1 | MODULE nucleation_tstep_mod |
---|
2 | |
---|
3 | CONTAINS |
---|
4 | |
---|
5 | SUBROUTINE nucleation_rate(rhoa,t_seri,pplay,rh,a_xm,b_xm,c_xm,nucl_rate,ntot,x) |
---|
6 | |
---|
7 | USE aerophys |
---|
8 | USE infotrac |
---|
9 | USE YOMCST, ONLY : RPI, RD |
---|
10 | |
---|
11 | IMPLICIT NONE |
---|
12 | |
---|
13 | ! input variables |
---|
14 | REAL rhoa !H2SO4 number density [molecules/cm3] |
---|
15 | REAL t_seri |
---|
16 | REAL pplay |
---|
17 | REAL rh |
---|
18 | REAL a_xm, b_xm, c_xm |
---|
19 | |
---|
20 | ! output variables |
---|
21 | REAL nucl_rate |
---|
22 | REAL ntot ! total number of molecules in the critical cluster |
---|
23 | REAL x ! molefraction of H2SO4 in the critical cluster |
---|
24 | |
---|
25 | ! local variables |
---|
26 | REAL, PARAMETER :: k_B=1.3806E-23 ! Boltzmann constant [J/K] |
---|
27 | REAL :: jnuc !nucleation rate in 1/cm3s (10^-7-10^10 1/cm3s) |
---|
28 | REAL :: rc !radius of the critical cluster in nm |
---|
29 | REAL VH2SO4mol |
---|
30 | |
---|
31 | ! call nucleation routine |
---|
32 | CALL binapara(t_seri,rh,rhoa,jnuc,x,ntot,rc) |
---|
33 | |
---|
34 | IF (ntot < 4.0) THEN |
---|
35 | !set jnuc to collision rate of two H2SO4 molecules (following personal communication of Ulrike Niemeier and Hanna Vehkamäki) |
---|
36 | VH2SO4mol=mH2SO4mol/(1.e-3*(a_xm+t_seri*(b_xm+t_seri*c_xm))) !cm3 |
---|
37 | jnuc = rhoa**2. *(3./4.*RPI)**(1./6.) *(12.*k_B*t_seri/mH2SO4mol)**0.5 & |
---|
38 | & *100.*(2.*VH2SO4mol**(1./3.))**2. !1/(cm3s) |
---|
39 | ntot=2.0 |
---|
40 | x=1.0 |
---|
41 | ENDIF |
---|
42 | |
---|
43 | ! convert jnuc from particles/cm3/s to kg(H2SO4)/kgA/s |
---|
44 | nucl_rate=jnuc*ntot*x*mH2SO4mol/(pplay/t_seri/RD/1.E6) |
---|
45 | |
---|
46 | END SUBROUTINE nucleation_rate |
---|
47 | |
---|
48 | !-------------------------------------------------------------------------------------------------- |
---|
49 | |
---|
50 | SUBROUTINE nucleation_part(nucl_rate,ntot,x,dt,Vbin,tr_seri) |
---|
51 | |
---|
52 | USE aerophys |
---|
53 | USE infotrac |
---|
54 | |
---|
55 | IMPLICIT NONE |
---|
56 | |
---|
57 | ! input variables |
---|
58 | REAL nucl_rate |
---|
59 | REAL ntot ! total number of molecules in the critical cluster |
---|
60 | REAL x ! molefraction of H2SO4 in the critical cluster |
---|
61 | REAL dt |
---|
62 | REAL Vbin(nbtr_bin) |
---|
63 | |
---|
64 | ! output variables |
---|
65 | REAL tr_seri(nbtr) |
---|
66 | |
---|
67 | ! local variables |
---|
68 | INTEGER k |
---|
69 | REAL Vnew |
---|
70 | REAL ff(nbtr_bin) |
---|
71 | |
---|
72 | ! dry volume of nucleated particle (at reference temperature) |
---|
73 | Vnew=mH2SO4mol*ntot*x/dens_aer_dry |
---|
74 | |
---|
75 | ! compute distribution factor for particles of intermediate size (from Jacobson 1994, equation 13) |
---|
76 | ff(:)=0.0 |
---|
77 | DO k=1, nbtr_bin |
---|
78 | ! CK 20160531: bug fix for first bin |
---|
79 | IF (k.LE.(nbtr_bin-1)) THEN |
---|
80 | IF (Vbin(k).LE.Vnew.AND.Vnew.LT.Vbin(k+1)) THEN |
---|
81 | ff(k)= Vbin(k)/Vnew*(Vbin(k+1)-Vnew)/(Vbin(k+1)-Vbin(k)) |
---|
82 | ENDIF |
---|
83 | ENDIF |
---|
84 | IF (k.EQ.1.AND.Vnew.LE.Vbin(k)) THEN |
---|
85 | ff(k)= 1. |
---|
86 | ENDIF |
---|
87 | IF (k.GT.1) THEN |
---|
88 | IF (Vbin(k-1).LT.Vnew.AND.Vnew.LT.Vbin(k)) THEN |
---|
89 | ff(k)= 1.-ff(k-1) |
---|
90 | ENDIF |
---|
91 | ENDIF |
---|
92 | IF (k.EQ.nbtr_bin.AND.Vnew.GE.Vbin(k)) THEN |
---|
93 | ff(k)= 1. |
---|
94 | ENDIF |
---|
95 | ENDDO |
---|
96 | ! correction of ff for volume conservation |
---|
97 | DO k=1, nbtr_bin |
---|
98 | ff(k)=ff(k)*Vnew/Vbin(k) |
---|
99 | ENDDO |
---|
100 | |
---|
101 | ! add nucleated H2SO4 to corresponding aerosol bin |
---|
102 | DO k=1, nbtr_bin |
---|
103 | tr_seri(k+nbtr_sulgas)=tr_seri(k+nbtr_sulgas)+nucl_rate*dt/(mH2SO4mol*ntot*x)*ff(k) |
---|
104 | ENDDO |
---|
105 | |
---|
106 | END SUBROUTINE nucleation_part |
---|
107 | |
---|
108 | !--------------------------------------------------------------------------------------------------- |
---|
109 | |
---|
110 | SUBROUTINE binapara(pt,prh,rhoa_in,jnuc,x,ntot,rc) |
---|
111 | |
---|
112 | |
---|
113 | ! Fortran 90 subroutine binapara |
---|
114 | ! |
---|
115 | ! Calculates parametrized values of nucleation rate, |
---|
116 | ! mole fraction of sulphuric acid |
---|
117 | ! total number of particles, and the radius of the critical cluster |
---|
118 | ! in H2O-H2SO4 system IF temperature, saturatio ratio of water and |
---|
119 | ! sulfuric acid concentration are given. |
---|
120 | ! |
---|
121 | ! Copyright (C) 2002 Hanna Vehkamäki |
---|
122 | ! |
---|
123 | ! Division of Atmospheric Sciences |
---|
124 | ! Department of Physical Sciences |
---|
125 | ! P.O. Box 64 |
---|
126 | ! FIN-00014 University of Helsinki |
---|
127 | ! Finland |
---|
128 | ! |
---|
129 | ! hanna.vehkamaki@helsinki.fi |
---|
130 | |
---|
131 | IMPLICIT NONE |
---|
132 | |
---|
133 | REAL :: pt,t !temperature in K (190.15-300.15K) |
---|
134 | REAL :: prh,rh !saturatio ratio of water (0.0001-1) |
---|
135 | REAL,intent(in) :: rhoa_in !sulfuric acid concentration in 1/cm3 (10^4-10^11 1/cm3) |
---|
136 | REAL,intent(out) :: jnuc !nucleation rate in 1/cm3s (10^-7-10^10 1/cm3s) |
---|
137 | REAL,intent(out) :: ntot !total number of molecules in the critical cluster (ntot>4) |
---|
138 | REAL,intent(out) :: x ! molefraction of H2SO4 in the critical cluster |
---|
139 | REAL,intent(out) :: rc !radius of the critical cluster in nm |
---|
140 | REAL :: rhotres ! treshold concentration of h2so4 (1/cm^3) |
---|
141 | ! which produces nucleation rate 1/(cm^3 s) as a function of rh and t |
---|
142 | REAL rhoa |
---|
143 | |
---|
144 | ! CK: use intermediate variables to avoid overwriting |
---|
145 | t=pt |
---|
146 | rh=prh |
---|
147 | rhoa=rhoa_in |
---|
148 | |
---|
149 | IF (t < 190.15) THEN |
---|
150 | ! print *,'Warning (ilon=',ilon,'ilev=',ilev,'): temperature < 190.15 K, using 190.15 K (T=',t,'K)' |
---|
151 | t=190.15 |
---|
152 | ENDIF |
---|
153 | |
---|
154 | IF (t > 300.15) THEN |
---|
155 | ! print *,'Warning (ilon=',ilon,'ilev=',ilev,'): temperature > 300.15 K, using 300.15 K' |
---|
156 | t=300.15 |
---|
157 | ENDIF |
---|
158 | |
---|
159 | IF (rh < 0.0001) THEN |
---|
160 | ! print *,'Warning (ilon=',ilon,'ilev=',ilev,'): saturation ratio of water < 0.0001, using 0.0001' |
---|
161 | rh=0.0001 |
---|
162 | ENDIF |
---|
163 | |
---|
164 | IF (rh > 1.0) THEN |
---|
165 | ! print *,'Warning (ilon=',ilon,'ilev=',ilev,'): saturation ratio of water > 1 using 1' |
---|
166 | ! print *, 'rh=',rh |
---|
167 | rh=1.0 |
---|
168 | ENDIF |
---|
169 | |
---|
170 | IF (rhoa < 1.e4) THEN |
---|
171 | ! print *,'Warning (ilon=',ilon,'ilev=',ilev,'): sulfuric acid concentration < 1e4 1/cm3, using 1e4 1/cm3' |
---|
172 | rhoa=1.e4 |
---|
173 | ENDIF |
---|
174 | |
---|
175 | IF (rhoa > 1.e11) THEN |
---|
176 | ! print *,'Warning (ilon=',ilon,'ilev=',ilev,'): sulfuric acid concentration > 1e11 1/cm3, using 1e11 1/cm3' |
---|
177 | rhoa=1.e11 |
---|
178 | ENDIF |
---|
179 | |
---|
180 | x= 0.7409967177282139 - 0.002663785665140117*t + 0.002010478847383187*Log(rh) & |
---|
181 | & - 0.0001832894131464668*t*Log(rh) + 0.001574072538464286*Log(rh)**2 & |
---|
182 | & - 0.00001790589121766952*t*Log(rh)**2 + 0.0001844027436573778*Log(rh)**3 & |
---|
183 | & - 1.503452308794887e-6*t*Log(rh)**3 - 0.003499978417957668*Log(rhoa) & |
---|
184 | & + 0.0000504021689382576*t*Log(rhoa) |
---|
185 | |
---|
186 | jnuc= 0.1430901615568665 + 2.219563673425199*t - 0.02739106114964264*t**2 + & |
---|
187 | & 0.00007228107239317088*t**3 + 5.91822263375044/x + & |
---|
188 | & 0.1174886643003278*Log(rh) + 0.4625315047693772*t*Log(rh) - & |
---|
189 | & 0.01180591129059253*t**2*Log(rh) + & |
---|
190 | & 0.0000404196487152575*t**3*Log(rh) + (15.79628615047088*Log(rh))/x - & |
---|
191 | & 0.215553951893509*Log(rh)**2 - 0.0810269192332194*t*Log(rh)**2 + & |
---|
192 | & 0.001435808434184642*t**2*Log(rh)**2 - & |
---|
193 | & 4.775796947178588e-6*t**3*Log(rh)**2 - & |
---|
194 | & (2.912974063702185*Log(rh)**2)/x - 3.588557942822751*Log(rh)**3 + & |
---|
195 | & 0.04950795302831703*t*Log(rh)**3 - & |
---|
196 | & 0.0002138195118737068*t**2*Log(rh)**3 + & |
---|
197 | & 3.108005107949533e-7*t**3*Log(rh)**3 - & |
---|
198 | & (0.02933332747098296*Log(rh)**3)/x + & |
---|
199 | & 1.145983818561277*Log(rhoa) - & |
---|
200 | & 0.6007956227856778*t*Log(rhoa) + & |
---|
201 | & 0.00864244733283759*t**2*Log(rhoa) - & |
---|
202 | & 0.00002289467254710888*t**3*Log(rhoa) - & |
---|
203 | & (8.44984513869014*Log(rhoa))/x + & |
---|
204 | & 2.158548369286559*Log(rh)*Log(rhoa) + & |
---|
205 | & 0.0808121412840917*t*Log(rh)*Log(rhoa) - & |
---|
206 | & 0.0004073815255395214*t**2*Log(rh)*Log(rhoa) - & |
---|
207 | & 4.019572560156515e-7*t**3*Log(rh)*Log(rhoa) + & |
---|
208 | & (0.7213255852557236*Log(rh)*Log(rhoa))/x + & |
---|
209 | & 1.62409850488771*Log(rh)**2*Log(rhoa) - & |
---|
210 | & 0.01601062035325362*t*Log(rh)**2*Log(rhoa) + & |
---|
211 | & 0.00003771238979714162*t**2*Log(rh)**2*Log(rhoa) + & |
---|
212 | & 3.217942606371182e-8*t**3*Log(rh)**2*Log(rhoa) - & |
---|
213 | & (0.01132550810022116*Log(rh)**2*Log(rhoa))/x + & |
---|
214 | & 9.71681713056504*Log(rhoa)**2 - & |
---|
215 | & 0.1150478558347306*t*Log(rhoa)**2 + & |
---|
216 | & 0.0001570982486038294*t**2*Log(rhoa)**2 + & |
---|
217 | & 4.009144680125015e-7*t**3*Log(rhoa)**2 + & |
---|
218 | & (0.7118597859976135*Log(rhoa)**2)/x - & |
---|
219 | & 1.056105824379897*Log(rh)*Log(rhoa)**2 + & |
---|
220 | & 0.00903377584628419*t*Log(rh)*Log(rhoa)**2 - & |
---|
221 | & 0.00001984167387090606*t**2*Log(rh)*Log(rhoa)**2 + & |
---|
222 | & 2.460478196482179e-8*t**3*Log(rh)*Log(rhoa)**2 - & |
---|
223 | & (0.05790872906645181*Log(rh)*Log(rhoa)**2)/x - & |
---|
224 | & 0.1487119673397459*Log(rhoa)**3 + & |
---|
225 | & 0.002835082097822667*t*Log(rhoa)**3 - & |
---|
226 | & 9.24618825471694e-6*t**2*Log(rhoa)**3 + & |
---|
227 | & 5.004267665960894e-9*t**3*Log(rhoa)**3 - & |
---|
228 | & (0.01270805101481648*Log(rhoa)**3)/x |
---|
229 | jnuc=exp(jnuc) !1/(cm3s) |
---|
230 | |
---|
231 | ntot =-0.002954125078716302 - 0.0976834264241286*t + 0.001024847927067835*t**2 - 2.186459697726116e-6*t**3 - & |
---|
232 | & 0.1017165718716887/x - 0.002050640345231486*Log(rh) - 0.007585041382707174*t*Log(rh) + & |
---|
233 | & 0.0001926539658089536*t**2*Log(rh) - 6.70429719683894e-7*t**3*Log(rh) - & |
---|
234 | & (0.2557744774673163*Log(rh))/x + 0.003223076552477191*Log(rh)**2 + 0.000852636632240633*t*Log(rh)**2 - & |
---|
235 | & 0.00001547571354871789*t**2*Log(rh)**2 + 5.666608424980593e-8*t**3*Log(rh)**2 + & |
---|
236 | & (0.03384437400744206*Log(rh)**2)/x + 0.04743226764572505*Log(rh)**3 - & |
---|
237 | & 0.0006251042204583412*t*Log(rh)**3 + 2.650663328519478e-6*t**2*Log(rh)**3 - & |
---|
238 | & 3.674710848763778e-9*t**3*Log(rh)**3 - (0.0002672510825259393*Log(rh)**3)/x - & |
---|
239 | & 0.01252108546759328*Log(rhoa) + 0.005806550506277202*t*Log(rhoa) - & |
---|
240 | & 0.0001016735312443444*t**2*Log(rhoa) + 2.881946187214505e-7*t**3*Log(rhoa) + & |
---|
241 | & (0.0942243379396279*Log(rhoa))/x - 0.0385459592773097*Log(rh)*Log(rhoa) - & |
---|
242 | & 0.0006723156277391984*t*Log(rh)*Log(rhoa) + 2.602884877659698e-6*t**2*Log(rh)*Log(rhoa) + & |
---|
243 | & 1.194163699688297e-8*t**3*Log(rh)*Log(rhoa) - (0.00851515345806281*Log(rh)*Log(rhoa))/x - & |
---|
244 | & 0.01837488495738111*Log(rh)**2*Log(rhoa) + 0.0001720723574407498*t*Log(rh)**2*Log(rhoa) - & |
---|
245 | & 3.717657974086814e-7*t**2*Log(rh)**2*Log(rhoa) - & |
---|
246 | & 5.148746022615196e-10*t**3*Log(rh)**2*Log(rhoa) + & |
---|
247 | & (0.0002686602132926594*Log(rh)**2*Log(rhoa))/x - 0.06199739728812199*Log(rhoa)**2 + & |
---|
248 | & 0.000906958053583576*t*Log(rhoa)**2 - 9.11727926129757e-7*t**2*Log(rhoa)**2 - & |
---|
249 | & 5.367963396508457e-9*t**3*Log(rhoa)**2 - (0.007742343393937707*Log(rhoa)**2)/x + & |
---|
250 | & 0.0121827103101659*Log(rh)*Log(rhoa)**2 - 0.0001066499571188091*t*Log(rh)*Log(rhoa)**2 + & |
---|
251 | & 2.534598655067518e-7*t**2*Log(rh)*Log(rhoa)**2 - & |
---|
252 | & 3.635186504599571e-10*t**3*Log(rh)*Log(rhoa)**2 + & |
---|
253 | & (0.0006100650851863252*Log(rh)*Log(rhoa)**2)/x + 0.0003201836700403512*Log(rhoa)**3 - & |
---|
254 | & 0.0000174761713262546*t*Log(rhoa)**3 + 6.065037668052182e-8*t**2*Log(rhoa)**3 - & |
---|
255 | & 1.421771723004557e-11*t**3*Log(rhoa)**3 + (0.0001357509859501723*Log(rhoa)**3)/x |
---|
256 | ntot=exp(ntot) |
---|
257 | |
---|
258 | rc=exp(-1.6524245+0.42316402*x+0.33466487*log(ntot)) !nm |
---|
259 | |
---|
260 | IF (jnuc < 1.e-7) THEN |
---|
261 | ! print *,'Warning (ilon=',ilon,'ilev=',ilev'): nucleation rate < 1e-7/cm3s, using 0.0/cm3s,' |
---|
262 | jnuc=0.0 |
---|
263 | ENDIF |
---|
264 | |
---|
265 | IF (jnuc > 1.e10) THEN |
---|
266 | ! print *,'Warning (ilon=',ilon,'ilev=',ilev, & |
---|
267 | ! & '): nucleation rate > 1e10/cm3s, using 1e10/cm3s' |
---|
268 | jnuc=1.e10 |
---|
269 | ENDIF |
---|
270 | |
---|
271 | rhotres=exp( -279.2430007512709 + 11.73439886096903*rh + 22700.92970508331/t & |
---|
272 | & - (1088.644983466801*rh)/t + 1.144362942094912*t & |
---|
273 | & - 0.03023314602163684*rh*t - 0.001302541390154324*t**2 & |
---|
274 | & - 6.386965238433532*Log(rh) + (854.980361026715*Log(rh))/t & |
---|
275 | & + 0.00879662256826497*t*Log(rh)) !1/cm3 |
---|
276 | |
---|
277 | RETURN |
---|
278 | |
---|
279 | END SUBROUTINE binapara |
---|
280 | |
---|
281 | END MODULE nucleation_tstep_mod |
---|