[2630] | 1 | SUBROUTINE nightingale(u, v, u_10m, v_10m, paprs, pplay, |
---|
| 2 | . cdragh, cdragm, t, q, ftsol, tsol, |
---|
| 3 | . pctsrf, lmt_dmsconc, lmt_dms) |
---|
| 4 | c |
---|
| 5 | USE dimphy |
---|
| 6 | USE indice_sol_mod |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | c |
---|
| 9 | #include "dimensions.h" |
---|
| 10 | #include "YOMCST.h" |
---|
| 11 | c |
---|
| 12 | REAL u(klon,klev), v(klon,klev) |
---|
| 13 | REAL u_10m(klon), v_10m(klon) |
---|
| 14 | REAL ftsol(klon,nbsrf) |
---|
| 15 | REAL tsol(klon) |
---|
| 16 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 17 | REAL t(klon,klev) |
---|
| 18 | REAL q(klon,klev) |
---|
| 19 | REAL cdragh(klon), cdragm(klon) |
---|
| 20 | REAL pctsrf(klon,nbsrf) |
---|
| 21 | REAL lmt_dmsconc(klon) ! concentration oceanique DMS |
---|
| 22 | REAL lmt_dms(klon) ! flux de DMS |
---|
| 23 | c |
---|
| 24 | REAL ustar(klon), obklen(klon) |
---|
| 25 | REAL u10(klon), u10n(klon) |
---|
| 26 | REAL tvelocity, schmidt_corr |
---|
| 27 | REAL t1, t2, t3, t4, viscosity_kin, diffusivity, schmidt |
---|
| 28 | INTEGER i |
---|
| 29 | c |
---|
| 30 | CALL bl_for_dms(u, v, paprs, pplay, cdragh, cdragm, |
---|
| 31 | . t, q, tsol, ustar, obklen) |
---|
| 32 | c |
---|
| 33 | DO i=1,klon |
---|
| 34 | u10(i)=SQRT(u_10m(i)**2+v_10m(i)**2) |
---|
| 35 | ENDDO |
---|
| 36 | c |
---|
| 37 | CALL neutral(u10, ustar, obklen, u10n) |
---|
| 38 | c |
---|
| 39 | DO i=1,klon |
---|
| 40 | c |
---|
| 41 | c tvelocity - transfer velocity, also known as kw (cm/s) |
---|
| 42 | c schmidt_corr - Schmidt number correction factor (dimensionless) |
---|
| 43 | c Reference: Nightingale, P.D., G. Malin, C. S. Law, J. J. Watson, P.S. Liss |
---|
| 44 | c M. I. Liddicoat, J. Boutin, R.C. Upstill-Goddard. 'In situ evaluation |
---|
| 45 | c of air-sea gas exchange parameterizations using conservative and |
---|
| 46 | c volatile tracers.' Glob. Biogeochem. Cycles, 14:373-387, 2000. |
---|
| 47 | c compute transfer velocity using u10neutral |
---|
| 48 | c |
---|
| 49 | tvelocity = 0.222*u10n(i)*u10n(i) + 0.333*u10n(i) |
---|
| 50 | c |
---|
| 51 | c above expression gives tvelocity in cm/hr. convert to cm/s. 1hr =3600 sec |
---|
| 52 | |
---|
| 53 | tvelocity = tvelocity / 3600. |
---|
| 54 | |
---|
| 55 | c compute the correction factor, which for Nightingale parameterization is |
---|
| 56 | c based on how different the schmidt number is from 600. |
---|
| 57 | c correction factor based on temperature in Kelvin. good |
---|
| 58 | c only for t<=30 deg C. for temperatures above that, set correction factor |
---|
| 59 | c equal to value at 30 deg C. |
---|
| 60 | |
---|
| 61 | IF (ftsol(i,is_oce) .LE. 303.15) THEN |
---|
| 62 | t1 = ftsol(i,is_oce) |
---|
| 63 | ELSE |
---|
| 64 | t1 = 303.15 |
---|
| 65 | ENDIF |
---|
| 66 | |
---|
| 67 | t2 = t1 * t1 |
---|
| 68 | t3 = t2 * t1 |
---|
| 69 | t4 = t3 * t1 |
---|
| 70 | viscosity_kin = 3.0363e-9*t4 - 3.655198e-6*t3 + 1.65333e-3*t2 |
---|
| 71 | + - 3.332083e-1*t1 + 25.26819 |
---|
| 72 | diffusivity = 0.01922 * exp(-2177.1/t1) |
---|
| 73 | schmidt = viscosity_kin / diffusivity |
---|
| 74 | schmidt_corr = (schmidt/600.)**(-.5) |
---|
| 75 | c |
---|
| 76 | lmt_dms(i) = tvelocity * pctsrf(i,is_oce) |
---|
| 77 | . * lmt_dmsconc(i)/1.0e12 * schmidt_corr * RNAVO |
---|
| 78 | c |
---|
| 79 | IF (lmt_dmsconc(i).LE.1.e-20) lmt_dms(i)=0.0 |
---|
| 80 | c |
---|
| 81 | ENDDO |
---|
| 82 | c |
---|
| 83 | END |
---|