[1399] | 1 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
---|
| 2 | & ztv,po,zqta,fraca, & |
---|
| 3 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
| 4 | & ratqs,zqs,t) |
---|
| 5 | |
---|
| 6 | |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | |
---|
| 9 | |
---|
| 10 | !=========================================================================== |
---|
[2662] | 11 | ! Author : Arnaud Octavio Jam (LMD/CNRS) |
---|
[1399] | 12 | ! Date : 25 Mai 2010 |
---|
| 13 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 14 | !=========================================================================== |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | #include "YOMCST.h" |
---|
| 18 | #include "YOETHF.h" |
---|
| 19 | #include "FCTTRE.h" |
---|
| 20 | #include "thermcell.h" |
---|
[2547] | 21 | #include "nuage.h" |
---|
[1399] | 22 | |
---|
| 23 | INTEGER itap,ind1,ind2 |
---|
| 24 | INTEGER ngrid,klev,klon,l,ig |
---|
| 25 | |
---|
| 26 | REAL ztv(ngrid,klev) |
---|
| 27 | REAL po(ngrid) |
---|
| 28 | REAL zqenv(ngrid) |
---|
| 29 | REAL zqta(ngrid,klev) |
---|
| 30 | |
---|
| 31 | REAL fraca(ngrid,klev+1) |
---|
| 32 | REAL zpspsk(ngrid,klev) |
---|
| 33 | REAL paprs(ngrid,klev+1) |
---|
| 34 | REAL ztla(ngrid,klev) |
---|
| 35 | REAL zthl(ngrid,klev) |
---|
| 36 | |
---|
| 37 | REAL zqsatth(ngrid,klev) |
---|
| 38 | REAL zqsatenv(ngrid,klev) |
---|
| 39 | |
---|
| 40 | |
---|
[2267] | 41 | REAL sigma1(ngrid,klev) |
---|
[1399] | 42 | REAL sigma2(ngrid,klev) |
---|
| 43 | REAL qlth(ngrid,klev) |
---|
| 44 | REAL qlenv(ngrid,klev) |
---|
| 45 | REAL qltot(ngrid,klev) |
---|
| 46 | REAL cth(ngrid,klev) |
---|
| 47 | REAL cenv(ngrid,klev) |
---|
| 48 | REAL ctot(ngrid,klev) |
---|
| 49 | REAL rneb(ngrid,klev) |
---|
[2267] | 50 | REAL t(ngrid,klev) |
---|
[2662] | 51 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,sqrt2,sqrtpi,pi |
---|
[1399] | 52 | REAL rdd,cppd,Lv |
---|
| 53 | REAL alth,alenv,ath,aenv |
---|
[2662] | 54 | REAL sth,senv,sigma1s,sigma2s,xth,xenv, exp_xenv1, exp_xenv2,exp_xth1,exp_xth2 |
---|
[1399] | 55 | REAL Tbef,zdelta,qsatbef,zcor |
---|
[2586] | 56 | REAL qlbef |
---|
[2662] | 57 | REAL ratqs(ngrid,klev) ! Determine the width of the vapour distribution |
---|
[1399] | 58 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 59 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 60 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 61 | REAL erf |
---|
| 62 | |
---|
| 63 | |
---|
| 64 | |
---|
[2547] | 65 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
| 66 | CALL cloudth_vert(ngrid,klev,ind2, & |
---|
[2267] | 67 | & ztv,po,zqta,fraca, & |
---|
| 68 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
| 69 | & ratqs,zqs,t) |
---|
[2547] | 70 | RETURN |
---|
| 71 | ENDIF |
---|
[2267] | 72 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | !------------------------------------------------------------------------------- |
---|
[2140] | 76 | ! Initialisation des variables r?elles |
---|
[2267] | 77 | !------------------------------------------------------------------------------- |
---|
[1399] | 78 | sigma1(:,:)=0. |
---|
| 79 | sigma2(:,:)=0. |
---|
| 80 | qlth(:,:)=0. |
---|
| 81 | qlenv(:,:)=0. |
---|
| 82 | qltot(:,:)=0. |
---|
| 83 | rneb(:,:)=0. |
---|
| 84 | qcloud(:)=0. |
---|
| 85 | cth(:,:)=0. |
---|
| 86 | cenv(:,:)=0. |
---|
| 87 | ctot(:,:)=0. |
---|
| 88 | qsatmmussig1=0. |
---|
| 89 | qsatmmussig2=0. |
---|
| 90 | rdd=287.04 |
---|
| 91 | cppd=1005.7 |
---|
| 92 | pi=3.14159 |
---|
| 93 | Lv=2.5e6 |
---|
| 94 | sqrt2pi=sqrt(2.*pi) |
---|
[2662] | 95 | sqrt2=sqrt(2.) |
---|
| 96 | sqrtpi=sqrt(pi) |
---|
[1399] | 97 | |
---|
| 98 | |
---|
[2267] | 99 | !------------------------------------------------------------------------------- |
---|
[2662] | 100 | ! Cloud fraction in the thermals and standard deviation of the PDFs |
---|
[2267] | 101 | !------------------------------------------------------------------------------- |
---|
[1399] | 102 | do ind1=1,ngrid |
---|
| 103 | |
---|
| 104 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 105 | |
---|
| 106 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 107 | |
---|
| 108 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 109 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
[2662] | 110 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
[1399] | 111 | qsatbef=MIN(0.5,qsatbef) |
---|
| 112 | zcor=1./(1.-retv*qsatbef) |
---|
| 113 | qsatbef=qsatbef*zcor |
---|
| 114 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 115 | |
---|
| 116 | |
---|
[2662] | 117 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
| 118 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
| 119 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
[1399] | 120 | |
---|
[2662] | 121 | !po = qt de l'environnement ET des thermique |
---|
| 122 | !zqenv = qt environnement |
---|
| 123 | !zqsatenv = qsat environnement |
---|
| 124 | !zthl = Tl environnement |
---|
[1399] | 125 | |
---|
| 126 | |
---|
| 127 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 128 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 129 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 130 | qsatbef=MIN(0.5,qsatbef) |
---|
| 131 | zcor=1./(1.-retv*qsatbef) |
---|
| 132 | qsatbef=qsatbef*zcor |
---|
| 133 | zqsatth(ind1,ind2)=qsatbef |
---|
| 134 | |
---|
[2662] | 135 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
| 136 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
| 137 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
[1399] | 138 | |
---|
[2662] | 139 | !zqta = qt thermals |
---|
| 140 | !zqsatth = qsat thermals |
---|
| 141 | !ztla = Tl thermals |
---|
[1399] | 142 | |
---|
[2267] | 143 | !------------------------------------------------------------------------------ |
---|
[2662] | 144 | ! s standard deviations |
---|
[2267] | 145 | !------------------------------------------------------------------------------ |
---|
[1399] | 146 | |
---|
[2662] | 147 | ! tests |
---|
| 148 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 149 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+ratqs(ind1,ind2)*po(ind1) |
---|
| 150 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
| 151 | ! final option |
---|
| 152 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 153 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
[1399] | 154 | |
---|
[2267] | 155 | !------------------------------------------------------------------------------ |
---|
[2662] | 156 | ! Condensed water and cloud cover |
---|
[2267] | 157 | !------------------------------------------------------------------------------ |
---|
[2662] | 158 | xth=sth/(sqrt2*sigma2s) |
---|
| 159 | xenv=senv/(sqrt2*sigma1s) |
---|
| 160 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
| 161 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) !4.18 p 111, l.7 p115 & 4.20 p 119 thesis Arnaud Jam |
---|
| 162 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
[1399] | 163 | |
---|
[2662] | 164 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt2*cth(ind1,ind2)) |
---|
| 165 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
[1399] | 166 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 167 | |
---|
| 168 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
| 169 | ctot(ind1,ind2)=0. |
---|
| 170 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
[2662] | 171 | else |
---|
[1399] | 172 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
[2662] | 173 | endif |
---|
[1399] | 174 | |
---|
[2662] | 175 | else ! Environnement only, follow the if l.110 |
---|
[1399] | 176 | |
---|
| 177 | zqenv(ind1)=po(ind1) |
---|
| 178 | Tbef=t(ind1,ind2) |
---|
| 179 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 180 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 181 | qsatbef=MIN(0.5,qsatbef) |
---|
| 182 | zcor=1./(1.-retv*qsatbef) |
---|
| 183 | qsatbef=qsatbef*zcor |
---|
| 184 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 185 | |
---|
[2662] | 186 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
[1399] | 187 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 188 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 189 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
[2662] | 190 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
[1399] | 191 | |
---|
[1411] | 192 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
[1399] | 193 | |
---|
[2662] | 194 | xenv=senv/(sqrt2*sigma1s) |
---|
[1399] | 195 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
[2662] | 196 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
| 197 | |
---|
[1399] | 198 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 199 | ctot(ind1,ind2)=0. |
---|
[2662] | 200 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
[1399] | 201 | else |
---|
| 202 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
[2662] | 203 | endif |
---|
[1399] | 204 | |
---|
[2662] | 205 | |
---|
| 206 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.110 et l.183 |
---|
| 207 | enddo ! from the loop on ngrid l.108 |
---|
[1399] | 208 | return |
---|
| 209 | end |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | |
---|
[2267] | 213 | !=========================================================================== |
---|
| 214 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
---|
| 215 | & ztv,po,zqta,fraca, & |
---|
| 216 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
| 217 | & ratqs,zqs,t) |
---|
[1399] | 218 | |
---|
[2267] | 219 | !=========================================================================== |
---|
| 220 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 221 | ! Date : 25 Mai 2010 |
---|
| 222 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 223 | !=========================================================================== |
---|
[1399] | 224 | |
---|
| 225 | |
---|
[2586] | 226 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 227 | |
---|
| 228 | IMPLICIT NONE |
---|
| 229 | |
---|
[2267] | 230 | #include "YOMCST.h" |
---|
| 231 | #include "YOETHF.h" |
---|
| 232 | #include "FCTTRE.h" |
---|
| 233 | #include "thermcell.h" |
---|
[2547] | 234 | #include "nuage.h" |
---|
| 235 | |
---|
[2267] | 236 | INTEGER itap,ind1,ind2 |
---|
| 237 | INTEGER ngrid,klev,klon,l,ig |
---|
| 238 | |
---|
| 239 | REAL ztv(ngrid,klev) |
---|
| 240 | REAL po(ngrid) |
---|
| 241 | REAL zqenv(ngrid) |
---|
| 242 | REAL zqta(ngrid,klev) |
---|
| 243 | |
---|
| 244 | REAL fraca(ngrid,klev+1) |
---|
| 245 | REAL zpspsk(ngrid,klev) |
---|
| 246 | REAL paprs(ngrid,klev+1) |
---|
| 247 | REAL ztla(ngrid,klev) |
---|
| 248 | REAL zthl(ngrid,klev) |
---|
| 249 | |
---|
| 250 | REAL zqsatth(ngrid,klev) |
---|
| 251 | REAL zqsatenv(ngrid,klev) |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | REAL sigma1(ngrid,klev) |
---|
| 255 | REAL sigma2(ngrid,klev) |
---|
| 256 | REAL qlth(ngrid,klev) |
---|
| 257 | REAL qlenv(ngrid,klev) |
---|
| 258 | REAL qltot(ngrid,klev) |
---|
| 259 | REAL cth(ngrid,klev) |
---|
| 260 | REAL cenv(ngrid,klev) |
---|
| 261 | REAL ctot(ngrid,klev) |
---|
| 262 | REAL rneb(ngrid,klev) |
---|
| 263 | REAL t(ngrid,klev) |
---|
[2662] | 264 | REAL qsatmmussig1,qsatmmussig2,sqrtpi,sqrt2,sqrt2pi,pi |
---|
| 265 | REAL rdd,cppd,Lv |
---|
[2267] | 266 | REAL alth,alenv,ath,aenv |
---|
[2662] | 267 | REAL sth,senv,sigma1s,sigma2s,xth,xenv,exp_xenv1,exp_xenv2,exp_xth1,exp_xth2 |
---|
[2267] | 268 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
| 269 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
| 270 | REAL Tbef,zdelta,qsatbef,zcor |
---|
[2586] | 271 | REAL qlbef |
---|
[2267] | 272 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
[2586] | 273 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
| 274 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
| 275 | REAL,SAVE :: vert_alpha |
---|
| 276 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
[2662] | 277 | |
---|
[2267] | 278 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 279 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 280 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 281 | REAL erf |
---|
| 282 | |
---|
| 283 | !------------------------------------------------------------------------------ |
---|
[2662] | 284 | ! Initialize |
---|
[2267] | 285 | !------------------------------------------------------------------------------ |
---|
| 286 | sigma1(:,:)=0. |
---|
| 287 | sigma2(:,:)=0. |
---|
| 288 | qlth(:,:)=0. |
---|
| 289 | qlenv(:,:)=0. |
---|
| 290 | qltot(:,:)=0. |
---|
| 291 | rneb(:,:)=0. |
---|
| 292 | qcloud(:)=0. |
---|
| 293 | cth(:,:)=0. |
---|
| 294 | cenv(:,:)=0. |
---|
| 295 | ctot(:,:)=0. |
---|
| 296 | qsatmmussig1=0. |
---|
| 297 | qsatmmussig2=0. |
---|
| 298 | rdd=287.04 |
---|
| 299 | cppd=1005.7 |
---|
| 300 | pi=3.14159 |
---|
| 301 | Lv=2.5e6 |
---|
| 302 | sqrt2pi=sqrt(2.*pi) |
---|
| 303 | sqrt2=sqrt(2.) |
---|
| 304 | sqrtpi=sqrt(pi) |
---|
| 305 | |
---|
[2586] | 306 | IF (firstcall) THEN |
---|
| 307 | vert_alpha=0.5 |
---|
| 308 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
---|
| 309 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
---|
| 310 | firstcall=.FALSE. |
---|
| 311 | ENDIF |
---|
[2267] | 312 | |
---|
| 313 | !------------------------------------------------------------------------------- |
---|
[2662] | 314 | ! Calcul de la fraction du thermique et des ecart-types des distributions |
---|
[2267] | 315 | !------------------------------------------------------------------------------- |
---|
| 316 | do ind1=1,ngrid |
---|
| 317 | |
---|
[2662] | 318 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then !Thermal and environnement |
---|
[2267] | 319 | |
---|
[2662] | 320 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) !qt = a*qtth + (1-a)*qtenv |
---|
[2267] | 321 | |
---|
| 322 | |
---|
| 323 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 324 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
[2662] | 325 | qsatbef= R2ES*FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
[2267] | 326 | qsatbef=MIN(0.5,qsatbef) |
---|
| 327 | zcor=1./(1.-retv*qsatbef) |
---|
| 328 | qsatbef=qsatbef*zcor |
---|
| 329 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 330 | |
---|
| 331 | |
---|
[2662] | 332 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) !qsl, p84 |
---|
| 333 | aenv=1./(1.+(alenv*Lv/cppd)) !al, p84 |
---|
| 334 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) !s, p84 |
---|
[2267] | 335 | |
---|
[2662] | 336 | !zqenv = qt environnement |
---|
| 337 | !zqsatenv = qsat environnement |
---|
| 338 | !zthl = Tl environnement |
---|
[2267] | 339 | |
---|
| 340 | |
---|
| 341 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 342 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 343 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 344 | qsatbef=MIN(0.5,qsatbef) |
---|
| 345 | zcor=1./(1.-retv*qsatbef) |
---|
| 346 | qsatbef=qsatbef*zcor |
---|
| 347 | zqsatth(ind1,ind2)=qsatbef |
---|
| 348 | |
---|
[2662] | 349 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) !qsl, p84 |
---|
| 350 | ath=1./(1.+(alth*Lv/cppd)) !al, p84 |
---|
| 351 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) !s, p84 |
---|
[2267] | 352 | |
---|
| 353 | |
---|
[2662] | 354 | !zqta = qt thermals |
---|
| 355 | !zqsatth = qsat thermals |
---|
| 356 | !ztla = Tl thermals |
---|
[2267] | 357 | |
---|
| 358 | !------------------------------------------------------------------------------ |
---|
[2662] | 359 | ! s standard deviation |
---|
[2267] | 360 | !------------------------------------------------------------------------------ |
---|
| 361 | |
---|
[2662] | 362 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 363 | sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+0.002*zqta(ind1,ind2) |
---|
| 364 | ! tests |
---|
| 365 | ! sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 366 | ! sigma1s=(0.92*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*(((sth-senv)**2)**0.5))+0.002*zqenv(ind1) |
---|
| 367 | ! sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
| 368 | ! sigma2s=(0.09*(((sth-senv)**2)**0.5)/((fraca(ind1,ind2)+0.02)**0.5))+ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
[2267] | 369 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 370 | ! ratqs(ind1,ind2)=0.002 |
---|
| 371 | ! else |
---|
| 372 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 373 | ! endif |
---|
| 374 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 375 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 376 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 377 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 378 | |
---|
[2547] | 379 | IF (iflag_cloudth_vert == 1) THEN |
---|
[2267] | 380 | !------------------------------------------------------------------------------- |
---|
[2662] | 381 | ! Version 2: Modification from Arnaud Jam according to JL Dufrense. Condensate from qsat-ratqs |
---|
[2267] | 382 | !------------------------------------------------------------------------------- |
---|
[2662] | 383 | |
---|
[2267] | 384 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 385 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
[2662] | 386 | |
---|
[2267] | 387 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 388 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 389 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 390 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 391 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 392 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 393 | |
---|
| 394 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
| 395 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
| 396 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 397 | |
---|
[2662] | 398 | ! Environment |
---|
[2267] | 399 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
| 400 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 401 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 402 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 403 | |
---|
| 404 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 405 | |
---|
[2662] | 406 | ! Thermal |
---|
[2267] | 407 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
| 408 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 409 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
| 410 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
| 411 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 412 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 413 | |
---|
[2547] | 414 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
| 415 | |
---|
| 416 | !------------------------------------------------------------------------------- |
---|
[2662] | 417 | ! Version 3: Changes by J. Jouhaud; condensation for q > -delta s |
---|
[2547] | 418 | !------------------------------------------------------------------------------- |
---|
| 419 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 420 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 421 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 422 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
[2586] | 423 | deltasenv=aenv*vert_alpha*sigma1s |
---|
| 424 | deltasth=ath*vert_alpha*sigma2s |
---|
[2547] | 425 | |
---|
| 426 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 427 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
[2662] | 428 | exp_xenv1 = exp(-1.*xenv1**2) |
---|
| 429 | exp_xenv2 = exp(-1.*xenv2**2) |
---|
[2547] | 430 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 431 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
[2662] | 432 | exp_xth1 = exp(-1.*xth1**2) |
---|
| 433 | exp_xth2 = exp(-1.*xth2**2) |
---|
[2547] | 434 | |
---|
| 435 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
| 436 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
| 437 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 438 | |
---|
[2662] | 439 | |
---|
| 440 | !environnement |
---|
| 441 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp_xenv2 |
---|
| 442 | if (deltasenv .lt. 1.e-10) then |
---|
| 443 | qlenv(ind1,ind2)=IntJ |
---|
| 444 | else |
---|
[2547] | 445 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
[2662] | 446 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp_xenv1-xenv2*exp_xenv2) |
---|
| 447 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp_xenv1-exp_xenv2) |
---|
| 448 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 449 | endif |
---|
[2547] | 450 | |
---|
| 451 | |
---|
[2662] | 452 | !thermique |
---|
| 453 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp_xth2 |
---|
| 454 | if (deltasth .lt. 1.e-10) then ! Seuil a choisir !!! |
---|
| 455 | qlth(ind1,ind2)=IntJ |
---|
| 456 | else |
---|
[2547] | 457 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
[2662] | 458 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp_xth1-xth2*exp_xth2) |
---|
| 459 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp_xth1-exp_xth2) |
---|
[2547] | 460 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
[2662] | 461 | endif |
---|
| 462 | |
---|
[2547] | 463 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 464 | |
---|
| 465 | |
---|
| 466 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
| 467 | |
---|
[2267] | 468 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
| 469 | ctot(ind1,ind2)=0. |
---|
| 470 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 471 | |
---|
| 472 | else |
---|
| 473 | |
---|
| 474 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 475 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
| 476 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
| 477 | |
---|
| 478 | endif |
---|
| 479 | |
---|
[2662] | 480 | else ! Environment only |
---|
[2267] | 481 | |
---|
| 482 | zqenv(ind1)=po(ind1) |
---|
| 483 | Tbef=t(ind1,ind2) |
---|
| 484 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 485 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 486 | qsatbef=MIN(0.5,qsatbef) |
---|
| 487 | zcor=1./(1.-retv*qsatbef) |
---|
| 488 | qsatbef=qsatbef*zcor |
---|
| 489 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 490 | |
---|
| 491 | |
---|
[2662] | 492 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
[2267] | 493 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 494 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 495 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 496 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 497 | |
---|
| 498 | |
---|
| 499 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 500 | |
---|
[2662] | 501 | xenv=senv/(sqrt2*sigma1s) |
---|
[2267] | 502 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
[2662] | 503 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt2*cenv(ind1,ind2)) |
---|
[2267] | 504 | |
---|
| 505 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 506 | ctot(ind1,ind2)=0. |
---|
| 507 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 508 | |
---|
| 509 | else |
---|
| 510 | |
---|
| 511 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 512 | |
---|
| 513 | endif |
---|
| 514 | |
---|
[2662] | 515 | endif ! From the separation (thermal/envrionnement) et (environnement) only, l.335 et l.492 |
---|
| 516 | enddo ! from the loop on ngrid l.333 |
---|
[2267] | 517 | |
---|
| 518 | return |
---|
| 519 | end |
---|