[2690] | 1 | SUBROUTINE COAGULATE(pdtcoag,mdw,tr_seri,t_seri,pplay,dens_aer,is_strato) |
---|
| 2 | ! ----------------------------------------------------------------------- |
---|
| 3 | ! |
---|
| 4 | ! Author : Christoph Kleinschmitt (with Olivier Boucher) |
---|
| 5 | ! ------ |
---|
| 6 | ! |
---|
| 7 | ! purpose |
---|
| 8 | ! ------- |
---|
| 9 | ! |
---|
| 10 | ! interface |
---|
| 11 | ! --------- |
---|
| 12 | ! input |
---|
| 13 | ! pdtphys time step duration [sec] |
---|
| 14 | ! tr_seri tracer mixing ratios [kg/kg] |
---|
| 15 | ! mdw # or mass median diameter [m] |
---|
| 16 | ! |
---|
| 17 | ! method |
---|
| 18 | ! ------ |
---|
| 19 | ! |
---|
| 20 | ! ----------------------------------------------------------------------- |
---|
| 21 | |
---|
| 22 | USE dimphy, ONLY : klon,klev |
---|
| 23 | USE aerophys |
---|
| 24 | USE infotrac |
---|
| 25 | USE phys_local_var_mod, ONLY: DENSO4, f_r_wet |
---|
| 26 | USE YOMCST |
---|
| 27 | |
---|
| 28 | IMPLICIT NONE |
---|
| 29 | |
---|
| 30 | !-------------------------------------------------------- |
---|
| 31 | |
---|
| 32 | ! transfer variables when calling this routine |
---|
| 33 | REAL,INTENT(IN) :: pdtcoag ! Time step in coagulation routine [s] |
---|
| 34 | REAL,DIMENSION(nbtr_bin),INTENT(IN) :: mdw ! aerosol particle diameter in each bin [m] |
---|
| 35 | REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] |
---|
| 36 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
| 37 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) |
---|
| 38 | REAL,DIMENSION(klon,klev) :: dens_aer! density of aerosol [kg/m3 aerosol] with default H2SO4 mass |
---|
| 39 | LOGICAL,DIMENSION(klon,klev),INTENT(IN) :: is_strato |
---|
| 40 | |
---|
| 41 | ! local variables in coagulation routine |
---|
| 42 | INTEGER :: i,j,k,nb,ilon,ilev |
---|
| 43 | REAL, DIMENSION(nbtr_bin) :: radius ! aerosol particle radius in each bin [m] |
---|
| 44 | REAL, DIMENSION(klon,klev,nbtr_bin) :: tr_t ! Concentration Traceur at time t [U/KgA] |
---|
| 45 | REAL, DIMENSION(klon,klev,nbtr_bin) :: tr_tp1 ! Concentration Traceur at time t+1 [U/KgA] |
---|
| 46 | REAL, DIMENSION(nbtr_bin,nbtr_bin,nbtr_bin) :: ff ! Volume fraction of intermediate particles |
---|
| 47 | REAL, DIMENSION(nbtr_bin) :: V ! Volume of bins |
---|
| 48 | REAL, DIMENSION(nbtr_bin,nbtr_bin) :: Vij ! Volume sum of i and j |
---|
| 49 | REAL :: eta ! Dynamic viscosity of air |
---|
| 50 | REAL, PARAMETER :: mair=4.8097E-26 ! Average mass of an air molecule [kg] |
---|
| 51 | REAL :: zrho ! Density of air |
---|
| 52 | REAL :: mnfrpth ! Mean free path of air |
---|
| 53 | REAL, DIMENSION(nbtr_bin) :: Kn ! Knudsen number of particle i |
---|
| 54 | REAL, DIMENSION(nbtr_bin) :: Di ! Particle diffusion coefficient |
---|
| 55 | REAL, DIMENSION(nbtr_bin) :: m_par ! Mass of particle i |
---|
| 56 | REAL, DIMENSION(nbtr_bin) :: thvelpar! Thermal velocity of particle i |
---|
| 57 | REAL, DIMENSION(nbtr_bin) :: mfppar ! Mean free path of particle i |
---|
| 58 | REAL, DIMENSION(nbtr_bin) :: delta! delta of particle i (from equation 21) |
---|
| 59 | REAL, DIMENSION(nbtr_bin,nbtr_bin) :: beta ! Coagulation kernel from Brownian diffusion |
---|
| 60 | REAL :: beta_const ! Constant coagulation kernel (for comparison) |
---|
| 61 | REAL :: num |
---|
| 62 | REAL :: numi |
---|
| 63 | REAL :: denom |
---|
| 64 | |
---|
[2949] | 65 | ! Additional variables for coagulation enhancement factor due to van der Waals forces |
---|
| 66 | ! Taken from Chan and Mozurkewich, Measurement of the coagulation rate constant for sulfuric acid |
---|
| 67 | ! particles as a function of particle size using TDMA, Aerosol Science, 32, 321-339, 2001. |
---|
| 68 | !--ok_vdw is 0 for no vdW forces, 1 for E(0), 2 for E(infinity) |
---|
| 69 | INTEGER, PARAMETER :: ok_vdw = 0 |
---|
| 70 | REAL, PARAMETER :: avdW1 = 0.0757 |
---|
| 71 | REAL, PARAMETER :: avdW3 = 0.0015 |
---|
| 72 | REAL, PARAMETER :: bvdW0 = 0.0151 |
---|
| 73 | REAL, PARAMETER :: bvdW1 = -0.186 |
---|
| 74 | REAL, PARAMETER :: bvdW3 = -0.0163 |
---|
| 75 | REAL, PARAMETER :: AvdW = 6.4e-20 !Hamaker constant in J = 1e7 erg |
---|
| 76 | REAL :: AvdWi |
---|
| 77 | REAL :: xvdW |
---|
| 78 | REAL :: EvdW |
---|
| 79 | |
---|
[2690] | 80 | DO i=1, nbtr_bin |
---|
| 81 | radius(i)=mdw(i)/2. |
---|
| 82 | V(i)= radius(i)**3. !neglecting factor 4*RPI/3 |
---|
| 83 | ENDDO |
---|
| 84 | |
---|
| 85 | DO j=1, nbtr_bin |
---|
| 86 | DO i=1, nbtr_bin |
---|
| 87 | Vij(i,j)= V(i)+V(j) |
---|
| 88 | ENDDO |
---|
| 89 | ENDDO |
---|
| 90 | |
---|
| 91 | !--pre-compute the f(i,j,k) from Jacobson equation 13 |
---|
| 92 | ff=0.0 |
---|
| 93 | DO k=1, nbtr_bin |
---|
| 94 | DO j=1, nbtr_bin |
---|
| 95 | DO i=1, nbtr_bin |
---|
| 96 | IF (k.EQ.1) THEN |
---|
| 97 | ff(i,j,k)= 0.0 |
---|
| 98 | ELSEIF (k.GT.1.AND.V(k-1).LT.Vij(i,j).AND.Vij(i,j).LT.V(k)) THEN |
---|
| 99 | ff(i,j,k)= 1.-ff(i,j,k-1) |
---|
| 100 | ELSEIF (k.EQ.nbtr_bin) THEN |
---|
| 101 | IF (Vij(i,j).GE.v(k)) THEN |
---|
| 102 | ff(i,j,k)= 1. |
---|
| 103 | ELSE |
---|
| 104 | ff(i,j,k)= 0.0 |
---|
| 105 | ENDIF |
---|
| 106 | ELSEIF (k.LE.(nbtr_bin-1).AND.V(k).LE.Vij(i,j).AND.Vij(i,j).LT.V(k+1)) THEN |
---|
| 107 | ff(i,j,k)= V(k)/Vij(i,j)*(V(k+1)-Vij(i,j))/(V(k+1)-V(k)) |
---|
| 108 | ENDIF |
---|
| 109 | ENDDO |
---|
| 110 | ENDDO |
---|
| 111 | ENDDO |
---|
| 112 | |
---|
| 113 | DO ilon=1, klon |
---|
| 114 | DO ilev=1, klev |
---|
| 115 | !only in the stratosphere |
---|
| 116 | IF (is_strato(ilon,ilev)) THEN |
---|
| 117 | !compute actual wet particle radius & volume for every grid box |
---|
| 118 | DO i=1, nbtr_bin |
---|
| 119 | radius(i)=f_r_wet(ilon,ilev)*mdw(i)/2. |
---|
| 120 | V(i)= radius(i)**3. !neglecting factor 4*RPI/3 |
---|
| 121 | ENDDO |
---|
| 122 | |
---|
| 123 | !--Calculations for the coagulation kernel--------------------------------------------------------- |
---|
| 124 | |
---|
| 125 | zrho=pplay(ilon,ilev)/t_seri(ilon,ilev)/RD |
---|
| 126 | |
---|
| 127 | !--initialize the tracer at time t and convert from [number/KgA] to [number/m3] |
---|
| 128 | DO i=1, nbtr_bin |
---|
| 129 | tr_t(ilon,ilev,i) = tr_seri(ilon,ilev,i+nbtr_sulgas) * zrho |
---|
| 130 | ENDDO |
---|
| 131 | |
---|
| 132 | ! mean free path of air (Pruppacher and Klett, 2010, p.417) [m] |
---|
| 133 | mnfrpth=6.6E-8*(1.01325E+5/pplay(ilon,ilev))*(t_seri(ilon,ilev)/293.15) |
---|
| 134 | ! mnfrpth=2.*eta/(zrho*thvelair) |
---|
| 135 | ! mean free path of air (Prupp. Klett) in [10^-6 m] |
---|
| 136 | ! ZLAIR = 0.066 *(1.01325E+5/PPLAY)*(T_SERI/293.15)*1.E-06 |
---|
| 137 | |
---|
| 138 | ! dynamic viscosity of air (Pruppacher and Klett, 2010, p.417) [kg/(m*s)] |
---|
| 139 | IF (t_seri(ilon,ilev).GE.273.15) THEN |
---|
| 140 | eta=(1.718+0.0049*(t_seri(ilon,ilev)-273.15))*1.E-5 |
---|
| 141 | ELSE |
---|
| 142 | eta=(1.718+0.0049*(t_seri(ilon,ilev)-273.15)-1.2E-5*(t_seri(ilon,ilev)-273.15)**2)*1.E-5 |
---|
| 143 | ENDIF |
---|
| 144 | |
---|
| 145 | !--pre-compute the particle diffusion coefficient Di(i) from equation 18 |
---|
| 146 | Di=0.0 |
---|
| 147 | DO i=1, nbtr_bin |
---|
| 148 | Kn(i)=mnfrpth/radius(i) |
---|
| 149 | Di(i)=RKBOL*t_seri(ilon,ilev)/(6.*RPI*radius(i)*eta)*(1.+Kn(i)*(1.249+0.42*exp(-0.87/Kn(i)))) |
---|
| 150 | ENDDO |
---|
| 151 | |
---|
| 152 | !--pre-compute the thermal velocity of a particle thvelpar(i) from equation 20 |
---|
| 153 | thvelpar=0.0 |
---|
| 154 | DO i=1, nbtr_bin |
---|
| 155 | m_par(i)=4./3.*RPI*radius(i)**3.*DENSO4(ilon,ilev)*1000. |
---|
| 156 | thvelpar(i)=sqrt(8.*RKBOL*t_seri(ilon,ilev)/(RPI*m_par(i))) |
---|
| 157 | ENDDO |
---|
| 158 | |
---|
| 159 | !--pre-compute the particle mean free path mfppar(i) from equation 22 |
---|
| 160 | mfppar=0.0 |
---|
| 161 | DO i=1, nbtr_bin |
---|
| 162 | mfppar(i)=8.*Di(i)/(RPI*thvelpar(i)) |
---|
| 163 | ENDDO |
---|
| 164 | |
---|
| 165 | !--pre-compute the mean distance delta(i) from the center of a sphere reached by particles |
---|
| 166 | !--leaving the surface of the sphere and traveling a distance of particle mfppar(i) from equation 21 |
---|
| 167 | delta=0.0 |
---|
| 168 | DO i=1, nbtr_bin |
---|
| 169 | delta(i)=((2.*radius(i)+mfppar(i))**3.-(4.*radius(i)**2.+mfppar(i)**2.)**1.5)/ & |
---|
| 170 | & (6.*radius(i)*mfppar(i))-2.*radius(i) |
---|
| 171 | ENDDO |
---|
| 172 | |
---|
[2949] | 173 | !--pre-compute the beta(i,j) from equation 17 in Jacobson |
---|
[2690] | 174 | num=0.0 |
---|
| 175 | DO j=1, nbtr_bin |
---|
| 176 | DO i=1, nbtr_bin |
---|
[2949] | 177 | ! |
---|
[2690] | 178 | num=4.*RPI*(radius(i)+radius(j))*(Di(i)+Di(j)) |
---|
| 179 | denom=(radius(i)+radius(j))/(radius(i)+radius(j)+sqrt(delta(i)**2.+delta(j)**2.))+ & |
---|
| 180 | & 4.*(Di(i)+Di(j))/(sqrt(thvelpar(i)**2.+thvelpar(j)**2.)*(radius(i)+radius(j))) |
---|
| 181 | beta(i,j)=num/denom |
---|
[2949] | 182 | ! |
---|
| 183 | !--compute enhancement factor due to van der Waals forces |
---|
| 184 | IF (ok_vdw .EQ. 0) THEN !--no enhancement factor |
---|
| 185 | Evdw=1.0 |
---|
| 186 | ELSEIF (ok_vdw .EQ. 1) THEN !--E(0) case |
---|
[2950] | 187 | AvdWi = AvdW/(RKBOL*t_seri(ilon,ilev))*(4.*radius(i)*radius(j))/(radius(i)+radius(j))**2. |
---|
[2949] | 188 | xvdW = LOG(1.+AvdWi) |
---|
| 189 | EvdW = 1. + avdW1*xvdW + avdW3*xvdW**3 |
---|
| 190 | ELSEIF (ok_vdw .EQ. 2) THEN !--E(infinity) case |
---|
[2950] | 191 | AvdWi = AvdW/(RKBOL*t_seri(ilon,ilev))*(4.*radius(i)*radius(j))/(radius(i)+radius(j))**2. |
---|
[2949] | 192 | xvdW = LOG(1.+AvdWi) |
---|
| 193 | EvdW = 1. + SQRT(AvdWi/3.)/(1.+bvdW0*SQRT(AvdWi)) + bvdW1*xvdW + bvdW3*xvdW**3. |
---|
| 194 | ENDIF |
---|
| 195 | ! |
---|
| 196 | beta(i,j)=beta(i,j)*EvdW |
---|
| 197 | |
---|
[2690] | 198 | ENDDO |
---|
| 199 | ENDDO |
---|
| 200 | |
---|
| 201 | !--external loop for equation 14 |
---|
| 202 | DO k=1, nbtr_bin |
---|
| 203 | |
---|
| 204 | !--calculating denominator sum |
---|
| 205 | denom=0.0 |
---|
| 206 | DO j=1, nbtr_bin |
---|
| 207 | denom=denom+(1.-ff(k,j,k))*beta(k,j)*tr_t(ilon,ilev,j) |
---|
| 208 | ENDDO |
---|
| 209 | |
---|
| 210 | IF (k.EQ.1) THEN |
---|
| 211 | !--calculate new concentration of smallest bin |
---|
| 212 | tr_tp1(ilon,ilev,k)=tr_t(ilon,ilev,k)/(1.+pdtcoag*denom) |
---|
| 213 | ELSE |
---|
| 214 | !--calculating double sum terms in numerator of eq 14 |
---|
| 215 | num=0.0 |
---|
| 216 | DO j=1, k |
---|
| 217 | numi=0.0 |
---|
| 218 | DO i=1, k-1 |
---|
| 219 | numi=numi+ff(i,j,k)*beta(i,j)*V(i)*tr_tp1(ilon,ilev,i)*tr_t(ilon,ilev,j) |
---|
| 220 | ENDDO |
---|
| 221 | num=num+numi |
---|
| 222 | ENDDO |
---|
| 223 | |
---|
| 224 | !--calculate new concentration of other bins |
---|
| 225 | tr_tp1(ilon,ilev,k)=(V(k)*tr_t(ilon,ilev,k)+pdtcoag*num)/(1.+pdtcoag*denom)/V(k) |
---|
| 226 | ENDIF |
---|
| 227 | |
---|
| 228 | ENDDO !--end of loop k |
---|
| 229 | |
---|
| 230 | !--convert tracer concentration back from [number/m3] to [number/KgA] and write into tr_seri |
---|
| 231 | DO i=1, nbtr_bin |
---|
| 232 | tr_seri(ilon,ilev,i+nbtr_sulgas) = tr_tp1(ilon,ilev,i) / zrho |
---|
| 233 | ENDDO |
---|
| 234 | |
---|
| 235 | ENDIF ! IF IN STRATOSPHERE |
---|
| 236 | ENDDO !--end of loop klev |
---|
| 237 | ENDDO !--end of loop klon |
---|
| 238 | |
---|
| 239 | END SUBROUTINE COAGULATE |
---|