2 |
---|
610 | INTEGER ngrid,klev,klon,l,ig |
---|
611 | |
---|
612 | REAL ztv(ngrid,klev) |
---|
613 | REAL po(ngrid) |
---|
614 | REAL zqenv(ngrid) |
---|
615 | REAL zqta(ngrid,klev) |
---|
616 | |
---|
617 | REAL fraca(ngrid,klev+1) |
---|
618 | REAL zpspsk(ngrid,klev) |
---|
619 | REAL paprs(ngrid,klev+1) |
---|
620 | REAL ztla(ngrid,klev) |
---|
621 | REAL zthl(ngrid,klev) |
---|
622 | |
---|
623 | REAL zqsatth(ngrid,klev) |
---|
624 | REAL zqsatenv(ngrid,klev) |
---|
625 | |
---|
626 | |
---|
627 | REAL sigma1(ngrid,klev) |
---|
628 | REAL sigma2(ngrid,klev) |
---|
629 | REAL qlth(ngrid,klev) |
---|
630 | REAL qlenv(ngrid,klev) |
---|
631 | REAL qltot(ngrid,klev) |
---|
632 | REAL cth(ngrid,klev) |
---|
633 | REAL cenv(ngrid,klev) |
---|
634 | REAL ctot(ngrid,klev) |
---|
635 | REAL rneb(ngrid,klev) |
---|
636 | REAL t(ngrid,klev) |
---|
637 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
---|
638 | REAL rdd,cppd,Lv |
---|
639 | REAL alth,alenv,ath,aenv |
---|
640 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
---|
641 | REAL Tbef,zdelta,qsatbef,zcor |
---|
642 | REAL qlbef |
---|
643 | REAL ratqs(ngrid,klev) ! Determine the width of the vapour distribution |
---|
644 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
645 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
646 | REAL zqs(ngrid), qcloud(ngrid) |
---|
647 | REAL erf |
---|
648 | |
---|
649 | |
---|
650 | |
---|
651 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
652 | CALL cloudth_vert_v3(ngrid,klev,ind2, & |
---|
653 | & ztv,po,zqta,fraca, & |
---|
654 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
655 | & ratqs,zqs,t) |
---|
656 | RETURN |
---|
657 | ENDIF |
---|
658 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
659 | |
---|
660 | |
---|
661 | !------------------------------------------------------------------------------- |
---|
662 | ! Initialisation des variables r?elles |
---|
663 | !------------------------------------------------------------------------------- |
---|
664 | sigma1(:,:)=0. |
---|
665 | sigma2(:,:)=0. |
---|
666 | qlth(:,:)=0. |
---|
667 | qlenv(:,:)=0. |
---|
668 | qltot(:,:)=0. |
---|
669 | rneb(:,:)=0. |
---|
670 | qcloud(:)=0. |
---|
671 | cth(:,:)=0. |
---|
672 | cenv(:,:)=0. |
---|
673 | ctot(:,:)=0. |
---|
674 | qsatmmussig1=0. |
---|
675 | qsatmmussig2=0. |
---|
676 | rdd=287.04 |
---|
677 | cppd=1005.7 |
---|
678 | pi=3.14159 |
---|
679 | Lv=2.5e6 |
---|
680 | sqrt2pi=sqrt(2.*pi) |
---|
681 | sqrt2=sqrt(2.) |
---|
682 | sqrtpi=sqrt(pi) |
---|
683 | |
---|
684 | |
---|
685 | !------------------------------------------------------------------------------- |
---|
686 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
687 | !------------------------------------------------------------------------------- |
---|
688 | do ind1=1,ngrid |
---|
689 | |
---|
690 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
691 | |
---|
692 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
693 | |
---|
694 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
695 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
696 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
697 | qsatbef=MIN(0.5,qsatbef) |
---|
698 | zcor=1./(1.-retv*qsatbef) |
---|
699 | qsatbef=qsatbef*zcor |
---|
700 | zqsatenv(ind1,ind2)=qsatbef |
---|
701 | |
---|
702 | |
---|
703 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
704 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
705 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
706 | |
---|
707 | !po = qt de l'environnement ET des thermique |
---|
708 | !zqenv = qt environnement |
---|
709 | !zqsatenv = qsat environnement |
---|
710 | !zthl = Tl environnement |
---|
711 | |
---|
712 | |
---|
713 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
714 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
715 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
716 | qsatbef=MIN(0.5,qsatbef) |
---|
717 | zcor=1./(1.-retv*qsatbef) |
---|
718 | qsatbef=qsatbef*zcor |
---|
719 | zqsatth(ind1,ind2)=qsatbef |
---|
720 | |
---|
721 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
722 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
723 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
724 | |
---|
725 | !zqta = qt thermals |
---|
726 | !zqsatth = qsat thermals |
---|
727 | !ztla = Tl thermals |
---|
728 | |
---|
729 | !------------------------------------------------------------------------------ |
---|
730 | ! s standard deviations |
---|
731 | !------------------------------------------------------------------------------ |
---|
732 | |
---|
733 | ! tests |
---|
734 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
735 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
736 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
737 | ! final option |
---|
738 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
739 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
740 | |
---|
741 | !------------------------------------------------------------------------------ |
---|
742 | ! Condensed water and cloud cover |
---|
743 | !------------------------------------------------------------------------------ |
---|
744 | xth=sth/(sqrt2*sigma2s) |
---|
745 | xenv=senv/(sqrt2*sigma1s) |
---|
746 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
747 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
748 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
749 | |
---|
750 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
---|
751 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
752 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
753 | |
---|
754 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
755 | ctot(ind1,ind2)=0. |
---|
756 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
757 | else |
---|
758 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
759 | endif |
---|
760 | |
---|
761 | else ! Environnement only, follow the if l.110 |
---|
762 | |
---|
763 | zqenv(ind1)=po(ind1) |
---|
764 | Tbef=t(ind1,ind2) |
---|
765 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
766 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
767 | qsatbef=MIN(0.5,qsatbef) |
---|
768 | zcor=1./(1.-retv*qsatbef) |
---|
769 | qsatbef=qsatbef*zcor |
---|
770 | zqsatenv(ind1,ind2)=qsatbef |
---|
771 | |
---|
772 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
773 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
774 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
775 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
776 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
777 | |
---|
778 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
779 | |
---|
780 | xenv=senv/(sqrt2*sigma1s) |
---|
781 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
782 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
783 | |
---|
784 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
785 | ctot(ind1,ind2)=0. |
---|
786 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
787 | else |
---|
788 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
789 | endif |
---|
790 | |
---|
791 | |
---|
792 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
793 | enddo ! from the loop on ngrid l.108 |
---|
794 | return |
---|
795 | ! end |
---|
796 | END SUBROUTINE cloudth_v3 |
---|
797 | |
---|
798 | |
---|
799 | |
---|
800 | !=========================================================================== |
---|
801 | SUBROUTINE cloudth_vert_v3(ngrid,klev,ind2, & |
---|
802 | & ztv,po,zqta,fraca, & |
---|
803 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
804 | & ratqs,zqs,t) |
---|
805 | |
---|
806 | !=========================================================================== |
---|
807 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
808 | ! Date : 25 Mai 2010 |
---|
809 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
810 | !=========================================================================== |
---|
811 | |
---|
812 | |
---|
813 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
814 | |
---|
815 | IMPLICIT NONE |
---|
816 | |
---|
817 | #include "YOMCST.h" |
---|
818 | #include "YOETHF.h" |
---|
819 | #include "FCTTRE.h" |
---|
820 | #include "thermcell.h" |
---|
821 | #include "nuage.h" |
---|
822 | |
---|
823 | INTEGER itap,ind1,ind2 |
---|
824 | INTEGER ngrid,klev,klon,l,ig |
---|
825 | |
---|
826 | REAL ztv(ngrid,klev) |
---|
827 | REAL po(ngrid) |
---|
828 | REAL zqenv(ngrid) |
---|
829 | REAL zqta(ngrid,klev) |
---|
830 | |
---|
831 | REAL fraca(ngrid,klev+1) |
---|
832 | REAL zpspsk(ngrid,klev) |
---|
833 | REAL paprs(ngrid,klev+1) |
---|
834 | REAL ztla(ngrid,klev) |
---|
835 | REAL zthl(ngrid,klev) |
---|
836 | |
---|
837 | REAL zqsatth(ngrid,klev) |
---|
838 | REAL zqsatenv(ngrid,klev) |
---|
839 | |
---|
840 | |
---|
841 | REAL sigma1(ngrid,klev) |
---|
842 | REAL sigma2(ngrid,klev) |
---|
843 | REAL qlth(ngrid,klev) |
---|
844 | REAL qlenv(ngrid,klev) |
---|
845 | REAL qltot(ngrid,klev) |
---|
846 | REAL cth(ngrid,klev) |
---|
847 | REAL cenv(ngrid,klev) |
---|
848 | REAL ctot(ngrid,klev) |
---|
849 | REAL rneb(ngrid,klev) |
---|
850 | REAL t(ngrid,klev) |
---|
851 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
---|
852 | REAL rdd,cppd,Lv |
---|
853 | REAL alth,alenv,ath,aenv |
---|
854 | REAL sth,senv,sigma1s,sigma2s,xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
855 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
856 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
857 | REAL Tbef,zdelta,qsatbef,zcor |
---|
858 | REAL qlbef |
---|
859 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
860 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
861 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
862 | REAL,SAVE :: vert_alpha, vert_alpha_th |
---|
863 | !$OMP THREADPRIVATE(vert_alpha, vert_alpha_th) |
---|
864 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
865 | !$OMP THREADPRIVATE(firstcall) |
---|
866 | |
---|
867 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
868 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
869 | REAL zqs(ngrid), qcloud(ngrid) |
---|
870 | REAL erf |
---|
871 | |
---|
872 | !------------------------------------------------------------------------------ |
---|
873 | ! Initialize |
---|
874 | !------------------------------------------------------------------------------ |
---|
875 | sigma1(:,:)=0. |
---|
876 | sigma2(:,:)=0. |
---|
877 | qlth(:,:)=0. |
---|
878 | qlenv(:,:)=0. |
---|
879 | qltot(:,:)=0. |
---|
880 | rneb(:,:)=0. |
---|
881 | qcloud(:)=0. |
---|
882 | cth(:,:)=0. |
---|
883 | cenv(:,:)=0. |
---|
884 | ctot(:,:)=0. |
---|
885 | qsatmmussig1=0. |
---|
886 | qsatmmussig2=0. |
---|
887 | rdd=287.04 |
---|
888 | cppd=1005.7 |
---|
889 | pi=3.14159 |
---|
890 | Lv=2.5e6 |
---|
891 | sqrt2pi=sqrt(2.*pi) |
---|
892 | sqrt2=sqrt(2.) |
---|
893 | sqrtpi=sqrt(pi) |
---|
894 | |
---|
895 | IF (firstcall) THEN |
---|
896 | vert_alpha=0.5 |
---|
897 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
---|
898 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
---|
899 | ! The factor used for the thermal is equal to that of the environment |
---|
900 | ! if nothing is explicitly specified in the def file |
---|
901 | vert_alpha_th=vert_alpha |
---|
902 | CALL getin_p('cloudth_vert_alpha_th',vert_alpha_th) |
---|
903 | WRITE(*,*) 'cloudth_vert_alpha_th = ', vert_alpha_th |
---|
904 | firstcall=.FALSE. |
---|
905 | ENDIF |
---|
906 | |
---|
907 | !------------------------------------------------------------------------------- |
---|
908 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
909 | !------------------------------------------------------------------------------- |
---|
910 | do ind1=1,ngrid |
---|
911 | |
---|
912 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
---|
913 | |
---|
914 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
915 | |
---|
916 | |
---|
917 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
918 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
919 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
920 | qsatbef=MIN(0.5,qsatbef) |
---|
921 | zcor=1./(1.-retv*qsatbef) |
---|
922 | qsatbef=qsatbef*zcor |
---|
923 | zqsatenv(ind1,ind2)=qsatbef |
---|
924 | |
---|
925 | |
---|
926 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
927 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
928 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
929 | |
---|
930 | !zqenv = qt environnement |
---|
931 | !zqsatenv = qsat environnement |
---|
932 | !zthl = Tl environnement |
---|
933 | |
---|
934 | |
---|
935 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
936 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
937 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
938 | qsatbef=MIN(0.5,qsatbef) |
---|
939 | zcor=1./(1.-retv*qsatbef) |
---|
940 | qsatbef=qsatbef*zcor |
---|
941 | zqsatth(ind1,ind2)=qsatbef |
---|
942 | |
---|
943 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
944 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
945 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
946 | |
---|
947 | |
---|
948 | !zqta = qt thermals |
---|
949 | !zqsatth = qsat thermals |
---|
950 | !ztla = Tl thermals |
---|
951 | |
---|
952 | !------------------------------------------------------------------------------ |
---|
953 | ! s standard deviation |
---|
954 | !------------------------------------------------------------------------------ |
---|
955 | |
---|
956 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
957 | sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
958 | ! tests |
---|
959 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
960 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
961 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
962 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
963 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
964 | ! ratqs(ind1,ind2)=0.002 |
---|
965 | ! else |
---|
966 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
967 | ! endif |
---|
968 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
969 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
970 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
971 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
972 | |
---|
973 | IF (iflag_cloudth_vert == 1) THEN |
---|
974 | !------------------------------------------------------------------------------- |
---|
975 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
976 | !------------------------------------------------------------------------------- |
---|
977 | |
---|
978 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
979 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
980 | |
---|
981 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
982 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
983 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
984 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
985 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
986 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
987 | |
---|
988 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
989 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
990 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
991 | |
---|
992 | ! Environment |
---|
993 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
994 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
995 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
996 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
997 | |
---|
998 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
999 | |
---|
1000 | ! Thermal |
---|
1001 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
1002 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
1003 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
1004 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
1005 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1006 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1007 | |
---|
1008 | ELSE IF (iflag_cloudth_vert >= 3) THEN |
---|
1009 | |
---|
1010 | !------------------------------------------------------------------------------- |
---|
1011 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
1012 | !------------------------------------------------------------------------------- |
---|
1013 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
1014 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
1015 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
1016 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
1017 | IF (iflag_cloudth_vert == 3) THEN |
---|
1018 | deltasenv=aenv*vert_alpha*sigma1s |
---|
1019 | deltasth=ath*vert_alpha_th*sigma2s |
---|
1020 | ELSE IF (iflag_cloudth_vert == 4) THEN |
---|
1021 | deltasenv=vert_alpha*sigma1s |
---|
1022 | deltasth=vert_alpha_th*sigma2s |
---|
1023 | ENDIF |
---|
1024 | |
---|
1025 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
1026 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
1027 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
1028 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
1029 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
1030 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
1031 | exp_xth1 = exp(-1.*xth1**2) |
---|
1032 | exp_xth2 = exp(-1.*xth2**2) |
---|
1033 | |
---|
1034 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
1035 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
1036 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
1037 | |
---|
1038 | |
---|
1039 | !environnement |
---|
1040 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
1041 | if (deltasenv .lt. 1.e-10) then |
---|
1042 | qlenv(ind1,ind2)=IntJ |
---|
1043 | else |
---|
1044 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
1045 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
1046 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
1047 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1048 | endif |
---|
1049 | |
---|
1050 | |
---|
1051 | !thermique |
---|
1052 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
1053 | if (deltasth .lt. 1.e-10) then ! Seuil a choisir !!! |
---|
1054 | qlth(ind1,ind2)=IntJ |
---|
1055 | else |
---|
1056 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
1057 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
1058 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
1059 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
1060 | endif |
---|
1061 | |
---|
1062 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
1063 | |
---|
1064 | |
---|
1065 | ENDIF ! of if (iflag_cloudth_vert==1 or 3 or 4) |
---|
1066 | |
---|
1067 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
1068 | ctot(ind1,ind2)=0. |
---|
1069 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1070 | |
---|
1071 | else |
---|
1072 | |
---|
1073 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
1074 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
1075 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
1076 | |
---|
1077 | endif |
---|
1078 | |
---|
1079 | else ! Environment only |
---|
1080 | |
---|
1081 | zqenv(ind1)=po(ind1) |
---|
1082 | Tbef=t(ind1,ind2) |
---|
1083 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
1084 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
1085 | qsatbef=MIN(0.5,qsatbef) |
---|
1086 | zcor=1./(1.-retv*qsatbef) |
---|
1087 | qsatbef=qsatbef*zcor |
---|
1088 | zqsatenv(ind1,ind2)=qsatbef |
---|
1089 | |
---|
1090 | |
---|
1091 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
1092 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
1093 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
1094 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
1095 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
1096 | |
---|
1097 | |
---|
1098 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
1099 | |
---|
1100 | xenv=senv/(sqrt2*sigma1s) |
---|
1101 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
1102 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
1103 | |
---|
1104 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
1105 | ctot(ind1,ind2)=0. |
---|
1106 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
1107 | |
---|
1108 | else |
---|
1109 | |
---|
1110 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
1111 | |
---|
1112 | endif |
---|
1113 | |
---|
1114 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
1115 | enddo ! from the loop on ngrid l.333 |
---|
1116 | |
---|
1117 | return |
---|
1118 | ! end |
---|
1119 | END SUBROUTINE cloudth_vert_v3 |
---|
1120 | ! |
---|
1121 | END MODULE cloudth_mod |
---|