[2017] | 1 | !--------------------------------------------------------------------- |
---|
| 2 | ! Interpolation forcing in time and onto model levels |
---|
| 3 | !--------------------------------------------------------------------- |
---|
| 4 | if (forcing_GCSSold) then |
---|
| 5 | |
---|
[2019] | 6 | call get_uvd(it,timestep,fich_gcssold_ctl,fich_gcssold_dat, & |
---|
| 7 | & ht_gcssold,hq_gcssold,hw_gcssold, & |
---|
| 8 | & hu_gcssold,hv_gcssold, & |
---|
| 9 | & hthturb_gcssold,hqturb_gcssold,Ts_gcssold, & |
---|
| 10 | & imp_fcg_gcssold,ts_fcg_gcssold, & |
---|
| 11 | & Tp_fcg_gcssold,Turb_fcg_gcssold) |
---|
[2017] | 12 | if (prt_level.ge.1) then |
---|
| 13 | print *,' get_uvd -> hqturb_gcssold ',it,hqturb_gcssold |
---|
| 14 | endif |
---|
| 15 | ! large-scale forcing : |
---|
| 16 | !!! tsurf = ts_gcssold |
---|
| 17 | do l = 1, llm |
---|
| 18 | ! u(l) = hu_gcssold(l) ! on prescrit le vent |
---|
| 19 | ! v(l) = hv_gcssold(l) ! on prescrit le vent |
---|
| 20 | ! omega(l) = hw_gcssold(l) |
---|
| 21 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 22 | ! omega2(l)=-rho(l)*omega(l) |
---|
| 23 | omega(l) = hw_gcssold(l) |
---|
| 24 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 25 | |
---|
| 26 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 27 | d_th_adv(l) = ht_gcssold(l) |
---|
| 28 | d_q_adv(l,1) = hq_gcssold(l) |
---|
| 29 | dt_cooling(l) = 0.0 |
---|
| 30 | enddo |
---|
| 31 | |
---|
| 32 | endif ! forcing_GCSSold |
---|
| 33 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 34 | !--------------------------------------------------------------------- |
---|
| 35 | ! Interpolation Toga forcing |
---|
| 36 | !--------------------------------------------------------------------- |
---|
| 37 | if (forcing_toga) then |
---|
| 38 | |
---|
| 39 | if (prt_level.ge.1) then |
---|
[2019] | 40 | print*, & |
---|
| 41 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_toga=', & |
---|
| 42 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_toga |
---|
[2017] | 43 | endif |
---|
| 44 | |
---|
| 45 | ! time interpolation: |
---|
[2019] | 46 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
| 47 | & ,year_ini_toga,day_ju_ini_toga,nt_toga,dt_toga & |
---|
| 48 | & ,nlev_toga,ts_toga,plev_toga,t_toga,q_toga,u_toga & |
---|
| 49 | & ,v_toga,w_toga,ht_toga,vt_toga,hq_toga,vq_toga & |
---|
| 50 | & ,ts_prof,plev_prof,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
| 51 | & ,ht_prof,vt_prof,hq_prof,vq_prof) |
---|
[2017] | 52 | |
---|
| 53 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 54 | |
---|
| 55 | ! vertical interpolation: |
---|
[2019] | 56 | CALL interp_toga_vertical(play,nlev_toga,plev_prof & |
---|
| 57 | & ,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
| 58 | & ,ht_prof,vt_prof,hq_prof,vq_prof & |
---|
| 59 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 60 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 61 | |
---|
| 62 | ! large-scale forcing : |
---|
| 63 | tsurf = ts_prof |
---|
| 64 | do l = 1, llm |
---|
| 65 | u(l) = u_mod(l) ! sb: on prescrit le vent |
---|
| 66 | v(l) = v_mod(l) ! sb: on prescrit le vent |
---|
| 67 | ! omega(l) = w_prof(l) |
---|
| 68 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 69 | ! omega2(l)=-rho(l)*omega(l) |
---|
| 70 | omega(l) = w_mod(l) |
---|
| 71 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 72 | |
---|
| 73 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 74 | d_th_adv(l) = alpha*omega(l)/rcpd-(ht_mod(l)+vt_mod(l)) |
---|
| 75 | d_q_adv(l,1) = -(hq_mod(l)+vq_mod(l)) |
---|
| 76 | dt_cooling(l) = 0.0 |
---|
| 77 | enddo |
---|
| 78 | |
---|
| 79 | endif ! forcing_toga |
---|
| 80 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 81 | !--------------------------------------------------------------------- |
---|
| 82 | ! Interpolation forcing TWPice |
---|
| 83 | !--------------------------------------------------------------------- |
---|
| 84 | if (forcing_twpice) then |
---|
| 85 | |
---|
[2019] | 86 | print*, & |
---|
| 87 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_twpi=', & |
---|
| 88 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 89 | & (daytime-day1)*86400/dt_twpi |
---|
[2017] | 90 | |
---|
| 91 | ! time interpolation: |
---|
[2019] | 92 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
| 93 | & ,year_ini_twpi,day_ju_ini_twpi,nt_twpi,dt_twpi,nlev_twpi & |
---|
| 94 | & ,ts_twpi,plev_twpi,t_twpi,q_twpi,u_twpi,v_twpi,w_twpi & |
---|
| 95 | & ,ht_twpi,vt_twpi,hq_twpi,vq_twpi & |
---|
| 96 | & ,ts_proftwp,plev_proftwp,t_proftwp,q_proftwp,u_proftwp & |
---|
| 97 | & ,v_proftwp,w_proftwp & |
---|
| 98 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp) |
---|
[2017] | 99 | |
---|
| 100 | ! vertical interpolation: |
---|
[2019] | 101 | CALL interp_toga_vertical(play,nlev_twpi,plev_proftwp & |
---|
| 102 | & ,t_proftwp,q_proftwp,u_proftwp,v_proftwp,w_proftwp & |
---|
| 103 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp & |
---|
| 104 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 105 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 106 | |
---|
| 107 | |
---|
| 108 | !calcul de l'advection verticale a partir du omega |
---|
[2019] | 109 | !Calcul des gradients verticaux |
---|
| 110 | !initialisation |
---|
[2017] | 111 | d_t_z(:)=0. |
---|
| 112 | d_q_z(:)=0. |
---|
| 113 | d_t_dyn_z(:)=0. |
---|
| 114 | d_q_dyn_z(:)=0. |
---|
| 115 | DO l=2,llm-1 |
---|
[2019] | 116 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 117 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
[2017] | 118 | ENDDO |
---|
| 119 | d_t_z(1)=d_t_z(2) |
---|
| 120 | d_q_z(1)=d_q_z(2) |
---|
| 121 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 122 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 123 | |
---|
[2019] | 124 | !Calcul de l advection verticale |
---|
[2017] | 125 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
| 126 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
| 127 | |
---|
| 128 | !wind nudging above 500m with a 2h time scale |
---|
| 129 | do l=1,llm |
---|
| 130 | if (nudge_wind) then |
---|
| 131 | ! if (phi(l).gt.5000.) then |
---|
| 132 | if (phi(l).gt.0.) then |
---|
[2019] | 133 | u(l)=u(l)+timestep*(u_mod(l)-u(l))/(2.*3600.) |
---|
| 134 | v(l)=v(l)+timestep*(v_mod(l)-v(l))/(2.*3600.) |
---|
[2017] | 135 | endif |
---|
| 136 | else |
---|
| 137 | u(l) = u_mod(l) |
---|
| 138 | v(l) = v_mod(l) |
---|
| 139 | endif |
---|
| 140 | enddo |
---|
| 141 | |
---|
| 142 | !CR:nudging of q and theta with a 6h time scale above 15km |
---|
| 143 | if (nudge_thermo) then |
---|
| 144 | do l=1,llm |
---|
| 145 | zz(l)=phi(l)/9.8 |
---|
| 146 | if ((zz(l).le.16000.).and.(zz(l).gt.15000.)) then |
---|
| 147 | zfact=(zz(l)-15000.)/1000. |
---|
[2019] | 148 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.)*zfact |
---|
| 149 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.)*zfact |
---|
[2017] | 150 | else if (zz(l).gt.16000.) then |
---|
[2019] | 151 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.) |
---|
| 152 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.) |
---|
[2017] | 153 | endif |
---|
| 154 | enddo |
---|
| 155 | endif |
---|
| 156 | |
---|
| 157 | do l = 1, llm |
---|
| 158 | omega(l) = w_mod(l) |
---|
| 159 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 160 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 161 | !calcul de l'advection totale |
---|
| 162 | if (cptadvw) then |
---|
| 163 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
| 164 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
| 165 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
| 166 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
| 167 | else |
---|
| 168 | d_th_adv(l) = alpha*omega(l)/rcpd+(ht_mod(l)+vt_mod(l)) |
---|
| 169 | d_q_adv(l,1) = (hq_mod(l)+vq_mod(l)) |
---|
| 170 | endif |
---|
| 171 | dt_cooling(l) = 0.0 |
---|
| 172 | enddo |
---|
| 173 | |
---|
| 174 | endif ! forcing_twpice |
---|
| 175 | |
---|
| 176 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 177 | !--------------------------------------------------------------------- |
---|
| 178 | ! Interpolation forcing AMMA |
---|
| 179 | !--------------------------------------------------------------------- |
---|
| 180 | |
---|
| 181 | if (forcing_amma) then |
---|
| 182 | |
---|
[2019] | 183 | print*, & |
---|
| 184 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_amma=', & |
---|
| 185 | & daytime,day1,(daytime-day1)*86400., & |
---|
| 186 | & (daytime-day1)*86400/dt_amma |
---|
[2017] | 187 | |
---|
| 188 | ! time interpolation using TOGA interpolation routine |
---|
[2019] | 189 | CALL interp_amma_time(daytime,day1,annee_ref & |
---|
| 190 | & ,year_ini_amma,day_ju_ini_amma,nt_amma,dt_amma,nlev_amma & |
---|
| 191 | & ,vitw_amma,ht_amma,hq_amma,lat_amma,sens_amma & |
---|
| 192 | & ,vitw_profamma,ht_profamma,hq_profamma,lat_profamma & |
---|
| 193 | & ,sens_profamma) |
---|
[2017] | 194 | |
---|
| 195 | print*,'apres interpolation temporelle AMMA' |
---|
| 196 | |
---|
| 197 | do k=1,nlev_amma |
---|
| 198 | th_profamma(k)=0. |
---|
| 199 | q_profamma(k)=0. |
---|
| 200 | u_profamma(k)=0. |
---|
| 201 | v_profamma(k)=0. |
---|
| 202 | vt_profamma(k)=0. |
---|
| 203 | vq_profamma(k)=0. |
---|
| 204 | enddo |
---|
| 205 | ! vertical interpolation using TOGA interpolation routine: |
---|
| 206 | ! write(*,*)'avant interp vert', t_proftwp |
---|
[2019] | 207 | CALL interp_toga_vertical(play,nlev_amma,plev_amma & |
---|
| 208 | & ,th_profamma,q_profamma,u_profamma,v_profamma & |
---|
| 209 | & ,vitw_profamma & |
---|
| 210 | & ,ht_profamma,vt_profamma,hq_profamma,vq_profamma & |
---|
| 211 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 212 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
[2017] | 213 | write(*,*) 'Profil initial forcing AMMA interpole' |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | !calcul de l'advection verticale a partir du omega |
---|
[2019] | 217 | !Calcul des gradients verticaux |
---|
| 218 | !initialisation |
---|
[2017] | 219 | do l=1,llm |
---|
| 220 | d_t_z(l)=0. |
---|
| 221 | d_q_z(l)=0. |
---|
| 222 | enddo |
---|
| 223 | |
---|
| 224 | DO l=2,llm-1 |
---|
[2019] | 225 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
| 226 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
[2017] | 227 | ENDDO |
---|
| 228 | d_t_z(1)=d_t_z(2) |
---|
| 229 | d_q_z(1)=d_q_z(2) |
---|
| 230 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 231 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | do l = 1, llm |
---|
| 235 | rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
| 236 | omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
| 237 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 238 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 239 | !calcul de l'advection totale |
---|
| 240 | ! d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-omega(l)*d_t_z(l) |
---|
| 241 | !attention: on impose dth |
---|
[2019] | 242 | d_th_adv(l) = alpha*omega(l)/rcpd+ & |
---|
[2017] | 243 | & ht_mod(l)*(play(l)/pzero)**rkappa-omega(l)*d_t_z(l) |
---|
| 244 | ! d_th_adv(l) = 0. |
---|
| 245 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
| 246 | d_q_adv(l,1) = hq_mod(l)-omega(l)*d_q_z(l) |
---|
| 247 | ! d_q_adv(l,1) = 0. |
---|
| 248 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
| 249 | |
---|
| 250 | dt_cooling(l) = 0.0 |
---|
| 251 | enddo |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | ! ok_flux_surf=.false. |
---|
| 255 | fsens=-1.*sens_profamma |
---|
| 256 | flat=-1.*lat_profamma |
---|
| 257 | |
---|
| 258 | endif ! forcing_amma |
---|
| 259 | |
---|
| 260 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 261 | !--------------------------------------------------------------------- |
---|
| 262 | ! Interpolation forcing Rico |
---|
| 263 | !--------------------------------------------------------------------- |
---|
| 264 | if (forcing_rico) then |
---|
| 265 | ! call lstendH(llm,omega,dt_dyn,dq_dyn,du_dyn, dv_dyn, |
---|
| 266 | ! : q,temp,u,v,play) |
---|
[2019] | 267 | call lstendH(llm,nqtot,omega,dt_dyn,dq_dyn,q,temp,u,v,play) |
---|
[2017] | 268 | |
---|
| 269 | do l=1,llm |
---|
| 270 | d_th_adv(l) = (dth_rico(l) + dt_dyn(l)) |
---|
| 271 | d_q_adv(l,1) = (dqh_rico(l) + dq_dyn(l,1)) |
---|
| 272 | d_q_adv(l,2) = 0. |
---|
| 273 | enddo |
---|
| 274 | endif ! forcing_rico |
---|
| 275 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 276 | !--------------------------------------------------------------------- |
---|
| 277 | ! Interpolation forcing Arm_cu |
---|
| 278 | !--------------------------------------------------------------------- |
---|
| 279 | if (forcing_armcu) then |
---|
| 280 | |
---|
[2019] | 281 | print*, & |
---|
| 282 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_armcu=', & |
---|
| 283 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_armcu |
---|
[2017] | 284 | |
---|
| 285 | ! time interpolation: |
---|
| 286 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 287 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 288 | CALL interp_armcu_time(daytime,day1,annee_ref & |
---|
| 289 | & ,year_ini_armcu,day_ju_ini_armcu,nt_armcu,dt_armcu & |
---|
| 290 | & ,nlev_armcu,sens_armcu,flat_armcu,adv_theta_armcu & |
---|
| 291 | & ,rad_theta_armcu,adv_qt_armcu,sens_prof,flat_prof & |
---|
| 292 | & ,adv_theta_prof,rad_theta_prof,adv_qt_prof) |
---|
[2017] | 293 | |
---|
| 294 | ! vertical interpolation: |
---|
| 295 | ! No vertical interpolation if nlev imposed to 19 or 40 |
---|
| 296 | |
---|
| 297 | ! For this case, fluxes are imposed |
---|
| 298 | fsens=-1*sens_prof |
---|
| 299 | flat=-1*flat_prof |
---|
| 300 | |
---|
| 301 | ! Advective forcings are given in K or g/kg ... BY HOUR |
---|
| 302 | do l = 1, llm |
---|
| 303 | ug(l)= u_mod(l) |
---|
| 304 | vg(l)= v_mod(l) |
---|
| 305 | IF((phi(l)/RG).LT.1000) THEN |
---|
| 306 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)/3600. |
---|
| 307 | d_q_adv(l,1) = adv_qt_prof/1000./3600. |
---|
| 308 | d_q_adv(l,2) = 0.0 |
---|
| 309 | ! print *,'INF1000: phi dth dq1 dq2', |
---|
| 310 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 311 | ELSEIF ((phi(l)/RG).GE.1000.AND.(phi(l)/RG).lt.3000) THEN |
---|
| 312 | fact=((phi(l)/RG)-1000.)/2000. |
---|
| 313 | fact=1-fact |
---|
| 314 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)*fact/3600. |
---|
| 315 | d_q_adv(l,1) = adv_qt_prof*fact/1000./3600. |
---|
| 316 | d_q_adv(l,2) = 0.0 |
---|
| 317 | ! print *,'SUP1000: phi fact dth dq1 dq2', |
---|
| 318 | ! : phi(l)/RG,fact,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 319 | ELSE |
---|
| 320 | d_th_adv(l) = 0.0 |
---|
| 321 | d_q_adv(l,1) = 0.0 |
---|
| 322 | d_q_adv(l,2) = 0.0 |
---|
| 323 | ! print *,'SUP3000: phi dth dq1 dq2', |
---|
| 324 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 325 | ENDIF |
---|
| 326 | dt_cooling(l) = 0.0 |
---|
| 327 | ! print *,'Interp armcu: phi dth dq1 dq2', |
---|
| 328 | ! : l,phi(l),d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
| 329 | enddo |
---|
| 330 | endif ! forcing_armcu |
---|
| 331 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 332 | !--------------------------------------------------------------------- |
---|
| 333 | ! Interpolation forcing in time and onto model levels |
---|
| 334 | !--------------------------------------------------------------------- |
---|
| 335 | if (forcing_sandu) then |
---|
| 336 | |
---|
[2019] | 337 | print*, & |
---|
| 338 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_sandu=', & |
---|
| 339 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_sandu |
---|
[2017] | 340 | |
---|
| 341 | ! time interpolation: |
---|
| 342 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 343 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 344 | CALL interp_sandu_time(daytime,day1,annee_ref & |
---|
| 345 | & ,year_ini_sandu,day_ju_ini_sandu,nt_sandu,dt_sandu & |
---|
| 346 | & ,nlev_sandu & |
---|
| 347 | & ,ts_sandu,ts_prof) |
---|
[2017] | 348 | |
---|
| 349 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 350 | |
---|
| 351 | ! vertical interpolation: |
---|
[2019] | 352 | CALL interp_sandu_vertical(play,nlev_sandu,plev_profs & |
---|
| 353 | & ,t_profs,thl_profs,q_profs,u_profs,v_profs,w_profs & |
---|
| 354 | & ,omega_profs,o3mmr_profs & |
---|
| 355 | & ,t_mod,thl_mod,q_mod,u_mod,v_mod,w_mod & |
---|
| 356 | & ,omega_mod,o3mmr_mod,mxcalc) |
---|
[2017] | 357 | !calcul de l'advection verticale |
---|
[2019] | 358 | !Calcul des gradients verticaux |
---|
| 359 | !initialisation |
---|
[2017] | 360 | d_t_z(:)=0. |
---|
| 361 | d_q_z(:)=0. |
---|
| 362 | d_t_dyn_z(:)=0. |
---|
| 363 | d_q_dyn_z(:)=0. |
---|
| 364 | ! schema centre |
---|
| 365 | ! DO l=2,llm-1 |
---|
| 366 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
| 367 | ! & /(play(l+1)-play(l-1)) |
---|
| 368 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
| 369 | ! & /(play(l+1)-play(l-1)) |
---|
| 370 | ! schema amont |
---|
| 371 | DO l=2,llm-1 |
---|
| 372 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
| 373 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
| 374 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
| 375 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
| 376 | ENDDO |
---|
| 377 | d_t_z(1)=d_t_z(2) |
---|
| 378 | d_q_z(1)=d_q_z(2) |
---|
| 379 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 380 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 381 | |
---|
| 382 | ! calcul de l advection verticale |
---|
| 383 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
| 384 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
| 385 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
| 386 | ! do l=1,llm |
---|
| 387 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
| 388 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
| 389 | ! enddo |
---|
| 390 | |
---|
| 391 | |
---|
| 392 | ! large-scale forcing : pour le cas Sandu ces forcages sont la SST |
---|
| 393 | ! et une divergence constante -> profil de omega |
---|
| 394 | tsurf = ts_prof |
---|
| 395 | write(*,*) 'SST suivante: ',tsurf |
---|
| 396 | do l = 1, llm |
---|
| 397 | omega(l) = omega_mod(l) |
---|
| 398 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 399 | |
---|
| 400 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 401 | ! |
---|
| 402 | ! d_th_adv(l) = 0.0 |
---|
| 403 | ! d_q_adv(l,1) = 0.0 |
---|
| 404 | !CR:test advection=0 |
---|
| 405 | !calcul de l'advection verticale |
---|
| 406 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
| 407 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
| 408 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
| 409 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
| 410 | dt_cooling(l) = 0.0 |
---|
| 411 | enddo |
---|
| 412 | endif ! forcing_sandu |
---|
| 413 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 414 | !--------------------------------------------------------------------- |
---|
| 415 | ! Interpolation forcing in time and onto model levels |
---|
| 416 | !--------------------------------------------------------------------- |
---|
| 417 | if (forcing_astex) then |
---|
| 418 | |
---|
[2019] | 419 | print*, & |
---|
| 420 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_astex=', & |
---|
| 421 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_astex |
---|
[2017] | 422 | |
---|
| 423 | ! time interpolation: |
---|
| 424 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
| 425 | ! revoir 1DUTILS.h et les arguments |
---|
[2019] | 426 | CALL interp_astex_time(daytime,day1,annee_ref & |
---|
| 427 | & ,year_ini_astex,day_ju_ini_astex,nt_astex,dt_astex & |
---|
| 428 | & ,nlev_astex,div_astex,ts_astex,ug_astex,vg_astex & |
---|
| 429 | & ,ufa_astex,vfa_astex,div_prof,ts_prof,ug_prof,vg_prof & |
---|
| 430 | & ,ufa_prof,vfa_prof) |
---|
[2017] | 431 | |
---|
| 432 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
| 433 | |
---|
| 434 | ! vertical interpolation: |
---|
[2019] | 435 | CALL interp_astex_vertical(play,nlev_astex,plev_profa & |
---|
| 436 | & ,t_profa,thl_profa,qv_profa,ql_profa,qt_profa & |
---|
| 437 | & ,u_profa,v_profa,w_profa,tke_profa,o3mmr_profa & |
---|
| 438 | & ,t_mod,thl_mod,qv_mod,ql_mod,qt_mod,u_mod,v_mod,w_mod & |
---|
| 439 | & ,tke_mod,o3mmr_mod,mxcalc) |
---|
[2017] | 440 | !calcul de l'advection verticale |
---|
| 441 | !Calcul des gradients verticaux |
---|
| 442 | !initialisation |
---|
| 443 | d_t_z(:)=0. |
---|
| 444 | d_q_z(:)=0. |
---|
| 445 | d_t_dyn_z(:)=0. |
---|
| 446 | d_q_dyn_z(:)=0. |
---|
| 447 | ! schema centre |
---|
| 448 | ! DO l=2,llm-1 |
---|
| 449 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
| 450 | ! & /(play(l+1)-play(l-1)) |
---|
| 451 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
| 452 | ! & /(play(l+1)-play(l-1)) |
---|
| 453 | ! schema amont |
---|
| 454 | DO l=2,llm-1 |
---|
| 455 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
| 456 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
| 457 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
| 458 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
| 459 | ENDDO |
---|
| 460 | d_t_z(1)=d_t_z(2) |
---|
| 461 | d_q_z(1)=d_q_z(2) |
---|
| 462 | d_t_z(llm)=d_t_z(llm-1) |
---|
| 463 | d_q_z(llm)=d_q_z(llm-1) |
---|
| 464 | |
---|
| 465 | ! calcul de l advection verticale |
---|
| 466 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
| 467 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
| 468 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
| 469 | ! do l=1,llm |
---|
| 470 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
| 471 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
| 472 | ! enddo |
---|
| 473 | |
---|
| 474 | |
---|
| 475 | ! large-scale forcing : pour le cas Astex ces forcages sont la SST |
---|
| 476 | ! la divergence,ug,vg,ufa,vfa |
---|
| 477 | tsurf = ts_prof |
---|
| 478 | write(*,*) 'SST suivante: ',tsurf |
---|
| 479 | do l = 1, llm |
---|
| 480 | omega(l) = w_mod(l) |
---|
| 481 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
| 482 | |
---|
| 483 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
| 484 | ! |
---|
| 485 | ! d_th_adv(l) = 0.0 |
---|
| 486 | ! d_q_adv(l,1) = 0.0 |
---|
| 487 | !CR:test advection=0 |
---|
| 488 | !calcul de l'advection verticale |
---|
| 489 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
| 490 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
| 491 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
| 492 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
| 493 | dt_cooling(l) = 0.0 |
---|
| 494 | enddo |
---|
| 495 | endif ! forcing_astex |
---|
| 496 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 497 | |
---|